Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples
Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image...
Saved in:
| Published in | Histopathology Vol. 78; no. 6; pp. 791 - 804 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.05.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0309-0167 1365-2559 1365-2559 |
| DOI | 10.1111/his.14304 |
Cover
| Abstract | Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis‐driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis‐driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the ‘big data’ of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology. |
|---|---|
| AbstractList | Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis‐driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis‐driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the ‘big data’ of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology. Whole slide imaging (WSI), an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilization; and with more widespread WSI utilization, there will also be increased interest in and implementation of image analysis techniques. Image analysis includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, citations related to these topics have increased in recent years. Renal pathology is one anatomic pathology subspecialty that has utilized WSIs and image analysis algorithms; and it can be argued that renal transplant pathology could be particularly suited for WSI and image analysis, since renal transplant pathology is frequently classified using the semiquantitative Banff Classification of Renal Allograft Pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g., interstitial fibrosis and tubular atrophy and inflammation); and in recent years, research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histologic segmentation, and other applications. Deep learning is the form of machine learning most often used for such AI approaches to the “big data” of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilized. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other image analysis algorithms applied to WSIs are discussed; and examples from renal pathology are covered, with an emphasis on renal transplant pathology. Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the 'big data' of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology.Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for utilisation, and with more widespread whole slide image (WSI) utilisation, there will also be increased interest in and implementation of image analysis (IA) techniques. IA includes artificial intelligence (AI) and targeted or hypothesis-driven algorithms. In the overall pathology field, the number of citations related to these topics has increased in recent years. Renal pathology is one anatomical pathology subspecialty that has utilised WSIs and IA algorithms; it can be argued that renal transplant pathology could be particularly suited for whole slide imaging and IA, as renal transplant pathology is frequently classified by use of the semiquantitative Banff classification of renal allograft pathology. Hypothesis-driven/targeted algorithms have been used in the past for the assessment of a variety of features in the kidney (e.g. interstitial fibrosis, tubular atrophy, inflammation); in recent years, the amount of research has particularly increased in the area of AI/machine learning for the identification of glomeruli, for histological segmentation, and for other applications. Deep learning is the form of machine learning that is most often used for such AI approaches to the 'big data' of pathology WSIs, and deep learning methods such as artificial neural networks (ANNs)/convolutional neural networks (CNNs) are utilised. Unsupervised and supervised AI algorithms can be employed to accomplish image or semantic classification. In this review, AI and other IA algorithms applied to WSIs are discussed, and examples from renal pathology are covered, with an emphasis on renal transplant pathology. |
| Author | Amgad, Mohamed Gutman, David Cooper, Lee A D Vizcarra, Juan Farris, Alton B Hogan, Julien |
| AuthorAffiliation | 1 Department of Pathology and Laboratory Medicine; Emory University; Atlanta, GA, U.S.A 4 Department of Surgery; Emory University; Atlanta, GA, U.S.A 3 Department of Pathology and Center for Computational Imaging and Signal Analytics; Northwestern University; Chicago, IL, U.S.A 2 Department of Bioinformatics; Emory University; Atlanta, GA |
| AuthorAffiliation_xml | – name: 4 Department of Surgery; Emory University; Atlanta, GA, U.S.A – name: 3 Department of Pathology and Center for Computational Imaging and Signal Analytics; Northwestern University; Chicago, IL, U.S.A – name: 1 Department of Pathology and Laboratory Medicine; Emory University; Atlanta, GA, U.S.A – name: 2 Department of Bioinformatics; Emory University; Atlanta, GA |
| Author_xml | – sequence: 1 givenname: Alton B orcidid: 0000-0001-5534-7763 surname: Farris fullname: Farris, Alton B email: abfarri@emory.edu – sequence: 2 givenname: Juan surname: Vizcarra fullname: Vizcarra, Juan organization: Emory University – sequence: 3 givenname: Mohamed orcidid: 0000-0001-7599-6162 surname: Amgad fullname: Amgad, Mohamed organization: Northwestern University – sequence: 4 givenname: Lee A D orcidid: 0000-0002-3504-4965 surname: Cooper fullname: Cooper, Lee A D organization: Northwestern University – sequence: 5 givenname: David surname: Gutman fullname: Gutman, David organization: Emory University – sequence: 6 givenname: Julien orcidid: 0000-0003-4838-9417 surname: Hogan fullname: Hogan, Julien organization: Emory University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33211332$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAUhS1URKeFBX8ARWIDSGn9iJ2kC6SqgrZSpS6AteU4zowrxw52wjD_nhsy5VEVvLAl3-8c33t8hA588AahlwSfEFinG5tOSMFw8QStCBM8p5zXB2iFGa5zTER5iI5SusOYlIzSZ-iQMUoIbCvkz-NoO6utcpn1o3HOro3XJlO-zZRbh2jHTW91pkM_TKMabfCADmrcBBfWuzMAZ2EM7aTnYrYFQRbNTCkHSFTdmJnvqh-cSc_R0065ZF7sz2P05eOHzxdX-c3t5fXF-U2ui4IVec1EJZrGNEbX801FcKWoYZTripWc0qYSXLSaUFyYjvJOqFLrSlBec9UyzY7Ru8V38oPabaEROUTbq7iTBMs5NAmhyZ-hAfx-gYep6U2rDYyjfguCsvLvircbuQ7fZFUSzmoCBm_2BjF8nUwaZW-ThiyVN2FKkhaCFoSUYn7r9QP0LkwRwgKKkwIGLzEG6tWfHf1q5f7fADhdAB1DStF0Utvlc6BB6x4d8u0Dxf8C2btvrTO7f4Py6vrTovgBEQ_I8w |
| CitedBy_id | crossref_primary_10_3390_healthcare12202041 crossref_primary_10_1016_j_cmpb_2021_106157 crossref_primary_10_1051_bioconf_202414802003 crossref_primary_10_1093_toxsci_kfad120 crossref_primary_10_3390_biomedicines12030606 crossref_primary_10_1007_s10639_022_11316_w crossref_primary_10_1111_his_14376 crossref_primary_10_1016_j_jpi_2022_100184 crossref_primary_10_1007_s00292_024_01311_y crossref_primary_10_1038_s41598_024_68406_7 crossref_primary_10_1186_s40942_023_00441_4 crossref_primary_10_3389_ti_2023_11783 crossref_primary_10_3389_frtra_2024_1389005 crossref_primary_10_3390_diagnostics11020206 crossref_primary_10_5500_wjt_v13_i5_221 crossref_primary_10_1007_s00414_021_02690_0 crossref_primary_10_3389_fonc_2022_844067 crossref_primary_10_3390_diagnostics13182865 crossref_primary_10_2196_40878 crossref_primary_10_3390_biom13091327 crossref_primary_10_1007_s40620_022_01327_8 crossref_primary_10_3390_agronomy13010244 crossref_primary_10_1016_j_kint_2021_11_028 crossref_primary_10_1007_s40472_021_00336_z crossref_primary_10_3390_diagnostics11081398 crossref_primary_10_1016_j_jpi_2024_100395 crossref_primary_10_7759_cureus_44620 crossref_primary_10_1007_s00414_023_03153_4 crossref_primary_10_3390_life14020254 |
| Cites_doi | 10.1016/j.mpdhp.2020.08.004 10.1016/S0272-6386(99)70252-0 10.1242/dev.076414 10.1136/jclinpath-2020-206854 10.1016/j.kint.2020.07.044 10.1681/ASN.2015010079 10.1109/TMI.2018.2851150 10.1186/s13000-015-0248-6 10.1053/j.gastro.2018.08.023 10.4103/jpi.jpi_32_17 10.1038/ki.2012.63 10.1016/S1470-2045(19)30154-8 10.1681/ASN.2009091005 10.5858/arpa.2018-0343-RA 10.1056/NEJMp1606181 10.1158/0008-5472.CAN-17-0629 10.1038/337129a0 10.4103/jpi.jpi_82_18 10.1088/2040-8986/aab0e8 10.1111/ajt.15699 10.1016/j.ekir.2017.11.002 10.1038/s41581-019-0220-x 10.1681/ASN.2017111210 10.1002/path.5331 10.1016/j.kint.2020.02.027 10.1111/ajt.15850 10.1097/00007890-199907270-00013 10.1681/ASN.2015050601 10.1111/j.1600-6143.2011.03797.x 10.1001/jama.2017.14585 10.1111/j.1399-3046.2004.00229.x 10.1007/s00428-017-2260-6 10.4103/2153-3539.104907 10.1007/b11963 10.1038/s42256-019-0018-3 10.1016/j.kint.2015.11.027 10.1111/j.1600-6143.2011.03594.x 10.1097/01.TP.0000078899.62040.E5 10.1016/j.jtho.2019.12.112 10.1002/bjs.1800830813 10.1007/s11604-018-0795-3 10.1097/TP.0b013e31822d879a 10.1038/s41523-020-0154-2 10.3389/fmed.2019.00264 10.3389/fmed.2019.00185 10.1016/j.ekir.2019.04.008 10.1038/ki.1994.474 10.1371/journal.pone.0156734 10.1136/amiajnl-2012-001469 10.1111/ajt.12641 10.5858/arpa.2018-0514-OA 10.1093/bioinformatics/btz083 10.1186/s12859-015-0739-1 10.1097/TP.0000000000002366 10.1038/sj.ki.5002396 10.1073/pnas.1717139115 10.1371/journal.pone.0161019 10.1002/cncy.22276 10.1038/s41598-017-15092-3 10.1111/ajt.15380 10.1046/j.1600-6143.2003.00311.x 10.1097/TP.0000000000002656 10.1111/ajt.14625 10.1186/1741-7015-10-100 10.1093/gigascience/giy065 10.1038/s41581-020-0321-6 10.1097/00007890-198801000-00021 10.5858/arpa.2016-0265-SA 10.1111/j.1600-6143.2009.02803.x 10.1016/j.prp.2013.04.001 10.1093/ndt/15.suppl_6.72 10.1038/s41379-020-0601-5 10.1136/jclinpath-2020-206845 10.1093/ndt/gfh490 10.1161/CIRCULATIONAHA.115.001593 10.1111/j.1523-1755.2005.00059.x 10.1002/bjs.4777 10.1681/ASN.2019020144 10.1038/s41379-019-0205-0 10.1681/ASN.2018121259 10.5858/arpa.2015-0093-SA 10.1097/MNH.0000000000000598 10.23915/distill.00009 10.1097/01.tp.0000295749.50525.bd 10.1097/01.ASN.0000066143.02832.5E 10.1016/j.cld.2010.07.004 10.1038/s41598-018-20453-7 10.1034/j.1399-3046.1999.00044.x 10.3390/jimaging4010020 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 8FD FR3 H94 K9. P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1111/his.14304 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1365-2559 |
| EndPage | 804 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8715391 PMC8715391 33211332 10_1111_his_14304 HIS14304 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) funderid: 1R21DK122229‐01 – fundername: National Cancer Institute (NCI) funderid: U01CA220401; U24CA19436201 – fundername: National Cancer Institute (NCI) grantid: U01CA220401 – fundername: NCI NIH HHS grantid: U24 CA194362 – fundername: NCI NIH HHS grantid: U01 CA220401 – fundername: National Cancer Institute (NCI) grantid: U24CA19436201 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grantid: 1R21DK122229-01 – fundername: NIDDK NIH HHS grantid: R21 DK122229 |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3SF 3UE 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA GSXLS H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M J5H K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 Y6R YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 8FD FR3 H94 K9. P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4434-93686bbebec9c4438108a2e325c837522b8656dc1204ef25f6a7cc862595ad3c3 |
| IEDL.DBID | UNPAY |
| ISSN | 0309-0167 1365-2559 |
| IngestDate | Sun Oct 26 03:47:03 EDT 2025 Thu Aug 21 17:38:04 EDT 2025 Fri Jul 11 11:21:24 EDT 2025 Tue Oct 07 06:26:26 EDT 2025 Sun Oct 05 09:14:24 EDT 2025 Wed Oct 01 04:28:16 EDT 2025 Thu Apr 24 23:11:12 EDT 2025 Wed Jan 22 16:30:44 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | machine learning digital pathology image analysis renal transplant pathology artificial intelligence |
| Language | English |
| License | 2020 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4434-93686bbebec9c4438108a2e325c837522b8656dc1204ef25f6a7cc862595ad3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5534-7763 0000-0002-3504-4965 0000-0001-7599-6162 0000-0003-4838-9417 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8715391 |
| PMID | 33211332 |
| PQID | 2514936700 |
| PQPubID | 1086360 |
| PageCount | 14 |
| ParticipantIDs | unpaywall_primary_10_1111_his_14304 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8715391 proquest_miscellaneous_2462411764 proquest_journals_2514936700 pubmed_primary_33211332 crossref_citationtrail_10_1111_his_14304 crossref_primary_10_1111_his_14304 wiley_primary_10_1111_his_14304_HIS14304 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Histopathology |
| PublicationTitleAlternate | Histopathology |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 140 2017; 318 2017; 7 2017; 8 2010; 14 2017; 4 2020; 20 2013; 209 2019; 10 2004; 8 2013; 20 2019; 15 2004; 4 2020; 16 2003; 14 2019; 19 2011; 11 2020; 128 2007; 72 2019; 249 2017; 472 2020; 98 2005; 26 2012; 12 2012; 10 2005; 67 2018; 7 2010; 22 2020; 6 2018; 8 2018; 3 2018; 4 2019; 20 2000; 15 2017; 77 2015; 132 1997; 19 2014; 14 1988; 45 1999; 10 2012; 139 2018; 37 2016; 89 2012; 82 2018; 29 2019; 4 1989; 337 2015; 16 2019; 6 2019; 30 2019; 1 2019; 32 2019; 35 2018; 102 2019; 37 2015; 10 1999; 68 2019; 103 1994; 46 1999; 3 2003 2020; 33 2018; 20 2003; 76 2016; 11 2019; 143 2018; 18 2018; 155 2012; 3 2021; 99 2004; 19 2020; 73 2020 2011; 92 2018; 115 1995; 44 1996; 83 2019 2018 2020; 26 2016; 375 2009; 9 1999; 33 2016 2017; 141 2005; 92 2007; 84 1988; 20 2016; 27 1998; 78 2020; 29 Friedman BA (e_1_2_8_98_1) 1997; 19 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_22_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 Blue Ridge Academic Health Group (e_1_2_8_9_1) 2019 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 Masseroli M (e_1_2_8_57_1) 1998; 78 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 Browning L (e_1_2_8_102_1) 2020 e_1_2_8_48_1 Ruiz P (e_1_2_8_63_1) 1988; 20 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_40_1 e_1_2_8_82_1 Mueller JP (e_1_2_8_14_1) 2018 e_1_2_8_18_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_71_1 e_1_2_8_24_1 e_1_2_8_47_1 Vleming LJ (e_1_2_8_50_1) 1995; 44 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 Kostadinova‐Kunovska S (e_1_2_8_45_1) 2005; 26 e_1_2_8_20_1 MacKay DJC (e_1_2_8_28_1) 2003 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 Hossain MS (e_1_2_8_78_1) 2019; 6 Ginley B (e_1_2_8_69_1) 2017; 4 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Verkade MA (e_1_2_8_52_1) 1999; 10 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_104_1 |
| References_xml | – volume: 103 start-page: 1306 year: 2019 end-page: 1322 article-title: Enhancing the value of histopathological assessment of allograft biopsy monitoring publication-title: Transplantation – volume: 141 start-page: 542 year: 2017 end-page: 550 article-title: Whole slide imaging for analytical anatomic pathology and telepathology: practical applications today, promises, and perils publication-title: Arch. Pathol. Lab. Med. – volume: 6 start-page: 185 year: 2019 article-title: Translational AI and deep learning in diagnostic pathology publication-title: Front. Med. – volume: 44 start-page: 211 year: 1995 end-page: 219 article-title: Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix publication-title: Clin. Nephrol. – volume: 7 start-page: 6 year: 2018 article-title: 1399 H&E‐stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset publication-title: Gigascience – volume: 76 start-page: 955 year: 2003 end-page: 958 article-title: Computer‐assisted quantification of fibrosis in chronic allograft nephropathy by picosirius red‐staining: a new tool for predicting long‐term graft function publication-title: Transplantation – volume: 4 start-page: 955 year: 2019 end-page: 962 article-title: Segmentation of glomeruli within trichrome images using deep learning publication-title: Kidney Int. Rep. – volume: 143 start-page: 222 year: 2019 end-page: 234 article-title: A practical guide to whole slide imaging: a white paper from the Digital Pathology Association publication-title: Arch. Pathol. Lab. Med. – volume: 15 start-page: 589 year: 2019 end-page: 600 article-title: Three‐dimensional histologic, immunohistochemical and multiplex immunofluorescence analysis of dynamic vessel co‐option of spread through air spaces in lung adenocarcinoma publication-title: J. Thorac. Oncol. – volume: 67 start-page: 94 year: 2005 end-page: 102 article-title: Quantitative morphometry of lupus nephritis: the significance of collagen, tubular space, and inflammatory infiltrate publication-title: Kidney Int. – volume: 4 start-page: 248 year: 2004 end-page: 256 article-title: Correlation of quantitative digital image analysis with the glomerular filtration rate in chronic allograft nephropathy publication-title: Am. J. Transplant. – volume: 1 start-page: 112 year: 2019 end-page: 119 article-title: An integrated iterative annotation technique for easing neural network training in medical image analysis publication-title: Nat. Mach. Intell. – volume: 20 start-page: 807 year: 1988 end-page: 811 article-title: Cyclosporine therapy and the development of interstitial fibrosis in renal allografts publication-title: Transplant. Proc. – volume: 12 start-page: 27 year: 2012 end-page: 37 article-title: Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis publication-title: Am. J. Transplant. – volume: 375 start-page: 1216 year: 2016 end-page: 1219 article-title: Predicting the future—big data, machine learning, and clinical medicine publication-title: N. Engl. J. Med. – volume: 8 start-page: 2032 year: 2018 article-title: Multi‐radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images publication-title: Sci. Rep. – volume: 18 start-page: 293 year: 2018 end-page: 307 article-title: The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell‐mediated rejection, antibody‐mediated rejection, and prospects for integrative endpoints for next‐generation clinical trials publication-title: Am. J. Transplant. – volume: 29 start-page: 2081 year: 2018 end-page: 2088 article-title: Region‐based convolutional neural nets for localization of glomeruli in trichrome‐stained whole kidney sections publication-title: J. Am. Soc. Nephrol. – year: 2019 – volume: 11 year: 2016 article-title: Quantification and comparison of anti‐fibrotic therapies by polarized SRM and SHG‐based morphometry in rat UUO model publication-title: PLoS One – volume: 472 start-page: 259 year: 2017 end-page: 269 article-title: Development of CD3 cell quantitation algorithms for renal allograft biopsy rejection assessment utilizing open source image analysis software publication-title: Virchows Arch. – volume: 14 start-page: 897 year: 2014 end-page: 907 article-title: Banff fibrosis study: multicenter visual assessment and computerized analysis of interstitial fibrosis in kidney biopsies publication-title: Am. J. Transplant. – volume: 98 start-page: 65 year: 2020 end-page: 75 article-title: Artificial intelligence and machine learning in nephropathology publication-title: Kidney Int. – volume: 20 start-page: e253 year: 2019 end-page: e261 article-title: Digital pathology and artificial intelligence publication-title: Lancet Oncol. – volume: 46 start-page: 1721 year: 1994 end-page: 1727 article-title: Quantification of interstitial chronic renal damage by means of texture analysis publication-title: Kidney Int. – volume: 10 start-page: 584 year: 1999 article-title: Decorin and TGF‐beta‐1 protein expression in renal disease: a morphometric analysis publication-title: J. Am. Soc. Nephrol. – year: 2020 article-title: Role of digital pathology in diagnostic histopathology in the response to covid‐19: results from a survey of experience in a UK tertiary referral hospital publication-title: J. Clin. Pathol – year: 2020 article-title: Digital pathology and artificial intelligence will be key to supporting clinical and academic cellular pathology through COVID‐19 and future crises: the PathLAKE consortium perspective publication-title: J. Clin. Pathol – volume: 15 start-page: 72 issue: Suppl. 6 year: 2000 end-page: 73 article-title: Morphometry of interstitial fibrosis publication-title: Nephrol. Dial. Transplant. – volume: 19 start-page: 30 year: 1997 end-page: 36 article-title: Orchestrating a unified approach to information management publication-title: Radiol. Manage. – year: 2016 – volume: 68 start-page: 236 year: 1999 end-page: 241 article-title: Computerized histomorphometric assessment of protocol renal transplant biopsy specimens for surrogate markers of chronic rejection publication-title: Transplantation – volume: 6 start-page: 16 year: 2020 article-title: Report on computational assessment of tumor infiltrating lymphocytes from the International Immuno‐Oncology Biomarker Working Group publication-title: NPJ Breast Cancer – volume: 337 start-page: 129 year: 1989 end-page: 132 article-title: The recent excitement about neural networks publication-title: Nature – volume: 92 start-page: 890 year: 2011 end-page: 899 article-title: New computerized color image analysis for the quantification of interstitial fibrosis in renal transplantation publication-title: Transplantation – volume: 16 start-page: 316 year: 2015 article-title: Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image publication-title: BMC Bioinformatics – volume: 6 year: 2019 article-title: Automatic quantification of gene amplification in invasive breast cancer from chromogenic hybridization whole slide images publication-title: J. Med. Imaging (Bellingham) – volume: 84 start-page: 1595 year: 2007 end-page: 1601 article-title: Quantification of interstitial fibrosis by image analysis on routine renal biopsy in patients receiving cyclosporine publication-title: Transplantation – volume: 37 start-page: 15 year: 2019 end-page: 33 article-title: Technical and clinical overview of deep learning in radiology publication-title: Jpn. J. Radiol. – volume: 37 start-page: 2718 year: 2018 end-page: 2728 article-title: Deep learning global glomerulosclerosis in transplant kidney frozen sections publication-title: IEEE Trans Med. Imaging – volume: 32 start-page: 916 year: 2019 end-page: 928 article-title: Whole slide imaging equivalency and efficiency study: experience at a large academic center publication-title: Mod. Pathol. – volume: 82 start-page: 454 year: 2012 end-page: 464 article-title: Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies publication-title: Kidney Int. – volume: 33 start-page: 2115 year: 2020 end-page: 2127 article-title: Validation of a digital pathology system including remote review during the COVID‐19 pandemic publication-title: Mod. Pathol. – volume: 10 start-page: 100 year: 2012 article-title: Integrating pathology and radiology disciplines: an emerging opportunity? publication-title: BMC Med. – volume: 30 start-page: 1968 year: 2019 end-page: 1979 article-title: Deep learning‐based histopathologic assessment of kidney tissue publication-title: J. Am. Soc. Nephrol. – volume: 128 start-page: 321 year: 2020 end-page: 322 article-title: Going remote: maintaining normalcy in our pathology laboratories during the COVID‐19 pandemic publication-title: Cancer Cytopathol. – volume: 14 start-page: 669 year: 2010 end-page: 685 article-title: Adding value to liver (and allograft) biopsy evaluation using a combination of multiplex quantum dot immunostaining, high‐resolution whole‐slide digital imaging, and automated image analysis publication-title: Clin. Liver Dis. – volume: 209 start-page: 371 year: 2013 end-page: 379 article-title: Liver steatosis assessment: correlations among pathology, radiology, clinical data and automated image analysis software publication-title: Pathol. Res. Pract. – volume: 83 start-page: 1082 year: 1996 end-page: 1085 article-title: Early measurement of interstitial fibrosis predicts long‐term renal function and graft survival in renal transplantation publication-title: Br. J. Surg. – volume: 35 start-page: 3461 year: 2019 end-page: 3467 article-title: Structured crowdsourcing enables convolutional segmentation of histology images publication-title: Bioinformatics – volume: 132 start-page: 1920 year: 2015 end-page: 1930 article-title: Machine learning in medicine publication-title: Circulation – volume: 16 start-page: 669 year: 2020 end-page: 685 article-title: Digital pathology and computational image analysis in nephropathology publication-title: Nat. Rev. Nephrol. – volume: 8 start-page: 36 year: 2017 article-title: Three‐dimensional imaging and scanning: current and future applications for pathology publication-title: J. Pathol. Inform. – volume: 22 start-page: 176 year: 2010 end-page: 186 article-title: Morphometric and visual evaluation of fibrosis in renal biopsies publication-title: J. Am. Soc. Nephrol. – year: 2018 – volume: 10 start-page: 9 year: 2019 article-title: Introduction to digital image analysis in whole‐slide imaging: a white paper from the Digital Pathology Association publication-title: J. Pathol. Inform. – volume: 20 year: 2018 article-title: Multispectral analysis tools can increase utility of RGB color images in histology publication-title: J. Opt. – volume: 14 start-page: 1662 year: 2003 end-page: 1668 article-title: Computerized image analysis of Sirius Red‐stained renal allograft biopsies as a surrogate marker to predict long‐term allograft function publication-title: J. Am. Soc. Nephrol. – volume: 89 start-page: 1153 year: 2016 end-page: 1159 article-title: A label‐free approach by infrared spectroscopic imaging for interrogating the biochemistry of diabetic nephropathy progression publication-title: Kidney Int. – volume: 10 start-page: 16 year: 2015 article-title: 3‐dimensional digital reconstruction of the murine coronary system for the evaluation of chronic allograft vasculopathy publication-title: Diagn. Pathol. – volume: 7 start-page: 14588 year: 2017 article-title: Interactive phenotyping of large‐scale histology imaging data with HistomicsML publication-title: Sci. Rep. – volume: 9 start-page: 2552 year: 2009 end-page: 2560 article-title: Interstitial fibrosis quantification in renal transplant recipients randomized to continue cyclosporine or convert to sirolimus publication-title: Am. J. Transplant. – volume: 30 start-page: 1953 year: 2019 end-page: 1967 article-title: Computational segmentation and classification of diabetic glomerulosclerosis publication-title: J. Am. Soc. Nephrol. – volume: 33 start-page: 11 year: 1999 end-page: 20 article-title: Unique changes in interstitial extracellular matrix composition are associated with rejection and cyclosporine toxicity in human renal allograft biopsies publication-title: Am. J. Kidney Dis. – volume: 155 start-page: 1838 year: 2018 end-page: 1851 article-title: Evidence of chronic allograft injury in liver biopsies from long‐term pediatric recipients of liver transplants publication-title: Gastroenterology – volume: 3 start-page: 257 year: 1999 end-page: 270 article-title: Quantitation of allograft fibrosis and chronic allograft nephropathy publication-title: Pediatr. Transplant. – volume: 19 start-page: 2838 year: 2004 end-page: 2845 article-title: Computerized image analysis vs semiquantitative scoring in evaluation of kidney allograft fibrosis and prognosis publication-title: Nephrol. Dial. Transplant. – volume: 4 year: 2017 article-title: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology publication-title: J. Med. Imaging (Bellingham) – volume: 102 start-page: 1795 year: 2018 end-page: 1814 article-title: A 2018 reference guide to the Banff classification of renal allograft pathology publication-title: Transplantation – volume: 143 start-page: 1545 year: 2019 end-page: 1555 article-title: Implementation of digital pathology offers clinical and operational increase in efficiency and cost savings publication-title: Arch. Pathol. Lab. Med. – volume: 45 start-page: 91 year: 1988 end-page: 95 article-title: Associations between cyclosporine therapy and interstitial fibrosis in renal allograft biopsies publication-title: Transplantation – volume: 29 start-page: 265 year: 2020 end-page: 272 article-title: Artificial intelligence driven next‐generation renal histomorphometry publication-title: Curr. Opin. Nephrol. Hypertens. – volume: 6 start-page: 264 year: 2019 article-title: Deep learning for whole slide image analysis: an overview publication-title: Front. Med. – volume: 73 start-page: 706 year: 2020 end-page: 712 article-title: Digital pathology in the time of corona publication-title: J. Clin. Pathol. – volume: 115 start-page: E2970 year: 2018 end-page: E2979 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc. Natl Acad. Sci. USA – volume: 78 start-page: 511 year: 1998 end-page: 522 article-title: Design and validation of a new image analysis method for automatic quantification of interstitial fibrosis and glomerular morphometry publication-title: Lab. Invest. – volume: 72 start-page: 690 year: 2007 end-page: 697 article-title: Protocol biopsies in renal transplantation: prognostic value of structural monitoring publication-title: Kidney Int. – year: 2003 – volume: 92 start-page: 113 year: 2005 end-page: 118 article-title: Comparison of renal allograft fibrosis after transplantation from heart‐beating and non‐heart‐beating donors publication-title: Br. J. Surg. – volume: 26 start-page: 51 year: 2005 end-page: 59 article-title: Histomorphometric analysis of fibrosis in the renal interstitial compartment publication-title: Prilozi – volume: 19 start-page: 2846 year: 2019 end-page: 2854 article-title: Using computer‐assisted morphometrics of 5‐year biopsies to identify biomarkers of late renal allograft loss publication-title: Am. J. Transplant. – volume: 20 start-page: 2392 year: 2020 end-page: 2399 article-title: Banff Digital Pathology Working Group: going digital in transplant pathology publication-title: Am. J. Transplant. – volume: 27 start-page: 2382 year: 2016 end-page: 2391 article-title: Renal graft fibrosis and inflammation quantification by an automated Fourier‐transform infrared imaging technique publication-title: J. Am. Soc. Nephrol. – volume: 99 start-page: 86 year: 2021 end-page: 101 article-title: Development and evaluation of deep learning‐based segmentation of histologic structures in the kidney cortex with multiple histologic stains publication-title: Kidney Int. – volume: 318 start-page: 2199 year: 2017 end-page: 2210 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA – volume: 3 start-page: 45 year: 2012 article-title: Experience with multimodality telepathology at the University of Pittsburgh Medical Center publication-title: J. Pathol. Inform. – volume: 3 start-page: 464 year: 2018 end-page: 475 article-title: Association of pathological fibrosis with renal survival using deep neural networks publication-title: Kidney Int. Rep. – volume: 16 start-page: 4 year: 2020 end-page: 6 article-title: Artificial intelligence in nephropathology publication-title: Nat. Rev. Nephrol. – volume: 4 start-page: 20 year: 2018 article-title: Glomerulus classification and detection based on convolutional neural networks publication-title: J. Imaging – volume: 249 start-page: 286 year: 2019 end-page: 294 article-title: Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association publication-title: J. Pathol. – volume: 27 start-page: 1102 year: 2016 end-page: 1112 article-title: Three‐dimensional morphology by multiphoton microscopy with clearing in a model of cisplatin‐induced CKD publication-title: J. Am. Soc. Nephrol. – volume: 77 start-page: e75 year: 2017 end-page: e78 article-title: The Digital Slide Archive: a software platform for management, integration, and analysis of histology for cancer research publication-title: Cancer Res. – volume: 8 start-page: 565 year: 2004 end-page: 570 article-title: Renal arterial resistance index and computerized quantification of fibrosis as a combined predictive tool in chronic allograft nephropathy publication-title: Pediatr. Transplant. – volume: 139 start-page: 3071 year: 2012 end-page: 3080 article-title: A computational image analysis glossary for biologists publication-title: Development – volume: 20 start-page: 1091 year: 2013 end-page: 1098 article-title: Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data publication-title: J. Am. Med. Inform. Assoc. – volume: 20 start-page: 942 year: 2020 end-page: 953 article-title: In situ multiplex immunofluorescence analysis of the inflammatory burden in kidney allograft rejection: a new tool to characterize the alloimmune response publication-title: Am. J. Transplant. – volume: 26 start-page: 513 year: 2020 end-page: 520 article-title: Artificial intelligence in pathology: an overview publication-title: Diagn. Histopathol. – volume: 140 start-page: 41 year: 2015 end-page: 50 article-title: Computational pathology publication-title: Arch. Pathol. Lab. Med. – volume: 11 year: 2016 article-title: Renal medullary and cortical correlates in fibrosis, epithelial mass, microvascularity, and microanatomy using whole slide image analysis morphometry publication-title: PLoS One – volume: 11 start-page: 1456 year: 2011 end-page: 1463 article-title: Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis publication-title: Am. J. Transplant. – ident: e_1_2_8_24_1 doi: 10.1016/j.mpdhp.2020.08.004 – ident: e_1_2_8_51_1 doi: 10.1016/S0272-6386(99)70252-0 – ident: e_1_2_8_12_1 doi: 10.1242/dev.076414 – ident: e_1_2_8_103_1 doi: 10.1136/jclinpath-2020-206854 – ident: e_1_2_8_88_1 doi: 10.1016/j.kint.2020.07.044 – ident: e_1_2_8_5_1 doi: 10.1681/ASN.2015010079 – ident: e_1_2_8_84_1 doi: 10.1109/TMI.2018.2851150 – ident: e_1_2_8_70_1 doi: 10.1186/s13000-015-0248-6 – ident: e_1_2_8_72_1 doi: 10.1053/j.gastro.2018.08.023 – ident: e_1_2_8_71_1 doi: 10.4103/jpi.jpi_32_17 – ident: e_1_2_8_68_1 doi: 10.1038/ki.2012.63 – ident: e_1_2_8_25_1 doi: 10.1016/S1470-2045(19)30154-8 – ident: e_1_2_8_19_1 doi: 10.1681/ASN.2009091005 – ident: e_1_2_8_97_1 doi: 10.5858/arpa.2018-0343-RA – ident: e_1_2_8_30_1 doi: 10.1056/NEJMp1606181 – ident: e_1_2_8_35_1 doi: 10.1158/0008-5472.CAN-17-0629 – ident: e_1_2_8_29_1 doi: 10.1038/337129a0 – ident: e_1_2_8_96_1 doi: 10.4103/jpi.jpi_82_18 – volume: 19 start-page: 30 year: 1997 ident: e_1_2_8_98_1 article-title: Orchestrating a unified approach to information management publication-title: Radiol. Manage. – ident: e_1_2_8_4_1 doi: 10.1088/2040-8986/aab0e8 – ident: e_1_2_8_76_1 doi: 10.1111/ajt.15699 – year: 2020 ident: e_1_2_8_102_1 article-title: Role of digital pathology in diagnostic histopathology in the response to covid‐19: results from a survey of experience in a UK tertiary referral hospital publication-title: J. Clin. Pathol – ident: e_1_2_8_89_1 doi: 10.1016/j.ekir.2017.11.002 – volume: 44 start-page: 211 year: 1995 ident: e_1_2_8_50_1 article-title: Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix publication-title: Clin. Nephrol. – ident: e_1_2_8_11_1 doi: 10.1038/s41581-019-0220-x – ident: e_1_2_8_83_1 doi: 10.1681/ASN.2017111210 – ident: e_1_2_8_2_1 doi: 10.1002/path.5331 – ident: e_1_2_8_17_1 doi: 10.1016/j.kint.2020.02.027 – ident: e_1_2_8_43_1 doi: 10.1111/ajt.15850 – volume: 26 start-page: 51 year: 2005 ident: e_1_2_8_45_1 article-title: Histomorphometric analysis of fibrosis in the renal interstitial compartment publication-title: Prilozi – ident: e_1_2_8_60_1 doi: 10.1097/00007890-199907270-00013 – ident: e_1_2_8_7_1 doi: 10.1681/ASN.2015050601 – ident: e_1_2_8_74_1 doi: 10.1111/j.1600-6143.2011.03797.x – ident: e_1_2_8_93_1 doi: 10.1001/jama.2017.14585 – ident: e_1_2_8_59_1 doi: 10.1111/j.1399-3046.2004.00229.x – ident: e_1_2_8_23_1 doi: 10.1007/s00428-017-2260-6 – ident: e_1_2_8_73_1 doi: 10.4103/2153-3539.104907 – ident: e_1_2_8_27_1 doi: 10.1007/b11963 – ident: e_1_2_8_85_1 doi: 10.1038/s42256-019-0018-3 – ident: e_1_2_8_8_1 doi: 10.1016/j.kint.2015.11.027 – ident: e_1_2_8_48_1 doi: 10.1111/j.1600-6143.2011.03594.x – ident: e_1_2_8_54_1 doi: 10.1097/01.TP.0000078899.62040.E5 – ident: e_1_2_8_77_1 doi: 10.1016/j.jtho.2019.12.112 – ident: e_1_2_8_61_1 doi: 10.1002/bjs.1800830813 – volume-title: Separating fact from fiction: recommendations for academic health centers on artificial and augmented intelligence year: 2019 ident: e_1_2_8_9_1 – ident: e_1_2_8_38_1 doi: 10.1007/s11604-018-0795-3 – ident: e_1_2_8_67_1 doi: 10.1097/TP.0b013e31822d879a – ident: e_1_2_8_39_1 doi: 10.1038/s41523-020-0154-2 – ident: e_1_2_8_36_1 doi: 10.3389/fmed.2019.00264 – ident: e_1_2_8_26_1 doi: 10.3389/fmed.2019.00185 – ident: e_1_2_8_82_1 doi: 10.1016/j.ekir.2019.04.008 – ident: e_1_2_8_58_1 doi: 10.1038/ki.1994.474 – volume-title: Artificial intelligence for dummies year: 2018 ident: e_1_2_8_14_1 – ident: e_1_2_8_6_1 doi: 10.1371/journal.pone.0156734 – ident: e_1_2_8_34_1 doi: 10.1136/amiajnl-2012-001469 – ident: e_1_2_8_18_1 doi: 10.1111/ajt.12641 – ident: e_1_2_8_94_1 doi: 10.5858/arpa.2018-0514-OA – ident: e_1_2_8_31_1 – ident: e_1_2_8_33_1 doi: 10.1093/bioinformatics/btz083 – volume: 4 year: 2017 ident: e_1_2_8_69_1 article-title: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology publication-title: J. Med. Imaging (Bellingham) – volume: 10 start-page: 584 year: 1999 ident: e_1_2_8_52_1 article-title: Decorin and TGF‐beta‐1 protein expression in renal disease: a morphometric analysis publication-title: J. Am. Soc. Nephrol. – ident: e_1_2_8_79_1 doi: 10.1186/s12859-015-0739-1 – ident: e_1_2_8_41_1 doi: 10.1097/TP.0000000000002366 – ident: e_1_2_8_66_1 doi: 10.1038/sj.ki.5002396 – volume-title: Information theory, inference, and learning algorithms year: 2003 ident: e_1_2_8_28_1 – ident: e_1_2_8_37_1 doi: 10.1073/pnas.1717139115 – volume: 6 start-page: 047501 year: 2019 ident: e_1_2_8_78_1 article-title: Automatic quantification of HER2 gene amplification in invasive breast cancer from chromogenic in situ hybridization whole slide images publication-title: J. Med. Imaging (Bellingham) – ident: e_1_2_8_20_1 doi: 10.1371/journal.pone.0161019 – ident: e_1_2_8_100_1 doi: 10.1002/cncy.22276 – ident: e_1_2_8_32_1 doi: 10.1038/s41598-017-15092-3 – ident: e_1_2_8_42_1 doi: 10.1111/ajt.15380 – ident: e_1_2_8_44_1 doi: 10.1046/j.1600-6143.2003.00311.x – ident: e_1_2_8_105_1 – volume: 78 start-page: 511 year: 1998 ident: e_1_2_8_57_1 article-title: Design and validation of a new image analysis method for automatic quantification of interstitial fibrosis and glomerular morphometry publication-title: Lab. Invest. – ident: e_1_2_8_15_1 doi: 10.1097/TP.0000000000002656 – ident: e_1_2_8_40_1 doi: 10.1111/ajt.14625 – ident: e_1_2_8_99_1 doi: 10.1186/1741-7015-10-100 – volume: 20 start-page: 807 year: 1988 ident: e_1_2_8_63_1 article-title: Cyclosporine therapy and the development of interstitial fibrosis in renal allografts publication-title: Transplant. Proc. – ident: e_1_2_8_92_1 doi: 10.1093/gigascience/giy065 – ident: e_1_2_8_16_1 doi: 10.1038/s41581-020-0321-6 – ident: e_1_2_8_62_1 doi: 10.1097/00007890-198801000-00021 – ident: e_1_2_8_22_1 doi: 10.5858/arpa.2016-0265-SA – ident: e_1_2_8_47_1 doi: 10.1111/j.1600-6143.2009.02803.x – ident: e_1_2_8_21_1 doi: 10.1016/j.prp.2013.04.001 – ident: e_1_2_8_49_1 doi: 10.1093/ndt/15.suppl_6.72 – ident: e_1_2_8_101_1 doi: 10.1038/s41379-020-0601-5 – ident: e_1_2_8_104_1 doi: 10.1136/jclinpath-2020-206845 – ident: e_1_2_8_64_1 doi: 10.1093/ndt/gfh490 – ident: e_1_2_8_90_1 – ident: e_1_2_8_13_1 doi: 10.1161/CIRCULATIONAHA.115.001593 – ident: e_1_2_8_56_1 doi: 10.1111/j.1523-1755.2005.00059.x – ident: e_1_2_8_55_1 doi: 10.1002/bjs.4777 – ident: e_1_2_8_87_1 doi: 10.1681/ASN.2019020144 – ident: e_1_2_8_95_1 doi: 10.1038/s41379-019-0205-0 – ident: e_1_2_8_86_1 doi: 10.1681/ASN.2018121259 – ident: e_1_2_8_3_1 doi: 10.5858/arpa.2015-0093-SA – ident: e_1_2_8_10_1 doi: 10.1097/MNH.0000000000000598 – ident: e_1_2_8_91_1 doi: 10.23915/distill.00009 – ident: e_1_2_8_46_1 doi: 10.1097/01.tp.0000295749.50525.bd – ident: e_1_2_8_53_1 doi: 10.1097/01.ASN.0000066143.02832.5E – ident: e_1_2_8_75_1 doi: 10.1016/j.cld.2010.07.004 – ident: e_1_2_8_80_1 doi: 10.1038/s41598-018-20453-7 – ident: e_1_2_8_65_1 doi: 10.1034/j.1399-3046.1999.00044.x – ident: e_1_2_8_81_1 doi: 10.3390/jimaging4010020 |
| SSID | ssj0017322 |
| Score | 2.4837863 |
| SecondaryResourceType | review_article |
| Snippet | Whole slide imaging, which is an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for... Whole slide imaging (WSI), an important technique in the field of digital pathology, has recently been the subject of increased interest and avenues for... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 791 |
| SubjectTerms | Algorithms Allografts - pathology Artificial Intelligence Atrophy Classification Computer applications Deep learning digital pathology Fibrosis Humans Hypotheses image analysis Image processing Image Processing, Computer-Assisted Inflammation Kidney - pathology Kidney Diseases - pathology Kidney Diseases - surgery Kidney Transplantation Learning algorithms Machine Learning Neural networks Pathology renal transplant pathology Segmentation |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVAuFFqgKQWZwqGXVJvYsRM4IUS1ILWHQqUekCLHsbsRS7bazYrHr2fGedBtC0JcoigeJ7E9E39jT74BeCk1XqaIGrQGGwqLY4FuEA-FHGWqdE5rn2zi-ESOz8SH8-R8DV73_8K0_BDDghtZhv9ek4HrYnHFyCfVAs2cey7QiEvvTp0O1FGR4r93ECjUvmMVoiieoebqXHQDYN6Mk9xY1pf6xzc9na5iWT8ZHW3C574ZbQzKl8NlUxyan9cYHv-znffhXgdS2ZtWqx7Amq234M5xtw2_DTWVtNQTrLrC6cl0XTI9vZjNq2bytTLM-JwR3Xojo-zHfhX_FQpSxZZtFgsZLQezuSUpigS4mGvXMPtdE3fx4iGcHb379HYcdokbQiMEF2HGZSqLgvQjoytpNEp1bHmcGFQERHxFijCyNFE8EtbFiZNaGZOSK5bokhv-CNbrWW13gJUuVlGZ4ndZOWETpR1Py8g6pRHXFYkL4KAfwtx0rOaUXGOa994N9l_u-y-A_UH0sqXyuE1or9eDvLPmRY4YUGTEdDcK4PlQjHZImyu6trMlygiJYChSEm_xuFWb4Smco5uNhwDUikINAsTxvVpSVxPP9Y3-bMKzKIAXg-r97eUPvCb9WSIfv__oT3b_XfQJ3I0pkMdHee7BejNf2qeIxJrimTe5X2AKMY0 priority: 102 providerName: Wiley-Blackwell |
| Title | Artificial intelligence and algorithmic computational pathology: an introduction with renal allograft examples |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fhis.14304 https://www.ncbi.nlm.nih.gov/pubmed/33211332 https://www.proquest.com/docview/2514936700 https://www.proquest.com/docview/2462411764 https://pubmed.ncbi.nlm.nih.gov/PMC8715391 https://www.ncbi.nlm.nih.gov/pmc/articles/8715391 |
| UnpaywallVersion | submittedVersion |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1365-2559 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017322 issn: 1365-2559 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1365-2559 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2559 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017322 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5VqQRcKG9cSrU8Dr04jb3rR7hViCogtUKFSOVkrde7jYXjRIkjHr-emfXaIhQQXKLIM7GdzGz8ze633wC8jCUeJkYNjgbtC42xwDKI-yIejZPCGClts4mz83gyFe8uo8sdCLq9MJa0r_JyWFfzYV3OLLdyOVfHHU_sGBF-xGm_-m4cIfwewO70_P3Jp261gGj1_V4rhMtOTYjYO7NyjX8M3PVk659B14DldX7kzU29lN--yKraxrD2IXS6Bxfd7bfck8_DTZMP1fdflB3_6_vdgdsOkrKT1nQXdnR9D26cuUX3-1CTpRWaYOVPCp5M1gWT1dViVTazeamYsh0i3Owio17Hds7-FTrSB1ttWTQymvxlK01etO5_tZKmYfqrJKXi9QOYnr75-HriuzYNvhKCC3_M4zTOc8qGMR1Jg1EqQ83DSGHYEd_lKYLGQgXhSGgTRiaWiVIpFV6RLLjiD2FQL2r9GFhhwiQoUvwBEiN0lEjD0yLQJpGI4vLIeHDUBS5TTsOcWmlUWVfLYIwzG2MPnveuy1a443dOB130Mzd21xkiPjEmXbuRB896M446WkqRtV5s0EfECH2CJMZTPGqTpb8K51hU44sHyVYa9Q6k6L1twUSwyt4u9h686BPubzd_ZFPxzx7Z5O0H-2b_n074BG6FxNixdM4DGDSrjX6KkKvJD7HYuAgP3VD7AXuELck |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaJceD8CBczj0EuqTezYCeKCENUWuj1AK_WCIsexuxFLttrNisevZ8Z50KWAEJcoiicPOzPxN-PJNwDPpcbDlFGD1mBDYfFdoBvEQyFHmSqd09oXm5gcyvGxeHuSnGzAy_5fmJYfYgi4kWX47zUZOAWkz1n5tFqinXMiA70kJPopBIneD-RRkeI_1xAo2b7jFaI8nuHU9dnoAsS8mCm5tarP9LcvejZbR7N-Otq7Bh_7jrRZKJ92V02xa77_wvH4vz29Dlc7nMpetYp1AzZsfRMuT7qV-FtQU0vLPsGqc7SeTNcl07PT-aJqpp8rw4wvG9GFHBkVQPaB_BcoSCe2hLPYyCgizBaWpCgZ4HShXcPsV030xcvbcLz35uj1OOxqN4RGCC7CjMtUFgWpSEZH0miU6tjyODGoCwj6ihSRZGmieCSsixMntTImJW8s0SU3_A5s1vPa3gNWulhFZYqfZuWETZR2PC0j65RGaFckLoCd_h3mpiM2p_oas7x3cHD8cj9-ATwdRM9aNo_fCW33ipB3Br3MEQaKjMjuRgE8GZrRFGl9Rdd2vkIZIREPRUriJe62ejPchXP0tHETgFrTqEGAaL7XW-pq6um-0aVNeBYF8GzQvb89_I5XpT9L5OP9D37n_r-LPoat8dHkID_YP3z3AK7ElNfjkz63YbNZrOxDBGZN8cjb3w9fXzWu |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRSpcoLxKoIB5HHpJtYmdOKl6QZTVFmiFgEq9oMhx7G7Ekl3tZsXj13fGedClgBCXKIon75n4G_vLNwDPY4WbiVGD0WB8YfBdYBrEfREPUllYq5QrNnF0HI9OxOvT6HQN9rt_YRp9iH7AjSLDfa8pwM2ssBeifFwuMM45iYFeEVGaEKHv4H0vHhVI_nMOgcj2ra4Q8Xj6XVd7o0sQ8zJT8uqymqnvX9VksopmXXc0vAGfuhtpWCifd5d1vqt__KLx-L93ugnXW5zKXjSOdRPWTHULNo7amfjbUFFLoz7ByguynkxVBVOTs-m8rMdfSs20KxvRDjkyKoDsBvL30JB2bARnsZHRiDCbG7IiMsDZXNmamW-K5IsXd-Bk-Orjy5Hf1m7wtRBc-CmPkzjPyUVS2pIEg0SFhoeRRl9A0JcniCQLHYQDYWwY2VhJrRPKxiJVcM3vwno1rcw9YIUNZVAk-GmWVphIKsuTIjBWKoR2eWQ92OneYaZbYXOqrzHJugQHn1_mnp8HT3vTWaPm8Tuj7c4RsjagFxnCQJGS2N3Agyd9M4Yiza-oykyXaCNixEOBjPEQW43f9GfhHDNtXHggVzyqNyCZ79WWqhw7uW9MaSOeBh48633vbxe_41zpzxbZ6PCDW7n_76aPYePdwTB7e3j85gFcC4nW4zif27Bez5fmIeKyOn_kwu8cwRs1Mg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5VqQS8cB-mLVqOh744jb3rI7xVFVVAaoWASOXJWq93GwvHiRJHHL--M-u1RSggeIksz_ic2fjb3W-_AXgVS9xNjBpsDdoXGmOB3SDui3g0TgpjpLTFJs7O48lUvLuILnYg6NbCWNK-ysthXc2HdTmz3MrlXB11PLEjRPgRp_Xqu3GE8HsAu9Pz98efu9kCotX3a60QLjs1IWLvzMo1_jFwV5Ot_wZdA5bX-ZE3N_VSfv8qq2obw9qP0Okd-NDdfss9-TLcNPlQ_fhF2fG_nu8u3HaQlB23pnuwo-v7cOPMTbo_gJosrdAEK39S8GSyLpisLherspnNS8WUrRDhRhcZ1Tq2Y_av0ZEObLVl0cho8JetNHnRvP_lSpqG6W-SlIrXD2F6-ubTycR3ZRp8JQQX_pjHaZznlA1j2pMGo1SGmoeRwrAjvstTBI2FCsKR0CaMTCwTpVLqeEWy4Io_gkG9qPUTYIUJk6BI8QUkRugokYanRaBNIhHF5ZHx4LALXKachjmV0qiyri-DMc5sjD140bsuW-GO3zntd9HPXNtdZ4j4xJh07UYePO_N2OpoKkXWerFBHxEj9AmSGE_xuE2W_iqcY6cafzxIttKodyBF720LJoJV9nax9-Bln3B_u_lDm4p_9sgmbz_ajaf_dMI9uBUSY8fSOfdh0Kw2-gAhV5M_c43sCm6rLOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+and+algorithmic+computational+pathology%3A+an+introduction+with+renal+allograft+examples&rft.jtitle=Histopathology&rft.au=Farris%2C+Alton+B&rft.au=Vizcarra%2C+Juan&rft.au=Amgad%2C+Mohamed&rft.au=Cooper%2C+Lee+A+D&rft.date=2021-05-01&rft.issn=0309-0167&rft.eissn=1365-2559&rft.volume=78&rft.issue=6&rft.spage=791&rft.epage=804&rft_id=info:doi/10.1111%2Fhis.14304&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_his_14304 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-0167&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-0167&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-0167&client=summon |