Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1‐weighted dataset
Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, w...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 88; no. 1; pp. 464 - 475 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.07.2022
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.29215 |
Cover
| Abstract | Purpose
Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.
Methods
Multi‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.
Results
The network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach.
Conclusion
A subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T. |
|---|---|
| AbstractList | PurposeParallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.MethodsMulti‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.ResultsThe network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach.ConclusionA subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T. Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T. Methods Multi‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model. Results The network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach. Conclusion A subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T. Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over-conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra-high field MR. In this work, we present a method to generate a subject-specific body model from a single T1-weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T. Multi-contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1-weighted data as input in a leave-one-out cross-validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model. The network-generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic "one-size-fits-all" approach. A subject-specific body model can be automatically generated from a single T1-weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T. Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over-conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra-high field MR. In this work, we present a method to generate a subject-specific body model from a single T1-weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.PURPOSEParallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over-conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra-high field MR. In this work, we present a method to generate a subject-specific body model from a single T1-weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.Multi-contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1-weighted data as input in a leave-one-out cross-validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.METHODSMulti-contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1-weighted data as input in a leave-one-out cross-validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.The network-generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic "one-size-fits-all" approach.RESULTSThe network-generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic "one-size-fits-all" approach.A subject-specific body model can be automatically generated from a single T1-weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.CONCLUSIONA subject-specific body model can be automatically generated from a single T1-weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T. |
| Author | Staring, Marius Brink, Wyger M. Bhatnagar, Prernna Remis, Rob F. Yousefi, Sahar Webb, Andrew G. |
| AuthorAffiliation | 2 Division of Image Processing, Department of Radiology Leiden University Medical Center Leiden the Netherlands 3 Circuits and Systems Group, Department of Microelectronics Delft University of Technology Delft the Netherlands 1 C.J. Gorter Center for High Field MRI, Department of Radiology Leiden University Medical Center Leiden the Netherlands |
| AuthorAffiliation_xml | – name: 2 Division of Image Processing, Department of Radiology Leiden University Medical Center Leiden the Netherlands – name: 1 C.J. Gorter Center for High Field MRI, Department of Radiology Leiden University Medical Center Leiden the Netherlands – name: 3 Circuits and Systems Group, Department of Microelectronics Delft University of Technology Delft the Netherlands |
| Author_xml | – sequence: 1 givenname: Wyger M. orcidid: 0000-0001-9974-7662 surname: Brink fullname: Brink, Wyger M. organization: Leiden University Medical Center – sequence: 2 givenname: Sahar orcidid: 0000-0003-2396-2504 surname: Yousefi fullname: Yousefi, Sahar organization: Leiden University Medical Center – sequence: 3 givenname: Prernna surname: Bhatnagar fullname: Bhatnagar, Prernna organization: Delft University of Technology – sequence: 4 givenname: Rob F. orcidid: 0000-0003-0365-4942 surname: Remis fullname: Remis, Rob F. organization: Delft University of Technology – sequence: 5 givenname: Marius orcidid: 0000-0003-2885-5812 surname: Staring fullname: Staring, Marius organization: Leiden University Medical Center – sequence: 6 givenname: Andrew G. orcidid: 0000-0003-4045-9732 surname: Webb fullname: Webb, Andrew G. email: a.webb@lumc.nl organization: Leiden University Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35344602$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1q3DAUhUVJaSZpF32BIuimLTiR9WNbm0II_QkktKTTtbgjyxMFWXIku8N01UfIM-ZJqsmkf4FmJbj67uGcc_fQjg_eIPS8JAclIfSwj_0BlbQUj9CsFJQWVEi-g2ak5qRgpeS7aC-lS0KIlDV_gnaZYJxXhM6Q_2xiCh6c_W5a7IIGh78cneMhmtbq0QaPuxDxABGcMw6PEXzq7Yi9mWKwPSytX2IYcT3HXQw9BpzyxBk8L29-XK-MXV6MWbmFEZIZn6LHHbhknt29--jr-3fz44_F6acPJ8dHp4XmnImiWtRayKZrSql5KzQDoWVNa0FBQNORllSso5ppQWQrGgMLVovaLAQAMFERto_ebHUnP8B6lb2rIWa3ca1KojalqVyaui0tw2-38DAtetNq43PKPwsBrPr3x9sLtQzflGQlbxqWBV7dCcRwNZk0qt4mbZwDb8KUFK04lxVtKpnRl_fQyzDF3P-GEkLk89VNpl787ei3lV93y8DrLaBjSCma7sF4h_dYbUfYnDaHse6hjZV1Zv1_aXV2frbd-AkEpMjn |
| CitedBy_id | crossref_primary_10_1002_mrm_29913 crossref_primary_10_1109_TAP_2024_3411151 crossref_primary_10_1088_1361_6560_ad5070 crossref_primary_10_1002_mrm_29866 crossref_primary_10_1002_mrm_29932 crossref_primary_10_1002_mrm_29797 crossref_primary_10_1002_nbm_4876 crossref_primary_10_1088_1361_6560_ada683 crossref_primary_10_1002_mrm_30359 crossref_primary_10_2214_AJR_23_29342 crossref_primary_10_1002_mrm_29904 crossref_primary_10_1109_TBME_2022_3222748 |
| Cites_doi | 10.1088/1361-6560/ab7308 10.1002/mrm.27153 10.1002/mrm.25504 10.1002/nbm.3313 10.1016/j.neuroimage.2019.116132 10.1002/mrm.24378 10.1002/mrm.27589 10.1016/j.mri.2015.04.002 10.1016/j.mri.2012.05.001 10.1007/s10334-016-0543-6 10.1002/mrm.27948 10.1002/mrm.23118 10.1002/nbm.3290 10.1002/mrm.24158 10.1016/j.neuroimage.2016.11.031 10.1088/0031-9155/57/24/8153 10.1109/TBME.2016.2521166 10.1109/TMI.2013.2295465 10.1109/ACCESS.2021.3118290 10.1002/mrm.25425 10.1088/0031-9155/55/2/N01 10.1109/TBME.2018.2856501 10.1002/mrm.28398 10.1002/jmri.24542 10.1109/ACCESS.2021.3096270 10.1002/mrm.24667 10.1002/cmr.b.21317 10.1002/mrm.28467 10.1002/nbm.1049 10.1002/mrm.20011 10.1109/TMI.2009.2035616 10.1002/mrm.26925 10.1109/42.906424 10.1002/mrm.23198 10.1016/j.neuroimage.2004.07.051 10.1002/mrm.22978 10.1002/mrm.22927 10.1002/mrm.24138 10.1002/mrm.22948 10.1002/mrm.26468 10.1007/BF03166953 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/mrm.29215 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| DocumentTitleAlternate | Brink et al |
| EISSN | 1522-2594 |
| EndPage | 475 |
| ExternalDocumentID | 10.1002/mrm.29215 PMC9314883 35344602 10_1002_mrm_29215 MRM29215 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) funderid: TTW.16820 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) grantid: TTW.16820 – fundername: ; grantid: TTW.16820 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4435-6b7c598f819c4d5c3a5c972752a5a8f0d063f2c3c509d58eab3757eb5aaa35603 |
| IEDL.DBID | 24P |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Sun Oct 26 04:16:12 EDT 2025 Thu Aug 21 13:36:58 EDT 2025 Thu Oct 02 11:04:54 EDT 2025 Tue Oct 07 06:05:58 EDT 2025 Wed Feb 19 02:26:38 EST 2025 Wed Oct 01 05:05:38 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Wed Jan 22 16:24:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | body models subject-specific deep learning PTx SAR |
| Language | English |
| License | Attribution 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4435-6b7c598f819c4d5c3a5c972752a5a8f0d063f2c3c509d58eab3757eb5aaa35603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Grant/Award Number: TTW.16820 |
| ORCID | 0000-0003-0365-4942 0000-0003-2885-5812 0000-0003-2396-2504 0000-0003-4045-9732 0000-0001-9974-7662 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29215 |
| PMID | 35344602 |
| PQID | 2655515278 |
| PQPubID | 1016391 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_29215 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9314883 proquest_miscellaneous_2644962869 proquest_journals_2655515278 pubmed_primary_35344602 crossref_primary_10_1002_mrm_29215 crossref_citationtrail_10_1002_mrm_29215 wiley_primary_10_1002_mrm_29215_MRM29215 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2021; 9 2010; 55 2013; 69 2012 2020; 83 2018; 168 2015; 74 2015; 33 2004; 23 2009 2018; 80 2006; 19 2019; 202 2012; 57 2005; 29 2012; 30 2001; 20 2004; 51 2019; 81 2019; 66 2010; 29 2020 2017; 78 2011; 66 2018 2016; 63 2016 2015 2014; 39 2020; 65 2016; 29 2012; 68 2021; 85 2012; 67 2014; 71 2014; 33 2016; 46 2018; 79 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Kuehne A (e_1_2_8_33_1) 2012 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 Alon L (e_1_2_8_39_1) 2015 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 Ajanovic A (e_1_2_8_12_1) 2020 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Kingma DP (e_1_2_8_31_1) 2015 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_37_1 Brink WM (e_1_2_8_25_1) 2016 e_1_2_8_10_1 Paška J (e_1_2_8_35_1) 2009 e_1_2_8_50_1 |
| References_xml | – volume: 46 start-page: 8 year: 2016 end-page: 18 article-title: Effects of anatomical differences on electromagnetic fields, SAR, and temperature change publication-title: Concepts Magn Reson Part B Magn Reson Eng – year: 2009 – volume: 68 start-page: 1664 year: 2012 end-page: 1674 article-title: A specific absorption rate prediction concept for parallel transmission MR publication-title: Magn Reson Med – volume: 78 start-page: 1217 year: 2017 end-page: 1223 article-title: Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI publication-title: Magn Reson Med – volume: 29 start-page: 1145 year: 2016 end-page: 1161 article-title: Parallel transmission for ultrahigh‐field imaging publication-title: NMR Biomed – volume: 74 start-page: 589 year: 2015 end-page: 598 article-title: Comprehensive RF safety concept for parallel transmission MR publication-title: Magn Reson Med – volume: 29 start-page: 333 year: 2016 end-page: 345 – volume: 20 start-page: 45 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Trans Med Imaging – volume: 57 start-page: 8153 year: 2012 end-page: 8171 article-title: Improving SAR estimations in MRI using subject‐specific models publication-title: Phys Med Biol – volume: 66 start-page: 768 year: 2019 end-page: 774 article-title: Computer‐vision techniques for water‐fat separation in ultra high‐field MRI local specific absorption rate estimation publication-title: IEEE Trans Biomed Eng – volume: 81 start-page: 2808 year: 2019 end-page: 2822 article-title: IMPULSE: a scalable algorithm for design of minimum specific absorption rate parallel transmit RF pulses publication-title: Magn Reson Med – volume: 85 start-page: 429 year: 2021 end-page: 443 article-title: Individualized SAR calculations using computer vision‐based MR segmentation and a fast electromagnetic solver publication-title: Magn Reson Med – start-page: 938 year: 2016 – volume: 80 start-page: 1738 year: 2018 end-page: 1745 article-title: A simple head‐sized phantom for realistic static and radiofrequency characterization at high fields publication-title: Magn Reson Med – volume: 66 start-page: 1767 year: 2011 end-page: 1776 article-title: Toward individualized SAR models and in vivo validation publication-title: Magn Reson Med – year: 2018 – volume: 29 start-page: 5 year: 2005 end-page: 18 article-title: Calculations of B1 distribution, specific energy absorption rate, and intrinsic signal‐to‐noise ratio for a body‐size birdcage coil loaded with different human subjects at 64 and 128 MHz publication-title: Appl Magn Reson – volume: 67 start-page: 72 year: 2012 end-page: 80 article-title: kT‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume publication-title: Magn Reson Med – volume: 9 start-page: 140824 year: 2021 end-page: 140834 article-title: MRSaiFE: an AI‐based approach towards the real‐time prediction of specific absorption rate publication-title: IEEE Access – volume: 33 start-page: 739 year: 2014 end-page: 748 article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints publication-title: IEEE Trans Med Imaging – volume: 19 start-page: 393 year: 2006 end-page: 400 article-title: Parallel RF transmission in MRI publication-title: NMR Biomed – volume: 29 start-page: 196 year: 2010 end-page: 205 article-title: Elastix: a toolbox for intensity‐based medical image registration publication-title: IEEE Trans Med Imaging – volume: 30 start-page: 1323 year: 2012 end-page: 1341 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn Reson Imaging – volume: 202 year: 2019 article-title: Development of accurate human head models for personalized electromagnetic dosimetry using deep learning publication-title: Neuroimage – volume: 9 start-page: 99235 year: 2021 end-page: 99248 article-title: Esophageal tumor segmentation in CT images using dilated dense attention Unet (DDAUnet) publication-title: IEEE Access – start-page: 2735 year: 2012 – volume: 55 start-page: N23 year: 2010 end-page: N38 article-title: The virtual family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations publication-title: Phys Med Biol – volume: 67 start-page: 1303 year: 2012 end-page: 1315 article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses publication-title: Magn Reson Med – volume: 66 start-page: 1468 year: 2011 end-page: 1476 article-title: Local specific absorption rate control for parallel transmission by virtual observation points publication-title: Magn Reson Med – volume: 23 start-page: S208 year: 2004 end-page: S219 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: NeuroImage – volume: 168 start-page: 477 year: 2018 end-page: 489 article-title: Key clinical benefits of neuroimaging at 7 T publication-title: Neuroimage – start-page: 4251 year: 2020 – volume: 85 start-page: 1114 year: 2021 end-page: 1122 article-title: An investigation into the minimum number of tissue groups required for 7T in‐silico parallel transmit electromagnetic safety simulations in the human head publication-title: Magn Reson Med – volume: 29 start-page: 1131 year: 2016 end-page: 1144 article-title: Safety testing and operational procedures for self‐developed radiofrequency coils publication-title: NMR Biomed – volume: 33 start-page: 779 year: 2015 end-page: 786 article-title: On the safety margin of using simplified human head models for local SAR simulations of B1‐shimming at 7 Tesla publication-title: Magn Reson Imaging – volume: 79 start-page: 2652 year: 2018 end-page: 2664 article-title: Fast and accurate multi‐channel B1+ mapping based on the TIAMO technique for 7T UHF body MRI publication-title: Magn Reson Med – volume: 83 start-page: 695 year: 2020 end-page: 711 article-title: A deep learning method for image‐based subject‐specific local SAR assessment publication-title: Magn Reson Med – volume: 65 year: 2020 article-title: Learning‐based estimation of dielectric properties and tissue density in head models for personalized radio‐frequency dosimetry publication-title: Phys Med Biol – volume: 68 start-page: 1517 year: 2012 end-page: 1526 article-title: DREAM—a novel approach for robust, ultrafast, multislice B1 mapping publication-title: Magn Reson Med – start-page: 299 year: 2015 – volume: 71 start-page: 246 year: 2014 end-page: 256 article-title: Volumetric B1+ mapping of the brain at 7T using DREAM publication-title: Magn Reson Med – volume: 68 start-page: 286 year: 2012 end-page: 304 article-title: Ideal current patterns yielding optimal signal‐to‐noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights publication-title: Magn Reson Med – year: 2015 – volume: 51 start-page: 775 year: 2004 end-page: 784 article-title: Parallel excitation with an array of transmit coils publication-title: Magn Reson Med – volume: 69 start-page: 1476 year: 2013 end-page: 1485 article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head publication-title: Magn Reson Med – volume: 39 start-page: 745 year: 2014 end-page: 767 article-title: Optimized three‐dimensional fast‐spin‐echo MRI publication-title: J Magn Reson Imaging – volume: 74 start-page: 1423 year: 2015 end-page: 1434 article-title: Comparison between simulated decoupling regimes for specific absorption rate prediction in parallel transmit MRI publication-title: Magn Reson Med – volume: 63 start-page: 2250 year: 2016 end-page: 2261 article-title: Fast electromagnetic analysis of MRI transmit RF coils based on accelerated integral equation methods publication-title: IEEE Trans Biomed Eng – ident: e_1_2_8_47_1 doi: 10.1088/1361-6560/ab7308 – start-page: 2735 volume-title: Proceedings of the 20th Annual Meeting of ISMRM year: 2012 ident: e_1_2_8_33_1 – ident: e_1_2_8_34_1 doi: 10.1002/mrm.27153 – ident: e_1_2_8_36_1 doi: 10.1002/mrm.25504 – ident: e_1_2_8_5_1 doi: 10.1002/nbm.3313 – ident: e_1_2_8_19_1 doi: 10.1016/j.neuroimage.2019.116132 – ident: e_1_2_8_10_1 doi: 10.1002/mrm.24378 – ident: e_1_2_8_21_1 doi: 10.1002/mrm.27589 – ident: e_1_2_8_15_1 doi: 10.1016/j.mri.2015.04.002 – ident: e_1_2_8_24_1 doi: 10.1016/j.mri.2012.05.001 – ident: e_1_2_8_32_1 – start-page: 299 volume-title: Proceedings of the 23rd Annual Meeting of ISMRM year: 2015 ident: e_1_2_8_39_1 – ident: e_1_2_8_43_1 doi: 10.1007/s10334-016-0543-6 – ident: e_1_2_8_45_1 doi: 10.1002/mrm.27948 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.23118 – ident: e_1_2_8_7_1 doi: 10.1002/nbm.3290 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.24158 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2016.11.031 – ident: e_1_2_8_14_1 doi: 10.1088/0031-9155/57/24/8153 – ident: e_1_2_8_41_1 doi: 10.1109/TBME.2016.2521166 – ident: e_1_2_8_20_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_8_46_1 doi: 10.1109/ACCESS.2021.3118290 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.25425 – ident: e_1_2_8_37_1 doi: 10.1088/0031-9155/55/2/N01 – volume-title: 3rd International Conference on Learning Representations, ICLR. International Conference on Learning Representations year: 2015 ident: e_1_2_8_31_1 – ident: e_1_2_8_17_1 doi: 10.1109/TBME.2018.2856501 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.28398 – ident: e_1_2_8_27_1 doi: 10.1002/jmri.24542 – volume-title: Proceedings of the 17th Annual Meeting of ISMRM year: 2009 ident: e_1_2_8_35_1 – ident: e_1_2_8_40_1 doi: 10.1109/ACCESS.2021.3096270 – ident: e_1_2_8_42_1 doi: 10.1002/mrm.24667 – ident: e_1_2_8_48_1 doi: 10.1002/cmr.b.21317 – ident: e_1_2_8_16_1 doi: 10.1002/mrm.28467 – ident: e_1_2_8_3_1 doi: 10.1002/nbm.1049 – ident: e_1_2_8_4_1 doi: 10.1002/mrm.20011 – ident: e_1_2_8_28_1 doi: 10.1109/TMI.2009.2035616 – ident: e_1_2_8_44_1 doi: 10.1002/mrm.26925 – ident: e_1_2_8_29_1 doi: 10.1109/42.906424 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.23198 – ident: e_1_2_8_23_1 doi: 10.1016/j.neuroimage.2004.07.051 – start-page: 4251 volume-title: Proceedings of the 28th Annual Meeting of ISMRM year: 2020 ident: e_1_2_8_12_1 – ident: e_1_2_8_49_1 doi: 10.1002/mrm.22978 – start-page: 938 volume-title: Proceedings of the 24th Annual Meeting of ISMRM year: 2016 ident: e_1_2_8_25_1 – ident: e_1_2_8_9_1 doi: 10.1002/mrm.22927 – ident: e_1_2_8_30_1 – ident: e_1_2_8_38_1 doi: 10.1002/mrm.24138 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.22948 – ident: e_1_2_8_11_1 doi: 10.1002/mrm.26468 – ident: e_1_2_8_6_1 doi: 10.1007/BF03166953 |
| SSID | ssj0009974 |
| Score | 2.470191 |
| Snippet | Purpose
Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory... Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on... PurposeParallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 464 |
| SubjectTerms | Artificial neural networks body models Customization Data acquisition Datasets Deep learning Image segmentation Magnetic Resonance Imaging - methods Medical imaging Neural networks Neural Networks, Computer Neuroimaging Phantoms, Imaging Predictions PTx Quadratures Safety margins SAR subject‐specific s—Computer Processing and Modeling |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgxe-BhfgTGZjYe9pGx27CSPFWKakDpNWyttT8FxHK0izao21cSe-BP4G_lLuHM-tDKGkHiJquTq2vGd71f77ncA7yOuY6FD7Ss6Hww0F35sde4HgVA2D63KI0oUHh6pw3Hw-UyeNXVOKRem5ofoNtzIMtx6TQY-y_J6nW9O9_mH6Xza5zGnJPM1JRGM92BtfHQ8OK_JN2mFcaUQ0UlxH4F-0HIL3fzuqke6BTNvR0s-WJYz_e1KF8UqonUu6eAxfGkHU0eifO0vq7Rvrn_jefyP0T6BRw1cZYNav57CPVtuwPqwOZDfgPsugtQsnkF53ML6a5sx5yLZ6eCEzeYkTNPPEB8zohovCluwipzkdFIxx6g5mbpqSUxXLBwxynlhmtE2RmHZaP_n9x9XbgsXW6aQ1oWtnsP44NPo46HfFHPwDc679FUaGhlHOSIQE2TSCC1NjOBJci11lO9liJVyboRBBJPJyOpUhDK0qdRaC4Rl4gX0ysvSvgKm0pRnucBm8cKtjdR-lmpDxWrwlo092G0nNDEN0zkV3CiSmqOZJ_gmE_cmPdjuRGc1vcefhDZbrUgaC18kXEkEm5KHkQfvusdom3Tgokt7uSSZIIgp9xe79LJWou5XhMQBqD3uQbiiXp0A8X6vPiknF47_Oxb4HzYSHux0ivi3zu86vbpbIhmeDN2H1__U4Bt4yCkFxIUsb0Kvmi_tWwRmVbrVGN8vTpM5Pg priority: 102 providerName: Unpaywall |
| Title | Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1‐weighted dataset |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29215 https://www.ncbi.nlm.nih.gov/pubmed/35344602 https://www.proquest.com/docview/2655515278 https://www.proquest.com/docview/2644962869 https://pubmed.ncbi.nlm.nih.gov/PMC9314883 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.29215 |
| UnpaywallVersion | publishedVersion |
| Volume | 88 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF5CQh-X0qYvp2nYPg65qLH3IWnpybQNoeBgXBvSkxitVtQgK8aWCempP6G_sb-kM6tHMGlLL4vQjqSVZmfn0-7ON4y9jQUYCREEIa0PKhAyMA7yQCkZujxyYR5ToPDoPDybqc8X-mKHvW9jYWp-iG7CjSzDj9dk4JCuT25IQxerxTthBAWY7w0Qx1D3Fmp8w7hragrmSNFAY1RLK9QXJ92l287oFsK8vVHy3qZcwvUVFMU2mPXe6PQhe9DASD6s9f6I7bhyn90dNQvl--yO39lp149ZOW7h9neXce-6-JfhhC9XJExq4YhbOVGAF4UreEXOazGvuGe6nC98FiMOFY-mnGJROHCaXigcnw5-_fh55adW8c601XTtqidsdvpp-uEsaJIsBBb1oYMwjaw2cY7IwKpMWwnaGgQ1WoCGOO9niGFyYaVFZJHp2EEqIx25VAOARLgkn7Ld8rJ0zxkP01RkucTbYiGci8NBloKlJDJ4ypkeO26_dmIbBnJKhFEkNXeySFAxiVdMj73uRJc17cafhA5blSWN5a0TEWoEgVpEcY-96qrRZmghBEp3uSEZpQzF5GKTntUa7p4iNb5A2Bc9Fm3pvhMgPu7tmnL-zfNyG4n_lrHssTddL_lX4499__m7RDKajPzBwf-LvmD3BcVn-P3Eh2y3Wm3cS0RNVXrkrQPLjxNxxPZm5-Ph198JnRdl |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRdBeEJRHUwqYx6GX0F2_EktcKkS1QFNVZSv1FjmOo66UTVe7WVVw4if0N_aX4HEe1aqAuERRPEmcjMf-bM98A_A-ploxHelQ4v4g15SFyuoi5JxJW0RWFjEGCifHcnTGv56L8zX42MXCNPwQ_YIbWobvr9HAcUF6_5Y1dDqffqCKYoT5PS6HEqdelJ_cUu6qhoM54tjTKN7xCg3ofn_r6mh0B2Le9ZTcWFYz_eNKl-UqmvXD0eEjeNjiSHLQKP4xrNlqCx4k7U75Ftz3rp1m8QSqkw5v_7Q58WMX-X5wSmZzFEa9EAdcCXKAl6UtSY2j13RSE091OZn6NEZE1yQaEwxGIZrg-kJpyXh48-v6yq-tuiejr-nC1k_h7PDz-NMobLMshMYpRIQyi4xQceGggeG5MEwLoxyqEVQLHReD3IGYghpmHLTIRWx1xiIR2UxorZnDS-wZrFeXld0GIrOM5gVzj3UHam0sh3mmDWaRcZesCmCv-9upaSnIMRNGmTbkyTR1ikm9YgJ424vOGt6NPwntdipLW9NbpFQKhwIFjeIA3vTFzmhwJ0RX9nKJMpwrDMp1VXreaLh_CxPuA-SABhCt6L4XQELu1ZJqcuGJuRVzk8uYBfCubyX_qvyebz9_l0iT08Sf7Py_6GvYGI2To_Toy_G3F7BJMVjDOxfvwno9X9qXDkLV2StvKb8BvBgYOA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qiihcWMoWKGCWQy-ZTr3EscSloozKMlU1TKVeUOQ4jhiRSUczGVX0xE_gN_JL8HOWaiggxCWK4hfHy3v2F_u9zwAvY6oV01KHEe4Pck1ZqKzOQ85ZZHNpozzGQOHhYXRwzN-diJM1eNXGwtT8EN2CG1qGH6_RwO0sy3cuWEOn82mPKooR5le4UDE69O2PLsijlKo5mCXHkUbxlleoT3e6V1dno0sQ87Kn5LVlOdNfz3RRrKJZPx0NbsKntiK1F8qX3rJKe-b8F47H_63pLbjR4FSyVyvWbViz5SZsDJud-E246l1HzeIOlEctnj-3GfFzI_m4NyKzOQpjvxMHjAlyjBeFLUiFs-N0UhFPpTmZ-mOSiK6IHBMMdiGa4PpFYcl498e372d-7dbljL6sC1vdhePBm_Hrg7A5xSE0rsNFGKXSuN7JHfQwPBOGaWGUQ02CaqHjvJ85kJRTw4yDLpmIrU6ZFNKmQmvNHB5j92C9PC3tAyBRmtIsZy5bd6HWxtFulmqDp9S4R1YFsN32ZmIainM8aaNIanJmmriWTHxLBvC8E53VvB6_E9pqVSJpTHuR0Eg4lCmojAN41iU7o8SdFl3a0yXKcK4w6NcV6X6tQd1XmHAViPo0ALmiW50AEn6vppSTz574WzH38xqzAF50Wvi3wm97pfqzRDIcDf3Nw38XfQobR_uD5MPbw_eP4DrFWBDvu7wF69V8aR87hFalT7wh_gTBQzh_ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgxe-BhfgTGZjYe9pGx27CSPFWKakDpNWyttT8FxHK0izao21cSe-BP4G_lLuHM-tDKGkHiJquTq2vGd71f77ncA7yOuY6FD7Ss6Hww0F35sde4HgVA2D63KI0oUHh6pw3Hw-UyeNXVOKRem5ofoNtzIMtx6TQY-y_J6nW9O9_mH6Xza5zGnJPM1JRGM92BtfHQ8OK_JN2mFcaUQ0UlxH4F-0HIL3fzuqke6BTNvR0s-WJYz_e1KF8UqonUu6eAxfGkHU0eifO0vq7Rvrn_jefyP0T6BRw1cZYNav57CPVtuwPqwOZDfgPsugtQsnkF53ML6a5sx5yLZ6eCEzeYkTNPPEB8zohovCluwipzkdFIxx6g5mbpqSUxXLBwxynlhmtE2RmHZaP_n9x9XbgsXW6aQ1oWtnsP44NPo46HfFHPwDc679FUaGhlHOSIQE2TSCC1NjOBJci11lO9liJVyboRBBJPJyOpUhDK0qdRaC4Rl4gX0ysvSvgKm0pRnucBm8cKtjdR-lmpDxWrwlo092G0nNDEN0zkV3CiSmqOZJ_gmE_cmPdjuRGc1vcefhDZbrUgaC18kXEkEm5KHkQfvusdom3Tgokt7uSSZIIgp9xe79LJWou5XhMQBqD3uQbiiXp0A8X6vPiknF47_Oxb4HzYSHux0ivi3zu86vbpbIhmeDN2H1__U4Bt4yCkFxIUsb0Kvmi_tWwRmVbrVGN8vTpM5Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+local+SAR+prediction+for+parallel+transmit+neuroimaging+at+7T+from+a+single+T1%E2%80%90weighted+dataset&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Brink%2C+Wyger+M.&rft.au=Yousefi%2C+Sahar&rft.au=Bhatnagar%2C+Prernna&rft.au=Remis%2C+Rob+F.&rft.date=2022-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=88&rft.issue=1&rft.spage=464&rft.epage=475&rft_id=info:doi/10.1002%2Fmrm.29215&rft.externalDBID=10.1002%252Fmrm.29215&rft.externalDocID=MRM29215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |