Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer

TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dua...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 26; no. 2; pp. 1821 - 1833
Main Authors Pan, Conglian, Ng, Kelvin Tsun Wai, Fallah, Bahareh, Richter, Amy
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-018-3751-y

Cover

Abstract TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage ( R 2  > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better ( R 2 avg  = 0.981 and 0.974, respectively), while BPNN models performed worse ( R 2 avg  = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.
AbstractList TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage ( R 2  > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better ( R 2 avg  = 0.981 and 0.974, respectively), while BPNN models performed worse ( R 2 avg  = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.
TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R  > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R  = 0.981 and 0.974, respectively), while BPNN models performed worse (R  = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.
TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R2 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R2avg = 0.981 and 0.974, respectively), while BPNN models performed worse (R2avg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.
TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R2 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R2avg = 0.981 and 0.974, respectively), while BPNN models performed worse (R2avg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R2 > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R2avg = 0.981 and 0.974, respectively), while BPNN models performed worse (R2avg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.
TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations in 27 monitoring wells surrounding the landfill. This study aims to predict TDS concentrations using three different modeling approaches: dual-step multiple linear regression (MLR), hybrid principal component regression (PCR), and backpropagation neural networks (BPNN). An analysis of the bias and precision of each models follows, using performance evaluation metrics and statistical indices. TDS is one of the most important parameters in assessing suitability of water for irrigation, and for overall groundwater quality assessment. Good agreement was observed between the MLR1 model and field data, although multicollinearity issues exist. Percentage errors of hybrid PCR were comparable to the dual-step MLR method. Percentage error for hybrid PCR was found to be inversely proportional to TDS concentrations, which was not observed for dual-step MLR. Larger errors were obtained from the BPNN models, and higher percentage errors were observed in monitoring wells with lower TDS concentrations. All models in this study adequately describe the data in testing stage (R² > 0.86). Generally, the dual-step MLR and hybrid PCR models fared better (R²ₐᵥg = 0.981 and 0.974, respectively), while BPNN models performed worse (R²ₐᵥg = 0.904). For this dataset, both regression and machine learning models are more suited to predict mid-range data compared to extreme values. Advanced regression methods (hybrid PCR and dual-step MLR) are more advantageous compared to BPNN.
Author Ng, Kelvin Tsun Wai
Pan, Conglian
Richter, Amy
Fallah, Bahareh
Author_xml – sequence: 1
  givenname: Conglian
  surname: Pan
  fullname: Pan, Conglian
  organization: Environmental Systems Engineering, University of Regina
– sequence: 2
  givenname: Kelvin Tsun Wai
  orcidid: 0000-0002-2045-9367
  surname: Ng
  fullname: Ng, Kelvin Tsun Wai
  email: kelvin.ng@uregina.ca
  organization: Environmental Systems Engineering, University of Regina
– sequence: 3
  givenname: Bahareh
  surname: Fallah
  fullname: Fallah, Bahareh
  organization: Environmental Systems Engineering, University of Regina
– sequence: 4
  givenname: Amy
  surname: Richter
  fullname: Richter, Amy
  organization: Environmental Systems Engineering, University of Regina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30456617$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URKeFB2CDLLFhE7DjW7JEVaFIldjAOnLs4xlXiT21k0rzHn1gnMkUpEogNj7yOd9_Lvov0FmIARB6S8lHSoj6lCllQlaENhVTglaHF2hDJeWV4m17hjak5byijPNzdJHzHSE1aWv1Cp0zwoWUVG3Q4_WDHmY9-RhwdHjaAe69zlgHi_cJjM-nSoJtgnz8TWB2wd_PsGKjNjsfAA-gU_Bhi_V-n2JJlrovdJz0gK3POQ4PYHEJ3mY8RgvDQpfeOuA59eXV97N3kF6jl04PGd6c4iX6-eX6x9VNdfv967erz7eV4byeKudIwxpnCWec1U1NrHHW8F4JZWumgElFBWVMqF47xoAS5YyRoBuwslWEXaIPa9-y73LO1I0-GxgGHSDOuatp0wpBVMP-A2WSCCWP6Ptn6F2cUyiHLJTglNRsmf3uRM39CLbbJz_qdOierCkAXQGTYs4J3G-Ekm6xv1vt74r93WJ_dyga9Uxj_HQ0d0raD_9U1qsylylhC-nP0n8X_QIZ3MV3
CitedBy_id crossref_primary_10_1007_s40201_022_00836_9
crossref_primary_10_1016_j_heliyon_2023_e16432
crossref_primary_10_1016_j_jenvman_2023_119896
crossref_primary_10_1016_j_scs_2022_104115
crossref_primary_10_4236_gep_2024_125013
crossref_primary_10_1016_j_asr_2024_03_038
crossref_primary_10_1016_j_scitotenv_2021_148024
crossref_primary_10_1007_s11356_018_3967_x
crossref_primary_10_1016_j_resconrec_2019_06_013
crossref_primary_10_1016_j_ecoinf_2022_101897
crossref_primary_10_3390_su15087016
crossref_primary_10_1007_s11356_022_20428_2
crossref_primary_10_1016_j_wasman_2021_02_029
crossref_primary_10_1007_s11356_022_18520_8
crossref_primary_10_1007_s13201_020_01352_7
crossref_primary_10_1016_j_jhydrol_2023_129934
crossref_primary_10_1007_s11831_025_10248_1
crossref_primary_10_1016_j_scs_2022_104219
crossref_primary_10_3846_jeelm_2025_22950
crossref_primary_10_1007_s10163_024_01994_8
crossref_primary_10_1016_j_jenvman_2024_122731
crossref_primary_10_1007_s10706_024_02787_4
crossref_primary_10_1016_j_ecoinf_2022_101925
crossref_primary_10_1016_j_scs_2021_103097
crossref_primary_10_1016_j_jclepro_2021_126465
crossref_primary_10_1016_j_jenvman_2022_114869
crossref_primary_10_1080_19942060_2020_1861987
crossref_primary_10_1007_s11356_022_25119_6
crossref_primary_10_1007_s10706_023_02655_7
crossref_primary_10_1007_s11356_019_05541_z
crossref_primary_10_1007_s11356_023_25291_3
crossref_primary_10_2166_hydro_2021_138
crossref_primary_10_1016_j_apgeochem_2022_105273
crossref_primary_10_1016_j_engappai_2023_106780
crossref_primary_10_3390_w15223995
crossref_primary_10_1016_j_scs_2021_103339
crossref_primary_10_1021_acs_jafc_4c04708
Cites_doi 10.1002/jcc.21907
10.1007/s00254-007-0647-4
10.1016/j.wasman.2017.11.039
10.1016/j.aqpro.2015.02.136
10.1016/j.egypro.2011.10.102
10.1007/s10661-016-5124-7
10.1016/j.wri.2017.02.002
10.1016/j.envsoft.2005.12.002
10.1080/02626667.2017.1364845
10.1016/j.wsj.2018.04.002
10.1016/j.apr.2016.01.002
10.1016/j.jclepro.2017.02.157
10.1007/s10661-018-6663-x
10.1016/j.proenv.2012.01.115
10.1016/j.gloplacha.2016.11.014
10.1016/j.wasman.2015.09.034
10.1016/j.pnucene.2017.11.012
10.1016/j.gexplo.2017.12.015
10.1016/j.jhydrol.2010.02.019
10.1007/s10040-013-1029-5
10.1080/00958964.1987.9943484
10.1016/j.gexplo.2012.08.013
10.1016/j.wasman.2018.03.017
10.1016/j.egypro.2017.12.364
10.1007/s13201-015-0287-x
10.1080/01919510701549327
10.1016/j.wasman.2017.08.028
10.1016/j.jclinepi.2016.05.014
10.1016/j.renene.2016.01.056
10.1016/j.wasman.2016.05.025
10.1007/s10163-018-0809-3
10.1007/978-1-84882-969-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Environmental Science and Pollution Research is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
K60
K6~
K9.
L.-
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7X8
7S9
L.6
DOI 10.1007/s11356-018-3751-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Toxicology Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Proquest Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Health & Medical Collection
Medical Database
Science Database (Proquest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Pollution Abstracts
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 1833
ExternalDocumentID 30456617
10_1007_s11356_018_3751_y
Genre Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-385815
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-385815
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-~C
.VR
06D
0R~
0VY
199
1N0
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
4P2
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N9A
NB0
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RSV
S16
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
-Y2
2.D
2P1
2VQ
53G
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
BSONS
CAG
CITATION
COF
H13
N2Q
NDZJH
O9-
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
RNI
RZK
S1Z
S26
S28
SCK
SCLPG
T16
WK6
Y6R
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7T7
7TV
7U7
7XB
8FD
8FK
C1K
FR3
K9.
L.-
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7S9
L.6
ID FETCH-LOGICAL-c442t-ff0838fd043432820dcfdc4b757d237e3671513357baf33e107fcc6ea8ed69703
IEDL.DBID BENPR
ISSN 0944-1344
1614-7499
IngestDate Thu Sep 04 16:31:07 EDT 2025
Thu Oct 02 06:30:29 EDT 2025
Tue Oct 07 06:01:44 EDT 2025
Mon Jul 21 05:47:37 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Wed Oct 01 01:56:35 EDT 2025
Fri Feb 21 02:34:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Principal component regression
Bias and precision
Total dissolved solids
Artificial neural network
Multivariate statistical analysis
Machine learning methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-ff0838fd043432820dcfdc4b757d237e3671513357baf33e107fcc6ea8ed69703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2045-9367
PMID 30456617
PQID 2135410230
PQPubID 54208
PageCount 13
ParticipantIDs proquest_miscellaneous_2189550783
proquest_miscellaneous_2136057683
proquest_journals_2135410230
pubmed_primary_30456617
crossref_primary_10_1007_s11356_018_3751_y
crossref_citationtrail_10_1007_s11356_018_3751_y
springer_journals_10_1007_s11356_018_3751_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hanley (CR22) 2016; 79
Atta, Amer, Atta (CR2) 2018; 32
Hu, Luo, Jing (CR25) 2013; 135
Chickering, Krause, Townsend (CR10) 2018; 76
CR18
CR17
CR16
CR15
CR14
CR13
CR35
Bagheri, Bazvand, Ehteshami (CR5) 2017; 149
CR12
Bruce, Ng, Vu (CR7) 2018; 190
CR11
Ebrahimi, Rajaee (CR20) 2017; 148
CR31
CR30
Xu, Wang, Wang, Shen, Xu (CR44) 2011; 32
Tan, San Lim, Jafri (CR41) 2016; 7
Azadi, Amiri, Rakhshandehroo (CR4) 2016; 55
Hassen, Hamzaoui-Azaza, Bouhlila (CR23) 2016; 188
Abou Zakhem, Al-Charideh, Kattaa (CR1) 2017; 62
CR6
Azadi, Karimi-Jashni (CR3) 2016; 48
CR8
Zhao, Wang, Li (CR46) 2011; 12
CR29
Sousa, Martins, Alvim-Ferraz, Pereira (CR39) 2007; 22
Chen, Chen, Chou, Yang (CR9) 2010; 385
CR28
CR24
Kicsiny (CR26) 2016; 91
Sahoo, Jha (CR34) 2013; 21
Civelekoglu, Yigit, Diamadopoulos, Kitis (CR19) 2007; 29
CR40
Vu, Ng, Richter (CR43) 2017; 69
Rashid, Rosely, Noor, Shamsuddin, Hamid, Ibrahim (CR32) 2017; 142
Li, Wang, Wang, Wan, Shi, Wanke, Uugulu, Uahengo (CR27) 2018; 186
Zhao, Xia, Yang, Wang (CR47) 2012; 13
Han, Liu, Zhong, Shi, Li, Zeng, Zhang, Fei, Xie (CR21) 2018; 72
Selvakumar, Chandrasekar, Kumar (CR36) 2017; 17
Viswanath, Kumar, Ammad (CR42) 2015; 4
Xun, Hua, Liang, Ye, Xia, Rui, Li (CR45) 2007; 53
Ravikumar, Somashekar (CR33) 2017; 7
Sherrard, Moore, Dillaha (CR37) 1987; 18
Solanki, Kulkarni, Singh, Verma, Varde (CR38) 2018; 103
HSAF Atta (3751_CR2) 2018; 32
S Hu (3751_CR25) 2013; 135
Z Han (3751_CR21) 2018; 72
X Zhao (3751_CR46) 2011; 12
3751_CR8
3751_CR31
3751_CR6
3751_CR11
B Abou Zakhem (3751_CR1) 2017; 62
3751_CR12
CS Chen (3751_CR9) 2010; 385
3751_CR30
3751_CR17
JH Sherrard (3751_CR37) 1987; 18
3751_CR18
3751_CR13
NA Rashid (3751_CR32) 2017; 142
3751_CR35
3751_CR14
3751_CR15
R Kicsiny (3751_CR26) 2016; 91
3751_CR16
S Azadi (3751_CR3) 2016; 48
N Bruce (3751_CR7) 2018; 190
GW Chickering (3751_CR10) 2018; 76
S Azadi (3751_CR4) 2016; 55
Z Li (3751_CR27) 2018; 186
NC Viswanath (3751_CR42) 2015; 4
RB Solanki (3751_CR38) 2018; 103
S Selvakumar (3751_CR36) 2017; 17
I Hassen (3751_CR23) 2016; 188
H Ebrahimi (3751_CR20) 2017; 148
S Sahoo (3751_CR34) 2013; 21
3751_CR40
HL Vu (3751_CR43) 2017; 69
G Civelekoglu (3751_CR19) 2007; 29
3751_CR28
3751_CR29
P Ravikumar (3751_CR33) 2017; 7
3751_CR24
JA Hanley (3751_CR22) 2016; 79
Z Xun (3751_CR45) 2007; 53
J Xu (3751_CR44) 2011; 32
M Bagheri (3751_CR5) 2017; 149
Y Zhao (3751_CR47) 2012; 13
SIV Sousa (3751_CR39) 2007; 22
KC Tan (3751_CR41) 2016; 7
References_xml – volume: 32
  start-page: 3241
  issue: 15
  year: 2011
  end-page: 3252
  ident: CR44
  article-title: QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21907
– ident: CR18
– volume: 53
  start-page: 317
  issue: 2
  year: 2007
  end-page: 323
  ident: CR45
  article-title: Some factors affecting TDS and pH values in groundwater of the Beihai coastal area in southern Guangxi, China
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-0647-4
– volume: 72
  start-page: 45
  year: 2018
  end-page: 54
  ident: CR21
  article-title: Influencing factors of domestic waste characteristics in rural areas of developing countries
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2017.11.039
– ident: CR14
– volume: 4
  start-page: 1078
  year: 2015
  end-page: 1085
  ident: CR42
  article-title: Statistical analysis of quality of water in various water shed for Kozhikode City, Kerala, India
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2015.02.136
– ident: CR16
– volume: 12
  start-page: 761
  year: 2011
  end-page: 769
  ident: CR46
  article-title: Review of evaluation criteria and main methods of wind power forecasting
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.10.102
– volume: 188
  start-page: 135
  issue: 3
  year: 2016
  ident: CR23
  article-title: Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: case of Oum Ali-Thelepte aquifer, Central Tunisia
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5124-7
– ident: CR12
– ident: CR30
– volume: 17
  start-page: 26
  year: 2017
  end-page: 33
  ident: CR36
  article-title: Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India
  publication-title: Water Resources and Industry
  doi: 10.1016/j.wri.2017.02.002
– volume: 22
  start-page: 97
  issue: 1
  year: 2007
  end-page: 103
  ident: CR39
  article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2005.12.002
– volume: 62
  start-page: 2266
  issue: 14
  year: 2017
  end-page: 2279
  ident: CR1
  article-title: Using principal component analysis in the investigation of groundwater hydrochemistry of Upper Jezireh Basin, Syria
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2017.1364845
– volume: 32
  start-page: 1
  issue: 1
  year: 2018
  end-page: 15
  ident: CR2
  article-title: Hydro-chemical study of groundwater and its suitability for different purposes at Manfalut District, Assuit Governate
  publication-title: Water Science
  doi: 10.1016/j.wsj.2018.04.002
– ident: CR35
– volume: 7
  start-page: 533
  issue: 3
  year: 2016
  end-page: 546
  ident: CR41
  article-title: Prediction of column ozone concentrations using multiple regression analysis and principal component analysis techniques: a case study in peninsular Malaysia
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2016.01.002
– volume: 149
  start-page: 784
  year: 2017
  end-page: 796
  ident: CR5
  article-title: Application of artificial intelligence for the management of landfill leachate penetration into groundwater, and assessment of its environmental impacts
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.02.157
– ident: CR6
– ident: CR29
– volume: 190
  start-page: 291
  year: 2018
  ident: CR7
  article-title: Use of seasonal parameters and their effects on FOD landfill gas modeling
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6663-x
– ident: CR8
– ident: CR40
– volume: 13
  start-page: 1213
  year: 2012
  end-page: 1226
  ident: CR47
  article-title: Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques
  publication-title: Procedia Environ Sci
  doi: 10.1016/j.proenv.2012.01.115
– volume: 148
  start-page: 181
  year: 2017
  end-page: 191
  ident: CR20
  article-title: Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine
  publication-title: Glob Planet Chang
  doi: 10.1016/j.gloplacha.2016.11.014
– volume: 48
  start-page: 14
  year: 2016
  end-page: 23
  ident: CR3
  article-title: Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: a case study of Fars province, Iran
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2015.09.034
– volume: 103
  start-page: 126
  year: 2018
  end-page: 134
  ident: CR38
  article-title: Optimization of regression model using principal component regression method in passive system reliability assessment
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2017.11.012
– volume: 186
  start-page: 202
  year: 2018
  end-page: 214
  ident: CR27
  article-title: Groundwater quality and associated hydrogeochemical processes in Northwest Namibia
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2017.12.015
– volume: 385
  start-page: 173
  issue: 1–4
  year: 2010
  end-page: 182
  ident: CR9
  article-title: Development and application of a decision group back-propagation neural network for flood forecasting
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.02.019
– volume: 21
  start-page: 1865
  issue: 8
  year: 2013
  end-page: 1887
  ident: CR34
  article-title: Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-013-1029-5
– volume: 18
  start-page: 19
  issue: 2
  year: 1987
  end-page: 24
  ident: CR37
  article-title: Total dissolved solids: determination, sources, effects, and removal
  publication-title: J Environ Educ
  doi: 10.1080/00958964.1987.9943484
– volume: 135
  start-page: 124
  year: 2013
  end-page: 129
  ident: CR25
  article-title: Principal component analysis of fluoride geochemistry of groundwater in Shanxi and Inner Mongolia, China
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2012.08.013
– ident: CR15
– ident: CR17
– ident: CR31
– volume: 76
  start-page: 82
  year: 2018
  end-page: 89
  ident: CR10
  article-title: Determination of as-discarded methane potential in residential and commercial municipal solid waste
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2018.03.017
– ident: CR13
– ident: CR11
– volume: 142
  start-page: 2977
  year: 2017
  end-page: 2982
  ident: CR32
  article-title: Forecasting of refined palm oil quality using principal component regression
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.364
– volume: 7
  start-page: 745
  issue: 2
  year: 2017
  end-page: 755
  ident: CR33
  article-title: Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-015-0287-x
– volume: 29
  start-page: 353
  issue: 5
  year: 2007
  end-page: 362
  ident: CR19
  article-title: Prediction of bromate formation using multi-linear regression and artificial neural networks
  publication-title: Ozone Sci Eng
  doi: 10.1080/01919510701549327
– volume: 69
  start-page: 315
  year: 2017
  end-page: 324
  ident: CR43
  article-title: Optimization of first order decay gas generation model parameters for landfills located in cold semi-arid climates
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2017.08.028
– volume: 79
  start-page: 112
  year: 2016
  end-page: 119
  ident: CR22
  article-title: Simple and multiple linear regression: sample size considerations
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2016.05.014
– ident: CR28
– ident: CR24
– volume: 91
  start-page: 224
  year: 2016
  end-page: 232
  ident: CR26
  article-title: Improved multiple linear regression based models for solar collectors
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.056
– volume: 55
  start-page: 220
  year: 2016
  end-page: 230
  ident: CR4
  article-title: Evaluating the ability of artificial neural network and PCA-M5P models in predicting leachate COD load in landfills
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2016.05.025
– ident: 3751_CR16
– volume: 135
  start-page: 124
  year: 2013
  ident: 3751_CR25
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2012.08.013
– volume: 32
  start-page: 3241
  issue: 15
  year: 2011
  ident: 3751_CR44
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21907
– ident: 3751_CR18
– ident: 3751_CR14
– volume: 17
  start-page: 26
  year: 2017
  ident: 3751_CR36
  publication-title: Water Resources and Industry
  doi: 10.1016/j.wri.2017.02.002
– ident: 3751_CR12
– volume: 7
  start-page: 745
  issue: 2
  year: 2017
  ident: 3751_CR33
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-015-0287-x
– volume: 69
  start-page: 315
  year: 2017
  ident: 3751_CR43
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2017.08.028
– ident: 3751_CR8
– volume: 55
  start-page: 220
  year: 2016
  ident: 3751_CR4
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2016.05.025
– volume: 18
  start-page: 19
  issue: 2
  year: 1987
  ident: 3751_CR37
  publication-title: J Environ Educ
  doi: 10.1080/00958964.1987.9943484
– volume: 190
  start-page: 291
  year: 2018
  ident: 3751_CR7
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-018-6663-x
– ident: 3751_CR28
– ident: 3751_CR24
– volume: 149
  start-page: 784
  year: 2017
  ident: 3751_CR5
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.02.157
– volume: 385
  start-page: 173
  issue: 1–4
  year: 2010
  ident: 3751_CR9
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.02.019
– volume: 186
  start-page: 202
  year: 2018
  ident: 3751_CR27
  publication-title: J Geochem Explor
  doi: 10.1016/j.gexplo.2017.12.015
– volume: 4
  start-page: 1078
  year: 2015
  ident: 3751_CR42
  publication-title: Aquatic Procedia
  doi: 10.1016/j.aqpro.2015.02.136
– volume: 53
  start-page: 317
  issue: 2
  year: 2007
  ident: 3751_CR45
  publication-title: Environ Geol
  doi: 10.1007/s00254-007-0647-4
– volume: 13
  start-page: 1213
  year: 2012
  ident: 3751_CR47
  publication-title: Procedia Environ Sci
  doi: 10.1016/j.proenv.2012.01.115
– volume: 21
  start-page: 1865
  issue: 8
  year: 2013
  ident: 3751_CR34
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-013-1029-5
– volume: 79
  start-page: 112
  year: 2016
  ident: 3751_CR22
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2016.05.014
– volume: 48
  start-page: 14
  year: 2016
  ident: 3751_CR3
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2015.09.034
– volume: 76
  start-page: 82
  year: 2018
  ident: 3751_CR10
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2018.03.017
– volume: 91
  start-page: 224
  year: 2016
  ident: 3751_CR26
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.056
– ident: 3751_CR15
– ident: 3751_CR40
– ident: 3751_CR17
– ident: 3751_CR13
– volume: 188
  start-page: 135
  issue: 3
  year: 2016
  ident: 3751_CR23
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5124-7
– ident: 3751_CR11
– volume: 62
  start-page: 2266
  issue: 14
  year: 2017
  ident: 3751_CR1
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2017.1364845
– ident: 3751_CR30
  doi: 10.1007/s10163-018-0809-3
– volume: 29
  start-page: 353
  issue: 5
  year: 2007
  ident: 3751_CR19
  publication-title: Ozone Sci Eng
  doi: 10.1080/01919510701549327
– volume: 72
  start-page: 45
  year: 2018
  ident: 3751_CR21
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2017.11.039
– volume: 148
  start-page: 181
  year: 2017
  ident: 3751_CR20
  publication-title: Glob Planet Chang
  doi: 10.1016/j.gloplacha.2016.11.014
– ident: 3751_CR29
– ident: 3751_CR31
– volume: 12
  start-page: 761
  year: 2011
  ident: 3751_CR46
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.10.102
– volume: 32
  start-page: 1
  issue: 1
  year: 2018
  ident: 3751_CR2
  publication-title: Water Science
  doi: 10.1016/j.wsj.2018.04.002
– volume: 142
  start-page: 2977
  year: 2017
  ident: 3751_CR32
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.364
– volume: 22
  start-page: 97
  issue: 1
  year: 2007
  ident: 3751_CR39
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2005.12.002
– ident: 3751_CR35
– ident: 3751_CR6
  doi: 10.1007/978-1-84882-969-5
– volume: 103
  start-page: 126
  year: 2018
  ident: 3751_CR38
  publication-title: Prog Nucl Energy
  doi: 10.1016/j.pnucene.2017.11.012
– volume: 7
  start-page: 533
  issue: 3
  year: 2016
  ident: 3751_CR41
  publication-title: Atmos Pollut Res
  doi: 10.1016/j.apr.2016.01.002
SSID ssj0020927
Score 2.390405
Snippet TDS is modeled for an aquifer near an unlined landfill in Canada. Canadian Drinking Water Guidelines and other indices are used to evaluate TDS concentrations...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1821
SubjectTerms Aquatic Pollution
Aquifers
Artificial intelligence
Artificial neural networks
Atmospheric Protection/Air Quality Control/Air Pollution
Back propagation
Bias
Canada
data collection
Drinking water
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental monitoring
Environmental Monitoring - methods
Environmental science
Extreme values
Groundwater
Groundwater - chemistry
Groundwater quality
guidelines
Irrigation water
Landfill
Landfills
Learning algorithms
Machine Learning
Mathematical models
Modelling
Models, Statistical
monitoring
Neural networks
Performance evaluation
polymerase chain reaction
Quality assessment
Quality control
Regression analysis
Research Article
Statistical analysis
Total dissolved solids
Waste disposal sites
Waste Water Technology
Water Management
Water Pollutants - analysis
Water Pollution - statistics & numerical data
Water Pollution Control
Water quality
wells
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-Ll7Et-uLCJ6UQNukbXoU2UUEPbngrSRpsiysrW53hf0f_mBn-lpEXfDSHvK1DZ1M800n-YaQKwccKNBSMxHZgAmYkZmWiWaGJ1w56Wlu8Yf-41N0PxQPL-FLs4-7bFe7tynJ6ku93Ozm8xCjXwlOEfpssU42Q1TzgkE8DG67KMtL6jqtiRDM50K0qczfbvF9MvrBMH9kR6tJZ7BDthu2SG9r8-6SNZvvkcP-cnMaNDbeWe6Tz34n3U0LR4HaUT1WJVV5Rt-mTTEdbJnaUb38NaedhmsNe63WVlraFJMY0VZzHNrHgC7wiZjDLyYfNqNwGmclrcrpIBrurXI6n2o4qvc5Lps5IMNB__nunjVVF5gRIpgx54CVSZd51Z5TIAiZcZkROg7jLOCx5VHsY1GYMNbKcW4hfnTGRFZJm0UJfEAOyUZe5PaYUGkNsA3Dla-diDVXobaB4iaSSvswInrEa19_ahpJcqyMMUmXYsposRQslqLF0kWPXHeXvNV6HKvAZ61N08Y1yzQAkEDBCq9HLrtmcCrMlKjcFvMKA2EeRGJ8FUYmKAaHmKN6vHQ9wvQzEJ-4R27aAbTswJ_dPfkX-pRsAXlL6t9BZ2RjNp3bcyBIM31ROcQXrTQKmw
  priority: 102
  providerName: Springer Nature
Title Evaluation of the bias and precision of regression techniques and machine learning approaches in total dissolved solids modeling of an urban aquifer
URI https://link.springer.com/article/10.1007/s11356-018-3751-y
https://www.ncbi.nlm.nih.gov/pubmed/30456617
https://www.proquest.com/docview/2135410230
https://www.proquest.com/docview/2136057683
https://www.proquest.com/docview/2189550783
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 0944-1344
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bixMxFD7sti--iLfV6loi-KQEO5PM7UGWusy6KBYRC_VpyHUprDPdXoT9H_7gPWduRRb7MgPNmU6Yk5N8yUm-D-CtRwwU6lRzGbuQSxyRuU4zzY3IhPLpRAtHC_rfZvHlXH5ZRIsjmHVnYWhbZdcn1h21rQytkX8IAxFJ4hmYnK1uOKlGUXa1k9BQrbSC_VhTjB3DMCRmrAEMP-Wz7z_6Kdgka0RcMyl5IKTs8pz1YTp8A82uUwy6KOC3_45U9-DnvdRpPSJdPIKHLZRk08b3j-HIlU_gJN-fXMPCNnQ3T-Fv3vN6s8ozxH1ML9WGqdKy1bpV2qGStbtq9saWrCd4bcx-1xsvHWuVJq5YR0iO5Uu0ruiNlOCvrv84y_C2tBtWa-2QNf63KtlurfGqbna0p-YZzC_yn-eXvJVk4EbKcMu9R8iWejupD6QierDGWyN1EiU2FIkTcRKQYkyUaOWFcDi59MbETqXOxhn2LicwKKvSvQCWOoNQxAgVaC8TLVSkXaiEiVOlA2wuI5h0n78wLV85yWZcF3umZfJYgR4ryGPF7Qje9Y-sGrKOQ8annU-LNm43xb6VjeBNX4wRR2kUVbpqV9vgHBCnaeKQTZoRUxzZPG_aS18jyk0jKkpG8L5rQPsK_Le6Lw9X9xU8QCiXNYtDpzDYrnfuNcKlrR7DcbJI8JqeB2MYTj__-pqP27jAX-fh9A5A1hgW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAXxKs0bYFFggtohe1dvw4V4pEqpW2EUCv1ZvZZRSp2Gieg_A9-D7-NGXvtCFXk1otz2LG9zszszuw8PkJeObCBIpUpJhIbMQE7MlNZrpjmOZcuCxS3eKB_Ok5G5-LLRXyxQf50tTCYVtmtic1CbSqNZ-TvopDHAvsMBO-n1wxRozC62kFoSA-tYA6aFmO-sOPYLn-BC1cfHH0Gfr-OosPh2acR8ygDTAsRzZlzYIVkzgRNjSVsiEY7o4VK49REPLU8SUMEQYlTJR3nFvwlp3ViZWZNkoPCwHPvkC24Owfnb-vjcPz1W-_yBXkLGpsLwUIuRBdXbYr34IvQm89AyeOQLf_dGW-YuzdCtc0OePiA3PemK_3QytpDsmHLR2R7uKqUg0G_VNSPye9h30ecVo6CnUnVRNZUloZOZx7ZB0dm9rLNxS1p31C2JfvRJHpa6pEtLmnXAB3GJ0Bd4RsxoaC6-mkNhZ-JqWmD7YPU8GxZ0sVMwVVeLzCH5wk5vxXmbJPNsirtDqGZ1WD6aC5D5USquIyVjSTXSSZVCOI5IEH39xfa90dHmI6rYtXZGTlWAMcK5FixHJA3_S3TtjnIOuL9jqeFXyfqYiXVA_KyHwYNx7CNLG21aGjA5wS3kK-jyXLsTIc0T1t56WeEsXCwwtIBedsJ0GoC_53u7vrpviB3R2enJ8XJ0fh4j9wDMzJvD6b2yeZ8trDPwFSbq-deHyj5ftsq-BfDeVBH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIiEuiFch0IKR4AKyurv2vg6oQjRRS6HiQKXcFttrV5HKbppNWuV_8Gv4dczsU6git16SgycbJzNjf-MZzwfw1iEGCnSiuYxswCXuyFwnqeZGpEK5xNPC0oH-t9Po6Ex-mYbTLfjT3YWhsspuTawX6rw0dEa-H_gilNRnwNt3bVnE98PJwfySE4MUZVo7Oo3GRE7s-hrDt-rj8SHq-l0QTMY_Ph_xlmGAGymDJXcOEUjicq--X4mbYW5cbqSOwzgPRGxFFPtEgBLGWjkhLMZKzpjIqsTmUYrOgs-9A3djIVIqJ4ynQ7DnpQ1dbCol94WUXUa1vraHv4Xi-ATdO_T5-t898QbQvZGkrfe-yUN40IJW9qmxskewZYvHsDMe7sjhYLtIVE_g97jvIM5KxxBhMj1TFVNFzuaLltOHRhb2vKnCLVjfSrYR-1WXeFrWclqcs671OY7PULqkb6RSgvLiyuYM32Z5xWpWH5LGZ6uCrRYaX9Xliqp3nsLZrahmB7aLsrDPgSXWIOgxQvnayVgLFWobKGGiRGkfDXMEXvf3Z6btjE4EHRfZ0NOZNJahxjLSWLYewfv-I_OmLcgm4d1Op1m7QlTZYM8jeNMPo29TwkYVtlzVMhhtYkAoNskkKfWkI5lnjb30M6IsOOKveAQfOgMaJvDf6b7YPN3XcA8dL_t6fHryEu4jfkybE6ld2F4uVnYPMdpSv6qdgcHP2_a-v4v7TeE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+the+bias+and+precision+of+regression+techniques+and+machine+learning+approaches+in+total+dissolved+solids+modeling+of+an+urban+aquifer&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Pan%2C+Conglian&rft.au=Ng%2C+Kelvin+Tsun+Wai&rft.au=Fallah%2C+Bahareh&rft.au=Richter%2C+Amy&rft.date=2019-01-01&rft.eissn=1614-7499&rft.volume=26&rft.issue=2&rft.spage=1821&rft_id=info:doi/10.1007%2Fs11356-018-3751-y&rft_id=info%3Apmid%2F30456617&rft.externalDocID=30456617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-1344&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-1344&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-1344&client=summon