Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers
Background In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by...
Saved in:
| Published in | Genes & genomics Vol. 41; no. 6; pp. 667 - 678 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Singapore
01.06.2019
Springer Nature B.V 한국유전학회 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1976-9571 2092-9293 2092-9293 |
| DOI | 10.1007/s13258-019-00813-x |
Cover
| Abstract | Background
In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process.
Objectives
In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169).
Methods
The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F
1
hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene
R1
-
nj
(Nanda and Chase in Crop Sci 6:213–215,
1966
), and we harvested seeds of the haploid lines.
Results
A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population.
Conclusion
The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. |
|---|---|
| AbstractList | Background In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process.
Objectives In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169).
Methods The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213–215, 1966), and we harvested seeds of the haploid lines.
Results A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population.
Conclusion The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. KCI Citation Count: 0 In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process. In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169). The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213-215, 1966), and we harvested seeds of the haploid lines. A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population. The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. Background In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process. Objectives In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169). Methods The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F 1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1 - nj (Nanda and Chase in Crop Sci 6:213–215, 1966 ), and we harvested seeds of the haploid lines. Results A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population. Conclusion The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. BACKGROUND: In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process. OBJECTIVES: In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169). METHODS: The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F₁ hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213–215, 1966), and we harvested seeds of the haploid lines. RESULTS: A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population. CONCLUSION: The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process.BACKGROUNDIn this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process.In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169).OBJECTIVESIn our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169).The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213-215, 1966), and we harvested seeds of the haploid lines.METHODSThe DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213-215, 1966), and we harvested seeds of the haploid lines.A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population.RESULTSA total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population.The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs.CONCLUSIONThe results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. BackgroundIn this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process.ObjectivesIn our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169).MethodsThe DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213–215, 1966), and we harvested seeds of the haploid lines.ResultsA total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population.ConclusionThe results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs. |
| Author | Lim, Su Eun Park, Ki Jin Sa, Kyu Jin Park, Jong Yeol Ryu, Si-Hwan Choi, Jae-Keun Lee, Mijeong Rhee, Hae-Ik Lee, Ju Kyong Park, Dae Hyun |
| Author_xml | – sequence: 1 givenname: Jae-Keun surname: Choi fullname: Choi, Jae-Keun organization: Gangwon-do Agricultural Research and Extension Services, Maize Research Institute, Department of Medical Biotechnology, Kangwon National University – sequence: 2 givenname: Kyu Jin surname: Sa fullname: Sa, Kyu Jin organization: Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University – sequence: 3 givenname: Dae Hyun surname: Park fullname: Park, Dae Hyun organization: Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University – sequence: 4 givenname: Su Eun surname: Lim fullname: Lim, Su Eun organization: Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University – sequence: 5 givenname: Si-Hwan surname: Ryu fullname: Ryu, Si-Hwan organization: Gangwon-do Agricultural Research and Extension Services, Maize Research Institute – sequence: 6 givenname: Jong Yeol surname: Park fullname: Park, Jong Yeol organization: Gangwon-do Agricultural Research and Extension Services, Maize Research Institute – sequence: 7 givenname: Ki Jin surname: Park fullname: Park, Ki Jin organization: Gangwon-do Agricultural Research and Extension Services, Maize Research Institute – sequence: 8 givenname: Hae-Ik surname: Rhee fullname: Rhee, Hae-Ik organization: Department of Medical Biotechnology, Kangwon National University – sequence: 9 givenname: Mijeong surname: Lee fullname: Lee, Mijeong organization: Department of Anatomy Cell Biology, Kangwon National University School of Medicine – sequence: 10 givenname: Ju Kyong orcidid: 0000-0002-2769-0799 surname: Lee fullname: Lee, Ju Kyong email: jukyonglee@kangwon.ac.kr organization: Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30953340$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002474577$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqFkstu3CAUhlGVqpmmeYEuKqRukoVTLsaYZTS9JNJIVZPpphtEMVhkPOAClpI-Rx-4zDhJpSxSNgeh7-N2_tfgwAdvAHiL0RlGiH9ImBLWVgiLCqEW0-r2BVgQJEgliKAHYIEFbyrBOD4ExyndoDIorpsavwKHFAlGaY0W4M8y-JTjpLMLHgYLe-NNdhoOzm9Ub-BWjVD5DrrO-Oys0-qB_LZeJRjNoLLpYA5Q9TH4sC1ujsrlBJ2HHy_gGMZpeJS2yv028OSHUWV6l-Dq7BROyfkeXl9flaW4MTG9AS-tGpI5vq9H4PvnT-vlRbX6-uVyeb6qdF2TXNmGMCuU5o3SbdNZ22lmdEcVr5XpUC2UpZboGhEmFDed1rbtkEDECMspq-kROJ339dHKjXYyKLevfZCbKM-v1peSNRS3iBX2ZGbHGH5NJmW5dUmbYVDehClJQhHDDeUc_x8lqG5aTsgOff8EvQlT9OXRhSKiaVjb8kK9u6emn1vTyTG68lN38qGNBSAzoGNIKRr7iGAkd3GRc1xkiYvcx0XeFql9ImmX943a9W94XqWzmso5vjfx37Wfsf4Cc_bUCw |
| CitedBy_id | crossref_primary_10_3390_ijms24032629 crossref_primary_10_1007_s13258_021_01169_x crossref_primary_10_3390_plants12223806 crossref_primary_10_1007_s00343_020_0184_5 crossref_primary_10_1016_j_cj_2022_11_003 crossref_primary_10_1007_s10722_024_02252_4 crossref_primary_10_3390_ijms24010006 crossref_primary_10_2174_1389202924666230517115912 crossref_primary_10_3390_ijms251910300 crossref_primary_10_1007_s13258_022_01289_y crossref_primary_10_1016_j_cj_2021_01_003 crossref_primary_10_1007_s10681_021_02867_z crossref_primary_10_3390_plants10071404 crossref_primary_10_1186_s12870_020_02792_8 crossref_primary_10_3390_plants13152126 crossref_primary_10_1016_j_saa_2021_119475 crossref_primary_10_3390_cells12141900 crossref_primary_10_1007_s13258_020_01030_7 |
| Cites_doi | 10.1371/journal.pone.0014068 10.1016/j.tplants.2005.04.008 10.1007/s10681-005-1681-5 10.1007/s13258-014-0223-8 10.1007/s10681-007-9459-6 10.1371/journal.pone.0124779 10.1007/s00122-010-1485-4 10.1139/g05-014 10.1007/s10681-006-9312-3 10.1007/s00438-005-0016-5 10.1371/journal.pone.0025646 10.1007/s001220100560 10.1007/BF02712670 10.2135/cropsci1966.0011183X000600020036x 10.1111/j.1439-0523.2011.01878.x 10.1007/BF00226242 10.1007/s00122-012-2003-7 10.2135/cropsci1985.0011183X002500040029x 10.1016/0888-7543(87)90010-3 10.1007/s10681-009-9966-8 10.1007/s00122-005-1926-7 10.1007/s10681-011-0452-8 10.1007/s00122-014-2276-0 10.1007/s11032-010-9410-8 10.1016/j.cj.2013.07.010 10.1016/S0065-2113(05)86002-X 10.1007/s12041-011-0036-3 10.1371/journal.pone.0189441 10.1186/1471-2229-11-4 10.1134/S1022795406030112 10.1007/s00122-007-0548-7 10.1007/s12041-010-0032-z 10.1093/aob/mcm055 10.1111/j.1744-7909.2006.00289.x 10.1007/BF00223378 10.4238/2012.March.19.3 10.1007/s00122-006-0263-9 10.2135/cropsci1998.0011183X003800050027x 10.1111/j.0018-0661.2008.02065.x 10.1534/genetics.106.064493 10.2135/cropsci2011.03.0148 10.1016/S2095-3119(16)61524-1 10.2135/cropsci2016.12.0991 10.1016/j.cj.2017.05.001 10.1111/j.1439-0523.2012.01963.x 10.1007/BF03195676 10.1007/s11032-011-9548-z 10.3390/molecules14114546 10.1007/s13258-011-0208-9 10.2135/cropsci2010.06.0383 10.1007/s001220050382 10.1007/978-3-540-68922-5_10 10.1111/j.1469-1809.1943.tb02321.x 10.1007/s13258-013-0157-6 10.1007/s00122-009-1173-4 10.1534/genetics.111.133066 10.1007/BF00261181 10.1093/genetics/134.3.917 |
| ContentType | Journal Article |
| Copyright | The Genetics Society of Korea 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: The Genetics Society of Korea 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ACYCR |
| DOI | 10.1007/s13258-019-00813-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Korean Citation Index |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2092-9293 |
| EndPage | 678 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_5631805 30953340 10_1007_s13258_019_00813_x |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -EM 06D 0R~ 0VY 1N0 203 29~ 2KG 30V 4.4 406 408 40D 5GY 67N 96X 9ZL AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HMJXF HRMNR HZB I0C IAO IGS IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 R9I RLLFE ROL RSV S27 S3A S3B SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U ZMTXR ZOVNA 2VQ AANXM AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEBTG AEZWR AFDZB AFHIU AFLOW AFOHR AGJBK AHPBZ AHSBF AHWEU AIXLP AJBLW ATHPR AYFIA CITATION H13 HF~ HZ~ O9- S1Z CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC Z83 |
| ID | FETCH-LOGICAL-c442t-f625f9ac76ac86dffdc5ecd3a74aed049af3f2c40259a7edccf8d0902e9f73543 |
| IEDL.DBID | AGYKE |
| ISSN | 1976-9571 2092-9293 |
| IngestDate | Tue Nov 21 21:41:45 EST 2023 Sun Aug 24 04:01:34 EDT 2025 Thu Sep 04 19:06:11 EDT 2025 Wed Sep 17 23:58:14 EDT 2025 Wed Feb 19 02:30:58 EST 2025 Thu Apr 24 22:57:42 EDT 2025 Wed Oct 01 04:30:47 EDT 2025 Fri Feb 21 02:38:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Agronomic trait Maize DH population QTLs SSR marker Genetic map |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-f625f9ac76ac86dffdc5ecd3a74aed049af3f2c40259a7edccf8d0902e9f73543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 https://doi.org/10.1007/s13258-019-00813-x |
| ORCID | 0000-0002-2769-0799 |
| PMID | 30953340 |
| PQID | 2229665887 |
| PQPubID | 2044424 |
| PageCount | 12 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_5631805 proquest_miscellaneous_2305163771 proquest_miscellaneous_2204687221 proquest_journals_2229665887 pubmed_primary_30953340 crossref_primary_10_1007_s13258_019_00813_x crossref_citationtrail_10_1007_s13258_019_00813_x springer_journals_10_1007_s13258_019_00813_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Korea (South) – name: Heidelberg |
| PublicationTitle | Genes & genomics |
| PublicationTitleAbbrev | Genes Genom |
| PublicationTitleAlternate | Genes Genomics |
| PublicationYear | 2019 |
| Publisher | Springer Singapore Springer Nature B.V 한국유전학회 |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: 한국유전학회 |
| References | Alvi, Tuberosa (CR4) 2005; 10 Wang, Ma, Li, Bai, Liu, Liu, Tan, Shi, Song, Carlone, Bubeck, Bhardwaj, Jones, Wright, Smith (CR61) 2011; 51 Ding, Ma, Zhang, Dong, Xi, Xia, Wu (CR14) 2011; 90 Duvick, Smith, Cooper (CR16) 2004; 24 Frascaroli, Canè, Landi, Pea, Gianfranceschi, Villa, Morgante, Pè (CR18) 2007; 176 Tang, Teng, Yan, Ma, Meng, Dai, Li (CR56) 2007; 155 Yamagishi, Takeuchi, Tanaka, Kono, Murai, Yano (CR65) 2010; 89 Akagi, Yokozaki, Inagaki, Fujimura (CR1) 1997; 94 Choe, Rocheford (CR8) 2012; 183 Zhao, Peng, Zhang, Fang, Wu (CR73) 2018; 58 Ali, Taylor, Jie, Sun, William, Kasha, Reid, Pauls (CR2) 2005; 48 Sa, Park, Woo, Ramekar, Jang, Lee (CR52) 2015; 37 Sabadin, Souza, Souza, Garcia (CR53) 2008; 145 Yu, Arbelbide, Bernardo (CR69) 2005; 110 Forster, Thomas (CR17) 2005; 25 Lee, Park, Kim, Kwon, Shin, Hong, Min, Kim (CR28) 2006; 113 Duvick (CR15) 2005; 86 Wang, Liang, Li, Hu, Wu, Wang, Liu, Huang (CR63) 2017; 5 Dellaporta, Wood, Hicks (CR12) 1983; 1 Cui, He, Chang, Zhang, Xue, Liu (CR10) 2017; 16 Zhang, Li, Wang, Peng, Liu, Liu, Tan, Wang, Shi, Sun, Song, Wang, Li (CR72) 2011; 130 Li, Li, Li, Fu, Wang, Wei (CR29) 2009; 169 Landi, Albrecht, Giuliani, Sanguineti (CR26) 1998; 43 Liu, Bernhardt, Jia, Wamishe, Jia (CR33) 2008; 159 Kosambi (CR24) 1944; 12 Zhang, Tang, Liang, Zheng, Qiu (CR71) 2011; 3 Qiu, Zheng, Zhang, Xu (CR48) 2007; 99 Tanksley, Grandillo, Fulton, Zamir, Eshed, Petiard, Lopez, Beck-Bunn (CR57) 1996; 92 Jiang, Ge, Zhao, Zhang (CR23) 2015; 10 Meyer, Snook, Houchins, Rector, Widstrom, McMullen (CR42) 2007; 115 Prigge, Xu, Li, Babu, Chen, Atlin, Melchinger (CR47) 2012; 190 Almeida, Makumbi, Magorokosho, Nair, Borém, Ribaut, Bänziger, Prasanna, Crossa, Babu (CR3) 2013; 126 Mclntyre, Mathews, Rattey, Chapman, Drenth, Ghaderi, Reynolds, Shorter (CR41) 2010; 120 Röber, Gordillo, Geiger (CR49) 2005; 50 Nanda, Chase (CR43) 1966; 6 Gardiner, Coe, Melia-Hancock, Hoisington, Chao (CR19) 1993; 134 Lechelt, Peterson, Laird, Chen, Dellaporta, Dennis, Peacock, Starlinger (CR27) 1989; 219 Sa, Park, Park, Lee (CR51) 2012; 34 Wang, Chen, Ku, Wang, Sun, Cheng, Wu (CR60) 2010; 5 Zhang, Zhao, Ding, Rong, Pan (CR70) 2006; 42 Collard, Jahufer, Brouwer, Pang (CR9) 2005; 142 Cai, Chu, Gu, Yuan, Liu, Zhang, Chen, Mi, Zhang (CR6) 2012; 131 Li, Zhang, Li, Wang, Zhou (CR30) 2011; 122 Liu, Wang, Sun, Zhang, Zheng, Qiu (CR36) 2014; 127 Lander, Green, Abrahamson, Barlow, Daly, Lincoln, Newburg (CR25) 1987; 1 Lombard, Delourme (CR38) 2001; 103 Young, Singh, Singh (CR68) 1995 CR59 Lu, Tang, Yan, Ma, Li, Chen, Ma, Liu, Zhang, Dai (CR32) 2006; 48 Lübberstedt, Melchinger, Fahr, Klein, Dally, Westhoff (CR40) 1998; 38 Geiger, Bennetzen, Hake (CR20) 2009 Ryu, Park, Huh, Min (CR50) 2001; 33 Beavis, Grant, Albertsen, Fincher (CR5) 1991; 83 Ding, Li, Song, Qi, Liu, Tang (CR13) 2011; 6 Prasanna, Chaikam, Mahuku (CR46) 2012 Danson, Lagat, Kimani, Kuria (CR11) 2008; 7 Guo, Yang, Chander, Yan, Zhang, Song, Li (CR22) 2013; 1 Geiger, Gordillo (CR21) 2009; 54 Liu, Meng, Zheng, Kong, Yuan, Lübberstedt (CR37) 2017; 12 Yang, Li, Wang, Zhou, Zhou, Shen, Zhang, Liang (CR67) 2012; 29 Park, Lee, Kim (CR44) 2009; 14 Semagn, Bjørnstad, Ndjiondjop (CR55) 2006; 5 Liu, He, Zheng, Huang, Tan, Wu (CR34) 2010; 55 Troyer, Larkins (CR58) 1985; 25 Wang, He, Xu, Song (CR62) 2012; 11 Yang, Jin, Wang, Zhang, Nguyen, Zhang, Chen (CR66) 2005; 274 Liu, Ji, Cui, Wu, Duan, Feng, Tang (CR35) 2011; 27 Lu, Xie, Yang, Zhang, Wu, Li, Liu, Jiang, Wan (CR39) 2011; 6 Wei, Fu, Li, Wang, Li (CR64) 2009; 50 Li, Ma, Wang, Li, Liu, Liu, Sun, Shi, Song, Carlone, Bubeck, Bhardwaj, Whitaker, Wilson, Jones, Wright, Sun, Niebur, Smith (CR31) 2011; 51 Salvi, Corneti, Bellotti, Carraro, Sanguineti, Castelletti, Tuberosa (CR54) 2011; 11 Park, Sa, Kim, Koh, Lee (CR45) 2014; 36 Chang, Coe, Kriz, Larkins (CR7) 2009 P Landi (813_CR26) 1998; 43 R Liu (813_CR37) 2017; 12 ML Ali (813_CR2) 2005; 48 CL Mclntyre (813_CR41) 2010; 120 YJ Park (813_CR44) 2009; 14 TY Wang (813_CR61) 2011; 51 C Lechelt (813_CR27) 1989; 219 DN Duvick (813_CR16) 2004; 24 BP Forster (813_CR17) 2005; 25 H Cai (813_CR6) 2012; 131 T Lübberstedt (813_CR40) 1998; 38 PK Sabadin (813_CR53) 2008; 145 MT Chang (813_CR7) 2009 S Alvi (813_CR4) 2005; 10 ES Choe (813_CR8) 2012; 183 XH Liu (813_CR34) 2010; 55 D Ding (813_CR13) 2011; 6 X Zhang (813_CR71) 2011; 3 V Lombard (813_CR38) 2001; 103 C Wang (813_CR60) 2010; 5 SL Dellaporta (813_CR12) 1983; 1 K Semagn (813_CR55) 2006; 5 BCY Collard (813_CR9) 2005; 142 G Yang (813_CR67) 2012; 29 KJ Sa (813_CR51) 2012; 34 L Jiang (813_CR23) 2015; 10 JH Tang (813_CR56) 2007; 155 Y Liu (813_CR36) 2014; 127 GH Lu (813_CR32) 2006; 48 J Meyer (813_CR42) 2007; 115 ZM Zhang (813_CR70) 2006; 42 JK Lee (813_CR28) 2006; 113 ZH Liu (813_CR35) 2011; 27 813_CR59 H Akagi (813_CR1) 1997; 94 GD Almeida (813_CR3) 2013; 126 Y Li (813_CR31) 2011; 51 J Danson (813_CR11) 2008; 7 JM Gardiner (813_CR19) 1993; 134 S Salvi (813_CR54) 2011; 11 V Prigge (813_CR47) 2012; 190 B Lu (813_CR39) 2011; 6 E Frascaroli (813_CR18) 2007; 176 HH Geiger (813_CR20) 2009 M Wei (813_CR64) 2009; 50 AF Troyer (813_CR58) 1985; 25 SD Tanksley (813_CR57) 1996; 92 ES Lander (813_CR25) 1987; 1 DE Yang (813_CR66) 2005; 274 DN Duvick (813_CR15) 2005; 86 Y Guo (813_CR22) 2013; 1 D Kosambi (813_CR24) 1944; 12 G Wang (813_CR62) 2012; 11 JZ Li (813_CR30) 2011; 122 JQ Ding (813_CR14) 2011; 90 F Qiu (813_CR48) 2007; 99 DK Nanda (813_CR43) 1966; 6 WD Beavis (813_CR5) 1991; 83 FK Röber (813_CR49) 2005; 50 HH Geiger (813_CR21) 2009; 54 KJ Park (813_CR45) 2014; 36 G Liu (813_CR33) 2008; 159 ND Young (813_CR68) 1995 H Wang (813_CR63) 2017; 5 SH Ryu (813_CR50) 2001; 33 J Yu (813_CR69) 2005; 110 (813_CR46) 2012 X Zhao (813_CR73) 2018; 58 Y Zhang (813_CR72) 2011; 130 TT Cui (813_CR10) 2017; 16 KJ Sa (813_CR52) 2015; 37 YL Li (813_CR29) 2009; 169 M Yamagishi (813_CR65) 2010; 89 |
| References_xml | – volume: 54 start-page: 485 year: 2009 end-page: 499 ident: CR21 article-title: Doubled haploids in hybrid maize breeding publication-title: Maydica – volume: 5 start-page: e14068 year: 2010 ident: CR60 article-title: Mapping QTL associated with photoperiod sensitivity and assessing the importance of QTL × environment interaction for flowering time in maize publication-title: PLoS One doi: 10.1371/journal.pone.0014068 – volume: 10 start-page: 297 year: 2005 end-page: 304 ident: CR4 article-title: To clone or not to clone plant QTL: present and future challenges publication-title: Trends in Plant Sci doi: 10.1016/j.tplants.2005.04.008 – volume: 142 start-page: 169 year: 2005 end-page: 196 ident: CR9 article-title: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts publication-title: Euphytica doi: 10.1007/s10681-005-1681-5 – volume: 37 start-page: 1 year: 2015 end-page: 14 ident: CR52 article-title: Mapping of QTL traits in corn using a RIL population derived from a cross of dent corn x waxy corn publication-title: Genes Genomics doi: 10.1007/s13258-014-0223-8 – volume: 159 start-page: 73 year: 2008 end-page: 82 ident: CR33 article-title: Molecular characterization of the recombinant inbred line population derived from a japonica–indica rice cross publication-title: Euphytica doi: 10.1007/s10681-007-9459-6 – volume: 10 start-page: e0124779 year: 2015 ident: CR23 article-title: Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize publication-title: PLoS One doi: 10.1371/journal.pone.0124779 – volume: 122 start-page: 771 year: 2011 end-page: 782 ident: CR30 article-title: QTL consistency and meta-analysis for grain yield components in three generations in maize publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1485-4 – volume: 48 start-page: 521 year: 2005 end-page: 533 ident: CR2 article-title: Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by publication-title: Genome doi: 10.1139/g05-014 – volume: 3 start-page: 168 year: 2011 end-page: 184 ident: CR71 article-title: Quantitative genetic analysis of flowering time, leaf number and photoperiod sensitivity in maize ( L.) publication-title: J Plant Breed Crop Sci – volume: 155 start-page: 117 year: 2007 end-page: 124 ident: CR56 article-title: Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize publication-title: Euphytica doi: 10.1007/s10681-006-9312-3 – volume: 274 start-page: 229 year: 2005 end-page: 234 ident: CR66 article-title: Characterization and mapping of , a gene that confers dominant resistance to stalk rot in maize publication-title: Mol Genet Genet doi: 10.1007/s00438-005-0016-5 – volume: 6 start-page: e25646 year: 2011 ident: CR13 article-title: Identification of QTLs for arsenic accumulation in maize ( L.) using a RIL population publication-title: PLoS One doi: 10.1371/journal.pone.0025646 – start-page: 641 year: 2009 end-page: 657 ident: CR20 article-title: Doubled haploids publication-title: Maize handbook-volume II; genetics and genomics – volume: 103 start-page: 491 year: 2001 end-page: 507 ident: CR38 article-title: A consensus linkage map for rapeseed ( L.): construction and integration of three individual maps from DH population publication-title: Theor Appl Genet doi: 10.1007/s001220100560 – volume: 1 start-page: 19 year: 1983 end-page: 21 ident: CR12 article-title: A simple and rapid method for plant DNA preparation, Version II publication-title: Plant Mol Bio Rep doi: 10.1007/BF02712670 – volume: 6 start-page: 213 year: 1966 end-page: 215 ident: CR43 article-title: An embryo marker for detecting monoploids of maize ( L.) publication-title: Crop Sci doi: 10.2135/cropsci1966.0011183X000600020036x – volume: 130 start-page: 617 year: 2011 end-page: 624 ident: CR72 article-title: Correlations and QTL detection in maize family per se and testcross progenies for plant height and ear height publication-title: Plant Breed doi: 10.1111/j.1439-0523.2011.01878.x – volume: 83 start-page: 141 year: 1991 end-page: 145 ident: CR5 article-title: Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci publication-title: Theor Appl Genet doi: 10.1007/BF00226242 – volume: 126 start-page: 583 year: 2013 end-page: 600 ident: CR3 article-title: QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance publication-title: Theor Appl Genet doi: 10.1007/s00122-012-2003-7 – volume: 25 start-page: 695 year: 1985 end-page: 697 ident: CR58 article-title: Selection for early flowering in corn: 10 late synthetics publication-title: Crop Sci doi: 10.2135/cropsci1985.0011183X002500040029x – volume: 7 start-page: 3247 year: 2008 end-page: 3254 ident: CR11 article-title: Quantitative trait loci (QTLs) for resistance to gray leaf spot and common rust diseases of maize publication-title: Afr J Biotech – volume: 1 start-page: 174 year: 1987 end-page: 181 ident: CR25 article-title: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations publication-title: Genomics doi: 10.1016/0888-7543(87)90010-3 – volume: 169 start-page: 273 year: 2009 end-page: 284 ident: CR29 article-title: Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize publication-title: Euphytica doi: 10.1007/s10681-009-9966-8 – volume: 110 start-page: 1061 year: 2005 end-page: 1067 ident: CR69 article-title: Power of in silico QTL mapping from phenotypic, pedigree, and marker data in a hybrid breeding program publication-title: Theor Appl Genet doi: 10.1007/s00122-005-1926-7 – volume: 24 start-page: 109 year: 2004 end-page: 151 ident: CR16 article-title: Long-term selection in a commercial hybrid maize breeding program publication-title: Plant Breed Rev – volume: 183 start-page: 243 year: 2012 end-page: 260 ident: CR8 article-title: Genetic and QTL analysis of pericarp thickness and ear architecture traits of Korean waxy corn germplasm publication-title: Euphytica doi: 10.1007/s10681-011-0452-8 – volume: 33 start-page: 95 year: 2001 end-page: 103 ident: CR50 article-title: Relationship between genetic distance and hybrid performance of black waxy corn ( L.) publication-title: Korean J Breed Sci – volume: 127 start-page: 1019 year: 2014 end-page: 1037 ident: CR36 article-title: Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments publication-title: Theor Appl Genet doi: 10.1007/s00122-014-2276-0 – volume: 43 start-page: 111 year: 1998 end-page: 116 ident: CR26 article-title: Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging publication-title: Maydica – volume: 27 start-page: 25 year: 2011 end-page: 36 ident: CR35 article-title: QTL detected for grain-filling rate in maize using a RIL population publication-title: Mol Breed doi: 10.1007/s11032-010-9410-8 – volume: 1 start-page: 34 year: 2013 end-page: 42 ident: CR22 article-title: Identification of unconditional and conditional QTL for oil, protein and starch content in maize publication-title: Crop J doi: 10.1016/j.cj.2013.07.010 – volume: 86 start-page: 83 year: 2005 end-page: 145 ident: CR15 article-title: The contribution of breeding to yield advances in maize ( L.) publication-title: Adv Agron doi: 10.1016/S0065-2113(05)86002-X – volume: 90 start-page: 75 year: 2011 end-page: 80 ident: CR14 article-title: QTL mapping for test weight by using F population in maize publication-title: J Genet doi: 10.1007/s12041-011-0036-3 – volume: 12 start-page: e0189441 year: 2017 ident: CR37 article-title: Genetic mapping of QTL for maize leaf width combining RIL and IF populations publication-title: PLoS One doi: 10.1371/journal.pone.0189441 – volume: 25 start-page: 57 year: 2005 end-page: 88 ident: CR17 article-title: Doubled haploids in genetics and plant breeding publication-title: Plant Breed Rev – volume: 11 start-page: 4 year: 2011 ident: CR54 article-title: Genetic dissection of maize phenology using an intraspecific introgression library publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-4 – volume: 42 start-page: 306 year: 2006 end-page: 310 ident: CR70 article-title: Quantitative trait loci analysis of plant height and ear height in maize ( L.) publication-title: Rus J Genet doi: 10.1134/S1022795406030112 – volume: 115 start-page: 119 year: 2007 end-page: 128 ident: CR42 article-title: Quantitative trait loci for maysin synthesis in maize ( L.) lines selected for high silk maysin content publication-title: Theor Appl Genet doi: 10.1007/s00122-007-0548-7 – volume: 6 start-page: 2372 year: 2011 end-page: 2378 ident: CR39 article-title: Efficient QTL detection for heading date in backcross inbred line and F population derived from the same rice cross publication-title: Afr J Agri Res – volume: 89 start-page: 237 year: 2010 end-page: 241 ident: CR65 article-title: Segregation distortion in F and doubled haploid populations of temperate japonica rice publication-title: J Genet doi: 10.1007/s12041-010-0032-z – volume: 99 start-page: 1067 year: 2007 end-page: 1081 ident: CR48 article-title: Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize publication-title: Anna Botany doi: 10.1093/aob/mcm055 – volume: 48 start-page: 1233 year: 2006 end-page: 1243 ident: CR32 article-title: Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2006.00289.x – volume: 92 start-page: 213 year: 1996 end-page: 224 ident: CR57 article-title: Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative publication-title: Theor Appl Genet doi: 10.1007/BF00223378 – volume: 11 start-page: 693 year: 2012 end-page: 706 ident: CR62 article-title: High segregation distortion in maize B73 x teosinte crosses publication-title: Genet Mol Res doi: 10.4238/2012.March.19.3 – volume: 113 start-page: 16 year: 2006 end-page: 22 ident: CR28 article-title: Genetic mapping of the Isaac-CACTA transposon in maize publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0263-9 – volume: 38 start-page: 1278 year: 1998 end-page: 1289 ident: CR40 article-title: QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits publication-title: Crop Sci doi: 10.2135/cropsci1998.0011183X003800050027x – volume: 145 start-page: 194 year: 2008 end-page: 203 ident: CR53 article-title: QTL mapping for yield components in a tropical maize population using microsatellite markers publication-title: Hereditas doi: 10.1111/j.0018-0661.2008.02065.x – volume: 176 start-page: 625 year: 2007 end-page: 644 ident: CR18 article-title: Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines publication-title: Genetics doi: 10.1534/genetics.106.064493 – volume: 51 start-page: 2391 year: 2011 end-page: 2400 ident: CR31 article-title: Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities publication-title: Crop Sci doi: 10.2135/cropsci2011.03.0148 – start-page: 221 year: 1995 end-page: 234 ident: CR68 article-title: Isolation and cloning of plant disease resistance genes publication-title: Molecular methods in plant pathology – volume: 16 start-page: 800 year: 2017 end-page: 808 ident: CR10 article-title: QTL mapping for leaf area in maize ( L.) under multi-environments publication-title: J Integ Agri doi: 10.1016/S2095-3119(16)61524-1 – volume: 58 start-page: 507 year: 2018 end-page: 520 ident: CR73 article-title: Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions publication-title: Crop Sci doi: 10.2135/cropsci2016.12.0991 – volume: 5 start-page: 387 year: 2017 end-page: 395 ident: CR63 article-title: QTL analysis of ear leaf traits in maize ( L.) under different planting densities publication-title: Crop J doi: 10.1016/j.cj.2017.05.001 – volume: 131 start-page: 502 year: 2012 end-page: 510 ident: CR6 article-title: Identification of QTLs for plant height, ear height and grain yield in maize ( L.) in response to nitrogen and phosphorus supply publication-title: Plant Breed doi: 10.1111/j.1439-0523.2012.01963.x – volume: 50 start-page: 225 year: 2009 end-page: 234 ident: CR64 article-title: Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize publication-title: J Appl Genet doi: 10.1007/BF03195676 – volume: 29 start-page: 313 year: 2012 end-page: 333 ident: CR67 article-title: Detection and integration of quantitative trait loci for grain yield components and oil content in two connected recombinant inbred line populations of high-oil maize publication-title: Mol Breed doi: 10.1007/s11032-011-9548-z – volume: 14 start-page: 4546 year: 2009 end-page: 4569 ident: CR44 article-title: Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops publication-title: Molecules doi: 10.3390/molecules14114546 – volume: 34 start-page: 157 year: 2012 end-page: 164 ident: CR51 article-title: Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers publication-title: Genes Genomics doi: 10.1007/s13258-011-0208-9 – volume: 55 start-page: 127 year: 2010 end-page: 133 ident: CR34 article-title: QTL identification for row number per ear and grain number per row in maize publication-title: Maydica – volume: 51 start-page: 512 year: 2011 end-page: 525 ident: CR61 article-title: Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2000 publication-title: Crop Sci doi: 10.2135/cropsci2010.06.0383 – volume: 94 start-page: 61 year: 1997 end-page: 67 ident: CR1 article-title: Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci publication-title: Theor Appl Genet doi: 10.1007/s001220050382 – volume: 134 start-page: 917 year: 1993 end-page: 930 ident: CR19 article-title: Development of a core RFLP map in maize using an immortalized F population publication-title: Genetics – start-page: 127 year: 2009 end-page: 142 ident: CR7 article-title: Doubled haploids publication-title: Biotechnology in agriculture and forestry. Vol. 63. molecular genetic approaches to maize improvement doi: 10.1007/978-3-540-68922-5_10 – volume: 12 start-page: 172 year: 1944 end-page: 175 ident: CR24 article-title: The estimation of map distances from recombination values publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1943.tb02321.x – volume: 5 start-page: 2569 year: 2006 end-page: 2587 ident: CR55 article-title: Principle, requirements and prospects of genetic mapping in plants publication-title: Afr J Biotech – year: 2012 ident: CR46 publication-title: Doubled haploid technology in maize breeding: theory and practice – volume: 36 start-page: 179 year: 2014 end-page: 189 ident: CR45 article-title: Genetic mapping and QTL analysis for yield and agronomic traits with an F population derived from a waxy corn x sweet corn cross publication-title: Genes Genomics doi: 10.1007/s13258-013-0157-6 – ident: CR59 – volume: 50 start-page: 275 year: 2005 end-page: 283 ident: CR49 article-title: In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding publication-title: Maydica – volume: 219 start-page: 225 year: 1989 end-page: 234 ident: CR27 article-title: Isolation and molecular analysis of the maize locus publication-title: Mol Gene Genet – volume: 120 start-page: 527 year: 2010 end-page: 541 ident: CR41 article-title: Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions publication-title: Theor Appl Genet doi: 10.1007/s00122-009-1173-4 – volume: 190 start-page: 781 year: 2012 end-page: 793 ident: CR47 article-title: New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize publication-title: Genetics doi: 10.1534/genetics.111.133066 – volume: 169 start-page: 273 year: 2009 ident: 813_CR29 publication-title: Euphytica doi: 10.1007/s10681-009-9966-8 – volume: 6 start-page: 213 year: 1966 ident: 813_CR43 publication-title: Crop Sci doi: 10.2135/cropsci1966.0011183X000600020036x – volume: 6 start-page: 2372 year: 2011 ident: 813_CR39 publication-title: Afr J Agri Res – volume: 54 start-page: 485 year: 2009 ident: 813_CR21 publication-title: Maydica – volume: 51 start-page: 512 year: 2011 ident: 813_CR61 publication-title: Crop Sci doi: 10.2135/cropsci2010.06.0383 – start-page: 221 volume-title: Molecular methods in plant pathology year: 1995 ident: 813_CR68 – volume: 159 start-page: 73 year: 2008 ident: 813_CR33 publication-title: Euphytica doi: 10.1007/s10681-007-9459-6 – volume: 103 start-page: 491 year: 2001 ident: 813_CR38 publication-title: Theor Appl Genet doi: 10.1007/s001220100560 – start-page: 641 volume-title: Maize handbook-volume II; genetics and genomics year: 2009 ident: 813_CR20 – volume: 37 start-page: 1 year: 2015 ident: 813_CR52 publication-title: Genes Genomics doi: 10.1007/s13258-014-0223-8 – volume: 10 start-page: 297 year: 2005 ident: 813_CR4 publication-title: Trends in Plant Sci doi: 10.1016/j.tplants.2005.04.008 – volume: 92 start-page: 213 year: 1996 ident: 813_CR57 publication-title: Theor Appl Genet doi: 10.1007/BF00223378 – volume: 1 start-page: 34 year: 2013 ident: 813_CR22 publication-title: Crop J doi: 10.1016/j.cj.2013.07.010 – volume: 14 start-page: 4546 year: 2009 ident: 813_CR44 publication-title: Molecules doi: 10.3390/molecules14114546 – volume: 34 start-page: 157 year: 2012 ident: 813_CR51 publication-title: Genes Genomics doi: 10.1007/s13258-011-0208-9 – volume: 51 start-page: 2391 year: 2011 ident: 813_CR31 publication-title: Crop Sci doi: 10.2135/cropsci2011.03.0148 – volume: 36 start-page: 179 year: 2014 ident: 813_CR45 publication-title: Genes Genomics doi: 10.1007/s13258-013-0157-6 – volume: 3 start-page: 168 year: 2011 ident: 813_CR71 publication-title: J Plant Breed Crop Sci – volume: 122 start-page: 771 year: 2011 ident: 813_CR30 publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1485-4 – volume: 5 start-page: e14068 year: 2010 ident: 813_CR60 publication-title: PLoS One doi: 10.1371/journal.pone.0014068 – volume: 110 start-page: 1061 year: 2005 ident: 813_CR69 publication-title: Theor Appl Genet doi: 10.1007/s00122-005-1926-7 – volume: 99 start-page: 1067 year: 2007 ident: 813_CR48 publication-title: Anna Botany doi: 10.1093/aob/mcm055 – volume: 1 start-page: 174 year: 1987 ident: 813_CR25 publication-title: Genomics doi: 10.1016/0888-7543(87)90010-3 – volume: 25 start-page: 57 year: 2005 ident: 813_CR17 publication-title: Plant Breed Rev – volume: 126 start-page: 583 year: 2013 ident: 813_CR3 publication-title: Theor Appl Genet doi: 10.1007/s00122-012-2003-7 – volume: 142 start-page: 169 year: 2005 ident: 813_CR9 publication-title: Euphytica doi: 10.1007/s10681-005-1681-5 – volume: 50 start-page: 225 year: 2009 ident: 813_CR64 publication-title: J Appl Genet doi: 10.1007/BF03195676 – volume: 12 start-page: e0189441 year: 2017 ident: 813_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0189441 – volume: 55 start-page: 127 year: 2010 ident: 813_CR34 publication-title: Maydica – volume: 120 start-page: 527 year: 2010 ident: 813_CR41 publication-title: Theor Appl Genet doi: 10.1007/s00122-009-1173-4 – volume: 7 start-page: 3247 year: 2008 ident: 813_CR11 publication-title: Afr J Biotech – volume: 155 start-page: 117 year: 2007 ident: 813_CR56 publication-title: Euphytica doi: 10.1007/s10681-006-9312-3 – volume: 29 start-page: 313 year: 2012 ident: 813_CR67 publication-title: Mol Breed doi: 10.1007/s11032-011-9548-z – volume: 50 start-page: 275 year: 2005 ident: 813_CR49 publication-title: Maydica – volume-title: Doubled haploid technology in maize breeding: theory and practice year: 2012 ident: 813_CR46 – volume: 183 start-page: 243 year: 2012 ident: 813_CR8 publication-title: Euphytica doi: 10.1007/s10681-011-0452-8 – volume: 83 start-page: 141 year: 1991 ident: 813_CR5 publication-title: Theor Appl Genet doi: 10.1007/BF00226242 – volume: 127 start-page: 1019 year: 2014 ident: 813_CR36 publication-title: Theor Appl Genet doi: 10.1007/s00122-014-2276-0 – volume: 11 start-page: 4 year: 2011 ident: 813_CR54 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-4 – volume: 274 start-page: 229 year: 2005 ident: 813_CR66 publication-title: Mol Genet Genet doi: 10.1007/s00438-005-0016-5 – volume: 176 start-page: 625 year: 2007 ident: 813_CR18 publication-title: Genetics doi: 10.1534/genetics.106.064493 – volume: 12 start-page: 172 year: 1944 ident: 813_CR24 publication-title: Ann Eugen doi: 10.1111/j.1469-1809.1943.tb02321.x – volume: 190 start-page: 781 year: 2012 ident: 813_CR47 publication-title: Genetics doi: 10.1534/genetics.111.133066 – volume: 33 start-page: 95 year: 2001 ident: 813_CR50 publication-title: Korean J Breed Sci – volume: 5 start-page: 2569 year: 2006 ident: 813_CR55 publication-title: Afr J Biotech – ident: 813_CR59 – volume: 94 start-page: 61 year: 1997 ident: 813_CR1 publication-title: Theor Appl Genet doi: 10.1007/s001220050382 – volume: 38 start-page: 1278 year: 1998 ident: 813_CR40 publication-title: Crop Sci doi: 10.2135/cropsci1998.0011183X003800050027x – volume: 27 start-page: 25 year: 2011 ident: 813_CR35 publication-title: Mol Breed doi: 10.1007/s11032-010-9410-8 – volume: 89 start-page: 237 year: 2010 ident: 813_CR65 publication-title: J Genet doi: 10.1007/s12041-010-0032-z – volume: 219 start-page: 225 year: 1989 ident: 813_CR27 publication-title: Mol Gene Genet doi: 10.1007/BF00261181 – volume: 10 start-page: e0124779 year: 2015 ident: 813_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0124779 – volume: 130 start-page: 617 year: 2011 ident: 813_CR72 publication-title: Plant Breed doi: 10.1111/j.1439-0523.2011.01878.x – volume: 58 start-page: 507 year: 2018 ident: 813_CR73 publication-title: Crop Sci doi: 10.2135/cropsci2016.12.0991 – start-page: 127 volume-title: Biotechnology in agriculture and forestry. Vol. 63. molecular genetic approaches to maize improvement year: 2009 ident: 813_CR7 doi: 10.1007/978-3-540-68922-5_10 – volume: 145 start-page: 194 year: 2008 ident: 813_CR53 publication-title: Hereditas doi: 10.1111/j.0018-0661.2008.02065.x – volume: 115 start-page: 119 year: 2007 ident: 813_CR42 publication-title: Theor Appl Genet doi: 10.1007/s00122-007-0548-7 – volume: 1 start-page: 19 year: 1983 ident: 813_CR12 publication-title: Plant Mol Bio Rep doi: 10.1007/BF02712670 – volume: 48 start-page: 521 year: 2005 ident: 813_CR2 publication-title: Genome doi: 10.1139/g05-014 – volume: 86 start-page: 83 year: 2005 ident: 813_CR15 publication-title: Adv Agron doi: 10.1016/S0065-2113(05)86002-X – volume: 24 start-page: 109 year: 2004 ident: 813_CR16 publication-title: Plant Breed Rev – volume: 5 start-page: 387 year: 2017 ident: 813_CR63 publication-title: Crop J doi: 10.1016/j.cj.2017.05.001 – volume: 131 start-page: 502 year: 2012 ident: 813_CR6 publication-title: Plant Breed doi: 10.1111/j.1439-0523.2012.01963.x – volume: 90 start-page: 75 year: 2011 ident: 813_CR14 publication-title: J Genet doi: 10.1007/s12041-011-0036-3 – volume: 134 start-page: 917 year: 1993 ident: 813_CR19 publication-title: Genetics doi: 10.1093/genetics/134.3.917 – volume: 6 start-page: e25646 year: 2011 ident: 813_CR13 publication-title: PLoS One doi: 10.1371/journal.pone.0025646 – volume: 43 start-page: 111 year: 1998 ident: 813_CR26 publication-title: Maydica – volume: 48 start-page: 1233 year: 2006 ident: 813_CR32 publication-title: J Integr Plant Biol doi: 10.1111/j.1744-7909.2006.00289.x – volume: 113 start-page: 16 year: 2006 ident: 813_CR28 publication-title: Theor Appl Genet doi: 10.1007/s00122-006-0263-9 – volume: 25 start-page: 695 year: 1985 ident: 813_CR58 publication-title: Crop Sci doi: 10.2135/cropsci1985.0011183X002500040029x – volume: 42 start-page: 306 year: 2006 ident: 813_CR70 publication-title: Rus J Genet doi: 10.1134/S1022795406030112 – volume: 16 start-page: 800 year: 2017 ident: 813_CR10 publication-title: J Integ Agri doi: 10.1016/S2095-3119(16)61524-1 – volume: 11 start-page: 693 year: 2012 ident: 813_CR62 publication-title: Genet Mol Res doi: 10.4238/2012.March.19.3 |
| SSID | ssj0000314641 |
| Score | 2.2378626 |
| Snippet | Background
In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169).... In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH... BackgroundIn this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169).... BACKGROUND: In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169).... Background In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169).... |
| SourceID | nrf proquest pubmed crossref springer |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 667 |
| SubjectTerms | agronomic traits Animal Genetics and Genomics Biomedical and Life Sciences Breeding breeding programs chromosome mapping Chromosomes, Plant - genetics color corn corn ears Cultivars doubled haploids Edible Grain - genetics Edible Grain - growth & development Genetic analysis Genetic distance Genetic Linkage genetic markers haploidy homozygosity Human Genetics Hybrids Lactuca sativa leaf length Life Sciences linkage groups Microbial Genetics and Genomics Microsatellite Repeats parents phenotype Plant Genetics and Genomics plant height Ploidies Population Population studies Quantitative Trait Loci Research Article Seeds Zea mays Zea mays - genetics Zea mays - growth & development 생물학 |
| Title | Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers |
| URI | https://link.springer.com/article/10.1007/s13258-019-00813-x https://www.ncbi.nlm.nih.gov/pubmed/30953340 https://www.proquest.com/docview/2229665887 https://www.proquest.com/docview/2204687221 https://www.proquest.com/docview/2305163771 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002474577 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Genes & Genomics, 2019, 41(6), , pp.667-678 |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2092-9293 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000314641 issn: 1976-9571 databaseCode: AFBBN dateStart: 20090201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2092-9293 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000314641 issn: 1976-9571 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2092-9293 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314641 issn: 1976-9571 databaseCode: U2A dateStart: 20090201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYJyRe-GYExmQQDyBIlcSxnTxWwCgwIcFWafBiOf6oqrKkajOJ7e_gD-YuH62AMWlPqdJLY7s_n-_su98R8tx6kce-iEMhDQ9T5gRMqcKEzkjpI6tlbBu2z89iPEk_HvPjLils1Ue790eSjabeJLuxhGPgVR7iOsZCsBy3G76tAdkevf_2abO3gpTsoilaGcNqG-Zcxl2-zMU_9MeatFUu_UXm5j9Hpc0KtH-LTPq2t4En8-FpXQzN-V-0jlft3G1yszNJ6ajF0B1yzZV3yfW2SOXZPfILa3r2LLO08hQgh5mPFN8D2oie6AXVpaUz20Ue6V7yy9HBijbZMs7SuqJ6umzToClWpqhXdFbSt2O6WBcRw4dO9Ozc0RffnYaPZyt6MHxJMTp_Sg8Pv8Kt5Rws1vtksv_u6M047Go5hCZNkzr04Gf5XBsptMmE9d4a7oxlWqbaWXBTtGc-MeDN8lxLZ43xmcWYUZd7yXjKHpBBWZXuIaGJZ-hVOZ2BPKBLm0KAY1XkLmKaRywgcf9vKtMRnWOvfqgNRTOOtoLRVs1oq58BebV-ZtHSfFwq_QxAouZmppCdG6_TSs2XCnyQD4oL0JMRD8hujyHV6YWVwurpAoy-TAbk6fprmNF4TKNLV52iTJSKTCZJfIkMqGmwpKUEmZ0Wn-t2M6QQZGkUkNc91jYN-H-nHl1N_DG5kTRwxQ2pXTIAHLonYJ_VxV43HffI1iQZ_QaXZjEh |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMEFlXegFIM4gGhQEsd2cqwo1RaWStBdqeJiOX6sVkuT1WaRKL-DH9yZvFaIUolTomQc2ZkZe8ae-YaQV9aLPPZFHAppeJgyJ0ClChM6I6WPrJaxbdA-j8Vomn485addUljdR7v3R5LNTL1JdmMJx8CrPMR1jIVgOd5AACtEzJ8m-8POCgKyi6ZkZQxrbZhzGXfZMpd_5o8V6Xq58pcZm38dlDbrz-E2udMZjnS_5fRdcs2V98jNtpTk-X3yGytv9liwtPIUBAPzEykOFeYMeqaXVJeWzm0XH6R7yi-TcU2bnBZn6bqierZqk5Up1o9Y13Re0oMRXQ6lvrDRmZ7_cvT1N6fh9rym43dvKMbQz-jJyVd4tFqAXfmATA8_TN6Pwq7iQmjSNFmHHrwhn2sjhTaZsN5bw52xTMtUOwvOhPbMJwZ8Tp5r6awxPrMY2elyLxlP2UOyVVale0xo4hn6Pk5nQA8yoE0hwP0pchcxzSMWkLj_68p0cOQ4qu9qA6SMnFLAKdVwSv0MyNuhzbIF47iS-iUwUy3MXCGGNl5nlVqsFHgKR4oLmM0iHpCdnteq095aYY1zAaZZJgPyYngNeoeHKbp01Q-kiVKRySSJr6CByRTsXSmB5lErR0O_GQL9sTQKyF4vWJsO_HtQT_6P_Dm5NZp8Hqvx0fGnp-R20og9biHtkC2QSfcMLKp1sdso0AUEAxXe |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCMQF8SZQwCAOIAhN4thOjhVltYVVBbQrVb1Yjh-r1dJktRskyu_gBzOT14IolTglSsaRnZmxZ-yZbwh5Yb3IY1_EoZCGhylzAlSqMKEzUvrIahnbBu3zQIyn6YdjfvxbFn8T7d4fSbY5DYjSVNY7S-t3NolvLOEYhJWHuKaxEKzIKykCJYBET5PdYZcFwdlFU74yhnU3zLmMu8yZ8z_zx-p0uVz58wzPvw5Nm7VodJPc6IxIutty_Ra55Mrb5GpbVvLsDvmJVTh7XFhaeQpCgrmKFIcN8wc91UuqS0vntosV0j3l56PJmjb5Lc7SuqJ6tmoTlynWkqjXdF7SvTFdDmW_sNGpnv9w9OWJ03B7tqaTt68oxtPP6OHhF3i0WoCNeZdMR--P3o3DrvpCaNI0qUMPnpHPtZFCm0xY763hzlimZaqdBcdCe-YTA_4nz7V01hifWYzydLmXjKfsHtkqq9I9IDTxDP0gpzOgB3nQphDgChW5i5jmEQtI3P91ZTpochzVV7UBVUZOKeCUajilvgfk9dBm2QJzXEj9HJipFmauEE8br7NKLVYKvIZ9xQXMbBEPyHbPa9Vp8lphvXMBZlomA_JseA06iAcrunTVN6SJUpHJJIkvoIGJFWxfKYHmfitHQ78Zgv6xNArIm16wNh3496Ae_h_5U3Lt095ITfYPPj4i15NG6nE3aZtsgUi6x2Bc1cWTRn9-AcKnGho |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+genetic+linkage+map+and+identification+of+QTLs+related+to+agronomic+traits+in+DH+population+of+maize+%28Zea+mays+L.%29+using+SSR+markers&rft.jtitle=Genes+%26+genomics&rft.au=Choi%2C+Jae-Keun&rft.au=Kyu+Jin+Sa&rft.au=Park%2C+Dae+Hyun&rft.au=Lim%2C+Su+Eun&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1976-9571&rft.eissn=2092-9293&rft.volume=41&rft.issue=6&rft.spage=667&rft.epage=678&rft_id=info:doi/10.1007%2Fs13258-019-00813-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-9571&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-9571&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-9571&client=summon |