Synchronization of intrinsic 0.1‐Hz blood‐oxygen‐level‐dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety

Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neu...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 47; no. 5; pp. 417 - 426
Main Authors Pfurtscheller, Gert, Schwerdtfeger, Andreas, Seither‐Preisler, Annemarie, Brunner, Clemens, Aigner, Christoph Stefan, Calisto, João, Gens, João, Andrade, Alexandre
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.03.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.13845

Cover

Abstract Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures. Slow spontaneous BOLD oscillations at 0.1 Hz originate either from neural or vascular fluctuations. A phasor model (based on phase‐coupling between BOLD and heart rate interval signals) shows that vascular BOLD oscillations precede neural BOLD oscillations by ~90° or ~2.5 s. This implies that slow blood pressure waves (vascular BOLD) and central commands (neural activity) modulate the heart rate in a time‐locked manner and also enhance the heart rate variability in the low‐frequency band.
AbstractList Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.
Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.
Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase‐locking value in the frequency band 0.07–0.13 Hz between heart beat‐to‐beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner‐naïve, anxious healthy subjects. The first method revealed that vascular 0.1‐Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1‐Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase‐coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase‐coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures. Slow spontaneous BOLD oscillations at 0.1 Hz originate either from neural or vascular fluctuations. A phasor model (based on phase‐coupling between BOLD and heart rate interval signals) shows that vascular BOLD oscillations precede neural BOLD oscillations by ~90° or ~2.5 s. This implies that slow blood pressure waves (vascular BOLD) and central commands (neural activity) modulate the heart rate in a time‐locked manner and also enhance the heart rate variability in the low‐frequency band.
Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This raises the question if vascular BOLD oscillations (originating from blood flow in the brain) and intrinsic slow neural activity fluctuations (neural BOLD oscillations) can be differentiated. In this study, we report on two different approaches: first, on computing the phase-locking value in the frequency band 0.07-0.13 Hz between heart beat-to-beat interval (RRI) and BOLD oscillations and second, between multiple BOLD oscillations (functional connectivity) in four resting states in 23 scanner-naïve, anxious healthy subjects. The first method revealed that vascular 0.1-Hz BOLD oscillations preceded those in RRI signals by 1.7 ± 0.6 s and neural BOLD oscillations lagged RRI oscillations by 0.8 ± 0.5 s. Together, vascular BOLD oscillations preceded neural BOLD oscillations by ~90° or ~2.5 s. To verify this discrimination, connectivity patterns of neural and vascular 0.1-Hz BOLD oscillations were compared in 26 regions involved in processing of emotions. Neural BOLD oscillations revealed significant phase-coupling between amygdala and medial frontal cortex, while vascular BOLD oscillations showed highly significant phase-coupling between amygdala and multiple regions in the supply areas of the anterior and medial cerebral arteries. This suggests that not only slow neural and vascular BOLD oscillations can be dissociated but also that two strategies may exist to optimize regulation of anxiety, that is increased functional connectivity between amygdala and medial frontal cortex, and increased cerebral blood flow in amygdala and related structures.
Author Calisto, João
Brunner, Clemens
Andrade, Alexandre
Seither‐Preisler, Annemarie
Pfurtscheller, Gert
Schwerdtfeger, Andreas
Aigner, Christoph Stefan
Gens, João
AuthorAffiliation 1 Institute of Neural Engineering Graz University of Technology Graz Austria
7 Institute of Medical Engineering Graz University of Technology Graz Austria
2 BioTechMed Graz Graz Austria
4 Health Psychology and Applied Diagnostics University of Wuppertal Wuppertal Germany
3 Institute of Psychology University of Graz 8010 Graz Austria
6 Centre for Systematic Musicology University of Graz Graz Austria
8 Institute of Biophysics and Biomedical Engineering Faculty of Sciences University of Lisbon Lisbon Portugal
5 Department of Neuroradiology and Neurology University of Heidelberg Medical School Heidelberg Germany
AuthorAffiliation_xml – name: 3 Institute of Psychology University of Graz 8010 Graz Austria
– name: 6 Centre for Systematic Musicology University of Graz Graz Austria
– name: 2 BioTechMed Graz Graz Austria
– name: 8 Institute of Biophysics and Biomedical Engineering Faculty of Sciences University of Lisbon Lisbon Portugal
– name: 4 Health Psychology and Applied Diagnostics University of Wuppertal Wuppertal Germany
– name: 5 Department of Neuroradiology and Neurology University of Heidelberg Medical School Heidelberg Germany
– name: 7 Institute of Medical Engineering Graz University of Technology Graz Austria
– name: 1 Institute of Neural Engineering Graz University of Technology Graz Austria
Author_xml – sequence: 1
  givenname: Gert
  surname: Pfurtscheller
  fullname: Pfurtscheller, Gert
  organization: BioTechMed Graz
– sequence: 2
  givenname: Andreas
  surname: Schwerdtfeger
  fullname: Schwerdtfeger, Andreas
  organization: University of Wuppertal
– sequence: 3
  givenname: Annemarie
  surname: Seither‐Preisler
  fullname: Seither‐Preisler, Annemarie
  organization: University of Graz
– sequence: 4
  givenname: Clemens
  orcidid: 0000-0002-6030-2233
  surname: Brunner
  fullname: Brunner, Clemens
  email: clemens.brunner@uni-graz.at
  organization: University of Graz
– sequence: 5
  givenname: Christoph Stefan
  surname: Aigner
  fullname: Aigner, Christoph Stefan
  organization: Graz University of Technology
– sequence: 6
  givenname: João
  surname: Calisto
  fullname: Calisto, João
  organization: University of Lisbon
– sequence: 7
  givenname: João
  surname: Gens
  fullname: Gens, João
  organization: University of Lisbon
– sequence: 8
  givenname: Alexandre
  surname: Andrade
  fullname: Andrade, Alexandre
  organization: University of Lisbon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29368814$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEQxy1URD_gwAuglbgAUlo79jr2BQlVhYIqOAASN8vrnU0cOXZqe5tsTzwCj8Cz8SS4SfiqAF9mZP_m75n_HKI9Hzwg9JDgY1LOCcz9MaGC1XfQAWEcj2TNxR46wLKmI0H4p310mNIcYyw4q--h_bGkXAjCDtDX94M3sxi8vdbZBl-FrrI-R-uTNVXR__b5y_l11bgQ2pKG9TAFXxIHV-BKbGEJvgWfq5CMdW4jkopEpRfDtNVOV9q31TJCVz7J2lUmxAzrGyL1zRxMTtXK5lm5MBF0grZKWWcoZWsLebiP7nbaJXiwi0fo48uzD6fno4t3r16fvrgYGcZoPSJjKjTmhDFSZpOkhmbCmjHhzGBCJZCuYVwwSpjoiOQdn2DR6U600mhOWkmP0LOtbu-Xelhp59Qy2oWOgyJY3disis1qY3OBn2_hZd8soDVl_qh_FQRt1Z8v3s7UNFypWoiJmPAi8GQnEMNlDymrhU0Gin8eQp8UkZIQQSWeFPTxLXQe-uiLF2qMsRSY1pgW6tHvHf1s5cemC3CyBUwMKZV1KGPzZlulQev-OuTTWxX_M2SnvrIOhn-D6uzN223Fd97s3sU
CitedBy_id crossref_primary_10_1016_j_clinph_2021_05_021
crossref_primary_10_1016_j_clinph_2018_07_003
crossref_primary_10_1016_j_neuroimage_2022_119023
crossref_primary_10_1111_psyp_13914
crossref_primary_10_1038_s41598_022_13229_7
crossref_primary_10_3389_fnins_2024_1384993
crossref_primary_10_1016_j_physbeh_2021_113676
crossref_primary_10_1109_TNSRE_2019_2895029
crossref_primary_10_3390_brainsci11050543
crossref_primary_10_1016_j_clinph_2018_07_009
crossref_primary_10_3389_fnins_2020_00922
crossref_primary_10_1038_s41380_021_01029_w
crossref_primary_10_3389_fphys_2018_01688
crossref_primary_10_1016_j_clinph_2019_11_013
crossref_primary_10_1007_s12264_023_01070_5
crossref_primary_10_1038_s41598_021_01710_8
crossref_primary_10_3389_fphys_2019_00939
crossref_primary_10_1016_j_crneur_2022_100050
crossref_primary_10_1016_j_neuroimage_2019_116072
crossref_primary_10_1111_acer_14293
crossref_primary_10_1016_j_neuroimage_2024_120944
Cites_doi 10.1016/j.neuroimage.2011.10.018
10.1016/j.jneumeth.2015.02.021
10.1016/j.cardiores.2005.11.008
10.1117/1.3483466
10.1016/j.neuron.2007.08.023
10.1016/j.neuroimage.2011.05.074
10.1161/01.STR.26.10.1801
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2012.03.009
10.1007/s00424-004-1291-4
10.1038/86110
10.5298/1081-5937-41.1.02
10.1016/0005-7916(94)90005-1
10.1152/jn.00853.2003
10.1016/j.neuroimage.2005.06.067
10.1503/jpn.130145
10.1146/annurev.physiol.66.082602.092845
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1162/NETN_a_00013
10.1523/JNEUROSCI.1910-08.2008
10.1016/j.neubiorev.2016.11.014
10.1073/pnas.0305375101
10.1371/journal.pone.0168097
10.1016/S1388-2457(99)00141-8
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1016/j.neuroimage.2012.02.060
10.1016/j.biopsycho.2007.10.004
10.5194/npg-11-561-2004
10.1002/mrm.22361
10.1016/j.neuroimage.2012.01.044
10.1113/expphysiol.2008.042424
10.1016/j.neuron.2017.10.012
10.1152/ajpheart.1998.274.1.H233
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.3389/fnhum.2014.00196
10.1016/j.neulet.2011.12.025
10.1016/j.neubiorev.2008.08.004
10.1111/ejn.12295
10.1016/j.neuroimage.2011.12.019
10.1109/TBME.2011.2134851
10.1371/journal.pone.0043640
10.1016/j.neuroimage.2009.05.069
10.1016/S0006-3223(01)01328-2
10.1007/BF02441590
ContentType Journal Article
Copyright 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2018 The Authors. published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/ejn.13845
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Chemoreception Abstracts
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate G. Pfurtscheller et al
EISSN 1460-9568
EndPage 426
ExternalDocumentID 10.1111/ejn.13845
PMC5887876
29368814
10_1111_ejn_13845
EJN13845
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4435-1238a061441936915eb74b2164c0139e1fb46843148f196f6708faf8d9ca61d93
IEDL.DBID UNPAY
ISSN 0953-816X
1460-9568
IngestDate Wed Oct 29 12:14:36 EDT 2025
Thu Aug 21 18:02:06 EDT 2025
Fri Jul 11 16:49:29 EDT 2025
Fri Jul 25 06:46:22 EDT 2025
Mon Jul 21 05:53:26 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Oct 01 03:43:56 EDT 2025
Wed Jan 22 16:41:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords state anxiety
blood-oxygen-level-dependent signal
0.1-Hz oscillations
amygdala
heart rate variability
Language English
License Attribution
2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-1238a061441936915eb74b2164c0139e1fb46843148f196f6708faf8d9ca61d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by John Foxe. Reviewed by Enrico Glerean, Aalto University, Finland Bin Zhang, Shanghai Mental Health Center, China
All peer review communications can be found with the online version of the article.
ORCID 0000-0002-6030-2233
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.13845
PMID 29368814
PQID 2009803503
PQPubID 34057
PageCount 10
ParticipantIDs unpaywall_primary_10_1111_ejn_13845
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5887876
proquest_miscellaneous_1991183907
proquest_journals_2009803503
pubmed_primary_29368814
crossref_citationtrail_10_1111_ejn_13845
crossref_primary_10_1111_ejn_13845
wiley_primary_10_1111_ejn_13845_EJN13845
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
– name: Hoboken
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2006; 70
2012; 61
2012; 60
2004; 66
2009; 47
2002; 15
2017; 1
2010; 15
2002; 51
2000; 44
2003; 13
2008; 36
1994; 25
2011; 57
2008; 77
2008; 31
2011; 58
2012; 59
2005; 28
2004; 448
2010; 63
1998; 274
1999; 208
1994; 266
2017; 72
2017b; 12
2008; 28
2014; 8
2010; 4
1988
2012; 62
2012a; 7
2004; 101
1998; 26
2015; 245
2013; 41
2009
2012b; 508
2004; 91
2007; 56
2008; 93
1998; 23
2004; 11
2009; 33
2017; 96
2013; 38
2017a; 128
2001; 4
1999; 110
2014
2013
2014; 39
1998; 79
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
Tong Y. (e_1_2_11_44_1) 2012; 61
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
Diehl R.R. (e_1_2_11_8_1) 1998; 26
Hurtado J.M. (e_1_2_11_15_1) 2004; 91
Zheng F. (e_1_2_11_55_1) 2010; 15
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_43_1
Lagos L. (e_1_2_11_22_1) 2008; 36
e_1_2_11_17_1
Yan C.G. (e_1_2_11_53_1) 2010; 4
e_1_2_11_38_1
e_1_2_11_19_1
Pfurtscheller G. (e_1_2_11_35_1) 2012; 7
Laux L. (e_1_2_11_23_1) 2013
e_1_2_11_50_1
Birn R.M. (e_1_2_11_3_1) 2008; 31
e_1_2_11_10_1
e_1_2_11_31_1
Davidson R.J. (e_1_2_11_6_1) 2002; 51
Spielberger C.D. (e_1_2_11_42_1) 2009
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_28_1
e_1_2_11_49_1
Cohen J. (e_1_2_11_5_1) 1988
Boer R.W. (e_1_2_11_7_1) 1998; 23
e_1_2_11_21_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
Pfurtscheller G. (e_1_2_11_37_1) 2017; 128
e_1_2_11_9_1
e_1_2_11_18_1
e_1_2_11_16_1
Mateo C. (e_1_2_11_26_1) 2017; 96
e_1_2_11_39_1
Kuusela T.A. (e_1_2_11_20_1) 2003; 13
Golanov E.V. (e_1_2_11_12_1) 1994; 266
References_xml – year: 2009
– volume: 7
  start-page: e43640
  year: 2012a
  article-title: Coupling between intrinsic prefrontal Hbo2 and central EEG Beta power oscillations in the resting brain
  publication-title: PLoS ONE
– volume: 62
  start-page: 902
  year: 2012
  end-page: 910
  article-title: A brief history of the resting state: the Washington University perspective
  publication-title: NeuroImage
– volume: 208
  start-page: 194
  year: 1999
  end-page: 208
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
– volume: 128
  start-page: 183
  year: 2017a
  end-page: 193
  article-title: Brain‐heart communication: evidence for “central pacemaker” oscillations with a dominant frequency at ~0.1 Hz in the cingulum
  publication-title: Clin. Neuropharmacol.
– volume: 15
  start-page: 040512
  year: 2010
  article-title: Phasor representation of oxy‐ and deoxyhemoglobin concentrations: what is the meaning of out‐of‐phase oscillations as measured by near‐infrared spectroscopy?
  publication-title: J. Biomed. Opt.
– volume: 93
  start-page: 1011
  year: 2008
  end-page: 1021
  article-title: Breathing rhythms and emotions
  publication-title: Exp. Physiol.
– volume: 62
  start-page: 2201
  year: 2012
  end-page: 2211
  article-title: Infra‐slow fluctuations in electrophysiolgical recordings, blood‐oxygenation‐level‐dependent signals, and psychophysical time series
  publication-title: NeuroImage
– volume: 8
  start-page: 196
  year: 2014
  article-title: Studying the spatial distribution of physiological effects on BOLD signals using ultrafast fMRI
  publication-title: Front. Hum. Neurosci.
– volume: 4
  start-page: 437
  year: 2001
  end-page: 441
  article-title: Activation of the left amygdala to a cognitive representation of fear
  publication-title: Nat. Neurosci.
– volume: 101
  start-page: 5053
  year: 2004
  end-page: 5057
  article-title: Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 65
  year: 2002
  end-page: 80
  article-title: Anxiety and affective style: role of prefrontal cortex and amygdala
  publication-title: Biol. Psychiat.
– year: 2014
– volume: 96
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood‐oxygenation‐level‐dependent “resting state” connectivity
  publication-title: Neuron
– volume: 60
  start-page: 384
  year: 2012
  end-page: 391
  article-title: Resting oscillations and cross‐frequency coupling in the human posteromedial cortex
  publication-title: NeuroImage
– volume: 36
  start-page: 109
  year: 2008
  end-page: 115
  article-title: Heart rate variability biofeedback as a strategy for dealing with competitive anxiety: a case study
  publication-title: Biofeedback
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain
  publication-title: NeuroImage
– volume: 39
  start-page: 321
  year: 2014
  end-page: 329
  article-title: Sustained anxiety increases amygdala–dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults
  publication-title: J. Psych. Neurosci.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 110
  start-page: 1842
  year: 1999
  end-page: 1857
  article-title: Event‐related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
– volume: 508
  start-page: 89
  year: 2012b
  end-page: 94
  article-title: Does conscious intention to perform a motor act depend on slow prefrontal (de)oxyhemoglobin oscillations in the resting brain?
  publication-title: Neurosci. Lett.
– volume: 57
  start-page: 1534
  year: 2011
  end-page: 1541
  article-title: Beyond acute social stress: increased functional connectivity between amygdala and cortical midline structures
  publication-title: Neuroinage
– volume: 23
  start-page: 359
  year: 1998
  end-page: 364
  article-title: Relationships between short‐term blood‐pressure fluctuations and heart‐rate variability in resting subjects II: a simple model Med
  publication-title: Biol. Eng. Comput.
– volume: 266
  start-page: R204
  year: 1994
  end-page: R214
  article-title: Spontaneous waves of cerebral blood flow associated with pattern of electrocortical activity
  publication-title: Am. J. Physiol.
– volume: 38
  start-page: 2902
  year: 2013
  end-page: 2916
  article-title: The resting‐state neurovascular coupling relationship: rapid changes in spontaneous neural activity in the somatosensory cortex are associated with haemodynamic fluctuations that resemble stimulus‐evoked hemodynamics
  publication-title: Eur. J. Neurosci.
– volume: 26
  start-page: 1801
  year: 1998
  end-page: 1804
  article-title: Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation
  publication-title: Stroke
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  article-title: Multiband multislice GE‐EPI at 7 Tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI
  publication-title: Mag. Reson. Med.
– volume: 11
  start-page: 561
  year: 2004
  end-page: 566
  article-title: Application of the cross wavelet transform and wavelet coherence to geophysical time series
  publication-title: Nonlinear Proc. Geophy.
– volume: 56
  start-page: 171
  year: 2007
  end-page: 184
  article-title: Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior
  publication-title: Neuron
– volume: 448
  start-page: 579
  year: 2004
  end-page: 591
  article-title: Cardiovascular rhythms in the 0.15‐Hz band: common origin of identical phenomena in man and dog in the reticular formation of the brain stem?
  publication-title: Eur. J. Physiol.
– volume: 77
  start-page: 174
  year: 2008
  end-page: 182
  article-title: Heart rate variability and pain: associations of two interrelated homeostatic processes
  publication-title: Biol. Psychol.
– volume: 91
  start-page: 883
  year: 2004
  end-page: 1898
  article-title: Statistical method for detection of phase‐locking episodes in neural oscillations
  publication-title: J. Neurophysiol.
– volume: 25
  start-page: 131
  year: 1994
  end-page: 134
  article-title: Anxiety and its determinants in patients undergoing magnetic resonance imaging
  publication-title: J. Behav. Ther. Exp. Psy.
– volume: 1
  start-page: 254
  year: 2017
  end-page: 274
  article-title: Consistency of regions of interest as nodes of fMRI functional brain networks
  publication-title: Network Neurosci.
– volume: 28
  start-page: 8268
  year: 2008
  end-page: 8772
  article-title: Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans
  publication-title: J. Neurosci.
– volume: 66
  start-page: 735
  year: 2004
  end-page: 769
  article-title: Interpreting the BOLD signal
  publication-title: Annu. Rev. Physiol.
– volume: 61
  start-page: 419
  year: 2012
  end-page: 1427
  article-title: Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature
  publication-title: NeuroImage
– volume: 13
  start-page: 3
  year: 2003
  end-page: 11
  article-title: Fine structure of the low‐frequency spectra of heart rate and blood pressure
  publication-title: BMC Physiol.
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn. Reson. Med.
– volume: 245
  start-page: 107
  year: 2015
  end-page: 115
  article-title: GraphVar: a user‐friendly toolbox for comprehensive graph analyses of functional brain connectivity
  publication-title: J. Neurosci. Meth.
– year: 1988
– volume: 70
  start-page: 12
  year: 2006
  end-page: 21
  article-title: The enigma of Mayer waves: facts and models
  publication-title: Cardiovasc. Res.
– volume: 72
  start-page: 111
  year: 2017
  end-page: 128
  article-title: The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta‐analysis of fMRI studies
  publication-title: Neurosci. Biobehav. Rev.
– volume: 28
  start-page: 720
  year: 2005
  end-page: 737
  article-title: Removal of fMRI environment artifacts from EEG data using optimal basis sets
  publication-title: NeuroImage
– volume: 4
  start-page: 1
  year: 2010
  end-page: 7
  article-title: DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting‐state fMRI
  publication-title: Front. Syst. Neurosci.
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  article-title: A practical guide to wavelet analysis
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 41
  start-page: 26
  year: 2013
  end-page: 31
  article-title: How does heart rate variability biofeedback work? Resonance, the baroreflex, and other mechanisms
  publication-title: Biofeedback
– volume: 33
  start-page: 81
  year: 2009
  end-page: 88
  article-title: Claude Bernard and the heart‐brain connection: further elaboration of a model of neurovisceral integration
  publication-title: Neurosci. Biobehav. Rev.
– volume: 274
  start-page: H233
  year: 1998
  end-page: H241
  article-title: Transfer function analysis of dynamic cerebral auroregulation in humans
  publication-title: Am. J. Physiol. (Heart Circ. Physiol.
– volume: 47
  start-page: 852
  year: 2009
  end-page: 863
  article-title: Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulationg unpleasant emotions
  publication-title: NeuroImage
– volume: 12
  start-page: e0168097
  year: 2017b
  article-title: Distinction between neural and vascular BOLD oscillations and intertwined heart rate oscillations at 0.1 Hz in the resting state and during movement
  publication-title: PLoS ONE
– volume: 31
  start-page: 536
  year: 2008
  end-page: 1548
  article-title: Separating respiratory‐variation‐related fluctuations from neuonal‐activity‐related fluctuations in fMRI
  publication-title: NeuroImage
– volume: 58
  start-page: 2064
  year: 2011
  end-page: 2071
  article-title: About the stability of phase shifts between slow oscillations around 0.1 Hz in cardiovascular and cerebral systems
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2013
– volume: 36
  start-page: 109
  year: 2008
  ident: e_1_2_11_22_1
  article-title: Heart rate variability biofeedback as a strategy for dealing with competitive anxiety: a case study
  publication-title: Biofeedback
– ident: e_1_2_11_40_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_11_19_1
  doi: 10.1016/j.jneumeth.2015.02.021
– volume: 13
  start-page: 3
  year: 2003
  ident: e_1_2_11_20_1
  article-title: Fine structure of the low‐frequency spectra of heart rate and blood pressure
  publication-title: BMC Physiol.
– ident: e_1_2_11_16_1
  doi: 10.1016/j.cardiores.2005.11.008
– volume: 15
  start-page: 040512
  year: 2010
  ident: e_1_2_11_55_1
  article-title: Phasor representation of oxy‐ and deoxyhemoglobin concentrations: what is the meaning of out‐of‐phase oscillations as measured by near‐infrared spectroscopy?
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3483466
– ident: e_1_2_11_10_1
  doi: 10.1016/j.neuron.2007.08.023
– ident: e_1_2_11_50_1
  doi: 10.1016/j.neuroimage.2011.05.074
– volume: 26
  start-page: 1801
  year: 1998
  ident: e_1_2_11_8_1
  article-title: Phase relationship between cerebral blood flow velocity and blood pressure: a clinical test of autoregulation
  publication-title: Stroke
  doi: 10.1161/01.STR.26.10.1801
– ident: e_1_2_11_47_1
  doi: 10.1006/nimg.2001.0978
– volume: 61
  start-page: 419
  year: 2012
  ident: e_1_2_11_44_1
  article-title: Concurrent fNIRS and fMRI processing allows independent visualization of the propagation of pressure waves and bulk blood flow in the cerebral vasculature
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.009
– ident: e_1_2_11_32_1
  doi: 10.1007/s00424-004-1291-4
– ident: e_1_2_11_39_1
  doi: 10.1038/86110
– volume: 4
  start-page: 1
  year: 2010
  ident: e_1_2_11_53_1
  article-title: DPARSF: a MATLAB toolbox for ‘pipeline’ data analysis of resting‐state fMRI
  publication-title: Front. Syst. Neurosci.
– ident: e_1_2_11_24_1
  doi: 10.5298/1081-5937-41.1.02
– ident: e_1_2_11_17_1
  doi: 10.1016/0005-7916(94)90005-1
– volume: 91
  start-page: 883
  year: 2004
  ident: e_1_2_11_15_1
  article-title: Statistical method for detection of phase‐locking episodes in neural oscillations
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00853.2003
– volume-title: Statistical Power Analysis for Behavioral Sciences
  year: 1988
  ident: e_1_2_11_5_1
– ident: e_1_2_11_30_1
  doi: 10.1016/j.neuroimage.2005.06.067
– ident: e_1_2_11_51_1
  doi: 10.1503/jpn.130145
– ident: e_1_2_11_25_1
  doi: 10.1146/annurev.physiol.66.082602.092845
– ident: e_1_2_11_52_1
– volume: 31
  start-page: 536
  year: 2008
  ident: e_1_2_11_3_1
  article-title: Separating respiratory‐variation‐related fluctuations from neuonal‐activity‐related fluctuations in fMRI
  publication-title: NeuroImage
– ident: e_1_2_11_11_1
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– ident: e_1_2_11_18_1
  doi: 10.1162/NETN_a_00013
– volume: 128
  start-page: 183
  year: 2017
  ident: e_1_2_11_37_1
  article-title: Brain‐heart communication: evidence for “central pacemaker” oscillations with a dominant frequency at ~0.1 Hz in the cingulum
  publication-title: Clin. Neuropharmacol.
– ident: e_1_2_11_28_1
  doi: 10.1523/JNEUROSCI.1910-08.2008
– ident: e_1_2_11_29_1
  doi: 10.1016/j.neubiorev.2016.11.014
– ident: e_1_2_11_49_1
  doi: 10.1073/pnas.0305375101
– ident: e_1_2_11_38_1
  doi: 10.1371/journal.pone.0168097
– ident: e_1_2_11_33_1
  doi: 10.1016/S1388-2457(99)00141-8
– ident: e_1_2_11_46_1
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– ident: e_1_2_11_31_1
  doi: 10.1016/j.neuroimage.2012.02.060
– ident: e_1_2_11_2_1
  doi: 10.1016/j.biopsycho.2007.10.004
– ident: e_1_2_11_13_1
  doi: 10.5194/npg-11-561-2004
– ident: e_1_2_11_27_1
  doi: 10.1002/mrm.22361
– ident: e_1_2_11_41_1
  doi: 10.1016/j.neuroimage.2012.01.044
– ident: e_1_2_11_14_1
  doi: 10.1113/expphysiol.2008.042424
– volume: 96
  start-page: 1
  year: 2017
  ident: e_1_2_11_26_1
  article-title: Entrainment of arteriole vasomotor fluctuations by neural activity is a basis of blood‐oxygenation‐level‐dependent “resting state” connectivity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.10.012
– ident: e_1_2_11_54_1
  doi: 10.1152/ajpheart.1998.274.1.H233
– ident: e_1_2_11_21_1
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– ident: e_1_2_11_45_1
  doi: 10.3389/fnhum.2014.00196
– ident: e_1_2_11_36_1
  doi: 10.1016/j.neulet.2011.12.025
– ident: e_1_2_11_43_1
  doi: 10.1016/j.neubiorev.2008.08.004
– ident: e_1_2_11_4_1
  doi: 10.1111/ejn.12295
– ident: e_1_2_11_9_1
  doi: 10.1016/j.neuroimage.2011.12.019
– volume-title: Das State‐Trait‐Angst‐Depressions‐Inventar [The State‐Trait Anxiety‐Depression Inventory]
  year: 2013
  ident: e_1_2_11_23_1
– ident: e_1_2_11_34_1
  doi: 10.1109/TBME.2011.2134851
– volume: 7
  start-page: e43640
  year: 2012
  ident: e_1_2_11_35_1
  article-title: Coupling between intrinsic prefrontal Hbo2 and central EEG Beta power oscillations in the resting brain
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0043640
– ident: e_1_2_11_48_1
  doi: 10.1016/j.neuroimage.2009.05.069
– volume-title: Manual for the State‐Trait Anxiety Inventory
  year: 2009
  ident: e_1_2_11_42_1
– volume: 266
  start-page: R204
  year: 1994
  ident: e_1_2_11_12_1
  article-title: Spontaneous waves of cerebral blood flow associated with pattern of electrocortical activity
  publication-title: Am. J. Physiol.
– volume: 51
  start-page: 65
  year: 2002
  ident: e_1_2_11_6_1
  article-title: Anxiety and affective style: role of prefrontal cortex and amygdala
  publication-title: Biol. Psychiat.
  doi: 10.1016/S0006-3223(01)01328-2
– volume: 23
  start-page: 359
  year: 1998
  ident: e_1_2_11_7_1
  article-title: Relationships between short‐term blood‐pressure fluctuations and heart‐rate variability in resting subjects II: a simple model Med
  publication-title: Biol. Eng. Comput.
  doi: 10.1007/BF02441590
SSID ssj0008645
Score 2.3721244
Snippet Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This...
Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This...
Low‐frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood‐oxygen‐level‐dependent (BOLD) signals. This...
Low-frequency oscillations with a dominant frequency at 0.1 Hz are one of the most influential intrinsic blood-oxygen-level-dependent (BOLD) signals. This...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 417
SubjectTerms 0.1‐Hz oscillations
Adult
Amygdala
Amygdala - metabolism
Anxiety
Anxiety Disorders - metabolism
Anxiety Disorders - physiopathology
Blood flow
blood‐oxygen‐level‐dependent signal
Brain Mapping - methods
Cerebral blood flow
Cerebrovascular Circulation - physiology
Cortex (frontal)
Female
Functional magnetic resonance imaging
Heart Rate - physiology
heart rate variability
Humans
Information processing
Magnetic Resonance Imaging - methods
Male
Neural networks
Neurosystems
Oscillations
Oxygen - blood
Prefrontal cortex
Prefrontal Cortex - metabolism
state anxiety
Synchronization
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB6VcigXBC0_KQWZH6FegtYbx3HEqaparSpRIUGlvUVOYtNFqXdFdtUNJx6BR-DZeBJmnB-xKiBOa20mG69mxv7sfP4G4FWZFkKMcxNazVUopIrCXJoyVAWXRSRHVo3pvPO7czm5EGfTeLoFb_uzMK0-xLDhRpnhx2tKcJ3XvyW5-eze8EiJ-Bbc5ohjKLzH4v0wDCvpKxSTnlqouJx2skJE4xlu3ZyMbiDMm0TJnZVb6OZaV9UmmPWz0ek9uNvBSHbU-v0-bBm3C3tHDpfQVw17zTyx0--Y78LOcV_UbQ9-fGhc4fVw2-OXbG7ZDJ86c-gthh3_-e375CvzdHZsztcNBhg2KuIW4WdfM3fJSASz6oh0-BNMXzWfSl1ppl3JFvhXSRkBu1gQm3dNFvUqp02fmtHeL35BeLU2JfNnmvC2NdFHH8DF6cnH40nYFWkI0clRHOLMp7RfVnKqDchjkyciH-MqrCB0abjNMQIQpghlMdutTEbKaqswSLTkZRo9hG03d-YxsCI2qbajEidWLsq8TFMTJWpkUpNYq0wRwGHvrazoFMypkEaV9SsZdGzmHRvAi8F00cp2_MnooHd51mVuTWU5U0WvW6MAng-X0Uv0IkU7M1_VGdHFCFmOkgAetREyPAXhk1SKiwCSjdgZDEjPe_OKm116Xe8YB3ycnAJ4OUTZvzp_6OPv7xbZydm5b-z_v-kTuIOIULUkuwPYXn5ZmaeIupb5M59dvwD9bTBD
  priority: 102
  providerName: Wiley-Blackwell
Title Synchronization of intrinsic 0.1‐Hz blood‐oxygen‐level‐dependent oscillations in amygdala and prefrontal cortex in subjects with increased state anxiety
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13845
https://www.ncbi.nlm.nih.gov/pubmed/29368814
https://www.proquest.com/docview/2009803503
https://www.proquest.com/docview/1991183907
https://pubmed.ncbi.nlm.nih.gov/PMC5887876
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.13845
UnpaywallVersion publishedVersion
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1460-9568
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0008645
  issn: 0953-816X
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0953-816X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1460-9568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008645
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD5i3cN4GbABC4zJXIT2ki5pbs5jNTZVk6gmoFJ5Ck5iQyFzK9qIdU_8BH4Cv41fwjnORQoDhMRLazXOxfVnn8_OOd8BeJbHme8PUmkr4XLbD7lnp6HMbZ65YeaFjuIDind-OQ5HE_9sGkzrPKcUC1PpQ7QbbjQyzHxNA3yRq2qeb4b6kfyo-67H_WADNsMAyXgPNifj8-HbSmHPs7kbTqv4IsemwLhaW6hzbtciXaOZ170lt0q9EOsvoii6jNaYpNNb8K5pTOWJ8qlfrtJ-dvWLzuN_tPY2bNd0lQ0rfN2BG1LvwO5Q41L9Ys2eM-NAanbmd2DruEketwvfX691ZnR3qzBPNldshg2baUQFwzv9-PptdMWM2zwWsQEIZCwU5MOE301u3hUjsc2idtjDSzBxsX6fi0IwoXO2wH-TFBjwETPyGr6kGssypc2lJaM9ZvyBePFS5szETuFpl-Smehcmpydvjkd2nQzCRjB5gY0WlguzfHUpB6EbyDTy0wGu9jJisdJVKSIN6ZDPFc4qKowcroTiCEYRunns3YOenmu5BywLZCyUk6MBd_08zeNYehF3ZCwjpbjMLDhsAJFktVI6JewokmbFhD2RmJ6w4ElbdVHJg_yu0n6DqqSeIZaU_jPm9FrXs-Bxexh7iV7YCC3n5TIhtzRisE5kwf0KhO1dkKaFnLu-BVEHnm0F0g3vHtGzD0Y_PEDDgkbQgqctkP_28IcGl3-ukZycjU3hwT9d8CHcRNLJKz--feitPpfyERK7VXoAGwP_HD9fvBoc1AP5J1olVoU
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB6VcggXBC0_hgLLj1AvRtl4vV5LXKqqVShthEQr5Wat7V0IcjcRSUTCiUfgEXg2noSZ9Y-ICohTVvE43mhmdr8ZfzsD8KJMCyEGuQmt5ioUUkVhLk0ZqoLLIpJ9qwZ03vlsJIcX4mQcj7fgdXsWpq4P0SXcyDP8ek0OTgnp37zcfHKveKREfA2uC8klhV4D8a5bh5X0LYqpoFqouBw3dYWIx9PdurkbXYGYV5mSvaWb6fUXXVWbaNZvR8e34GaDI9lBrfjbsGXcDuweOIyhL9fsJfPMTp8y34HeYdvVbRd-vF-7whfErc9fsqllE3zqxKG6GE7857fvw6_M89lxOF2t0cJwUBG5CD_bprkLRlUwq4ZJhz_B9OX6Q6krzbQr2Qz_KpVGwCkWROddkcR8mVPWZ84o-YtfEGCdm5L5Q01424r4o3fg4vjo_HAYNl0aQtRyFIe49Snt40pOzQF5bPJE5AMMwwqCl4bbHE0AcYpQFt3dyqSvrLYKrURLXqbRXdh2U2fuAytik2rbL3Fn5aLMyzQ1UaL6JjWJtcoUAey32sqKpoQ5ddKosjaUQcVmXrEBPOtEZ3Xdjj8J7bUqzxrXnVNfzlTR-9YogKfdZdQSvUnRzkyX84z4YgQt-0kA92oL6Z6C-EkqxUUAyYbtdAJU0Hvzipt89IW9Y1zxcXcK4HlnZf-a_L63v79LZEcnIz948P-iT6A3PD87zU7fjN4-hBsID1XNuNuD7cXnpXmEEGyRP_ae9gtM2zOv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ2K8cNm4BAaYi9BeUiXNzZF4mbZVZUCFgEl9mSInsVlH5lakEeue-An8BH4bv4RznAuUAUI81WpOGrv-7HPsfP4OwJM8zny_n0pbCZfbfsg9Ow1lbvPMDTMvdBTv03nnV6NweODvj4PxCjxrz8LU-hDdhhuNDDNf0wCXs1z9NMrlse65HveDC3DRD2JOhL7dNz_Eo3hoUhSToJrN3XDc6AoRj6e7ddkbnQsxzzMl1yo9E4tPoiiWo1njjgZX4bBtSM1C-dCr5mkvO_tF4_F_W3oNrjRxKtuugXUdVqReh41tjWv0kwV7ygxz1GzJr8PaTps1bgO-vl3ozAju1uc72VSxCbZqohEODJ_17fOX4RkzfHksYu0RwVgoiLyEn21S3jkjlc2iYerhTzBxsnifi0IwoXM2w7-SpBewihnRhU_JoqxS2lUqGW0u4xcUEJcyZ-bQFN52SvzUG3Aw2Hu3M7SbLBA2osgLbHStXJh1q0vJB91AppGf9nGZl1H4Kl2VIsQwDvK5wulEhZHDlVAcUShCN4-9m7Cqp1reBpYFMhbKydFzu36e5nEsvYg7MpaRUlxmFmy1aEiyRiKdMnUUSbtUwp5ITE9Y8KgzndW6IL8z2mwhlTRTQ0l5P2NO73M9Cx52l7GX6E2N0HJalQnx0Sh0dSILbtUI7J6C8VnIuetbEC1hszMgwfDlK3pyZITDA_Qo6P0seNyh-G-V3zKg_LNFsrc_MoU7_276AC693h0kL5-PXtyFyxh98prQtwmr84-VvIcR3jy9bwbyd0oWU-o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFL2CzmLY8JjhERiQeQjNJiVuXs6yGs2oGokKCSqVVXASGwoZtyKtmM6KT-AT-Da-hHudhxQGEBKrWo3zcHzse-zcey7AsyLJg2CUKVdLLtwgEr6bRapwRc6j3I88LUYU7_xyGk1mwek8nDd5TikWptaH6DbcaGTY-ZoG-KrQ9TzfDvUX6qMZcl8E4VXYiUIk4wPYmU1fjd_WCnu-K3g0r-OLPJcC4xptod65fYt0iWZe9pbc3ZiV3H6RZdlntNYkndyAd21jak-UT8PNOhvmF7_oPP5Ha2_C9YausnGNr1twRZk92B8bXKqfbdlzZh1I7c78Huwetcnj9uH7663Jre5uHebJlpotsGELg6hgeKcfX79NLph1m8ciNgCBjIWSfJjwt83Nu2Yktlk2Dnt4CSbPtu8LWUomTcFW-DZJgQEfMSev4XOqUW0y2lyqGO0x4x_EiytVMBs7haedk5vqbZidHL85mrhNMggXweSHLlpYIe3ylVMOQh6qLA6yEa72cmKxiusMkYZ0KBAaZxUdxZ7QUgsEo4x4kfh3YGCWRt0Dlocqkdor0IDzoMiKJFF-LDyVqFhroXIHDltApHmjlE4JO8q0XTFhT6S2Jxx40lVd1fIgv6t00KIqbWaIitJ_JoI-6_oOPO4OYy_RBxtp1HJTpeSWRgzWix24W4OwuwvStEgIHjgQ9-DZVSDd8P4Rs_hg9cNDNCxoBB142gH5bw9_aHH55xrp8enUFu7_0wUfwDUknaL24zuAwfrzRj1EYrfOHjWD9yddc1TF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronization+of+intrinsic+0.1-Hz+blood-oxygen-level-dependent+oscillations+in+amygdala+and+prefrontal+cortex+in+subjects+with+increased+state+anxiety&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Pfurtscheller%2C+Gert&rft.au=Schwerdtfeger%2C+Andreas&rft.au=Seither-Preisler%2C+Annemarie&rft.au=Brunner%2C+Clemens&rft.date=2018-03-01&rft.eissn=1460-9568&rft.volume=47&rft.issue=5&rft.spage=417&rft_id=info:doi/10.1111%2Fejn.13845&rft_id=info%3Apmid%2F29368814&rft.externalDocID=29368814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon