Synchronization of intrinsic 0.1‐Hz blood‐oxygen‐level‐dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety
Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neu...
Saved in:
| Published in | The European journal of neuroscience Vol. 47; no. 5; pp. 417 - 426 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
France
Wiley Subscription Services, Inc
01.03.2018
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0953-816X 1460-9568 1460-9568 |
| DOI | 10.1111/ejn.13845 |
Cover
| Abstract | Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.
Slow spontaneous BOLD oscillations at 0.1 Hz originate either from neural or vascular fluctuations. A phasor model (based on phase‐coupling between BOLD and heart rate interval signals) shows that vascular BOLD oscillations precede neural BOLD oscillations by ~90° or ~2.5 s. This implies that slow blood pressure waves (vascular BOLD) and central commands (neural activity) modulate the heart rate in a time‐locked manner and also enhance the heart rate variability in the low‐frequency band. |
|---|---|
| AbstractList | Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures. Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures. Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures. Slow spontaneous BOLD oscillations at 0.1 Hz originate either from neural or vascular fluctuations. A phasor model (based on phase‐coupling between BOLD and heart rate interval signals) shows that vascular BOLD oscillations precede neural BOLD oscillations by ~90° or ~2.5 s. This implies that slow blood pressure waves (vascular BOLD) and central commands (neural activity) modulate the heart rate in a time‐locked manner and also enhance the heart rate variability in the low‐frequency band. Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures. |
| Author | Calisto, João Brunner, Clemens Andrade, Alexandre Seither‐Preisler, Annemarie Pfurtscheller, Gert Schwerdtfeger, Andreas Aigner, Christoph Stefan Gens, João |
| AuthorAffiliation | 1 Institute of Neural Engineering Graz University of Technology Graz Austria 7 Institute of Medical Engineering Graz University of Technology Graz Austria 2 BioTechMed Graz Graz Austria 4 Health Psychology and Applied Diagnostics University of Wuppertal Wuppertal Germany 3 Institute of Psychology University of Graz 8010 Graz Austria 6 Centre for Systematic Musicology University of Graz Graz Austria 8 Institute of Biophysics and Biomedical Engineering Faculty of Sciences University of Lisbon Lisbon Portugal 5 Department of Neuroradiology and Neurology University of Heidelberg Medical School Heidelberg Germany |
| AuthorAffiliation_xml | – name: 3 Institute of Psychology University of Graz 8010 Graz Austria – name: 6 Centre for Systematic Musicology University of Graz Graz Austria – name: 2 BioTechMed Graz Graz Austria – name: 8 Institute of Biophysics and Biomedical Engineering Faculty of Sciences University of Lisbon Lisbon Portugal – name: 4 Health Psychology and Applied Diagnostics University of Wuppertal Wuppertal Germany – name: 5 Department of Neuroradiology and Neurology University of Heidelberg Medical School Heidelberg Germany – name: 7 Institute of Medical Engineering Graz University of Technology Graz Austria – name: 1 Institute of Neural Engineering Graz University of Technology Graz Austria |
| Author_xml | – sequence: 1 givenname: Gert surname: Pfurtscheller fullname: Pfurtscheller, Gert organization: BioTechMed Graz – sequence: 2 givenname: Andreas surname: Schwerdtfeger fullname: Schwerdtfeger, Andreas organization: University of Wuppertal – sequence: 3 givenname: Annemarie surname: Seither‐Preisler fullname: Seither‐Preisler, Annemarie organization: University of Graz – sequence: 4 givenname: Clemens orcidid: 0000-0002-6030-2233 surname: Brunner fullname: Brunner, Clemens email: clemens.brunner@uni-graz.at organization: University of Graz – sequence: 5 givenname: Christoph Stefan surname: Aigner fullname: Aigner, Christoph Stefan organization: Graz University of Technology – sequence: 6 givenname: João surname: Calisto fullname: Calisto, João organization: University of Lisbon – sequence: 7 givenname: João surname: Gens fullname: Gens, João organization: University of Lisbon – sequence: 8 givenname: Alexandre surname: Andrade fullname: Andrade, Alexandre organization: University of Lisbon |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29368814$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEQxy1URD_gwAuglbgAUlo79jr2BQlVhYIqOAASN8vrnU0cOXZqe5tsTzwCj8Cz8SS4SfiqAF9mZP_m75n_HKI9Hzwg9JDgY1LOCcz9MaGC1XfQAWEcj2TNxR46wLKmI0H4p310mNIcYyw4q--h_bGkXAjCDtDX94M3sxi8vdbZBl-FrrI-R-uTNVXR__b5y_l11bgQ2pKG9TAFXxIHV-BKbGEJvgWfq5CMdW4jkopEpRfDtNVOV9q31TJCVz7J2lUmxAzrGyL1zRxMTtXK5lm5MBF0grZKWWcoZWsLebiP7nbaJXiwi0fo48uzD6fno4t3r16fvrgYGcZoPSJjKjTmhDFSZpOkhmbCmjHhzGBCJZCuYVwwSpjoiOQdn2DR6U600mhOWkmP0LOtbu-Xelhp59Qy2oWOgyJY3disis1qY3OBn2_hZd8soDVl_qh_FQRt1Z8v3s7UNFypWoiJmPAi8GQnEMNlDymrhU0Gin8eQp8UkZIQQSWeFPTxLXQe-uiLF2qMsRSY1pgW6tHvHf1s5cemC3CyBUwMKZV1KGPzZlulQev-OuTTWxX_M2SnvrIOhn-D6uzN223Fd97s3sU |
| CitedBy_id | crossref_primary_10_1016_j_clinph_2021_05_021 crossref_primary_10_1016_j_clinph_2018_07_003 crossref_primary_10_1016_j_neuroimage_2022_119023 crossref_primary_10_1111_psyp_13914 crossref_primary_10_1038_s41598_022_13229_7 crossref_primary_10_3389_fnins_2024_1384993 crossref_primary_10_1016_j_physbeh_2021_113676 crossref_primary_10_1109_TNSRE_2019_2895029 crossref_primary_10_3390_brainsci11050543 crossref_primary_10_1016_j_clinph_2018_07_009 crossref_primary_10_3389_fnins_2020_00922 crossref_primary_10_1038_s41380_021_01029_w crossref_primary_10_3389_fphys_2018_01688 crossref_primary_10_1016_j_clinph_2019_11_013 crossref_primary_10_1007_s12264_023_01070_5 crossref_primary_10_1038_s41598_021_01710_8 crossref_primary_10_3389_fphys_2019_00939 crossref_primary_10_1016_j_crneur_2022_100050 crossref_primary_10_1016_j_neuroimage_2019_116072 crossref_primary_10_1111_acer_14293 crossref_primary_10_1016_j_neuroimage_2024_120944 |
| Cites_doi | 10.1016/j.neuroimage.2011.10.018 10.1016/j.jneumeth.2015.02.021 10.1016/j.cardiores.2005.11.008 10.1117/1.3483466 10.1016/j.neuron.2007.08.023 10.1016/j.neuroimage.2011.05.074 10.1161/01.STR.26.10.1801 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2012.03.009 10.1007/s00424-004-1291-4 10.1038/86110 10.5298/1081-5937-41.1.02 10.1016/0005-7916(94)90005-1 10.1152/jn.00853.2003 10.1016/j.neuroimage.2005.06.067 10.1503/jpn.130145 10.1146/annurev.physiol.66.082602.092845 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1162/NETN_a_00013 10.1523/JNEUROSCI.1910-08.2008 10.1016/j.neubiorev.2016.11.014 10.1073/pnas.0305375101 10.1371/journal.pone.0168097 10.1016/S1388-2457(99)00141-8 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/j.neuroimage.2012.02.060 10.1016/j.biopsycho.2007.10.004 10.5194/npg-11-561-2004 10.1002/mrm.22361 10.1016/j.neuroimage.2012.01.044 10.1113/expphysiol.2008.042424 10.1016/j.neuron.2017.10.012 10.1152/ajpheart.1998.274.1.H233 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.3389/fnhum.2014.00196 10.1016/j.neulet.2011.12.025 10.1016/j.neubiorev.2008.08.004 10.1111/ejn.12295 10.1016/j.neuroimage.2011.12.019 10.1109/TBME.2011.2134851 10.1371/journal.pone.0043640 10.1016/j.neuroimage.2009.05.069 10.1016/S0006-3223(01)01328-2 10.1007/BF02441590 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM ADTOC UNPAY |
| DOI | 10.1111/ejn.13845 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Chemoreception Abstracts CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| DocumentTitleAlternate | G. Pfurtscheller et al |
| EISSN | 1460-9568 |
| EndPage | 426 |
| ExternalDocumentID | 10.1111/ejn.13845 PMC5887876 29368814 10_1111_ejn_13845 EJN13845 |
| Genre | article Journal Article |
| GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4435-1238a061441936915eb74b2164c0139e1fb46843148f196f6708faf8d9ca61d93 |
| IEDL.DBID | UNPAY |
| ISSN | 0953-816X 1460-9568 |
| IngestDate | Wed Oct 29 12:14:36 EDT 2025 Thu Aug 21 18:02:06 EDT 2025 Fri Jul 11 16:49:29 EDT 2025 Fri Jul 25 06:46:22 EDT 2025 Mon Jul 21 05:53:26 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Oct 01 03:43:56 EDT 2025 Wed Jan 22 16:41:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | state anxiety blood-oxygen-level-dependent signal 0.1-Hz oscillations amygdala heart rate variability |
| Language | English |
| License | Attribution 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4435-1238a061441936915eb74b2164c0139e1fb46843148f196f6708faf8d9ca61d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by John Foxe. Reviewed by Enrico Glerean, Aalto University, Finland Bin Zhang, Shanghai Mental Health Center, China All peer review communications can be found with the online version of the article. |
| ORCID | 0000-0002-6030-2233 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.13845 |
| PMID | 29368814 |
| PQID | 2009803503 |
| PQPubID | 34057 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1111_ejn_13845 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5887876 proquest_miscellaneous_1991183907 proquest_journals_2009803503 pubmed_primary_29368814 crossref_citationtrail_10_1111_ejn_13845 crossref_primary_10_1111_ejn_13845 wiley_primary_10_1111_ejn_13845_EJN13845 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2018 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | France |
| PublicationPlace_xml | – name: France – name: Chichester – name: Hoboken |
| PublicationTitle | The European journal of neuroscience |
| PublicationTitleAlternate | Eur J Neurosci |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2006; 70 2012; 61 2012; 60 2004; 66 2009; 47 2002; 15 2017; 1 2010; 15 2002; 51 2000; 44 2003; 13 2008; 36 1994; 25 2011; 57 2008; 77 2008; 31 2011; 58 2012; 59 2005; 28 2004; 448 2010; 63 1998; 274 1999; 208 1994; 266 2017; 72 2017b; 12 2008; 28 2014; 8 2010; 4 1988 2012; 62 2012a; 7 2004; 101 1998; 26 2015; 245 2013; 41 2009 2012b; 508 2004; 91 2007; 56 2008; 93 1998; 23 2004; 11 2009; 33 2017; 96 2013; 38 2017a; 128 2001; 4 1999; 110 2014 2013 2014; 39 1998; 79 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 Tong Y. (e_1_2_11_44_1) 2012; 61 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 Diehl R.R. (e_1_2_11_8_1) 1998; 26 Hurtado J.M. (e_1_2_11_15_1) 2004; 91 Zheng F. (e_1_2_11_55_1) 2010; 15 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_43_1 Lagos L. (e_1_2_11_22_1) 2008; 36 e_1_2_11_17_1 Yan C.G. (e_1_2_11_53_1) 2010; 4 e_1_2_11_38_1 e_1_2_11_19_1 Pfurtscheller G. (e_1_2_11_35_1) 2012; 7 Laux L. (e_1_2_11_23_1) 2013 e_1_2_11_50_1 Birn R.M. (e_1_2_11_3_1) 2008; 31 e_1_2_11_10_1 e_1_2_11_31_1 Davidson R.J. (e_1_2_11_6_1) 2002; 51 Spielberger C.D. (e_1_2_11_42_1) 2009 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_28_1 e_1_2_11_49_1 Cohen J. (e_1_2_11_5_1) 1988 Boer R.W. (e_1_2_11_7_1) 1998; 23 e_1_2_11_21_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 Pfurtscheller G. (e_1_2_11_37_1) 2017; 128 e_1_2_11_9_1 e_1_2_11_18_1 e_1_2_11_16_1 Mateo C. (e_1_2_11_26_1) 2017; 96 e_1_2_11_39_1 Kuusela T.A. (e_1_2_11_20_1) 2003; 13 Golanov E.V. (e_1_2_11_12_1) 1994; 266 |
| References_xml | – year: 2009 – volume: 7 start-page: e43640 year: 2012a article-title: Coupling between intrinsic prefrontal Hbo2 and central EEG Beta power oscillations in the resting brain publication-title: PLoS ONE – volume: 62 start-page: 902 year: 2012 end-page: 910 article-title: A brief history of the resting state: the Washington University perspective publication-title: NeuroImage – volume: 208 start-page: 194 year: 1999 end-page: 208 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. – volume: 128 start-page: 183 year: 2017a end-page: 193 article-title: Brain‐heart communication: evidence for “central pacemaker” oscillations with a dominant frequency at ~0.1 Hz in the cingulum publication-title: Clin. Neuropharmacol. – volume: 15 start-page: 040512 year: 2010 article-title: Phasor representation of oxy‐ and deoxyhemoglobin concentrations: what is the meaning of out‐of‐phase oscillations as measured by near‐infrared spectroscopy? publication-title: J. Biomed. Opt. – volume: 93 start-page: 1011 year: 2008 end-page: 1021 article-title: Breathing rhythms and emotions publication-title: Exp. Physiol. – volume: 62 start-page: 2201 year: 2012 end-page: 2211 article-title: Infra‐slow fluctuations in electrophysiolgical recordings, blood‐oxygenation‐level‐dependent signals, and psychophysical time series publication-title: NeuroImage – volume: 8 start-page: 196 year: 2014 article-title: Studying the spatial distribution of physiological effects on BOLD signals using ultrafast fMRI publication-title: Front. Hum. Neurosci. – volume: 4 start-page: 437 year: 2001 end-page: 441 article-title: Activation of the left amygdala to a cognitive representation of fear publication-title: Nat. Neurosci. – volume: 101 start-page: 5053 year: 2004 end-page: 5057 article-title: Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 65 year: 2002 end-page: 80 article-title: Anxiety and affective style: role of prefrontal cortex and amygdala publication-title: Biol. Psychiat. – year: 2014 – volume: 96 start-page: 1 year: 2017 end-page: 13 article-title: Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood‐oxygenation‐level‐dependent “resting state” connectivity publication-title: Neuron – volume: 60 start-page: 384 year: 2012 end-page: 391 article-title: Resting oscillations and cross‐frequency coupling in the human posteromedial cortex publication-title: NeuroImage – volume: 36 start-page: 109 year: 2008 end-page: 115 article-title: Heart rate variability biofeedback as a strategy for dealing with competitive anxiety: a case study publication-title: Biofeedback – volume: 15 start-page: 273 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: NeuroImage – volume: 39 start-page: 321 year: 2014 end-page: 329 article-title: Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults publication-title: J. Psych. Neurosci. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 110 start-page: 1842 year: 1999 end-page: 1857 article-title: Event‐related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. – volume: 508 start-page: 89 year: 2012b end-page: 94 article-title: Does conscious intention to perform a motor act depend on slow prefrontal (de)oxyhemoglobin oscillations in the resting brain? publication-title: Neurosci. Lett. – volume: 57 start-page: 1534 year: 2011 end-page: 1541 article-title: Beyond acute social stress: increased functional connectivity between amygdala and cortical midline structures publication-title: Neuroinage – volume: 23 start-page: 359 year: 1998 end-page: 364 article-title: Relationships between short‐term blood‐pressure fluctuations and heart‐rate variability in resting subjects II: a simple model Med publication-title: Biol. Eng. Comput. – volume: 266 start-page: R204 year: 1994 end-page: R214 article-title: Spontaneous waves of cerebral blood flow associated with pattern of electrocortical activity publication-title: Am. J. Physiol. – volume: 38 start-page: 2902 year: 2013 end-page: 2916 article-title: The resting‐state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus‐evoked hemodynamics publication-title: Eur. J. Neurosci. – volume: 26 start-page: 1801 year: 1998 end-page: 1804 article-title: Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation publication-title: Stroke – volume: 63 start-page: 1144 year: 2010 end-page: 1153 article-title: Multiband multislice GE‐EPI at 7 Tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI publication-title: Mag. Reson. Med. – volume: 11 start-page: 561 year: 2004 end-page: 566 article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series publication-title: Nonlinear Proc. Geophy. – volume: 56 start-page: 171 year: 2007 end-page: 184 article-title: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior publication-title: Neuron – volume: 448 start-page: 579 year: 2004 end-page: 591 article-title: Cardiovascular rhythms in the 0.15‐Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem? publication-title: Eur. J. Physiol. – volume: 77 start-page: 174 year: 2008 end-page: 182 article-title: Heart rate variability and pain: associations of two interrelated homeostatic processes publication-title: Biol. Psychol. – volume: 91 start-page: 883 year: 2004 end-page: 1898 article-title: Statistical method for detection of phase‐locking episodes in neural oscillations publication-title: J. Neurophysiol. – volume: 25 start-page: 131 year: 1994 end-page: 134 article-title: Anxiety and its determinants in patients undergoing magnetic resonance imaging publication-title: J. Behav. Ther. Exp. Psy. – volume: 1 start-page: 254 year: 2017 end-page: 274 article-title: Consistency of regions of interest as nodes of fMRI functional brain networks publication-title: Network Neurosci. – volume: 28 start-page: 8268 year: 2008 end-page: 8772 article-title: Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans publication-title: J. Neurosci. – volume: 66 start-page: 735 year: 2004 end-page: 769 article-title: Interpreting the BOLD signal publication-title: Annu. Rev. Physiol. – volume: 61 start-page: 419 year: 2012 end-page: 1427 article-title: Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature publication-title: NeuroImage – volume: 13 start-page: 3 year: 2003 end-page: 11 article-title: Fine structure of the low‐frequency spectra of heart rate and blood pressure publication-title: BMC Physiol. – volume: 44 start-page: 162 year: 2000 end-page: 167 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn. Reson. Med. – volume: 245 start-page: 107 year: 2015 end-page: 115 article-title: GraphVar: a user‐friendly toolbox for comprehensive graph analyses of functional brain connectivity publication-title: J. Neurosci. Meth. – year: 1988 – volume: 70 start-page: 12 year: 2006 end-page: 21 article-title: The enigma of Mayer waves: facts and models publication-title: Cardiovasc. Res. – volume: 72 start-page: 111 year: 2017 end-page: 128 article-title: The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta‐analysis of fMRI studies publication-title: Neurosci. Biobehav. Rev. – volume: 28 start-page: 720 year: 2005 end-page: 737 article-title: Removal of fMRI environment artifacts from EEG data using optimal basis sets publication-title: NeuroImage – volume: 4 start-page: 1 year: 2010 end-page: 7 article-title: DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting‐state fMRI publication-title: Front. Syst. Neurosci. – volume: 79 start-page: 61 year: 1998 end-page: 78 article-title: A practical guide to wavelet analysis publication-title: Bull. Am. Meteorol. Soc. – volume: 41 start-page: 26 year: 2013 end-page: 31 article-title: How does heart rate variability biofeedback work? Resonance, the baroreflex, and other mechanisms publication-title: Biofeedback – volume: 33 start-page: 81 year: 2009 end-page: 88 article-title: Claude Bernard and the heart‐brain connection: further elaboration of a model of neurovisceral integration publication-title: Neurosci. Biobehav. Rev. – volume: 274 start-page: H233 year: 1998 end-page: H241 article-title: Transfer function analysis of dynamic cerebral auroregulation in humans publication-title: Am. J. Physiol. (Heart Circ. Physiol. – volume: 47 start-page: 852 year: 2009 end-page: 863 article-title: Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulationg unpleasant emotions publication-title: NeuroImage – volume: 12 start-page: e0168097 year: 2017b article-title: Distinction between neural and vascular BOLD oscillations and intertwined heart rate oscillations at 0.1 Hz in the resting state and during movement publication-title: PLoS ONE – volume: 31 start-page: 536 year: 2008 end-page: 1548 article-title: Separating respiratory‐variation‐related fluctuations from neuonal‐activity‐related fluctuations in fMRI publication-title: NeuroImage – volume: 58 start-page: 2064 year: 2011 end-page: 2071 article-title: About the stability of phase shifts between slow oscillations around 0.1 Hz in cardiovascular and cerebral systems publication-title: IEEE Trans. Biomed. Eng. – year: 2013 – volume: 36 start-page: 109 year: 2008 ident: e_1_2_11_22_1 article-title: Heart rate variability biofeedback as a strategy for dealing with competitive anxiety: a case study publication-title: Biofeedback – ident: e_1_2_11_40_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_11_19_1 doi: 10.1016/j.jneumeth.2015.02.021 – volume: 13 start-page: 3 year: 2003 ident: e_1_2_11_20_1 article-title: Fine structure of the low‐frequency spectra of heart rate and blood pressure publication-title: BMC Physiol. – ident: e_1_2_11_16_1 doi: 10.1016/j.cardiores.2005.11.008 – volume: 15 start-page: 040512 year: 2010 ident: e_1_2_11_55_1 article-title: Phasor representation of oxy‐ and deoxyhemoglobin concentrations: what is the meaning of out‐of‐phase oscillations as measured by near‐infrared spectroscopy? publication-title: J. Biomed. Opt. doi: 10.1117/1.3483466 – ident: e_1_2_11_10_1 doi: 10.1016/j.neuron.2007.08.023 – ident: e_1_2_11_50_1 doi: 10.1016/j.neuroimage.2011.05.074 – volume: 26 start-page: 1801 year: 1998 ident: e_1_2_11_8_1 article-title: Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation publication-title: Stroke doi: 10.1161/01.STR.26.10.1801 – ident: e_1_2_11_47_1 doi: 10.1006/nimg.2001.0978 – volume: 61 start-page: 419 year: 2012 ident: e_1_2_11_44_1 article-title: Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.009 – ident: e_1_2_11_32_1 doi: 10.1007/s00424-004-1291-4 – ident: e_1_2_11_39_1 doi: 10.1038/86110 – volume: 4 start-page: 1 year: 2010 ident: e_1_2_11_53_1 article-title: DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting‐state fMRI publication-title: Front. Syst. Neurosci. – ident: e_1_2_11_24_1 doi: 10.5298/1081-5937-41.1.02 – ident: e_1_2_11_17_1 doi: 10.1016/0005-7916(94)90005-1 – volume: 91 start-page: 883 year: 2004 ident: e_1_2_11_15_1 article-title: Statistical method for detection of phase‐locking episodes in neural oscillations publication-title: J. Neurophysiol. doi: 10.1152/jn.00853.2003 – volume-title: Statistical Power Analysis for Behavioral Sciences year: 1988 ident: e_1_2_11_5_1 – ident: e_1_2_11_30_1 doi: 10.1016/j.neuroimage.2005.06.067 – ident: e_1_2_11_51_1 doi: 10.1503/jpn.130145 – ident: e_1_2_11_25_1 doi: 10.1146/annurev.physiol.66.082602.092845 – ident: e_1_2_11_52_1 – volume: 31 start-page: 536 year: 2008 ident: e_1_2_11_3_1 article-title: Separating respiratory‐variation‐related fluctuations from neuonal‐activity‐related fluctuations in fMRI publication-title: NeuroImage – ident: e_1_2_11_11_1 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: e_1_2_11_18_1 doi: 10.1162/NETN_a_00013 – volume: 128 start-page: 183 year: 2017 ident: e_1_2_11_37_1 article-title: Brain‐heart communication: evidence for “central pacemaker” oscillations with a dominant frequency at ~0.1 Hz in the cingulum publication-title: Clin. Neuropharmacol. – ident: e_1_2_11_28_1 doi: 10.1523/JNEUROSCI.1910-08.2008 – ident: e_1_2_11_29_1 doi: 10.1016/j.neubiorev.2016.11.014 – ident: e_1_2_11_49_1 doi: 10.1073/pnas.0305375101 – ident: e_1_2_11_38_1 doi: 10.1371/journal.pone.0168097 – ident: e_1_2_11_33_1 doi: 10.1016/S1388-2457(99)00141-8 – ident: e_1_2_11_46_1 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – ident: e_1_2_11_31_1 doi: 10.1016/j.neuroimage.2012.02.060 – ident: e_1_2_11_2_1 doi: 10.1016/j.biopsycho.2007.10.004 – ident: e_1_2_11_13_1 doi: 10.5194/npg-11-561-2004 – ident: e_1_2_11_27_1 doi: 10.1002/mrm.22361 – ident: e_1_2_11_41_1 doi: 10.1016/j.neuroimage.2012.01.044 – ident: e_1_2_11_14_1 doi: 10.1113/expphysiol.2008.042424 – volume: 96 start-page: 1 year: 2017 ident: e_1_2_11_26_1 article-title: Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood‐oxygenation‐level‐dependent “resting state” connectivity publication-title: Neuron doi: 10.1016/j.neuron.2017.10.012 – ident: e_1_2_11_54_1 doi: 10.1152/ajpheart.1998.274.1.H233 – ident: e_1_2_11_21_1 doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – ident: e_1_2_11_45_1 doi: 10.3389/fnhum.2014.00196 – ident: e_1_2_11_36_1 doi: 10.1016/j.neulet.2011.12.025 – ident: e_1_2_11_43_1 doi: 10.1016/j.neubiorev.2008.08.004 – ident: e_1_2_11_4_1 doi: 10.1111/ejn.12295 – ident: e_1_2_11_9_1 doi: 10.1016/j.neuroimage.2011.12.019 – volume-title: Das State‐Trait‐Angst‐Depressions‐Inventar [The State‐Trait Anxiety‐Depression Inventory] year: 2013 ident: e_1_2_11_23_1 – ident: e_1_2_11_34_1 doi: 10.1109/TBME.2011.2134851 – volume: 7 start-page: e43640 year: 2012 ident: e_1_2_11_35_1 article-title: Coupling between intrinsic prefrontal Hbo2 and central EEG Beta power oscillations in the resting brain publication-title: PLoS ONE doi: 10.1371/journal.pone.0043640 – ident: e_1_2_11_48_1 doi: 10.1016/j.neuroimage.2009.05.069 – volume-title: Manual for the State‐Trait Anxiety Inventory year: 2009 ident: e_1_2_11_42_1 – volume: 266 start-page: R204 year: 1994 ident: e_1_2_11_12_1 article-title: Spontaneous waves of cerebral blood flow associated with pattern of electrocortical activity publication-title: Am. J. Physiol. – volume: 51 start-page: 65 year: 2002 ident: e_1_2_11_6_1 article-title: Anxiety and affective style: role of prefrontal cortex and amygdala publication-title: Biol. Psychiat. doi: 10.1016/S0006-3223(01)01328-2 – volume: 23 start-page: 359 year: 1998 ident: e_1_2_11_7_1 article-title: Relationships between short‐term blood‐pressure fluctuations and heart‐rate variability in resting subjects II: a simple model Med publication-title: Biol. Eng. Comput. doi: 10.1007/BF02441590 |
| SSID | ssj0008645 |
| Score | 2.3721244 |
| Snippet | Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This... Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This... Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This... Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 417 |
| SubjectTerms | 0.1‐Hz oscillations Adult Amygdala Amygdala - metabolism Anxiety Anxiety Disorders - metabolism Anxiety Disorders - physiopathology Blood flow blood‐oxygen‐level‐dependent signal Brain Mapping - methods Cerebral blood flow Cerebrovascular Circulation - physiology Cortex (frontal) Female Functional magnetic resonance imaging Heart Rate - physiology heart rate variability Humans Information processing Magnetic Resonance Imaging - methods Male Neural networks Neurosystems Oscillations Oxygen - blood Prefrontal cortex Prefrontal Cortex - metabolism state anxiety Synchronization |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VcigXBC0_KQWZH6FegtYbx3HEqaparSpRIUGlvUVOYtNFqXdFdtUNJx6BR-DZeBJmnB-xKiBOa20mG69mxv7sfP4G4FWZFkKMcxNazVUopIrCXJoyVAWXRSRHVo3pvPO7czm5EGfTeLoFb_uzMK0-xLDhRpnhx2tKcJ3XvyW5-eze8EiJ-Bbc5ohjKLzH4v0wDCvpKxSTnlqouJx2skJE4xlu3ZyMbiDMm0TJnZVb6OZaV9UmmPWz0ek9uNvBSHbU-v0-bBm3C3tHDpfQVw17zTyx0--Y78LOcV_UbQ9-fGhc4fVw2-OXbG7ZDJ86c-gthh3_-e375CvzdHZsztcNBhg2KuIW4WdfM3fJSASz6oh0-BNMXzWfSl1ppl3JFvhXSRkBu1gQm3dNFvUqp02fmtHeL35BeLU2JfNnmvC2NdFHH8DF6cnH40nYFWkI0clRHOLMp7RfVnKqDchjkyciH-MqrCB0abjNMQIQpghlMdutTEbKaqswSLTkZRo9hG03d-YxsCI2qbajEidWLsq8TFMTJWpkUpNYq0wRwGHvrazoFMypkEaV9SsZdGzmHRvAi8F00cp2_MnooHd51mVuTWU5U0WvW6MAng-X0Uv0IkU7M1_VGdHFCFmOkgAetREyPAXhk1SKiwCSjdgZDEjPe_OKm116Xe8YB3ycnAJ4OUTZvzp_6OPv7xbZydm5b-z_v-kTuIOIULUkuwPYXn5ZmaeIupb5M59dvwD9bTBD priority: 102 providerName: Wiley-Blackwell |
| Title | Synchronization of intrinsic 0.1‐Hz blood‐oxygen‐level‐dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13845 https://www.ncbi.nlm.nih.gov/pubmed/29368814 https://www.proquest.com/docview/2009803503 https://www.proquest.com/docview/1991183907 https://pubmed.ncbi.nlm.nih.gov/PMC5887876 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.13845 |
| UnpaywallVersion | publishedVersion |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1460-9568 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0953-816X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5i3cN4GbABC4zJXIT2ki5pbs5jNTZVk6gmoFJ5Ck5iQyFzK9qIdU_8BH4Cv41fwjnORQoDhMRLazXOxfVnn8_OOd8BeJbHme8PUmkr4XLbD7lnp6HMbZ65YeaFjuIDind-OQ5HE_9sGkzrPKcUC1PpQ7QbbjQyzHxNA3yRq2qeb4b6kfyo-67H_WADNsMAyXgPNifj8-HbSmHPs7kbTqv4IsemwLhaW6hzbtciXaOZ170lt0q9EOsvoii6jNaYpNNb8K5pTOWJ8qlfrtJ-dvWLzuN_tPY2bNd0lQ0rfN2BG1LvwO5Q41L9Ys2eM-NAanbmd2DruEketwvfX691ZnR3qzBPNldshg2baUQFwzv9-PptdMWM2zwWsQEIZCwU5MOE301u3hUjsc2idtjDSzBxsX6fi0IwoXO2wH-TFBjwETPyGr6kGssypc2lJaM9ZvyBePFS5szETuFpl-Smehcmpydvjkd2nQzCRjB5gY0WlguzfHUpB6EbyDTy0wGu9jJisdJVKSIN6ZDPFc4qKowcroTiCEYRunns3YOenmu5BywLZCyUk6MBd_08zeNYehF3ZCwjpbjMLDhsAJFktVI6JewokmbFhD2RmJ6w4ElbdVHJg_yu0n6DqqSeIZaU_jPm9FrXs-Bxexh7iV7YCC3n5TIhtzRisE5kwf0KhO1dkKaFnLu-BVEHnm0F0g3vHtGzD0Y_PEDDgkbQgqctkP_28IcGl3-ukZycjU3hwT9d8CHcRNLJKz--feitPpfyERK7VXoAGwP_HD9fvBoc1AP5J1olVoU |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6VcggXBC0_hgLLj1AvRtl4vV5LXKqqVShthEQr5Wat7V0IcjcRSUTCiUfgEXg2noSZ9Y-ICohTVvE43mhmdr8ZfzsD8KJMCyEGuQmt5ioUUkVhLk0ZqoLLIpJ9qwZ03vlsJIcX4mQcj7fgdXsWpq4P0SXcyDP8ek0OTgnp37zcfHKveKREfA2uC8klhV4D8a5bh5X0LYqpoFqouBw3dYWIx9PdurkbXYGYV5mSvaWb6fUXXVWbaNZvR8e34GaDI9lBrfjbsGXcDuweOIyhL9fsJfPMTp8y34HeYdvVbRd-vF-7whfErc9fsqllE3zqxKG6GE7857fvw6_M89lxOF2t0cJwUBG5CD_bprkLRlUwq4ZJhz_B9OX6Q6krzbQr2Qz_KpVGwCkWROddkcR8mVPWZ84o-YtfEGCdm5L5Q01424r4o3fg4vjo_HAYNl0aQtRyFIe49Snt40pOzQF5bPJE5AMMwwqCl4bbHE0AcYpQFt3dyqSvrLYKrURLXqbRXdh2U2fuAytik2rbL3Fn5aLMyzQ1UaL6JjWJtcoUAey32sqKpoQ5ddKosjaUQcVmXrEBPOtEZ3Xdjj8J7bUqzxrXnVNfzlTR-9YogKfdZdQSvUnRzkyX84z4YgQt-0kA92oL6Z6C-EkqxUUAyYbtdAJU0Hvzipt89IW9Y1zxcXcK4HlnZf-a_L63v79LZEcnIz948P-iT6A3PD87zU7fjN4-hBsID1XNuNuD7cXnpXmEEGyRP_ae9gtM2zOv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2K8cNm4BAaYi9BeUiXNzZF4mbZVZUCFgEl9mSInsVlH5lakEeue-An8BH4bv4RznAuUAUI81WpOGrv-7HPsfP4OwJM8zny_n0pbCZfbfsg9Ow1lbvPMDTMvdBTv03nnV6NweODvj4PxCjxrz8LU-hDdhhuNDDNf0wCXs1z9NMrlse65HveDC3DRD2JOhL7dNz_Eo3hoUhSToJrN3XDc6AoRj6e7ddkbnQsxzzMl1yo9E4tPoiiWo1njjgZX4bBtSM1C-dCr5mkvO_tF4_F_W3oNrjRxKtuugXUdVqReh41tjWv0kwV7ygxz1GzJr8PaTps1bgO-vl3ozAju1uc72VSxCbZqohEODJ_17fOX4RkzfHksYu0RwVgoiLyEn21S3jkjlc2iYerhTzBxsnifi0IwoXM2w7-SpBewihnRhU_JoqxS2lUqGW0u4xcUEJcyZ-bQFN52SvzUG3Aw2Hu3M7SbLBA2osgLbHStXJh1q0vJB91AppGf9nGZl1H4Kl2VIsQwDvK5wulEhZHDlVAcUShCN4-9m7Cqp1reBpYFMhbKydFzu36e5nEsvYg7MpaRUlxmFmy1aEiyRiKdMnUUSbtUwp5ITE9Y8KgzndW6IL8z2mwhlTRTQ0l5P2NO73M9Cx52l7GX6E2N0HJalQnx0Sh0dSILbtUI7J6C8VnIuetbEC1hszMgwfDlK3pyZITDA_Qo6P0seNyh-G-V3zKg_LNFsrc_MoU7_276AC693h0kL5-PXtyFyxh98prQtwmr84-VvIcR3jy9bwbyd0oWU-o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CzmLY8JjhERiQeQjNJiVuXs6yGs2oGokKCSqVVXASGwoZtyKtmM6KT-AT-Da-hHudhxQGEBKrWo3zcHzse-zcey7AsyLJg2CUKVdLLtwgEr6bRapwRc6j3I88LUYU7_xyGk1mwek8nDd5TikWptaH6DbcaGTY-ZoG-KrQ9TzfDvUX6qMZcl8E4VXYiUIk4wPYmU1fjd_WCnu-K3g0r-OLPJcC4xptod65fYt0iWZe9pbc3ZiV3H6RZdlntNYkndyAd21jak-UT8PNOhvmF7_oPP5Ha2_C9YausnGNr1twRZk92B8bXKqfbdlzZh1I7c78Huwetcnj9uH7663Jre5uHebJlpotsGELg6hgeKcfX79NLph1m8ciNgCBjIWSfJjwt83Nu2Yktlk2Dnt4CSbPtu8LWUomTcFW-DZJgQEfMSev4XOqUW0y2lyqGO0x4x_EiytVMBs7haedk5vqbZidHL85mrhNMggXweSHLlpYIe3ylVMOQh6qLA6yEa72cmKxiusMkYZ0KBAaZxUdxZ7QUgsEo4x4kfh3YGCWRt0Dlocqkdor0IDzoMiKJFF-LDyVqFhroXIHDltApHmjlE4JO8q0XTFhT6S2Jxx40lVd1fIgv6t00KIqbWaIitJ_JoI-6_oOPO4OYy_RBxtp1HJTpeSWRgzWix24W4OwuwvStEgIHjgQ9-DZVSDd8P4Rs_hg9cNDNCxoBB142gH5bw9_aHH55xrp8enUFu7_0wUfwDUknaL24zuAwfrzRj1EYrfOHjWD9yddc1TF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronization+of+intrinsic+0.1-Hz+blood-oxygen-level-dependent+oscillations+in+amygdala+and+prefrontal+cortex+in+subjects+with+increased+state+anxiety&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Pfurtscheller%2C+Gert&rft.au=Schwerdtfeger%2C+Andreas&rft.au=Seither-Preisler%2C+Annemarie&rft.au=Brunner%2C+Clemens&rft.date=2018-03-01&rft.eissn=1460-9568&rft.volume=47&rft.issue=5&rft.spage=417&rft_id=info:doi/10.1111%2Fejn.13845&rft_id=info%3Apmid%2F29368814&rft.externalDocID=29368814 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |