Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples

Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image...

Full description

Saved in:
Bibliographic Details
Published inHistopathology Vol. 78; no. 6; pp. 791 - 804
Main Authors Farris, Alton B, Vizcarra, Juan, Amgad, Mohamed, Cooper, Lee A D, Gutman, David, Hogan, Julien
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2021
Subjects
Online AccessGet full text
ISSN0309-0167
1365-2559
1365-2559
DOI10.1111/his.14304

Cover

Abstract Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis‐driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis‐driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the ‘big data’ of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.
AbstractList Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis‐driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis‐driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the ‘big data’ of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.
Whole slide imaging (WSI), an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilization; and with more widespread WSI utilization, there will also be increased interest in and implementation of image analysis techniques. Image analysis includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, citations related to these topics have increased in recent years. Renal pathology is one anatomic pathology subspecialty that has utilized WSIs and image analysis algorithms; and it can be argued that renal transplant pathology could be particularly suited for WSI and image analysis, since renal transplant pathology is frequently classified using the semiquantitative Banff Classification of Renal Allograft Pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g., interstitial fibrosis and tubular atrophy and inflammation); and in recent years, research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histologic segmentation, and other applications. Deep learning is the form of machine learning most often used for such AI approaches to the “big data” of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilized. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other image analysis algorithms applied to WSIs are discussed; and examples from renal pathology are covered, with an emphasis on renal transplant pathology.
Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the 'big data' of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the 'big data' of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.
Author Amgad, Mohamed
Gutman, David
Cooper, Lee A D
Vizcarra, Juan
Farris, Alton B
Hogan, Julien
AuthorAffiliation 1 Department of Pathology and Laboratory Medicine; Emory University; Atlanta, GA, U.S.A
4 Department of Surgery; Emory University; Atlanta, GA, U.S.A
3 Department of Pathology and Center for Computational Imaging and Signal Analytics; Northwestern University; Chicago, IL, U.S.A
2 Department of Bioinformatics; Emory University; Atlanta, GA
AuthorAffiliation_xml – name: 4 Department of Surgery; Emory University; Atlanta, GA, U.S.A
– name: 3 Department of Pathology and Center for Computational Imaging and Signal Analytics; Northwestern University; Chicago, IL, U.S.A
– name: 1 Department of Pathology and Laboratory Medicine; Emory University; Atlanta, GA, U.S.A
– name: 2 Department of Bioinformatics; Emory University; Atlanta, GA
Author_xml – sequence: 1
  givenname: Alton B
  orcidid: 0000-0001-5534-7763
  surname: Farris
  fullname: Farris, Alton B
  email: abfarri@emory.edu
– sequence: 2
  givenname: Juan
  surname: Vizcarra
  fullname: Vizcarra, Juan
  organization: Emory University
– sequence: 3
  givenname: Mohamed
  orcidid: 0000-0001-7599-6162
  surname: Amgad
  fullname: Amgad, Mohamed
  organization: Northwestern University
– sequence: 4
  givenname: Lee A D
  orcidid: 0000-0002-3504-4965
  surname: Cooper
  fullname: Cooper, Lee A D
  organization: Northwestern University
– sequence: 5
  givenname: David
  surname: Gutman
  fullname: Gutman, David
  organization: Emory University
– sequence: 6
  givenname: Julien
  orcidid: 0000-0003-4838-9417
  surname: Hogan
  fullname: Hogan, Julien
  organization: Emory University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33211332$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFBX8ARWIDSGn9iJ2kC6SqgrZSpS6AteU4zowrxw52wjD_nhsy5VEVvLAl3-8c33t8hA588AahlwSfEFinG5tOSMFw8QStCBM8p5zXB2iFGa5zTER5iI5SusOYlIzSZ-iQMUoIbCvkz-NoO6utcpn1o3HOro3XJlO-zZRbh2jHTW91pkM_TKMabfCADmrcBBfWuzMAZ2EM7aTnYrYFQRbNTCkHSFTdmJnvqh-cSc_R0065ZF7sz2P05eOHzxdX-c3t5fXF-U2ui4IVec1EJZrGNEbX801FcKWoYZTripWc0qYSXLSaUFyYjvJOqFLrSlBec9UyzY7Ru8V38oPabaEROUTbq7iTBMs5NAmhyZ-hAfx-gYep6U2rDYyjfguCsvLvircbuQ7fZFUSzmoCBm_2BjF8nUwaZW-ThiyVN2FKkhaCFoSUYn7r9QP0LkwRwgKKkwIGLzEG6tWfHf1q5f7fADhdAB1DStF0Utvlc6BB6x4d8u0Dxf8C2btvrTO7f4Py6vrTovgBEQ_I8w
CitedBy_id crossref_primary_10_3390_healthcare12202041
crossref_primary_10_1016_j_cmpb_2021_106157
crossref_primary_10_1051_bioconf_202414802003
crossref_primary_10_1093_toxsci_kfad120
crossref_primary_10_3390_biomedicines12030606
crossref_primary_10_1007_s10639_022_11316_w
crossref_primary_10_1111_his_14376
crossref_primary_10_1016_j_jpi_2022_100184
crossref_primary_10_1007_s00292_024_01311_y
crossref_primary_10_1038_s41598_024_68406_7
crossref_primary_10_1186_s40942_023_00441_4
crossref_primary_10_3389_ti_2023_11783
crossref_primary_10_3389_frtra_2024_1389005
crossref_primary_10_3390_diagnostics11020206
crossref_primary_10_5500_wjt_v13_i5_221
crossref_primary_10_1007_s00414_021_02690_0
crossref_primary_10_3389_fonc_2022_844067
crossref_primary_10_3390_diagnostics13182865
crossref_primary_10_2196_40878
crossref_primary_10_3390_biom13091327
crossref_primary_10_1007_s40620_022_01327_8
crossref_primary_10_3390_agronomy13010244
crossref_primary_10_1016_j_kint_2021_11_028
crossref_primary_10_1007_s40472_021_00336_z
crossref_primary_10_3390_diagnostics11081398
crossref_primary_10_1016_j_jpi_2024_100395
crossref_primary_10_7759_cureus_44620
crossref_primary_10_1007_s00414_023_03153_4
crossref_primary_10_3390_life14020254
Cites_doi 10.1016/j.mpdhp.2020.08.004
10.1016/S0272-6386(99)70252-0
10.1242/dev.076414
10.1136/jclinpath-2020-206854
10.1016/j.kint.2020.07.044
10.1681/ASN.2015010079
10.1109/TMI.2018.2851150
10.1186/s13000-015-0248-6
10.1053/j.gastro.2018.08.023
10.4103/jpi.jpi_32_17
10.1038/ki.2012.63
10.1016/S1470-2045(19)30154-8
10.1681/ASN.2009091005
10.5858/arpa.2018-0343-RA
10.1056/NEJMp1606181
10.1158/0008-5472.CAN-17-0629
10.1038/337129a0
10.4103/jpi.jpi_82_18
10.1088/2040-8986/aab0e8
10.1111/ajt.15699
10.1016/j.ekir.2017.11.002
10.1038/s41581-019-0220-x
10.1681/ASN.2017111210
10.1002/path.5331
10.1016/j.kint.2020.02.027
10.1111/ajt.15850
10.1097/00007890-199907270-00013
10.1681/ASN.2015050601
10.1111/j.1600-6143.2011.03797.x
10.1001/jama.2017.14585
10.1111/j.1399-3046.2004.00229.x
10.1007/s00428-017-2260-6
10.4103/2153-3539.104907
10.1007/b11963
10.1038/s42256-019-0018-3
10.1016/j.kint.2015.11.027
10.1111/j.1600-6143.2011.03594.x
10.1097/01.TP.0000078899.62040.E5
10.1016/j.jtho.2019.12.112
10.1002/bjs.1800830813
10.1007/s11604-018-0795-3
10.1097/TP.0b013e31822d879a
10.1038/s41523-020-0154-2
10.3389/fmed.2019.00264
10.3389/fmed.2019.00185
10.1016/j.ekir.2019.04.008
10.1038/ki.1994.474
10.1371/journal.pone.0156734
10.1136/amiajnl-2012-001469
10.1111/ajt.12641
10.5858/arpa.2018-0514-OA
10.1093/bioinformatics/btz083
10.1186/s12859-015-0739-1
10.1097/TP.0000000000002366
10.1038/sj.ki.5002396
10.1073/pnas.1717139115
10.1371/journal.pone.0161019
10.1002/cncy.22276
10.1038/s41598-017-15092-3
10.1111/ajt.15380
10.1046/j.1600-6143.2003.00311.x
10.1097/TP.0000000000002656
10.1111/ajt.14625
10.1186/1741-7015-10-100
10.1093/gigascience/giy065
10.1038/s41581-020-0321-6
10.1097/00007890-198801000-00021
10.5858/arpa.2016-0265-SA
10.1111/j.1600-6143.2009.02803.x
10.1016/j.prp.2013.04.001
10.1093/ndt/15.suppl_6.72
10.1038/s41379-020-0601-5
10.1136/jclinpath-2020-206845
10.1093/ndt/gfh490
10.1161/CIRCULATIONAHA.115.001593
10.1111/j.1523-1755.2005.00059.x
10.1002/bjs.4777
10.1681/ASN.2019020144
10.1038/s41379-019-0205-0
10.1681/ASN.2018121259
10.5858/arpa.2015-0093-SA
10.1097/MNH.0000000000000598
10.23915/distill.00009
10.1097/01.tp.0000295749.50525.bd
10.1097/01.ASN.0000066143.02832.5E
10.1016/j.cld.2010.07.004
10.1038/s41598-018-20453-7
10.1034/j.1399-3046.1999.00044.x
10.3390/jimaging4010020
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright © 2021 John Wiley & Sons Ltd
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
– notice: Copyright © 2021 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1111/his.14304
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts

MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2559
EndPage 804
ExternalDocumentID oai:pubmedcentral.nih.gov:8715391
PMC8715391
33211332
10_1111_his_14304
HIS14304
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  funderid: 1R21DK122229‐01
– fundername: National Cancer Institute (NCI)
  funderid: U01CA220401; U24CA19436201
– fundername: National Cancer Institute (NCI)
  grantid: U01CA220401
– fundername: NCI NIH HHS
  grantid: U24 CA194362
– fundername: NCI NIH HHS
  grantid: U01 CA220401
– fundername: National Cancer Institute (NCI)
  grantid: U24CA19436201
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  grantid: 1R21DK122229-01
– fundername: NIDDK NIH HHS
  grantid: R21 DK122229
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3SF
3UE
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
GSXLS
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
Y6R
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4434-93686bbebec9c4438108a2e325c837522b8656dc1204ef25f6a7cc862595ad3c3
IEDL.DBID UNPAY
ISSN 0309-0167
1365-2559
IngestDate Sun Oct 26 03:47:03 EDT 2025
Thu Aug 21 17:38:04 EDT 2025
Fri Jul 11 11:21:24 EDT 2025
Tue Oct 07 06:26:26 EDT 2025
Sun Oct 05 09:14:24 EDT 2025
Wed Oct 01 04:28:16 EDT 2025
Thu Apr 24 23:11:12 EDT 2025
Wed Jan 22 16:30:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords machine learning
digital pathology
image analysis
renal transplant pathology
artificial intelligence
Language English
License 2020 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-93686bbebec9c4438108a2e325c837522b8656dc1204ef25f6a7cc862595ad3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5534-7763
0000-0002-3504-4965
0000-0001-7599-6162
0000-0003-4838-9417
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8715391
PMID 33211332
PQID 2514936700
PQPubID 1086360
PageCount 14
ParticipantIDs unpaywall_primary_10_1111_his_14304
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8715391
proquest_miscellaneous_2462411764
proquest_journals_2514936700
pubmed_primary_33211332
crossref_citationtrail_10_1111_his_14304
crossref_primary_10_1111_his_14304
wiley_primary_10_1111_his_14304_HIS14304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Histopathology
PublicationTitleAlternate Histopathology
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 140
2017; 318
2017; 7
2017; 8
2010; 14
2017; 4
2020; 20
2013; 209
2019; 10
2004; 8
2013; 20
2019; 15
2004; 4
2020; 16
2003; 14
2019; 19
2011; 11
2020; 128
2007; 72
2019; 249
2017; 472
2020; 98
2005; 26
2012; 12
2012; 10
2005; 67
2018; 7
2010; 22
2020; 6
2018; 8
2018; 3
2018; 4
2019; 20
2000; 15
2017; 77
2015; 132
1997; 19
2014; 14
1988; 45
1999; 10
2012; 139
2018; 37
2016; 89
2012; 82
2018; 29
2019; 4
1989; 337
2015; 16
2019; 6
2019; 30
2019; 1
2019; 32
2019; 35
2018; 102
2019; 37
2015; 10
1999; 68
2019; 103
1994; 46
1999; 3
2003
2020; 33
2018; 20
2003; 76
2016; 11
2019; 143
2018; 18
2018; 155
2012; 3
2021; 99
2004; 19
2020; 73
2020
2011; 92
2018; 115
1995; 44
1996; 83
2019
2018
2020; 26
2016; 375
2009; 9
1999; 33
2016
2017; 141
2005; 92
2007; 84
1988; 20
2016; 27
1998; 78
2020; 29
Friedman BA (e_1_2_8_98_1) 1997; 19
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_22_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
Blue Ridge Academic Health Group (e_1_2_8_9_1) 2019
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
Masseroli M (e_1_2_8_57_1) 1998; 78
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
Browning L (e_1_2_8_102_1) 2020
e_1_2_8_48_1
Ruiz P (e_1_2_8_63_1) 1988; 20
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_40_1
e_1_2_8_82_1
Mueller JP (e_1_2_8_14_1) 2018
e_1_2_8_18_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_71_1
e_1_2_8_24_1
e_1_2_8_47_1
Vleming LJ (e_1_2_8_50_1) 1995; 44
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
Kostadinova‐Kunovska S (e_1_2_8_45_1) 2005; 26
e_1_2_8_20_1
MacKay DJC (e_1_2_8_28_1) 2003
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
Hossain MS (e_1_2_8_78_1) 2019; 6
Ginley B (e_1_2_8_69_1) 2017; 4
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Verkade MA (e_1_2_8_52_1) 1999; 10
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_104_1
References_xml – volume: 103
  start-page: 1306
  year: 2019
  end-page: 1322
  article-title: Enhancing the value of histopathological assessment of allograft biopsy monitoring
  publication-title: Transplantation
– volume: 141
  start-page: 542
  year: 2017
  end-page: 550
  article-title: Whole slide imaging for analytical anatomic pathology and telepathology: practical applications today, promises, and perils
  publication-title: Arch. Pathol. Lab. Med.
– volume: 6
  start-page: 185
  year: 2019
  article-title: Translational AI and deep learning in diagnostic pathology
  publication-title: Front. Med.
– volume: 44
  start-page: 211
  year: 1995
  end-page: 219
  article-title: Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix
  publication-title: Clin. Nephrol.
– volume: 7
  start-page: 6
  year: 2018
  article-title: 1399 H&E‐stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset
  publication-title: Gigascience
– volume: 76
  start-page: 955
  year: 2003
  end-page: 958
  article-title: Computer‐assisted quantification of fibrosis in chronic allograft nephropathy by picosirius red‐staining: a new tool for predicting long‐term graft function
  publication-title: Transplantation
– volume: 4
  start-page: 955
  year: 2019
  end-page: 962
  article-title: Segmentation of glomeruli within trichrome images using deep learning
  publication-title: Kidney Int. Rep.
– volume: 143
  start-page: 222
  year: 2019
  end-page: 234
  article-title: A practical guide to whole slide imaging: a white paper from the Digital Pathology Association
  publication-title: Arch. Pathol. Lab. Med.
– volume: 15
  start-page: 589
  year: 2019
  end-page: 600
  article-title: Three‐dimensional histologic, immunohistochemical and multiplex immunofluorescence analysis of dynamic vessel co‐option of spread through air spaces in lung adenocarcinoma
  publication-title: J. Thorac. Oncol.
– volume: 67
  start-page: 94
  year: 2005
  end-page: 102
  article-title: Quantitative morphometry of lupus nephritis: the significance of collagen, tubular space, and inflammatory infiltrate
  publication-title: Kidney Int.
– volume: 4
  start-page: 248
  year: 2004
  end-page: 256
  article-title: Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy
  publication-title: Am. J. Transplant.
– volume: 1
  start-page: 112
  year: 2019
  end-page: 119
  article-title: An integrated iterative annotation technique for easing neural network training in medical image analysis
  publication-title: Nat. Mach. Intell.
– volume: 20
  start-page: 807
  year: 1988
  end-page: 811
  article-title: Cyclosporine therapy and the development of interstitial fibrosis in renal allografts
  publication-title: Transplant. Proc.
– volume: 12
  start-page: 27
  year: 2012
  end-page: 37
  article-title: Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis
  publication-title: Am. J. Transplant.
– volume: 375
  start-page: 1216
  year: 2016
  end-page: 1219
  article-title: Predicting the future—big data, machine learning, and clinical medicine
  publication-title: N. Engl. J. Med.
– volume: 8
  start-page: 2032
  year: 2018
  article-title: Multi‐radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images
  publication-title: Sci. Rep.
– volume: 18
  start-page: 293
  year: 2018
  end-page: 307
  article-title: The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell‐mediated rejection, antibody‐mediated rejection, and prospects for integrative endpoints for next‐generation clinical trials
  publication-title: Am. J. Transplant.
– volume: 29
  start-page: 2081
  year: 2018
  end-page: 2088
  article-title: Region‐based convolutional neural nets for localization of glomeruli in trichrome‐stained whole kidney sections
  publication-title: J. Am. Soc. Nephrol.
– year: 2019
– volume: 11
  year: 2016
  article-title: Quantification and comparison of anti‐fibrotic therapies by polarized SRM and SHG‐based morphometry in rat UUO model
  publication-title: PLoS One
– volume: 472
  start-page: 259
  year: 2017
  end-page: 269
  article-title: Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software
  publication-title: Virchows Arch.
– volume: 14
  start-page: 897
  year: 2014
  end-page: 907
  article-title: Banff fibrosis study: multicenter visual assessment and computerized analysis of interstitial fibrosis in kidney biopsies
  publication-title: Am. J. Transplant.
– volume: 98
  start-page: 65
  year: 2020
  end-page: 75
  article-title: Artificial intelligence and machine learning in nephropathology
  publication-title: Kidney Int.
– volume: 20
  start-page: e253
  year: 2019
  end-page: e261
  article-title: Digital pathology and artificial intelligence
  publication-title: Lancet Oncol.
– volume: 46
  start-page: 1721
  year: 1994
  end-page: 1727
  article-title: Quantification of interstitial chronic renal damage by means of texture analysis
  publication-title: Kidney Int.
– volume: 10
  start-page: 584
  year: 1999
  article-title: Decorin and TGF‐beta‐1 protein expression in renal disease: a morphometric analysis
  publication-title: J. Am. Soc. Nephrol.
– year: 2020
  article-title: Role of digital pathology in diagnostic histopathology in the response to covid‐19: results from a survey of experience in a UK tertiary referral hospital
  publication-title: J. Clin. Pathol
– year: 2020
  article-title: Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID‐19 and future crises: the PathLAKE consortium perspective
  publication-title: J. Clin. Pathol
– volume: 15
  start-page: 72
  issue: Suppl. 6
  year: 2000
  end-page: 73
  article-title: Morphometry of interstitial fibrosis
  publication-title: Nephrol. Dial. Transplant.
– volume: 19
  start-page: 30
  year: 1997
  end-page: 36
  article-title: Orchestrating a unified approach to information management
  publication-title: Radiol. Manage.
– year: 2016
– volume: 68
  start-page: 236
  year: 1999
  end-page: 241
  article-title: Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection
  publication-title: Transplantation
– volume: 6
  start-page: 16
  year: 2020
  article-title: Report on computational assessment of tumor infiltrating lymphocytes from the International Immuno‐Oncology Biomarker Working Group
  publication-title: NPJ Breast Cancer
– volume: 337
  start-page: 129
  year: 1989
  end-page: 132
  article-title: The recent excitement about neural networks
  publication-title: Nature
– volume: 92
  start-page: 890
  year: 2011
  end-page: 899
  article-title: New computerized color image analysis for the quantification of interstitial fibrosis in renal transplantation
  publication-title: Transplantation
– volume: 16
  start-page: 316
  year: 2015
  article-title: Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image
  publication-title: BMC Bioinformatics
– volume: 6
  year: 2019
  article-title: Automatic quantification of gene amplification in invasive breast cancer from chromogenic hybridization whole slide images
  publication-title: J. Med. Imaging (Bellingham)
– volume: 84
  start-page: 1595
  year: 2007
  end-page: 1601
  article-title: Quantification of interstitial fibrosis by image analysis on routine renal biopsy in patients receiving cyclosporine
  publication-title: Transplantation
– volume: 37
  start-page: 15
  year: 2019
  end-page: 33
  article-title: Technical and clinical overview of deep learning in radiology
  publication-title: Jpn. J. Radiol.
– volume: 37
  start-page: 2718
  year: 2018
  end-page: 2728
  article-title: Deep learning global glomerulosclerosis in transplant kidney frozen sections
  publication-title: IEEE Trans Med. Imaging
– volume: 32
  start-page: 916
  year: 2019
  end-page: 928
  article-title: Whole slide imaging equivalency and efficiency study: experience at a large academic center
  publication-title: Mod. Pathol.
– volume: 82
  start-page: 454
  year: 2012
  end-page: 464
  article-title: Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies
  publication-title: Kidney Int.
– volume: 33
  start-page: 2115
  year: 2020
  end-page: 2127
  article-title: Validation of a digital pathology system including remote review during the COVID‐19 pandemic
  publication-title: Mod. Pathol.
– volume: 10
  start-page: 100
  year: 2012
  article-title: Integrating pathology and radiology disciplines: an emerging opportunity?
  publication-title: BMC Med.
– volume: 30
  start-page: 1968
  year: 2019
  end-page: 1979
  article-title: Deep learning‐based histopathologic assessment of kidney tissue
  publication-title: J. Am. Soc. Nephrol.
– volume: 128
  start-page: 321
  year: 2020
  end-page: 322
  article-title: Going remote: maintaining normalcy in our pathology laboratories during the COVID‐19 pandemic
  publication-title: Cancer Cytopathol.
– volume: 14
  start-page: 669
  year: 2010
  end-page: 685
  article-title: Adding value to liver (and allograft) biopsy evaluation using a combination of multiplex quantum dot immunostaining, high‐resolution whole‐slide digital imaging, and automated image analysis
  publication-title: Clin. Liver Dis.
– volume: 209
  start-page: 371
  year: 2013
  end-page: 379
  article-title: Liver steatosis assessment: correlations among pathology, radiology, clinical data and automated image analysis software
  publication-title: Pathol. Res. Pract.
– volume: 83
  start-page: 1082
  year: 1996
  end-page: 1085
  article-title: Early measurement of interstitial fibrosis predicts long‐term renal function and graft survival in renal transplantation
  publication-title: Br. J. Surg.
– volume: 35
  start-page: 3461
  year: 2019
  end-page: 3467
  article-title: Structured crowdsourcing enables convolutional segmentation of histology images
  publication-title: Bioinformatics
– volume: 132
  start-page: 1920
  year: 2015
  end-page: 1930
  article-title: Machine learning in medicine
  publication-title: Circulation
– volume: 16
  start-page: 669
  year: 2020
  end-page: 685
  article-title: Digital pathology and computational image analysis in nephropathology
  publication-title: Nat. Rev. Nephrol.
– volume: 8
  start-page: 36
  year: 2017
  article-title: Three‐dimensional imaging and scanning: current and future applications for pathology
  publication-title: J. Pathol. Inform.
– volume: 22
  start-page: 176
  year: 2010
  end-page: 186
  article-title: Morphometric and visual evaluation of fibrosis in renal biopsies
  publication-title: J. Am. Soc. Nephrol.
– year: 2018
– volume: 10
  start-page: 9
  year: 2019
  article-title: Introduction to digital image analysis in whole‐slide imaging: a white paper from the Digital Pathology Association
  publication-title: J. Pathol. Inform.
– volume: 20
  year: 2018
  article-title: Multispectral analysis tools can increase utility of RGB color images in histology
  publication-title: J. Opt.
– volume: 14
  start-page: 1662
  year: 2003
  end-page: 1668
  article-title: Computerized image analysis of Sirius Red‐stained renal allograft biopsies as a surrogate marker to predict long‐term allograft function
  publication-title: J. Am. Soc. Nephrol.
– volume: 89
  start-page: 1153
  year: 2016
  end-page: 1159
  article-title: A label‐free approach by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy progression
  publication-title: Kidney Int.
– volume: 10
  start-page: 16
  year: 2015
  article-title: 3‐dimensional digital reconstruction of the murine coronary system for the evaluation of chronic allograft vasculopathy
  publication-title: Diagn. Pathol.
– volume: 7
  start-page: 14588
  year: 2017
  article-title: Interactive phenotyping of large‐scale histology imaging data with HistomicsML
  publication-title: Sci. Rep.
– volume: 9
  start-page: 2552
  year: 2009
  end-page: 2560
  article-title: Interstitial fibrosis quantification in renal transplant recipients randomized to continue cyclosporine or convert to sirolimus
  publication-title: Am. J. Transplant.
– volume: 30
  start-page: 1953
  year: 2019
  end-page: 1967
  article-title: Computational segmentation and classification of diabetic glomerulosclerosis
  publication-title: J. Am. Soc. Nephrol.
– volume: 33
  start-page: 11
  year: 1999
  end-page: 20
  article-title: Unique changes in interstitial extracellular matrix composition are associated with rejection and cyclosporine toxicity in human renal allograft biopsies
  publication-title: Am. J. Kidney Dis.
– volume: 155
  start-page: 1838
  year: 2018
  end-page: 1851
  article-title: Evidence of chronic allograft injury in liver biopsies from long‐term pediatric recipients of liver transplants
  publication-title: Gastroenterology
– volume: 3
  start-page: 257
  year: 1999
  end-page: 270
  article-title: Quantitation of allograft fibrosis and chronic allograft nephropathy
  publication-title: Pediatr. Transplant.
– volume: 19
  start-page: 2838
  year: 2004
  end-page: 2845
  article-title: Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis
  publication-title: Nephrol. Dial. Transplant.
– volume: 4
  year: 2017
  article-title: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology
  publication-title: J. Med. Imaging (Bellingham)
– volume: 102
  start-page: 1795
  year: 2018
  end-page: 1814
  article-title: A 2018 reference guide to the Banff classification of renal allograft pathology
  publication-title: Transplantation
– volume: 143
  start-page: 1545
  year: 2019
  end-page: 1555
  article-title: Implementation of digital pathology offers clinical and operational increase in efficiency and cost savings
  publication-title: Arch. Pathol. Lab. Med.
– volume: 45
  start-page: 91
  year: 1988
  end-page: 95
  article-title: Associations between cyclosporine therapy and interstitial fibrosis in renal allograft biopsies
  publication-title: Transplantation
– volume: 29
  start-page: 265
  year: 2020
  end-page: 272
  article-title: Artificial intelligence driven next‐generation renal histomorphometry
  publication-title: Curr. Opin. Nephrol. Hypertens.
– volume: 6
  start-page: 264
  year: 2019
  article-title: Deep learning for whole slide image analysis: an overview
  publication-title: Front. Med.
– volume: 73
  start-page: 706
  year: 2020
  end-page: 712
  article-title: Digital pathology in the time of corona
  publication-title: J. Clin. Pathol.
– volume: 115
  start-page: E2970
  year: 2018
  end-page: E2979
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 78
  start-page: 511
  year: 1998
  end-page: 522
  article-title: Design and validation of a new image analysis method for automatic quantification of interstitial fibrosis and glomerular morphometry
  publication-title: Lab. Invest.
– volume: 72
  start-page: 690
  year: 2007
  end-page: 697
  article-title: Protocol biopsies in renal transplantation: prognostic value of structural monitoring
  publication-title: Kidney Int.
– year: 2003
– volume: 92
  start-page: 113
  year: 2005
  end-page: 118
  article-title: Comparison of renal allograft fibrosis after transplantation from heart‐beating and non‐heart‐beating donors
  publication-title: Br. J. Surg.
– volume: 26
  start-page: 51
  year: 2005
  end-page: 59
  article-title: Histomorphometric analysis of fibrosis in the renal interstitial compartment
  publication-title: Prilozi
– volume: 19
  start-page: 2846
  year: 2019
  end-page: 2854
  article-title: Using computer‐assisted morphometrics of 5‐year biopsies to identify biomarkers of late renal allograft loss
  publication-title: Am. J. Transplant.
– volume: 20
  start-page: 2392
  year: 2020
  end-page: 2399
  article-title: Banff Digital Pathology Working Group: going digital in transplant pathology
  publication-title: Am. J. Transplant.
– volume: 27
  start-page: 2382
  year: 2016
  end-page: 2391
  article-title: Renal graft fibrosis and inflammation quantification by an automated Fourier‐transform infrared imaging technique
  publication-title: J. Am. Soc. Nephrol.
– volume: 99
  start-page: 86
  year: 2021
  end-page: 101
  article-title: Development and evaluation of deep learning‐based segmentation of histologic structures in the kidney cortex with multiple histologic stains
  publication-title: Kidney Int.
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
– volume: 3
  start-page: 45
  year: 2012
  article-title: Experience with multimodality telepathology at the University of Pittsburgh Medical Center
  publication-title: J. Pathol. Inform.
– volume: 3
  start-page: 464
  year: 2018
  end-page: 475
  article-title: Association of pathological fibrosis with renal survival using deep neural networks
  publication-title: Kidney Int. Rep.
– volume: 16
  start-page: 4
  year: 2020
  end-page: 6
  article-title: Artificial intelligence in nephropathology
  publication-title: Nat. Rev. Nephrol.
– volume: 4
  start-page: 20
  year: 2018
  article-title: Glomerulus classification and detection based on convolutional neural networks
  publication-title: J. Imaging
– volume: 249
  start-page: 286
  year: 2019
  end-page: 294
  article-title: Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
  publication-title: J. Pathol.
– volume: 27
  start-page: 1102
  year: 2016
  end-page: 1112
  article-title: Three‐dimensional morphology by multiphoton microscopy with clearing in a model of cisplatin‐induced CKD
  publication-title: J. Am. Soc. Nephrol.
– volume: 77
  start-page: e75
  year: 2017
  end-page: e78
  article-title: The Digital Slide Archive: a software platform for management, integration, and analysis of histology for cancer research
  publication-title: Cancer Res.
– volume: 8
  start-page: 565
  year: 2004
  end-page: 570
  article-title: Renal arterial resistance index and computerized quantification of fibrosis as a combined predictive tool in chronic allograft nephropathy
  publication-title: Pediatr. Transplant.
– volume: 139
  start-page: 3071
  year: 2012
  end-page: 3080
  article-title: A computational image analysis glossary for biologists
  publication-title: Development
– volume: 20
  start-page: 1091
  year: 2013
  end-page: 1098
  article-title: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 20
  start-page: 942
  year: 2020
  end-page: 953
  article-title: In situ multiplex immunofluorescence analysis of the inflammatory burden in kidney allograft rejection: a new tool to characterize the alloimmune response
  publication-title: Am. J. Transplant.
– volume: 26
  start-page: 513
  year: 2020
  end-page: 520
  article-title: Artificial intelligence in pathology: an overview
  publication-title: Diagn. Histopathol.
– volume: 140
  start-page: 41
  year: 2015
  end-page: 50
  article-title: Computational pathology
  publication-title: Arch. Pathol. Lab. Med.
– volume: 11
  year: 2016
  article-title: Renal medullary and cortical correlates in fibrosis, epithelial mass, microvascularity, and microanatomy using whole slide image analysis morphometry
  publication-title: PLoS One
– volume: 11
  start-page: 1456
  year: 2011
  end-page: 1463
  article-title: Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis
  publication-title: Am. J. Transplant.
– ident: e_1_2_8_24_1
  doi: 10.1016/j.mpdhp.2020.08.004
– ident: e_1_2_8_51_1
  doi: 10.1016/S0272-6386(99)70252-0
– ident: e_1_2_8_12_1
  doi: 10.1242/dev.076414
– ident: e_1_2_8_103_1
  doi: 10.1136/jclinpath-2020-206854
– ident: e_1_2_8_88_1
  doi: 10.1016/j.kint.2020.07.044
– ident: e_1_2_8_5_1
  doi: 10.1681/ASN.2015010079
– ident: e_1_2_8_84_1
  doi: 10.1109/TMI.2018.2851150
– ident: e_1_2_8_70_1
  doi: 10.1186/s13000-015-0248-6
– ident: e_1_2_8_72_1
  doi: 10.1053/j.gastro.2018.08.023
– ident: e_1_2_8_71_1
  doi: 10.4103/jpi.jpi_32_17
– ident: e_1_2_8_68_1
  doi: 10.1038/ki.2012.63
– ident: e_1_2_8_25_1
  doi: 10.1016/S1470-2045(19)30154-8
– ident: e_1_2_8_19_1
  doi: 10.1681/ASN.2009091005
– ident: e_1_2_8_97_1
  doi: 10.5858/arpa.2018-0343-RA
– ident: e_1_2_8_30_1
  doi: 10.1056/NEJMp1606181
– ident: e_1_2_8_35_1
  doi: 10.1158/0008-5472.CAN-17-0629
– ident: e_1_2_8_29_1
  doi: 10.1038/337129a0
– ident: e_1_2_8_96_1
  doi: 10.4103/jpi.jpi_82_18
– volume: 19
  start-page: 30
  year: 1997
  ident: e_1_2_8_98_1
  article-title: Orchestrating a unified approach to information management
  publication-title: Radiol. Manage.
– ident: e_1_2_8_4_1
  doi: 10.1088/2040-8986/aab0e8
– ident: e_1_2_8_76_1
  doi: 10.1111/ajt.15699
– year: 2020
  ident: e_1_2_8_102_1
  article-title: Role of digital pathology in diagnostic histopathology in the response to covid‐19: results from a survey of experience in a UK tertiary referral hospital
  publication-title: J. Clin. Pathol
– ident: e_1_2_8_89_1
  doi: 10.1016/j.ekir.2017.11.002
– volume: 44
  start-page: 211
  year: 1995
  ident: e_1_2_8_50_1
  article-title: Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix
  publication-title: Clin. Nephrol.
– ident: e_1_2_8_11_1
  doi: 10.1038/s41581-019-0220-x
– ident: e_1_2_8_83_1
  doi: 10.1681/ASN.2017111210
– ident: e_1_2_8_2_1
  doi: 10.1002/path.5331
– ident: e_1_2_8_17_1
  doi: 10.1016/j.kint.2020.02.027
– ident: e_1_2_8_43_1
  doi: 10.1111/ajt.15850
– volume: 26
  start-page: 51
  year: 2005
  ident: e_1_2_8_45_1
  article-title: Histomorphometric analysis of fibrosis in the renal interstitial compartment
  publication-title: Prilozi
– ident: e_1_2_8_60_1
  doi: 10.1097/00007890-199907270-00013
– ident: e_1_2_8_7_1
  doi: 10.1681/ASN.2015050601
– ident: e_1_2_8_74_1
  doi: 10.1111/j.1600-6143.2011.03797.x
– ident: e_1_2_8_93_1
  doi: 10.1001/jama.2017.14585
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1399-3046.2004.00229.x
– ident: e_1_2_8_23_1
  doi: 10.1007/s00428-017-2260-6
– ident: e_1_2_8_73_1
  doi: 10.4103/2153-3539.104907
– ident: e_1_2_8_27_1
  doi: 10.1007/b11963
– ident: e_1_2_8_85_1
  doi: 10.1038/s42256-019-0018-3
– ident: e_1_2_8_8_1
  doi: 10.1016/j.kint.2015.11.027
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1600-6143.2011.03594.x
– ident: e_1_2_8_54_1
  doi: 10.1097/01.TP.0000078899.62040.E5
– ident: e_1_2_8_77_1
  doi: 10.1016/j.jtho.2019.12.112
– ident: e_1_2_8_61_1
  doi: 10.1002/bjs.1800830813
– volume-title: Separating fact from fiction: recommendations for academic health centers on artificial and augmented intelligence
  year: 2019
  ident: e_1_2_8_9_1
– ident: e_1_2_8_38_1
  doi: 10.1007/s11604-018-0795-3
– ident: e_1_2_8_67_1
  doi: 10.1097/TP.0b013e31822d879a
– ident: e_1_2_8_39_1
  doi: 10.1038/s41523-020-0154-2
– ident: e_1_2_8_36_1
  doi: 10.3389/fmed.2019.00264
– ident: e_1_2_8_26_1
  doi: 10.3389/fmed.2019.00185
– ident: e_1_2_8_82_1
  doi: 10.1016/j.ekir.2019.04.008
– ident: e_1_2_8_58_1
  doi: 10.1038/ki.1994.474
– volume-title: Artificial intelligence for dummies
  year: 2018
  ident: e_1_2_8_14_1
– ident: e_1_2_8_6_1
  doi: 10.1371/journal.pone.0156734
– ident: e_1_2_8_34_1
  doi: 10.1136/amiajnl-2012-001469
– ident: e_1_2_8_18_1
  doi: 10.1111/ajt.12641
– ident: e_1_2_8_94_1
  doi: 10.5858/arpa.2018-0514-OA
– ident: e_1_2_8_31_1
– ident: e_1_2_8_33_1
  doi: 10.1093/bioinformatics/btz083
– volume: 4
  year: 2017
  ident: e_1_2_8_69_1
  article-title: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology
  publication-title: J. Med. Imaging (Bellingham)
– volume: 10
  start-page: 584
  year: 1999
  ident: e_1_2_8_52_1
  article-title: Decorin and TGF‐beta‐1 protein expression in renal disease: a morphometric analysis
  publication-title: J. Am. Soc. Nephrol.
– ident: e_1_2_8_79_1
  doi: 10.1186/s12859-015-0739-1
– ident: e_1_2_8_41_1
  doi: 10.1097/TP.0000000000002366
– ident: e_1_2_8_66_1
  doi: 10.1038/sj.ki.5002396
– volume-title: Information theory, inference, and learning algorithms
  year: 2003
  ident: e_1_2_8_28_1
– ident: e_1_2_8_37_1
  doi: 10.1073/pnas.1717139115
– volume: 6
  start-page: 047501
  year: 2019
  ident: e_1_2_8_78_1
  article-title: Automatic quantification of HER2 gene amplification in invasive breast cancer from chromogenic in situ hybridization whole slide images
  publication-title: J. Med. Imaging (Bellingham)
– ident: e_1_2_8_20_1
  doi: 10.1371/journal.pone.0161019
– ident: e_1_2_8_100_1
  doi: 10.1002/cncy.22276
– ident: e_1_2_8_32_1
  doi: 10.1038/s41598-017-15092-3
– ident: e_1_2_8_42_1
  doi: 10.1111/ajt.15380
– ident: e_1_2_8_44_1
  doi: 10.1046/j.1600-6143.2003.00311.x
– ident: e_1_2_8_105_1
– volume: 78
  start-page: 511
  year: 1998
  ident: e_1_2_8_57_1
  article-title: Design and validation of a new image analysis method for automatic quantification of interstitial fibrosis and glomerular morphometry
  publication-title: Lab. Invest.
– ident: e_1_2_8_15_1
  doi: 10.1097/TP.0000000000002656
– ident: e_1_2_8_40_1
  doi: 10.1111/ajt.14625
– ident: e_1_2_8_99_1
  doi: 10.1186/1741-7015-10-100
– volume: 20
  start-page: 807
  year: 1988
  ident: e_1_2_8_63_1
  article-title: Cyclosporine therapy and the development of interstitial fibrosis in renal allografts
  publication-title: Transplant. Proc.
– ident: e_1_2_8_92_1
  doi: 10.1093/gigascience/giy065
– ident: e_1_2_8_16_1
  doi: 10.1038/s41581-020-0321-6
– ident: e_1_2_8_62_1
  doi: 10.1097/00007890-198801000-00021
– ident: e_1_2_8_22_1
  doi: 10.5858/arpa.2016-0265-SA
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1600-6143.2009.02803.x
– ident: e_1_2_8_21_1
  doi: 10.1016/j.prp.2013.04.001
– ident: e_1_2_8_49_1
  doi: 10.1093/ndt/15.suppl_6.72
– ident: e_1_2_8_101_1
  doi: 10.1038/s41379-020-0601-5
– ident: e_1_2_8_104_1
  doi: 10.1136/jclinpath-2020-206845
– ident: e_1_2_8_64_1
  doi: 10.1093/ndt/gfh490
– ident: e_1_2_8_90_1
– ident: e_1_2_8_13_1
  doi: 10.1161/CIRCULATIONAHA.115.001593
– ident: e_1_2_8_56_1
  doi: 10.1111/j.1523-1755.2005.00059.x
– ident: e_1_2_8_55_1
  doi: 10.1002/bjs.4777
– ident: e_1_2_8_87_1
  doi: 10.1681/ASN.2019020144
– ident: e_1_2_8_95_1
  doi: 10.1038/s41379-019-0205-0
– ident: e_1_2_8_86_1
  doi: 10.1681/ASN.2018121259
– ident: e_1_2_8_3_1
  doi: 10.5858/arpa.2015-0093-SA
– ident: e_1_2_8_10_1
  doi: 10.1097/MNH.0000000000000598
– ident: e_1_2_8_91_1
  doi: 10.23915/distill.00009
– ident: e_1_2_8_46_1
  doi: 10.1097/01.tp.0000295749.50525.bd
– ident: e_1_2_8_53_1
  doi: 10.1097/01.ASN.0000066143.02832.5E
– ident: e_1_2_8_75_1
  doi: 10.1016/j.cld.2010.07.004
– ident: e_1_2_8_80_1
  doi: 10.1038/s41598-018-20453-7
– ident: e_1_2_8_65_1
  doi: 10.1034/j.1399-3046.1999.00044.x
– ident: e_1_2_8_81_1
  doi: 10.3390/jimaging4010020
SSID ssj0017322
Score 2.4837863
SecondaryResourceType review_article
Snippet Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for...
Whole slide imaging (WSI), an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 791
SubjectTerms Algorithms
Allografts - pathology
Artificial Intelligence
Atrophy
Classification
Computer applications
Deep learning
digital pathology
Fibrosis
Humans
Hypotheses
image analysis
Image processing
Image Processing, Computer-Assisted
Inflammation
Kidney - pathology
Kidney Diseases - pathology
Kidney Diseases - surgery
Kidney Transplantation
Learning algorithms
Machine Learning
Neural networks
Pathology
renal transplant pathology
Segmentation
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVAuFFqgKQWZwqGXVJvYsRM4IUS1ILWHQqUekCLHsbsRS7bazYrHr2fGedBtC0JcoigeJ7E9E39jT74BeCk1XqaIGrQGGwqLY4FuEA-FHGWqdE5rn2zi-ESOz8SH8-R8DV73_8K0_BDDghtZhv9ek4HrYnHFyCfVAs2cey7QiEvvTp0O1FGR4r93ECjUvmMVoiieoebqXHQDYN6Mk9xY1pf6xzc9na5iWT8ZHW3C574ZbQzKl8NlUxyan9cYHv-znffhXgdS2ZtWqx7Amq234M5xtw2_DTWVtNQTrLrC6cl0XTI9vZjNq2bytTLM-JwR3Xojo-zHfhX_FQpSxZZtFgsZLQezuSUpigS4mGvXMPtdE3fx4iGcHb379HYcdokbQiMEF2HGZSqLgvQjoytpNEp1bHmcGFQERHxFijCyNFE8EtbFiZNaGZOSK5bokhv-CNbrWW13gJUuVlGZ4ndZOWETpR1Py8g6pRHXFYkL4KAfwtx0rOaUXGOa994N9l_u-y-A_UH0sqXyuE1or9eDvLPmRY4YUGTEdDcK4PlQjHZImyu6trMlygiJYChSEm_xuFWb4Smco5uNhwDUikINAsTxvVpSVxPP9Y3-bMKzKIAXg-r97eUPvCb9WSIfv__oT3b_XfQJ3I0pkMdHee7BejNf2qeIxJrimTe5X2AKMY0
  priority: 102
  providerName: Wiley-Blackwell
Title Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fhis.14304
https://www.ncbi.nlm.nih.gov/pubmed/33211332
https://www.proquest.com/docview/2514936700
https://www.proquest.com/docview/2462411764
https://pubmed.ncbi.nlm.nih.gov/PMC8715391
https://www.ncbi.nlm.nih.gov/pmc/articles/8715391
UnpaywallVersion submittedVersion
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1365-2559
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017322
  issn: 1365-2559
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-2559
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2559
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017322
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VqQRcKG9cSrU8Dr04jb3rR7hViCogtUKFSOVkrde7jYXjRIkjHr-emfXaIhQQXKLIM7GdzGz8ze633wC8jCUeJkYNjgbtC42xwDKI-yIejZPCGClts4mz83gyFe8uo8sdCLq9MJa0r_JyWFfzYV3OLLdyOVfHHU_sGBF-xGm_-m4cIfwewO70_P3Jp261gGj1_V4rhMtOTYjYO7NyjX8M3PVk659B14DldX7kzU29lN--yKraxrD2IXS6Bxfd7bfck8_DTZMP1fdflB3_6_vdgdsOkrKT1nQXdnR9D26cuUX3-1CTpRWaYOVPCp5M1gWT1dViVTazeamYsh0i3Owio17Hds7-FTrSB1ttWTQymvxlK01etO5_tZKmYfqrJKXi9QOYnr75-HriuzYNvhKCC3_M4zTOc8qGMR1Jg1EqQ83DSGHYEd_lKYLGQgXhSGgTRiaWiVIpFV6RLLjiD2FQL2r9GFhhwiQoUvwBEiN0lEjD0yLQJpGI4vLIeHDUBS5TTsOcWmlUWVfLYIwzG2MPnveuy1a443dOB130Mzd21xkiPjEmXbuRB896M446WkqRtV5s0EfECH2CJMZTPGqTpb8K51hU44sHyVYa9Q6k6L1twUSwyt4u9h686BPubzd_ZFPxzx7Z5O0H-2b_n074BG6FxNixdM4DGDSrjX6KkKvJD7HYuAgP3VD7AXuELck
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaJceD8CBczj0EuqTezYCeKCENUWuj1AK_WCIsexuxFLttrNisevZ8Z50KWAEJcoiicPOzPxN-PJNwDPpcbDlFGD1mBDYfFdoBvEQyFHmSqd09oXm5gcyvGxeHuSnGzAy_5fmJYfYgi4kWX47zUZOAWkz1n5tFqinXMiA70kJPopBIneD-RRkeI_1xAo2b7jFaI8nuHU9dnoAsS8mCm5tarP9LcvejZbR7N-Otq7Bh_7jrRZKJ92V02xa77_wvH4vz29Dlc7nMpetYp1AzZsfRMuT7qV-FtQU0vLPsGqc7SeTNcl07PT-aJqpp8rw4wvG9GFHBkVQPaB_BcoSCe2hLPYyCgizBaWpCgZ4HShXcPsV030xcvbcLz35uj1OOxqN4RGCC7CjMtUFgWpSEZH0miU6tjyODGoCwj6ihSRZGmieCSsixMntTImJW8s0SU3_A5s1vPa3gNWulhFZYqfZuWETZR2PC0j65RGaFckLoCd_h3mpiM2p_oas7x3cHD8cj9-ATwdRM9aNo_fCW33ipB3Br3MEQaKjMjuRgE8GZrRFGl9Rdd2vkIZIREPRUriJe62ejPchXP0tHETgFrTqEGAaL7XW-pq6um-0aVNeBYF8GzQvb89_I5XpT9L5OP9D37n_r-LPoat8dHkID_YP3z3AK7ElNfjkz63YbNZrOxDBGZN8cjb3w9fXzWu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSpcoLxKoIB5HHpJtYmdOKl6QZTVFmiFgEq9oMhx7G7Ekl3tZsXj13fGedClgBCXKIon75n4G_vLNwDPY4WbiVGD0WB8YfBdYBrEfREPUllYq5QrNnF0HI9OxOvT6HQN9rt_YRp9iH7AjSLDfa8pwM2ssBeifFwuMM45iYFeEVGaEKHv4H0vHhVI_nMOgcj2ra4Q8Xj6XVd7o0sQ8zJT8uqymqnvX9VksopmXXc0vAGfuhtpWCifd5d1vqt__KLx-L93ugnXW5zKXjSOdRPWTHULNo7amfjbUFFLoz7ByguynkxVBVOTs-m8rMdfSs20KxvRDjkyKoDsBvL30JB2bARnsZHRiDCbG7IiMsDZXNmamW-K5IsXd-Bk-Orjy5Hf1m7wtRBc-CmPkzjPyUVS2pIEg0SFhoeRRl9A0JcniCQLHYQDYWwY2VhJrRPKxiJVcM3vwno1rcw9YIUNZVAk-GmWVphIKsuTIjBWKoR2eWQ92OneYaZbYXOqrzHJugQHn1_mnp8HT3vTWaPm8Tuj7c4RsjagFxnCQJGS2N3Agyd9M4Yiza-oykyXaCNixEOBjPEQW43f9GfhHDNtXHggVzyqNyCZ79WWqhw7uW9MaSOeBh48633vbxe_41zpzxbZ6PCDW7n_76aPYePdwTB7e3j85gFcC4nW4zif27Bez5fmIeKyOn_kwu8cwRs1Mg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5VqQS8cB-mLVqOh744jb3rI7xVFVVAaoWASOXJWq93GwvHiRJHHL--M-u1RSggeIksz_ic2fjb3W-_AXgVS9xNjBpsDdoXGmOB3SDui3g0TgpjpLTFJs7O48lUvLuILnYg6NbCWNK-ysthXc2HdTmz3MrlXB11PLEjRPgRp_Xqu3GE8HsAu9Pz98efu9kCotX3a60QLjs1IWLvzMo1_jFwV5Ot_wZdA5bX-ZE3N_VSfv8qq2obw9qP0Okd-NDdfss9-TLcNPlQ_fhF2fG_nu8u3HaQlB23pnuwo-v7cOPMTbo_gJosrdAEK39S8GSyLpisLherspnNS8WUrRDhRhcZ1Tq2Y_av0ZEObLVl0cho8JetNHnRvP_lSpqG6W-SlIrXD2F6-ubTycR3ZRp8JQQX_pjHaZznlA1j2pMGo1SGmoeRwrAjvstTBI2FCsKR0CaMTCwTpVLqeEWy4Io_gkG9qPUTYIUJk6BI8QUkRugokYanRaBNIhHF5ZHx4LALXKachjmV0qiyri-DMc5sjD140bsuW-GO3zntd9HPXNtdZ4j4xJh07UYePO_N2OpoKkXWerFBHxEj9AmSGE_xuE2W_iqcY6cafzxIttKodyBF720LJoJV9nax9-Bln3B_u_lDm4p_9sgmbz_ajaf_dMI9uBUSY8fSOfdh0Kw2-gAhV5M_c43sCm6rLOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+algorithmic+computational+pathology%3A+an+introduction+with+renal+allograft+examples&rft.jtitle=Histopathology&rft.au=Farris%2C+Alton+B&rft.au=Vizcarra%2C+Juan&rft.au=Amgad%2C+Mohamed&rft.au=Cooper%2C+Lee+A+D&rft.date=2021-05-01&rft.issn=0309-0167&rft.eissn=1365-2559&rft.volume=78&rft.issue=6&rft.spage=791&rft.epage=804&rft_id=info:doi/10.1111%2Fhis.14304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_his_14304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-0167&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-0167&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-0167&client=summon