Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1‐weighted dataset

Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, w...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 88; no. 1; pp. 464 - 475
Main Authors Brink, Wyger M., Yousefi, Sahar, Bhatnagar, Prernna, Remis, Rob F., Staring, Marius, Webb, Andrew G.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29215

Cover

Abstract Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T. Methods Multi‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model. Results The network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach. Conclusion A subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.
AbstractList PurposeParallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.MethodsMulti‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.ResultsThe network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach.ConclusionA subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.
Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T. Methods Multi‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model. Results The network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach. Conclusion A subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.
Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over-conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra-high field MR. In this work, we present a method to generate a subject-specific body model from a single T1-weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T. Multi-contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1-weighted data as input in a leave-one-out cross-validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model. The network-generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic "one-size-fits-all" approach. A subject-specific body model can be automatically generated from a single T1-weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.
Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over-conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra-high field MR. In this work, we present a method to generate a subject-specific body model from a single T1-weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.PURPOSEParallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over-conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra-high field MR. In this work, we present a method to generate a subject-specific body model from a single T1-weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T.Multi-contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1-weighted data as input in a leave-one-out cross-validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.METHODSMulti-contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1-weighted data as input in a leave-one-out cross-validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model.The network-generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic "one-size-fits-all" approach.RESULTSThe network-generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic "one-size-fits-all" approach.A subject-specific body model can be automatically generated from a single T1-weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.CONCLUSIONA subject-specific body model can be automatically generated from a single T1-weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.
Author Staring, Marius
Brink, Wyger M.
Bhatnagar, Prernna
Remis, Rob F.
Yousefi, Sahar
Webb, Andrew G.
AuthorAffiliation 2 Division of Image Processing, Department of Radiology Leiden University Medical Center Leiden the Netherlands
3 Circuits and Systems Group, Department of Microelectronics Delft University of Technology Delft the Netherlands
1 C.J. Gorter Center for High Field MRI, Department of Radiology Leiden University Medical Center Leiden the Netherlands
AuthorAffiliation_xml – name: 2 Division of Image Processing, Department of Radiology Leiden University Medical Center Leiden the Netherlands
– name: 1 C.J. Gorter Center for High Field MRI, Department of Radiology Leiden University Medical Center Leiden the Netherlands
– name: 3 Circuits and Systems Group, Department of Microelectronics Delft University of Technology Delft the Netherlands
Author_xml – sequence: 1
  givenname: Wyger M.
  orcidid: 0000-0001-9974-7662
  surname: Brink
  fullname: Brink, Wyger M.
  organization: Leiden University Medical Center
– sequence: 2
  givenname: Sahar
  orcidid: 0000-0003-2396-2504
  surname: Yousefi
  fullname: Yousefi, Sahar
  organization: Leiden University Medical Center
– sequence: 3
  givenname: Prernna
  surname: Bhatnagar
  fullname: Bhatnagar, Prernna
  organization: Delft University of Technology
– sequence: 4
  givenname: Rob F.
  orcidid: 0000-0003-0365-4942
  surname: Remis
  fullname: Remis, Rob F.
  organization: Delft University of Technology
– sequence: 5
  givenname: Marius
  orcidid: 0000-0003-2885-5812
  surname: Staring
  fullname: Staring, Marius
  organization: Leiden University Medical Center
– sequence: 6
  givenname: Andrew G.
  orcidid: 0000-0003-4045-9732
  surname: Webb
  fullname: Webb, Andrew G.
  email: a.webb@lumc.nl
  organization: Leiden University Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35344602$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3DAUhUVJaSZpF32BIuimLTiR9WNbm0II_QkktKTTtbgjyxMFWXIku8N01UfIM-ZJqsmkf4FmJbj67uGcc_fQjg_eIPS8JAclIfSwj_0BlbQUj9CsFJQWVEi-g2ak5qRgpeS7aC-lS0KIlDV_gnaZYJxXhM6Q_2xiCh6c_W5a7IIGh78cneMhmtbq0QaPuxDxABGcMw6PEXzq7Yi9mWKwPSytX2IYcT3HXQw9BpzyxBk8L29-XK-MXV6MWbmFEZIZn6LHHbhknt29--jr-3fz44_F6acPJ8dHp4XmnImiWtRayKZrSql5KzQDoWVNa0FBQNORllSso5ppQWQrGgMLVovaLAQAMFERto_ebHUnP8B6lb2rIWa3ca1KojalqVyaui0tw2-38DAtetNq43PKPwsBrPr3x9sLtQzflGQlbxqWBV7dCcRwNZk0qt4mbZwDb8KUFK04lxVtKpnRl_fQyzDF3P-GEkLk89VNpl787ei3lV93y8DrLaBjSCma7sF4h_dYbUfYnDaHse6hjZV1Zv1_aXV2frbd-AkEpMjn
CitedBy_id crossref_primary_10_1002_mrm_29913
crossref_primary_10_1109_TAP_2024_3411151
crossref_primary_10_1088_1361_6560_ad5070
crossref_primary_10_1002_mrm_29866
crossref_primary_10_1002_mrm_29932
crossref_primary_10_1002_mrm_29797
crossref_primary_10_1002_nbm_4876
crossref_primary_10_1088_1361_6560_ada683
crossref_primary_10_1002_mrm_30359
crossref_primary_10_2214_AJR_23_29342
crossref_primary_10_1002_mrm_29904
crossref_primary_10_1109_TBME_2022_3222748
Cites_doi 10.1088/1361-6560/ab7308
10.1002/mrm.27153
10.1002/mrm.25504
10.1002/nbm.3313
10.1016/j.neuroimage.2019.116132
10.1002/mrm.24378
10.1002/mrm.27589
10.1016/j.mri.2015.04.002
10.1016/j.mri.2012.05.001
10.1007/s10334-016-0543-6
10.1002/mrm.27948
10.1002/mrm.23118
10.1002/nbm.3290
10.1002/mrm.24158
10.1016/j.neuroimage.2016.11.031
10.1088/0031-9155/57/24/8153
10.1109/TBME.2016.2521166
10.1109/TMI.2013.2295465
10.1109/ACCESS.2021.3118290
10.1002/mrm.25425
10.1088/0031-9155/55/2/N01
10.1109/TBME.2018.2856501
10.1002/mrm.28398
10.1002/jmri.24542
10.1109/ACCESS.2021.3096270
10.1002/mrm.24667
10.1002/cmr.b.21317
10.1002/mrm.28467
10.1002/nbm.1049
10.1002/mrm.20011
10.1109/TMI.2009.2035616
10.1002/mrm.26925
10.1109/42.906424
10.1002/mrm.23198
10.1016/j.neuroimage.2004.07.051
10.1002/mrm.22978
10.1002/mrm.22927
10.1002/mrm.24138
10.1002/mrm.22948
10.1002/mrm.26468
10.1007/BF03166953
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.29215
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Brink et al
EISSN 1522-2594
EndPage 475
ExternalDocumentID 10.1002/mrm.29215
PMC9314883
35344602
10_1002_mrm_29215
MRM29215
Genre article
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  funderid: TTW.16820
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  grantid: TTW.16820
– fundername: ;
  grantid: TTW.16820
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4435-6b7c598f819c4d5c3a5c972752a5a8f0d063f2c3c509d58eab3757eb5aaa35603
IEDL.DBID 24P
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 04:16:12 EDT 2025
Thu Aug 21 13:36:58 EDT 2025
Thu Oct 02 11:04:54 EDT 2025
Tue Oct 07 06:05:58 EDT 2025
Wed Feb 19 02:26:38 EST 2025
Wed Oct 01 05:05:38 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Wed Jan 22 16:24:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords body models
subject-specific
deep learning
PTx
SAR
Language English
License Attribution
2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-6b7c598f819c4d5c3a5c972752a5a8f0d063f2c3c509d58eab3757eb5aaa35603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Grant/Award Number: TTW.16820
ORCID 0000-0003-0365-4942
0000-0003-2885-5812
0000-0003-2396-2504
0000-0003-4045-9732
0000-0001-9974-7662
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29215
PMID 35344602
PQID 2655515278
PQPubID 1016391
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_mrm_29215
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9314883
proquest_miscellaneous_2644962869
proquest_journals_2655515278
pubmed_primary_35344602
crossref_primary_10_1002_mrm_29215
crossref_citationtrail_10_1002_mrm_29215
wiley_primary_10_1002_mrm_29215_MRM29215
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2021; 9
2010; 55
2013; 69
2012
2020; 83
2018; 168
2015; 74
2015; 33
2004; 23
2009
2018; 80
2006; 19
2019; 202
2012; 57
2005; 29
2012; 30
2001; 20
2004; 51
2019; 81
2019; 66
2010; 29
2020
2017; 78
2011; 66
2018
2016; 63
2016
2015
2014; 39
2020; 65
2016; 29
2012; 68
2021; 85
2012; 67
2014; 71
2014; 33
2016; 46
2018; 79
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Kuehne A (e_1_2_8_33_1) 2012
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Alon L (e_1_2_8_39_1) 2015
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
Ajanovic A (e_1_2_8_12_1) 2020
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Kingma DP (e_1_2_8_31_1) 2015
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
Brink WM (e_1_2_8_25_1) 2016
e_1_2_8_10_1
Paška J (e_1_2_8_35_1) 2009
e_1_2_8_50_1
References_xml – volume: 46
  start-page: 8
  year: 2016
  end-page: 18
  article-title: Effects of anatomical differences on electromagnetic fields, SAR, and temperature change
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
– year: 2009
– volume: 68
  start-page: 1664
  year: 2012
  end-page: 1674
  article-title: A specific absorption rate prediction concept for parallel transmission MR
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1217
  year: 2017
  end-page: 1223
  article-title: Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1145
  year: 2016
  end-page: 1161
  article-title: Parallel transmission for ultrahigh‐field imaging
  publication-title: NMR Biomed
– volume: 74
  start-page: 589
  year: 2015
  end-page: 598
  article-title: Comprehensive RF safety concept for parallel transmission MR
  publication-title: Magn Reson Med
– volume: 29
  start-page: 333
  year: 2016
  end-page: 345
– volume: 20
  start-page: 45
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Trans Med Imaging
– volume: 57
  start-page: 8153
  year: 2012
  end-page: 8171
  article-title: Improving SAR estimations in MRI using subject‐specific models
  publication-title: Phys Med Biol
– volume: 66
  start-page: 768
  year: 2019
  end-page: 774
  article-title: Computer‐vision techniques for water‐fat separation in ultra high‐field MRI local specific absorption rate estimation
  publication-title: IEEE Trans Biomed Eng
– volume: 81
  start-page: 2808
  year: 2019
  end-page: 2822
  article-title: IMPULSE: a scalable algorithm for design of minimum specific absorption rate parallel transmit RF pulses
  publication-title: Magn Reson Med
– volume: 85
  start-page: 429
  year: 2021
  end-page: 443
  article-title: Individualized SAR calculations using computer vision‐based MR segmentation and a fast electromagnetic solver
  publication-title: Magn Reson Med
– start-page: 938
  year: 2016
– volume: 80
  start-page: 1738
  year: 2018
  end-page: 1745
  article-title: A simple head‐sized phantom for realistic static and radiofrequency characterization at high fields
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1767
  year: 2011
  end-page: 1776
  article-title: Toward individualized SAR models and in vivo validation
  publication-title: Magn Reson Med
– year: 2018
– volume: 29
  start-page: 5
  year: 2005
  end-page: 18
  article-title: Calculations of B1 distribution, specific energy absorption rate, and intrinsic signal‐to‐noise ratio for a body‐size birdcage coil loaded with different human subjects at 64 and 128 MHz
  publication-title: Appl Magn Reson
– volume: 67
  start-page: 72
  year: 2012
  end-page: 80
  article-title: kT‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
– volume: 9
  start-page: 140824
  year: 2021
  end-page: 140834
  article-title: MRSaiFE: an AI‐based approach towards the real‐time prediction of specific absorption rate
  publication-title: IEEE Access
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– volume: 19
  start-page: 393
  year: 2006
  end-page: 400
  article-title: Parallel RF transmission in MRI
  publication-title: NMR Biomed
– volume: 29
  start-page: 196
  year: 2010
  end-page: 205
  article-title: Elastix: a toolbox for intensity‐based medical image registration
  publication-title: IEEE Trans Med Imaging
– volume: 30
  start-page: 1323
  year: 2012
  end-page: 1341
  article-title: 3D slicer as an image computing platform for the quantitative imaging network
  publication-title: Magn Reson Imaging
– volume: 202
  year: 2019
  article-title: Development of accurate human head models for personalized electromagnetic dosimetry using deep learning
  publication-title: Neuroimage
– volume: 9
  start-page: 99235
  year: 2021
  end-page: 99248
  article-title: Esophageal tumor segmentation in CT images using dilated dense attention Unet (DDAUnet)
  publication-title: IEEE Access
– start-page: 2735
  year: 2012
– volume: 55
  start-page: N23
  year: 2010
  end-page: N38
  article-title: The virtual family—development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 67
  start-page: 1303
  year: 2012
  end-page: 1315
  article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: NeuroImage
– volume: 168
  start-page: 477
  year: 2018
  end-page: 489
  article-title: Key clinical benefits of neuroimaging at 7 T
  publication-title: Neuroimage
– start-page: 4251
  year: 2020
– volume: 85
  start-page: 1114
  year: 2021
  end-page: 1122
  article-title: An investigation into the minimum number of tissue groups required for 7T in‐silico parallel transmit electromagnetic safety simulations in the human head
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1131
  year: 2016
  end-page: 1144
  article-title: Safety testing and operational procedures for self‐developed radiofrequency coils
  publication-title: NMR Biomed
– volume: 33
  start-page: 779
  year: 2015
  end-page: 786
  article-title: On the safety margin of using simplified human head models for local SAR simulations of B1‐shimming at 7 Tesla
  publication-title: Magn Reson Imaging
– volume: 79
  start-page: 2652
  year: 2018
  end-page: 2664
  article-title: Fast and accurate multi‐channel B1+ mapping based on the TIAMO technique for 7T UHF body MRI
  publication-title: Magn Reson Med
– volume: 83
  start-page: 695
  year: 2020
  end-page: 711
  article-title: A deep learning method for image‐based subject‐specific local SAR assessment
  publication-title: Magn Reson Med
– volume: 65
  year: 2020
  article-title: Learning‐based estimation of dielectric properties and tissue density in head models for personalized radio‐frequency dosimetry
  publication-title: Phys Med Biol
– volume: 68
  start-page: 1517
  year: 2012
  end-page: 1526
  article-title: DREAM—a novel approach for robust, ultrafast, multislice B1 mapping
  publication-title: Magn Reson Med
– start-page: 299
  year: 2015
– volume: 71
  start-page: 246
  year: 2014
  end-page: 256
  article-title: Volumetric B1+ mapping of the brain at 7T using DREAM
  publication-title: Magn Reson Med
– volume: 68
  start-page: 286
  year: 2012
  end-page: 304
  article-title: Ideal current patterns yielding optimal signal‐to‐noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights
  publication-title: Magn Reson Med
– year: 2015
– volume: 51
  start-page: 775
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1476
  year: 2013
  end-page: 1485
  article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head
  publication-title: Magn Reson Med
– volume: 39
  start-page: 745
  year: 2014
  end-page: 767
  article-title: Optimized three‐dimensional fast‐spin‐echo MRI
  publication-title: J Magn Reson Imaging
– volume: 74
  start-page: 1423
  year: 2015
  end-page: 1434
  article-title: Comparison between simulated decoupling regimes for specific absorption rate prediction in parallel transmit MRI
  publication-title: Magn Reson Med
– volume: 63
  start-page: 2250
  year: 2016
  end-page: 2261
  article-title: Fast electromagnetic analysis of MRI transmit RF coils based on accelerated integral equation methods
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_2_8_47_1
  doi: 10.1088/1361-6560/ab7308
– start-page: 2735
  volume-title: Proceedings of the 20th Annual Meeting of ISMRM
  year: 2012
  ident: e_1_2_8_33_1
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.27153
– ident: e_1_2_8_36_1
  doi: 10.1002/mrm.25504
– ident: e_1_2_8_5_1
  doi: 10.1002/nbm.3313
– ident: e_1_2_8_19_1
  doi: 10.1016/j.neuroimage.2019.116132
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.24378
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.27589
– ident: e_1_2_8_15_1
  doi: 10.1016/j.mri.2015.04.002
– ident: e_1_2_8_24_1
  doi: 10.1016/j.mri.2012.05.001
– ident: e_1_2_8_32_1
– start-page: 299
  volume-title: Proceedings of the 23rd Annual Meeting of ISMRM
  year: 2015
  ident: e_1_2_8_39_1
– ident: e_1_2_8_43_1
  doi: 10.1007/s10334-016-0543-6
– ident: e_1_2_8_45_1
  doi: 10.1002/mrm.27948
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.23118
– ident: e_1_2_8_7_1
  doi: 10.1002/nbm.3290
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.24158
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2016.11.031
– ident: e_1_2_8_14_1
  doi: 10.1088/0031-9155/57/24/8153
– ident: e_1_2_8_41_1
  doi: 10.1109/TBME.2016.2521166
– ident: e_1_2_8_20_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_8_46_1
  doi: 10.1109/ACCESS.2021.3118290
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.25425
– ident: e_1_2_8_37_1
  doi: 10.1088/0031-9155/55/2/N01
– volume-title: 3rd International Conference on Learning Representations, ICLR. International Conference on Learning Representations
  year: 2015
  ident: e_1_2_8_31_1
– ident: e_1_2_8_17_1
  doi: 10.1109/TBME.2018.2856501
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.28398
– ident: e_1_2_8_27_1
  doi: 10.1002/jmri.24542
– volume-title: Proceedings of the 17th Annual Meeting of ISMRM
  year: 2009
  ident: e_1_2_8_35_1
– ident: e_1_2_8_40_1
  doi: 10.1109/ACCESS.2021.3096270
– ident: e_1_2_8_42_1
  doi: 10.1002/mrm.24667
– ident: e_1_2_8_48_1
  doi: 10.1002/cmr.b.21317
– ident: e_1_2_8_16_1
  doi: 10.1002/mrm.28467
– ident: e_1_2_8_3_1
  doi: 10.1002/nbm.1049
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_8_28_1
  doi: 10.1109/TMI.2009.2035616
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.26925
– ident: e_1_2_8_29_1
  doi: 10.1109/42.906424
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.23198
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2004.07.051
– start-page: 4251
  volume-title: Proceedings of the 28th Annual Meeting of ISMRM
  year: 2020
  ident: e_1_2_8_12_1
– ident: e_1_2_8_49_1
  doi: 10.1002/mrm.22978
– start-page: 938
  volume-title: Proceedings of the 24th Annual Meeting of ISMRM
  year: 2016
  ident: e_1_2_8_25_1
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_8_30_1
– ident: e_1_2_8_38_1
  doi: 10.1002/mrm.24138
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.22948
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.26468
– ident: e_1_2_8_6_1
  doi: 10.1007/BF03166953
SSID ssj0009974
Score 2.470191
Snippet Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory...
Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra-high fields (≥7T). Compliance with regulatory limits on...
PurposeParallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 464
SubjectTerms Artificial neural networks
body models
Customization
Data acquisition
Datasets
Deep learning
Image segmentation
Magnetic Resonance Imaging - methods
Medical imaging
Neural networks
Neural Networks, Computer
Neuroimaging
Phantoms, Imaging
Predictions
PTx
Quadratures
Safety margins
SAR
subject‐specific
s—Computer Processing and Modeling
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgxe-BhfgTGZjYe9pGx27CSPFWKakDpNWyttT8FxHK0izao21cSe-BP4G_lLuHM-tDKGkHiJquTq2vGd71f77ncA7yOuY6FD7Ss6Hww0F35sde4HgVA2D63KI0oUHh6pw3Hw-UyeNXVOKRem5ofoNtzIMtx6TQY-y_J6nW9O9_mH6Xza5zGnJPM1JRGM92BtfHQ8OK_JN2mFcaUQ0UlxH4F-0HIL3fzuqke6BTNvR0s-WJYz_e1KF8UqonUu6eAxfGkHU0eifO0vq7Rvrn_jefyP0T6BRw1cZYNav57CPVtuwPqwOZDfgPsugtQsnkF53ML6a5sx5yLZ6eCEzeYkTNPPEB8zohovCluwipzkdFIxx6g5mbpqSUxXLBwxynlhmtE2RmHZaP_n9x9XbgsXW6aQ1oWtnsP44NPo46HfFHPwDc679FUaGhlHOSIQE2TSCC1NjOBJci11lO9liJVyboRBBJPJyOpUhDK0qdRaC4Rl4gX0ysvSvgKm0pRnucBm8cKtjdR-lmpDxWrwlo092G0nNDEN0zkV3CiSmqOZJ_gmE_cmPdjuRGc1vcefhDZbrUgaC18kXEkEm5KHkQfvusdom3Tgokt7uSSZIIgp9xe79LJWou5XhMQBqD3uQbiiXp0A8X6vPiknF47_Oxb4HzYSHux0ivi3zu86vbpbIhmeDN2H1__U4Bt4yCkFxIUsb0Kvmi_tWwRmVbrVGN8vTpM5Pg
  priority: 102
  providerName: Unpaywall
Title Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1‐weighted dataset
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29215
https://www.ncbi.nlm.nih.gov/pubmed/35344602
https://www.proquest.com/docview/2655515278
https://www.proquest.com/docview/2644962869
https://pubmed.ncbi.nlm.nih.gov/PMC9314883
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.29215
UnpaywallVersion publishedVersion
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF5CQh-X0qYvp2nYPg65qLH3IWnpybQNoeBgXBvSkxitVtQgK8aWCempP6G_sb-kM6tHMGlLL4vQjqSVZmfn0-7ON4y9jQUYCREEIa0PKhAyMA7yQCkZujxyYR5ToPDoPDybqc8X-mKHvW9jYWp-iG7CjSzDj9dk4JCuT25IQxerxTthBAWY7w0Qx1D3Fmp8w7hragrmSNFAY1RLK9QXJ92l287oFsK8vVHy3qZcwvUVFMU2mPXe6PQhe9DASD6s9f6I7bhyn90dNQvl--yO39lp149ZOW7h9neXce-6-JfhhC9XJExq4YhbOVGAF4UreEXOazGvuGe6nC98FiMOFY-mnGJROHCaXigcnw5-_fh55adW8c601XTtqidsdvpp-uEsaJIsBBb1oYMwjaw2cY7IwKpMWwnaGgQ1WoCGOO9niGFyYaVFZJHp2EEqIx25VAOARLgkn7Ld8rJ0zxkP01RkucTbYiGci8NBloKlJDJ4ypkeO26_dmIbBnJKhFEkNXeySFAxiVdMj73uRJc17cafhA5blSWN5a0TEWoEgVpEcY-96qrRZmghBEp3uSEZpQzF5GKTntUa7p4iNb5A2Bc9Fm3pvhMgPu7tmnL-zfNyG4n_lrHssTddL_lX4499__m7RDKajPzBwf-LvmD3BcVn-P3Eh2y3Wm3cS0RNVXrkrQPLjxNxxPZm5-Ph198JnRdl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRdBeEJRHUwqYx6GX0F2_EktcKkS1QFNVZSv1FjmOo66UTVe7WVVw4if0N_aX4HEe1aqAuERRPEmcjMf-bM98A_A-ploxHelQ4v4g15SFyuoi5JxJW0RWFjEGCifHcnTGv56L8zX42MXCNPwQ_YIbWobvr9HAcUF6_5Y1dDqffqCKYoT5PS6HEqdelJ_cUu6qhoM54tjTKN7xCg3ofn_r6mh0B2Le9ZTcWFYz_eNKl-UqmvXD0eEjeNjiSHLQKP4xrNlqCx4k7U75Ftz3rp1m8QSqkw5v_7Q58WMX-X5wSmZzFEa9EAdcCXKAl6UtSY2j13RSE091OZn6NEZE1yQaEwxGIZrg-kJpyXh48-v6yq-tuiejr-nC1k_h7PDz-NMobLMshMYpRIQyi4xQceGggeG5MEwLoxyqEVQLHReD3IGYghpmHLTIRWx1xiIR2UxorZnDS-wZrFeXld0GIrOM5gVzj3UHam0sh3mmDWaRcZesCmCv-9upaSnIMRNGmTbkyTR1ikm9YgJ424vOGt6NPwntdipLW9NbpFQKhwIFjeIA3vTFzmhwJ0RX9nKJMpwrDMp1VXreaLh_CxPuA-SABhCt6L4XQELu1ZJqcuGJuRVzk8uYBfCubyX_qvyebz9_l0iT08Sf7Py_6GvYGI2To_Toy_G3F7BJMVjDOxfvwno9X9qXDkLV2StvKb8BvBgYOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qiihcWMoWKGCWQy-ZTr3EscSloozKMlU1TKVeUOQ4jhiRSUczGVX0xE_gN_JL8HOWaiggxCWK4hfHy3v2F_u9zwAvY6oV01KHEe4Pck1ZqKzOQ85ZZHNpozzGQOHhYXRwzN-diJM1eNXGwtT8EN2CG1qGH6_RwO0sy3cuWEOn82mPKooR5le4UDE69O2PLsijlKo5mCXHkUbxlleoT3e6V1dno0sQ87Kn5LVlOdNfz3RRrKJZPx0NbsKntiK1F8qX3rJKe-b8F47H_63pLbjR4FSyVyvWbViz5SZsDJud-E246l1HzeIOlEctnj-3GfFzI_m4NyKzOQpjvxMHjAlyjBeFLUiFs-N0UhFPpTmZ-mOSiK6IHBMMdiGa4PpFYcl498e372d-7dbljL6sC1vdhePBm_Hrg7A5xSE0rsNFGKXSuN7JHfQwPBOGaWGUQ02CaqHjvJ85kJRTw4yDLpmIrU6ZFNKmQmvNHB5j92C9PC3tAyBRmtIsZy5bd6HWxtFulmqDp9S4R1YFsN32ZmIainM8aaNIanJmmriWTHxLBvC8E53VvB6_E9pqVSJpTHuR0Eg4lCmojAN41iU7o8SdFl3a0yXKcK4w6NcV6X6tQd1XmHAViPo0ALmiW50AEn6vppSTz574WzH38xqzAF50Wvi3wm97pfqzRDIcDf3Nw38XfQobR_uD5MPbw_eP4DrFWBDvu7wF69V8aR87hFalT7wh_gTBQzh_
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-hTgxe-BhfgTGZjYe9pGx27CSPFWKakDpNWyttT8FxHK0izao21cSe-BP4G_lLuHM-tDKGkHiJquTq2vGd71f77ncA7yOuY6FD7Ss6Hww0F35sde4HgVA2D63KI0oUHh6pw3Hw-UyeNXVOKRem5ofoNtzIMtx6TQY-y_J6nW9O9_mH6Xza5zGnJPM1JRGM92BtfHQ8OK_JN2mFcaUQ0UlxH4F-0HIL3fzuqke6BTNvR0s-WJYz_e1KF8UqonUu6eAxfGkHU0eifO0vq7Rvrn_jefyP0T6BRw1cZYNav57CPVtuwPqwOZDfgPsugtQsnkF53ML6a5sx5yLZ6eCEzeYkTNPPEB8zohovCluwipzkdFIxx6g5mbpqSUxXLBwxynlhmtE2RmHZaP_n9x9XbgsXW6aQ1oWtnsP44NPo46HfFHPwDc679FUaGhlHOSIQE2TSCC1NjOBJci11lO9liJVyboRBBJPJyOpUhDK0qdRaC4Rl4gX0ysvSvgKm0pRnucBm8cKtjdR-lmpDxWrwlo092G0nNDEN0zkV3CiSmqOZJ_gmE_cmPdjuRGc1vcefhDZbrUgaC18kXEkEm5KHkQfvusdom3Tgokt7uSSZIIgp9xe79LJWou5XhMQBqD3uQbiiXp0A8X6vPiknF47_Oxb4HzYSHux0ivi3zu86vbpbIhmeDN2H1__U4Bt4yCkFxIUsb0Kvmi_tWwRmVbrVGN8vTpM5Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+local+SAR+prediction+for+parallel+transmit+neuroimaging+at+7T+from+a+single+T1%E2%80%90weighted+dataset&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Brink%2C+Wyger+M.&rft.au=Yousefi%2C+Sahar&rft.au=Bhatnagar%2C+Prernna&rft.au=Remis%2C+Rob+F.&rft.date=2022-07-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=88&rft.issue=1&rft.spage=464&rft.epage=475&rft_id=info:doi/10.1002%2Fmrm.29215&rft.externalDBID=10.1002%252Fmrm.29215&rft.externalDocID=MRM29215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon