Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer
TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dua...
        Saved in:
      
    
          | Published in | Environmental science and pollution research international Vol. 26; no. 2; pp. 1821 - 1833 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.01.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0944-1344 1614-7499 1614-7499  | 
| DOI | 10.1007/s11356-018-3751-y | 
Cover
| Abstract | TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (
R
2
 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (
R
2
avg
 = 0.981 and 0.974, respectively), while BPNN models performed worse (
R
2
avg
 = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN. | 
    
|---|---|
| AbstractList | TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (
R
2
 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (
R
2
avg
 = 0.981 and 0.974, respectively), while BPNN models performed worse (
R
2
avg
 = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN. TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R = 0.981 and 0.974, respectively), while BPNN models performed worse (R = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN. TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R2 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R2avg = 0.981 and 0.974, respectively), while BPNN models performed worse (R2avg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN. TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R2 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R2avg = 0.981 and 0.974, respectively), while BPNN models performed worse (R2avg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R2 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R2avg = 0.981 and 0.974, respectively), while BPNN models performed worse (R2avg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN. TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R² > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R²ₐᵥg = 0.981 and 0.974, respectively), while BPNN models performed worse (R²ₐᵥg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.  | 
    
| Author | Ng, Kelvin Tsun Wai Pan, Conglian Richter, Amy Fallah, Bahareh  | 
    
| Author_xml | – sequence: 1 givenname: Conglian surname: Pan fullname: Pan, Conglian organization: Environmental Systems Engineering, University of Regina – sequence: 2 givenname: Kelvin Tsun Wai orcidid: 0000-0002-2045-9367 surname: Ng fullname: Ng, Kelvin Tsun Wai email: kelvin.ng@uregina.ca organization: Environmental Systems Engineering, University of Regina – sequence: 3 givenname: Bahareh surname: Fallah fullname: Fallah, Bahareh organization: Environmental Systems Engineering, University of Regina – sequence: 4 givenname: Amy surname: Richter fullname: Richter, Amy organization: Environmental Systems Engineering, University of Regina  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30456617$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkctu1DAUhi1URKeFB2CDLLFhE7DjW7JEVaFIldjAOnLs4xlXiT21k0rzHn1gnMkUpEogNj7yOd9_Lvov0FmIARB6S8lHSoj6lCllQlaENhVTglaHF2hDJeWV4m17hjak5byijPNzdJHzHSE1aWv1Cp0zwoWUVG3Q4_WDHmY9-RhwdHjaAe69zlgHi_cJjM-nSoJtgnz8TWB2wd_PsGKjNjsfAA-gU_Bhi_V-n2JJlrovdJz0gK3POQ4PYHEJ3mY8RgvDQpfeOuA59eXV97N3kF6jl04PGd6c4iX6-eX6x9VNdfv967erz7eV4byeKudIwxpnCWec1U1NrHHW8F4JZWumgElFBWVMqF47xoAS5YyRoBuwslWEXaIPa9-y73LO1I0-GxgGHSDOuatp0wpBVMP-A2WSCCWP6Ptn6F2cUyiHLJTglNRsmf3uRM39CLbbJz_qdOierCkAXQGTYs4J3G-Ekm6xv1vt74r93WJ_dyga9Uxj_HQ0d0raD_9U1qsylylhC-nP0n8X_QIZ3MV3 | 
    
| CitedBy_id | crossref_primary_10_1007_s40201_022_00836_9 crossref_primary_10_1016_j_heliyon_2023_e16432 crossref_primary_10_1016_j_jenvman_2023_119896 crossref_primary_10_1016_j_scs_2022_104115 crossref_primary_10_4236_gep_2024_125013 crossref_primary_10_1016_j_asr_2024_03_038 crossref_primary_10_1016_j_scitotenv_2021_148024 crossref_primary_10_1007_s11356_018_3967_x crossref_primary_10_1016_j_resconrec_2019_06_013 crossref_primary_10_1016_j_ecoinf_2022_101897 crossref_primary_10_3390_su15087016 crossref_primary_10_1007_s11356_022_20428_2 crossref_primary_10_1016_j_wasman_2021_02_029 crossref_primary_10_1007_s11356_022_18520_8 crossref_primary_10_1007_s13201_020_01352_7 crossref_primary_10_1016_j_jhydrol_2023_129934 crossref_primary_10_1007_s11831_025_10248_1 crossref_primary_10_1016_j_scs_2022_104219 crossref_primary_10_3846_jeelm_2025_22950 crossref_primary_10_1007_s10163_024_01994_8 crossref_primary_10_1016_j_jenvman_2024_122731 crossref_primary_10_1007_s10706_024_02787_4 crossref_primary_10_1016_j_ecoinf_2022_101925 crossref_primary_10_1016_j_scs_2021_103097 crossref_primary_10_1016_j_jclepro_2021_126465 crossref_primary_10_1016_j_jenvman_2022_114869 crossref_primary_10_1080_19942060_2020_1861987 crossref_primary_10_1007_s11356_022_25119_6 crossref_primary_10_1007_s10706_023_02655_7 crossref_primary_10_1007_s11356_019_05541_z crossref_primary_10_1007_s11356_023_25291_3 crossref_primary_10_2166_hydro_2021_138 crossref_primary_10_1016_j_apgeochem_2022_105273 crossref_primary_10_1016_j_engappai_2023_106780 crossref_primary_10_3390_w15223995 crossref_primary_10_1016_j_scs_2021_103339 crossref_primary_10_1021_acs_jafc_4c04708  | 
    
| Cites_doi | 10.1002/jcc.21907 10.1007/s00254-007-0647-4 10.1016/j.wasman.2017.11.039 10.1016/j.aqpro.2015.02.136 10.1016/j.egypro.2011.10.102 10.1007/s10661-016-5124-7 10.1016/j.wri.2017.02.002 10.1016/j.envsoft.2005.12.002 10.1080/02626667.2017.1364845 10.1016/j.wsj.2018.04.002 10.1016/j.apr.2016.01.002 10.1016/j.jclepro.2017.02.157 10.1007/s10661-018-6663-x 10.1016/j.proenv.2012.01.115 10.1016/j.gloplacha.2016.11.014 10.1016/j.wasman.2015.09.034 10.1016/j.pnucene.2017.11.012 10.1016/j.gexplo.2017.12.015 10.1016/j.jhydrol.2010.02.019 10.1007/s10040-013-1029-5 10.1080/00958964.1987.9943484 10.1016/j.gexplo.2012.08.013 10.1016/j.wasman.2018.03.017 10.1016/j.egypro.2017.12.364 10.1007/s13201-015-0287-x 10.1080/01919510701549327 10.1016/j.wasman.2017.08.028 10.1016/j.jclinepi.2016.05.014 10.1016/j.renene.2016.01.056 10.1016/j.wasman.2016.05.025 10.1007/s10163-018-0809-3 10.1007/978-1-84882-969-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ K60 K6~ K9. L.- M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PYCSY Q9U 7X8 7S9 L.6  | 
    
| DOI | 10.1007/s11356-018-3751-y | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Pollution Abstracts Toxicology Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Proquest Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Health & Medical Collection Medical Database Science Database (Proquest) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection ProQuest Central Basic MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Pollution Abstracts ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE ProQuest Business Collection (Alumni Edition) MEDLINE - Academic AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Environmental Sciences | 
    
| EISSN | 1614-7499 | 
    
| EndPage | 1833 | 
    
| ExternalDocumentID | 30456617 10_1007_s11356_018_3751_y  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Canada | 
    
| GeographicLocations_xml | – name: Canada | 
    
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-385815 funderid: http://dx.doi.org/10.13039/501100000038 – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-385815  | 
    
| GroupedDBID | --- -5A -5G -5~ -BR -EM -~C .VR 06D 0R~ 0VY 199 1N0 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 4P2 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BVXVI CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N9A NB0 NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNS ROL RSV S16 S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM -Y2 2.D 2P1 2VQ 53G AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM BSONS CAG CITATION COF H13 N2Q NDZJH O9- PHGZM PHGZT PJZUB PPXIY PUEGO RNI RZK S1Z S26 S28 SCK SCLPG T16 WK6 Y6R CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7TV 7U7 7XB 8FD 8FK C1K FR3 K9. L.- M7N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c442t-ff0838fd043432820dcfdc4b757d237e3671513357baf33e107fcc6ea8ed69703 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0944-1344 1614-7499  | 
    
| IngestDate | Thu Sep 04 16:31:07 EDT 2025 Thu Oct 02 06:30:29 EDT 2025 Tue Oct 07 06:01:44 EDT 2025 Mon Jul 21 05:47:37 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Wed Oct 01 01:56:35 EDT 2025 Fri Feb 21 02:34:59 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Principal component regression Bias and precision Total dissolved solids Artificial neural network Multivariate statistical analysis Machine learning methods  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c442t-ff0838fd043432820dcfdc4b757d237e3671513357baf33e107fcc6ea8ed69703 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-2045-9367 | 
    
| PMID | 30456617 | 
    
| PQID | 2135410230 | 
    
| PQPubID | 54208 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_2189550783 proquest_miscellaneous_2136057683 proquest_journals_2135410230 pubmed_primary_30456617 crossref_primary_10_1007_s11356_018_3751_y crossref_citationtrail_10_1007_s11356_018_3751_y springer_journals_10_1007_s11356_018_3751_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-01-01 | 
    
| PublicationDateYYYYMMDD | 2019-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | Environmental science and pollution research international | 
    
| PublicationTitleAbbrev | Environ Sci Pollut Res | 
    
| PublicationTitleAlternate | Environ Sci Pollut Res Int | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | Hanley (CR22) 2016; 79 Atta, Amer, Atta (CR2) 2018; 32 Hu, Luo, Jing (CR25) 2013; 135 Chickering, Krause, Townsend (CR10) 2018; 76 CR18 CR17 CR16 CR15 CR14 CR13 CR35 Bagheri, Bazvand, Ehteshami (CR5) 2017; 149 CR12 Bruce, Ng, Vu (CR7) 2018; 190 CR11 Ebrahimi, Rajaee (CR20) 2017; 148 CR31 CR30 Xu, Wang, Wang, Shen, Xu (CR44) 2011; 32 Tan, San Lim, Jafri (CR41) 2016; 7 Azadi, Amiri, Rakhshandehroo (CR4) 2016; 55 Hassen, Hamzaoui-Azaza, Bouhlila (CR23) 2016; 188 Abou Zakhem, Al-Charideh, Kattaa (CR1) 2017; 62 CR6 Azadi, Karimi-Jashni (CR3) 2016; 48 CR8 Zhao, Wang, Li (CR46) 2011; 12 CR29 Sousa, Martins, Alvim-Ferraz, Pereira (CR39) 2007; 22 Chen, Chen, Chou, Yang (CR9) 2010; 385 CR28 CR24 Kicsiny (CR26) 2016; 91 Sahoo, Jha (CR34) 2013; 21 Civelekoglu, Yigit, Diamadopoulos, Kitis (CR19) 2007; 29 CR40 Vu, Ng, Richter (CR43) 2017; 69 Rashid, Rosely, Noor, Shamsuddin, Hamid, Ibrahim (CR32) 2017; 142 Li, Wang, Wang, Wan, Shi, Wanke, Uugulu, Uahengo (CR27) 2018; 186 Zhao, Xia, Yang, Wang (CR47) 2012; 13 Han, Liu, Zhong, Shi, Li, Zeng, Zhang, Fei, Xie (CR21) 2018; 72 Selvakumar, Chandrasekar, Kumar (CR36) 2017; 17 Viswanath, Kumar, Ammad (CR42) 2015; 4 Xun, Hua, Liang, Ye, Xia, Rui, Li (CR45) 2007; 53 Ravikumar, Somashekar (CR33) 2017; 7 Sherrard, Moore, Dillaha (CR37) 1987; 18 Solanki, Kulkarni, Singh, Verma, Varde (CR38) 2018; 103 HSAF Atta (3751_CR2) 2018; 32 S Hu (3751_CR25) 2013; 135 Z Han (3751_CR21) 2018; 72 X Zhao (3751_CR46) 2011; 12 3751_CR8 3751_CR31 3751_CR6 3751_CR11 B Abou Zakhem (3751_CR1) 2017; 62 3751_CR12 CS Chen (3751_CR9) 2010; 385 3751_CR30 3751_CR17 JH Sherrard (3751_CR37) 1987; 18 3751_CR18 3751_CR13 NA Rashid (3751_CR32) 2017; 142 3751_CR35 3751_CR14 3751_CR15 R Kicsiny (3751_CR26) 2016; 91 3751_CR16 S Azadi (3751_CR3) 2016; 48 N Bruce (3751_CR7) 2018; 190 GW Chickering (3751_CR10) 2018; 76 S Azadi (3751_CR4) 2016; 55 Z Li (3751_CR27) 2018; 186 NC Viswanath (3751_CR42) 2015; 4 RB Solanki (3751_CR38) 2018; 103 S Selvakumar (3751_CR36) 2017; 17 I Hassen (3751_CR23) 2016; 188 H Ebrahimi (3751_CR20) 2017; 148 S Sahoo (3751_CR34) 2013; 21 3751_CR40 HL Vu (3751_CR43) 2017; 69 G Civelekoglu (3751_CR19) 2007; 29 3751_CR28 3751_CR29 P Ravikumar (3751_CR33) 2017; 7 3751_CR24 JA Hanley (3751_CR22) 2016; 79 Z Xun (3751_CR45) 2007; 53 J Xu (3751_CR44) 2011; 32 M Bagheri (3751_CR5) 2017; 149 Y Zhao (3751_CR47) 2012; 13 SIV Sousa (3751_CR39) 2007; 22 KC Tan (3751_CR41) 2016; 7  | 
    
| References_xml | – volume: 32 start-page: 3241 issue: 15 year: 2011 end-page: 3252 ident: CR44 article-title: QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses publication-title: J Comput Chem doi: 10.1002/jcc.21907 – ident: CR18 – volume: 53 start-page: 317 issue: 2 year: 2007 end-page: 323 ident: CR45 article-title: Some factors affecting TDS and pH values in groundwater of the Beihai coastal area in southern Guangxi, China publication-title: Environ Geol doi: 10.1007/s00254-007-0647-4 – volume: 72 start-page: 45 year: 2018 end-page: 54 ident: CR21 article-title: Influencing factors of domestic waste characteristics in rural areas of developing countries publication-title: Waste Manag doi: 10.1016/j.wasman.2017.11.039 – ident: CR14 – volume: 4 start-page: 1078 year: 2015 end-page: 1085 ident: CR42 article-title: Statistical analysis of quality of water in various water shed for Kozhikode City, Kerala, India publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2015.02.136 – ident: CR16 – volume: 12 start-page: 761 year: 2011 end-page: 769 ident: CR46 article-title: Review of evaluation criteria and main methods of wind power forecasting publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.10.102 – volume: 188 start-page: 135 issue: 3 year: 2016 ident: CR23 article-title: Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, Central Tunisia publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5124-7 – ident: CR12 – ident: CR30 – volume: 17 start-page: 26 year: 2017 end-page: 33 ident: CR36 article-title: Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India publication-title: Water Resources and Industry doi: 10.1016/j.wri.2017.02.002 – volume: 22 start-page: 97 issue: 1 year: 2007 end-page: 103 ident: CR39 article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2005.12.002 – volume: 62 start-page: 2266 issue: 14 year: 2017 end-page: 2279 ident: CR1 article-title: Using principal component analysis in the investigation of groundwater hydrochemistry of Upper Jezireh Basin, Syria publication-title: Hydrol Sci J doi: 10.1080/02626667.2017.1364845 – volume: 32 start-page: 1 issue: 1 year: 2018 end-page: 15 ident: CR2 article-title: Hydro-chemical study of groundwater and its suitability for different purposes at Manfalut District, Assuit Governate publication-title: Water Science doi: 10.1016/j.wsj.2018.04.002 – ident: CR35 – volume: 7 start-page: 533 issue: 3 year: 2016 end-page: 546 ident: CR41 article-title: Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: a case study in peninsular Malaysia publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2016.01.002 – volume: 149 start-page: 784 year: 2017 end-page: 796 ident: CR5 article-title: Application of artificial intelligence for the management of landfill leachate penetration into groundwater, and assessment of its environmental impacts publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.02.157 – ident: CR6 – ident: CR29 – volume: 190 start-page: 291 year: 2018 ident: CR7 article-title: Use of seasonal parameters and their effects on FOD landfill gas modeling publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6663-x – ident: CR8 – ident: CR40 – volume: 13 start-page: 1213 year: 2012 end-page: 1226 ident: CR47 article-title: Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques publication-title: Procedia Environ Sci doi: 10.1016/j.proenv.2012.01.115 – volume: 148 start-page: 181 year: 2017 end-page: 191 ident: CR20 article-title: Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine publication-title: Glob Planet Chang doi: 10.1016/j.gloplacha.2016.11.014 – volume: 48 start-page: 14 year: 2016 end-page: 23 ident: CR3 article-title: Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: a case study of Fars province, Iran publication-title: Waste Manag doi: 10.1016/j.wasman.2015.09.034 – volume: 103 start-page: 126 year: 2018 end-page: 134 ident: CR38 article-title: Optimization of regression model using principal component regression method in passive system reliability assessment publication-title: Prog Nucl Energy doi: 10.1016/j.pnucene.2017.11.012 – volume: 186 start-page: 202 year: 2018 end-page: 214 ident: CR27 article-title: Groundwater quality and associated hydrogeochemical processes in Northwest Namibia publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2017.12.015 – volume: 385 start-page: 173 issue: 1–4 year: 2010 end-page: 182 ident: CR9 article-title: Development and application of a decision group back-propagation neural network for flood forecasting publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.02.019 – volume: 21 start-page: 1865 issue: 8 year: 2013 end-page: 1887 ident: CR34 article-title: Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment publication-title: Hydrogeol J doi: 10.1007/s10040-013-1029-5 – volume: 18 start-page: 19 issue: 2 year: 1987 end-page: 24 ident: CR37 article-title: Total dissolved solids: determination, sources, effects, and removal publication-title: J Environ Educ doi: 10.1080/00958964.1987.9943484 – volume: 135 start-page: 124 year: 2013 end-page: 129 ident: CR25 article-title: Principal component analysis of fluoride geochemistry of groundwater in Shanxi and Inner Mongolia, China publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2012.08.013 – ident: CR15 – ident: CR17 – ident: CR31 – volume: 76 start-page: 82 year: 2018 end-page: 89 ident: CR10 article-title: Determination of as-discarded methane potential in residential and commercial municipal solid waste publication-title: Waste Manag doi: 10.1016/j.wasman.2018.03.017 – ident: CR13 – ident: CR11 – volume: 142 start-page: 2977 year: 2017 end-page: 2982 ident: CR32 article-title: Forecasting of refined palm oil quality using principal component regression publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.12.364 – volume: 7 start-page: 745 issue: 2 year: 2017 end-page: 755 ident: CR33 article-title: Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India publication-title: Appl Water Sci doi: 10.1007/s13201-015-0287-x – volume: 29 start-page: 353 issue: 5 year: 2007 end-page: 362 ident: CR19 article-title: Prediction of bromate formation using multi-linear regression and artificial neural networks publication-title: Ozone Sci Eng doi: 10.1080/01919510701549327 – volume: 69 start-page: 315 year: 2017 end-page: 324 ident: CR43 article-title: Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates publication-title: Waste Manag doi: 10.1016/j.wasman.2017.08.028 – volume: 79 start-page: 112 year: 2016 end-page: 119 ident: CR22 article-title: Simple and multiple linear regression: sample size considerations publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2016.05.014 – ident: CR28 – ident: CR24 – volume: 91 start-page: 224 year: 2016 end-page: 232 ident: CR26 article-title: Improved multiple linear regression based models for solar collectors publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.056 – volume: 55 start-page: 220 year: 2016 end-page: 230 ident: CR4 article-title: Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills publication-title: Waste Manag doi: 10.1016/j.wasman.2016.05.025 – ident: 3751_CR16 – volume: 135 start-page: 124 year: 2013 ident: 3751_CR25 publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2012.08.013 – volume: 32 start-page: 3241 issue: 15 year: 2011 ident: 3751_CR44 publication-title: J Comput Chem doi: 10.1002/jcc.21907 – ident: 3751_CR18 – ident: 3751_CR14 – volume: 17 start-page: 26 year: 2017 ident: 3751_CR36 publication-title: Water Resources and Industry doi: 10.1016/j.wri.2017.02.002 – ident: 3751_CR12 – volume: 7 start-page: 745 issue: 2 year: 2017 ident: 3751_CR33 publication-title: Appl Water Sci doi: 10.1007/s13201-015-0287-x – volume: 69 start-page: 315 year: 2017 ident: 3751_CR43 publication-title: Waste Manag doi: 10.1016/j.wasman.2017.08.028 – ident: 3751_CR8 – volume: 55 start-page: 220 year: 2016 ident: 3751_CR4 publication-title: Waste Manag doi: 10.1016/j.wasman.2016.05.025 – volume: 18 start-page: 19 issue: 2 year: 1987 ident: 3751_CR37 publication-title: J Environ Educ doi: 10.1080/00958964.1987.9943484 – volume: 190 start-page: 291 year: 2018 ident: 3751_CR7 publication-title: Environ Monit Assess doi: 10.1007/s10661-018-6663-x – ident: 3751_CR28 – ident: 3751_CR24 – volume: 149 start-page: 784 year: 2017 ident: 3751_CR5 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.02.157 – volume: 385 start-page: 173 issue: 1–4 year: 2010 ident: 3751_CR9 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.02.019 – volume: 186 start-page: 202 year: 2018 ident: 3751_CR27 publication-title: J Geochem Explor doi: 10.1016/j.gexplo.2017.12.015 – volume: 4 start-page: 1078 year: 2015 ident: 3751_CR42 publication-title: Aquatic Procedia doi: 10.1016/j.aqpro.2015.02.136 – volume: 53 start-page: 317 issue: 2 year: 2007 ident: 3751_CR45 publication-title: Environ Geol doi: 10.1007/s00254-007-0647-4 – volume: 13 start-page: 1213 year: 2012 ident: 3751_CR47 publication-title: Procedia Environ Sci doi: 10.1016/j.proenv.2012.01.115 – volume: 21 start-page: 1865 issue: 8 year: 2013 ident: 3751_CR34 publication-title: Hydrogeol J doi: 10.1007/s10040-013-1029-5 – volume: 79 start-page: 112 year: 2016 ident: 3751_CR22 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2016.05.014 – volume: 48 start-page: 14 year: 2016 ident: 3751_CR3 publication-title: Waste Manag doi: 10.1016/j.wasman.2015.09.034 – volume: 76 start-page: 82 year: 2018 ident: 3751_CR10 publication-title: Waste Manag doi: 10.1016/j.wasman.2018.03.017 – volume: 91 start-page: 224 year: 2016 ident: 3751_CR26 publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.056 – ident: 3751_CR15 – ident: 3751_CR40 – ident: 3751_CR17 – ident: 3751_CR13 – volume: 188 start-page: 135 issue: 3 year: 2016 ident: 3751_CR23 publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5124-7 – ident: 3751_CR11 – volume: 62 start-page: 2266 issue: 14 year: 2017 ident: 3751_CR1 publication-title: Hydrol Sci J doi: 10.1080/02626667.2017.1364845 – ident: 3751_CR30 doi: 10.1007/s10163-018-0809-3 – volume: 29 start-page: 353 issue: 5 year: 2007 ident: 3751_CR19 publication-title: Ozone Sci Eng doi: 10.1080/01919510701549327 – volume: 72 start-page: 45 year: 2018 ident: 3751_CR21 publication-title: Waste Manag doi: 10.1016/j.wasman.2017.11.039 – volume: 148 start-page: 181 year: 2017 ident: 3751_CR20 publication-title: Glob Planet Chang doi: 10.1016/j.gloplacha.2016.11.014 – ident: 3751_CR29 – ident: 3751_CR31 – volume: 12 start-page: 761 year: 2011 ident: 3751_CR46 publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.10.102 – volume: 32 start-page: 1 issue: 1 year: 2018 ident: 3751_CR2 publication-title: Water Science doi: 10.1016/j.wsj.2018.04.002 – volume: 142 start-page: 2977 year: 2017 ident: 3751_CR32 publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.12.364 – volume: 22 start-page: 97 issue: 1 year: 2007 ident: 3751_CR39 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2005.12.002 – ident: 3751_CR35 – ident: 3751_CR6 doi: 10.1007/978-1-84882-969-5 – volume: 103 start-page: 126 year: 2018 ident: 3751_CR38 publication-title: Prog Nucl Energy doi: 10.1016/j.pnucene.2017.11.012 – volume: 7 start-page: 533 issue: 3 year: 2016 ident: 3751_CR41 publication-title: Atmos Pollut Res doi: 10.1016/j.apr.2016.01.002  | 
    
| SSID | ssj0020927 | 
    
| Score | 2.390405 | 
    
| Snippet | TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations... | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1821 | 
    
| SubjectTerms | Aquatic Pollution Aquifers Artificial intelligence Artificial neural networks Atmospheric Protection/Air Quality Control/Air Pollution Back propagation Bias Canada data collection Drinking water Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health Environmental monitoring Environmental Monitoring - methods Environmental science Extreme values Groundwater Groundwater - chemistry Groundwater quality guidelines Irrigation water Landfill Landfills Learning algorithms Machine Learning Mathematical models Modelling Models, Statistical monitoring Neural networks Performance evaluation polymerase chain reaction Quality assessment Quality control Regression analysis Research Article Statistical analysis Total dissolved solids Waste disposal sites Waste Water Technology Water Management Water Pollutants - analysis Water Pollution - statistics & numerical data Water Pollution Control Water quality wells  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll7Et-uLCJ6UQNukbXoU2UUEPbngrSRpsiysrW53hf0f_mBn-lpEXfDSHvK1DZ1M800n-YaQKwccKNBSMxHZgAmYkZmWiWaGJ1w56Wlu8Yf-41N0PxQPL-FLs4-7bFe7tynJ6ku93Ozm8xCjXwlOEfpssU42Q1TzgkE8DG67KMtL6jqtiRDM50K0qczfbvF9MvrBMH9kR6tJZ7BDthu2SG9r8-6SNZvvkcP-cnMaNDbeWe6Tz34n3U0LR4HaUT1WJVV5Rt-mTTEdbJnaUb38NaedhmsNe63WVlraFJMY0VZzHNrHgC7wiZjDLyYfNqNwGmclrcrpIBrurXI6n2o4qvc5Lps5IMNB__nunjVVF5gRIpgx54CVSZd51Z5TIAiZcZkROg7jLOCx5VHsY1GYMNbKcW4hfnTGRFZJm0UJfEAOyUZe5PaYUGkNsA3Dla-diDVXobaB4iaSSvswInrEa19_ahpJcqyMMUmXYsposRQslqLF0kWPXHeXvNV6HKvAZ61N08Y1yzQAkEDBCq9HLrtmcCrMlKjcFvMKA2EeRGJ8FUYmKAaHmKN6vHQ9wvQzEJ-4R27aAbTswJ_dPfkX-pRsAXlL6t9BZ2RjNp3bcyBIM31ROcQXrTQKmw priority: 102 providerName: Springer Nature  | 
    
| Title | Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer | 
    
| URI | https://link.springer.com/article/10.1007/s11356-018-3751-y https://www.ncbi.nlm.nih.gov/pubmed/30456617 https://www.proquest.com/docview/2135410230 https://www.proquest.com/docview/2136057683 https://www.proquest.com/docview/2189550783  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Proquest Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 0944-1344 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bixMxFD7sti--iLfV6loi-KQEO5PM7UGWusy6KBYRC_VpyHUprDPdXoT9H_7gPWduRRb7MgPNmU6Yk5N8yUm-D-CtRwwU6lRzGbuQSxyRuU4zzY3IhPLpRAtHC_rfZvHlXH5ZRIsjmHVnYWhbZdcn1h21rQytkX8IAxFJ4hmYnK1uOKlGUXa1k9BQrbSC_VhTjB3DMCRmrAEMP-Wz7z_6Kdgka0RcMyl5IKTs8pz1YTp8A82uUwy6KOC3_45U9-DnvdRpPSJdPIKHLZRk08b3j-HIlU_gJN-fXMPCNnQ3T-Fv3vN6s8ozxH1ML9WGqdKy1bpV2qGStbtq9saWrCd4bcx-1xsvHWuVJq5YR0iO5Uu0ruiNlOCvrv84y_C2tBtWa-2QNf63KtlurfGqbna0p-YZzC_yn-eXvJVk4EbKcMu9R8iWejupD6QierDGWyN1EiU2FIkTcRKQYkyUaOWFcDi59MbETqXOxhn2LicwKKvSvQCWOoNQxAgVaC8TLVSkXaiEiVOlA2wuI5h0n78wLV85yWZcF3umZfJYgR4ryGPF7Qje9Y-sGrKOQ8annU-LNm43xb6VjeBNX4wRR2kUVbpqV9vgHBCnaeKQTZoRUxzZPG_aS18jyk0jKkpG8L5rQPsK_Le6Lw9X9xU8QCiXNYtDpzDYrnfuNcKlrR7DcbJI8JqeB2MYTj__-pqP27jAX-fh9A5A1hgW | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAXxKs0bYFFggtohe1dvw4V4pEqpW2EUCv1ZvZZRSp2Gieg_A9-D7-NGXvtCFXk1otz2LG9zszszuw8PkJeObCBIpUpJhIbMQE7MlNZrpjmOZcuCxS3eKB_Ok5G5-LLRXyxQf50tTCYVtmtic1CbSqNZ-TvopDHAvsMBO-n1wxRozC62kFoSA-tYA6aFmO-sOPYLn-BC1cfHH0Gfr-OosPh2acR8ygDTAsRzZlzYIVkzgRNjSVsiEY7o4VK49REPLU8SUMEQYlTJR3nFvwlp3ViZWZNkoPCwHPvkC24Owfnb-vjcPz1W-_yBXkLGpsLwUIuRBdXbYr34IvQm89AyeOQLf_dGW-YuzdCtc0OePiA3PemK_3QytpDsmHLR2R7uKqUg0G_VNSPye9h30ecVo6CnUnVRNZUloZOZx7ZB0dm9rLNxS1p31C2JfvRJHpa6pEtLmnXAB3GJ0Bd4RsxoaC6-mkNhZ-JqWmD7YPU8GxZ0sVMwVVeLzCH5wk5vxXmbJPNsirtDqGZ1WD6aC5D5USquIyVjSTXSSZVCOI5IEH39xfa90dHmI6rYtXZGTlWAMcK5FixHJA3_S3TtjnIOuL9jqeFXyfqYiXVA_KyHwYNx7CNLG21aGjA5wS3kK-jyXLsTIc0T1t56WeEsXCwwtIBedsJ0GoC_53u7vrpviB3R2enJ8XJ0fh4j9wDMzJvD6b2yeZ8trDPwFSbq-deHyj5ftsq-BfDeVBH | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIiEuiFch0IKR4AKyurv2vg6oQjRRS6HiQKXcFttrV5HKbppNWuV_8Gv4dczsU6git16SgycbJzNjf-MZzwfw1iEGCnSiuYxswCXuyFwnqeZGpEK5xNPC0oH-t9Po6Ex-mYbTLfjT3YWhsspuTawX6rw0dEa-H_gilNRnwNt3bVnE98PJwfySE4MUZVo7Oo3GRE7s-hrDt-rj8SHq-l0QTMY_Ph_xlmGAGymDJXcOEUjicq--X4mbYW5cbqSOwzgPRGxFFPtEgBLGWjkhLMZKzpjIqsTmUYrOgs-9A3djIVIqJ4ynQ7DnpQ1dbCol94WUXUa1vraHv4Xi-ATdO_T5-t898QbQvZGkrfe-yUN40IJW9qmxskewZYvHsDMe7sjhYLtIVE_g97jvIM5KxxBhMj1TFVNFzuaLltOHRhb2vKnCLVjfSrYR-1WXeFrWclqcs671OY7PULqkb6RSgvLiyuYM32Z5xWpWH5LGZ6uCrRYaX9Xliqp3nsLZrahmB7aLsrDPgSXWIOgxQvnayVgLFWobKGGiRGkfDXMEXvf3Z6btjE4EHRfZ0NOZNJahxjLSWLYewfv-I_OmLcgm4d1Op1m7QlTZYM8jeNMPo29TwkYVtlzVMhhtYkAoNskkKfWkI5lnjb30M6IsOOKveAQfOgMaJvDf6b7YPN3XcA8dL_t6fHryEu4jfkybE6ld2F4uVnYPMdpSv6qdgcHP2_a-v4v7TeE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+bias+and+precision+of+regression+techniques+and+machine+learning+approaches+in+total+dissolved+solids+modeling+of+an+urban+aquifer&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Pan%2C+Conglian&rft.au=Ng%2C+Kelvin+Tsun+Wai&rft.au=Fallah%2C+Bahareh&rft.au=Richter%2C+Amy&rft.date=2019-01-01&rft.eissn=1614-7499&rft.volume=26&rft.issue=2&rft.spage=1821&rft_id=info:doi/10.1007%2Fs11356-018-3751-y&rft_id=info%3Apmid%2F30456617&rft.externalDocID=30456617 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon |