Time Series Symbolization Method for the Data Mining K-Means Algorithm
Time series is a data type frequently encountered in data analysis. With the current depth and breadth of the data and the improvement in computer processing capabilities, the dimensionality and the complexity of time series are getting higher and higher. Time series symbolization is to cluster and...
Saved in:
| Published in | Discrete dynamics in nature and society Vol. 2023; pp. 1 - 11 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
15.04.2023
John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1026-0226 1607-887X 1607-887X |
| DOI | 10.1155/2023/5365673 |
Cover
| Abstract | Time series is a data type frequently encountered in data analysis. With the current depth and breadth of the data and the improvement in computer processing capabilities, the dimensionality and the complexity of time series are getting higher and higher. Time series symbolization is to cluster and assign complex and lengthy time series in the form of symbols to achieve the purpose of reducing the dimensionality of the sequence or making the sequence easier to process. Considering the excellent performance of the K-means algorithm in data mining and processing, as well as in the allocation algorithm for clustering, we plan to develop a simple method for the symbolization of time series for the K-means algorithm and hope that this method can realize the high-dimensional time series dimensionality reduction, processing of the special points in time series, and so on. Based on this, this article proposes an improved sans algorithm based on the K-means algorithm and discusses the representation method and the data processing of time series symbolization. Experimental results show that this method can effectively reduce the dimensionality of high-dimensional time series. After dimensionality reduction, the information retention rate contained in the elevation of the sequence can reach more than 90%, which is very effective for the detection of outliers in low-dimensional sequences. |
|---|---|
| AbstractList | Time series is a data type frequently encountered in data analysis. With the current depth and breadth of the data and the improvement in computer processing capabilities, the dimensionality and the complexity of time series are getting higher and higher. Time series symbolization is to cluster and assign complex and lengthy time series in the form of symbols to achieve the purpose of reducing the dimensionality of the sequence or making the sequence easier to process. Considering the excellent performance of the K-means algorithm in data mining and processing, as well as in the allocation algorithm for clustering, we plan to develop a simple method for the symbolization of time series for the K-means algorithm and hope that this method can realize the high-dimensional time series dimensionality reduction, processing of the special points in time series, and so on. Based on this, this article proposes an improved sans algorithm based on the K-means algorithm and discusses the representation method and the data processing of time series symbolization. Experimental results show that this method can effectively reduce the dimensionality of high-dimensional time series. After dimensionality reduction, the information retention rate contained in the elevation of the sequence can reach more than 90%, which is very effective for the detection of outliers in low-dimensional sequences. |
| Audience | Academic |
| Author | Wang, Guisheng |
| Author_xml | – sequence: 1 givenname: Guisheng orcidid: 0000-0001-9488-5476 surname: Wang fullname: Wang, Guisheng organization: Tongling UniversityTongling 244000AnhuiChinatlc.edu.cn |
| BookMark | eNqFkU9r3DAQxU1JoEmaWz-AocfWiSTrj3Vc0qQNzZJDEuhNyNJoV4stbWUtYfvpq41DD4W26CAx_N6b0ZvT6ijEAFX1HqMLjBm7JIi0l6zljIv2TXWCORJN14nvR-WNCG8QIfxtdTpNG4QI6iQ5qW4e_Qj1AyQPU_2wH_s4-J86-xjqJeR1tLWLqc5rqD_rrOulDz6s6m_NEnSY6sWwisnn9fiuOnZ6mOD89T6rnm6uH6--Nnf3X26vFneNoZTkxvSM8xYJipHFppO8tx0RBFvJnKRGSC4JUAbOtSAtYAzEMM25MZgajvv2rLqdfW3UG7VNftRpr6L26qUQ00rplL0ZQFlusANkoJMtFcx0hggprSaM6471rng1s9cubPX-WQ_Db0OM1CFQdQhUvQZa-A8zv03xxw6mrDZxl0L5riIdolIwJA_UxUytdBnCBxdz0qYcC6M3ZV_Ol_pCUC4EF0QWwadZYFKcpgTuf1OQP3Dj88vCSh8__E30cRatfbD62f-7xS_4AK9g |
| CitedBy_id | crossref_primary_10_1155_2024_9878510 crossref_primary_10_1109_ACCESS_2024_3495819 |
| Cites_doi | 10.1016/j.apm.2018.01.017 10.1016/j.cie.2018.11.033 10.1016/j.infsof.2019.06.003 10.1016/j.jpdc.2018.05.001 10.1016/j.jsc.2016.07.030 10.1016/j.jsc.2016.07.017 10.1016/j.vlsi.2017.09.007 10.1007/s10723-019-09504-z 10.1109/ms.2017.3571576 10.21629/JSEE.2017.02.18 10.1073/pnas.1611835114 10.1016/j.neucom.2016.11.081 10.1016/j.isprsjprs.2015.10.003 10.1515/cmam-2017-0040 10.1007/s40815-019-00707-w 10.1162/neco_a_01014 10.1109/lgrs.2021.3098809 10.1016/j.camwa.2017.06.049 10.1016/j.knosys.2019.05.002 10.19026/rjaset.14.4720 10.1016/j.jsc.2017.01.003 10.1109/tnnls.2015.2428738 10.1007/s00521-016-2500-8 10.1002/jnm.2339 10.1109/taslp.2016.2520371 10.1007/s13369-019-04280-0 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Guisheng Wang. COPYRIGHT 2023 John Wiley & Sons, Inc. Copyright © 2023 Guisheng Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2023 Guisheng Wang. – notice: COPYRIGHT 2023 John Wiley & Sons, Inc. – notice: Copyright © 2023 Guisheng Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L7M L~C L~D P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.1155/2023/5365673 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1607-887X |
| Editor | Farouk, Ahmed |
| Editor_xml | – sequence: 1 givenname: Ahmed surname: Farouk fullname: Farouk, Ahmed |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_d6c1fe0ce893475c8c2799da256a85bf 10.1155/2023/5365673 A746776729 10_1155_2023_5365673 |
| GroupedDBID | .4S .DC 188 29G 2WC 2XV 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABUWG ACGFO ACIPV ACIWK ADBBV AENEX AFKRA AFPKN AIAGR AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH DU5 EAD EAP EAS EBS EDO EMK ESX GROUPED_DOAJ HCIFZ IAO IEP ITC J9A K6V K7- KQ8 M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X QF4 QN7 REM RHU RHW RHX RNS TR2 TUS UPT 0R~ 24P AAMMB AAYXX ACCMX ACUHS ADMLS AEFGJ AGXDD AIDQK AIDYY AMVHM CITATION H13 OVT PHGZM PHGZT PQGLB PUEGO 7SC 7TB 8FD AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS -~9 2UF ADTOC C1A CAG COF EJD IL9 IPNFZ RIG UNPAY UZ4 |
| ID | FETCH-LOGICAL-c442t-cb566307410d1c896bd82721d95f94c79692e45eff3e9de11e2c5a66cc14c61b3 |
| IEDL.DBID | BENPR |
| ISSN | 1026-0226 1607-887X |
| IngestDate | Fri Oct 03 12:51:49 EDT 2025 Sun Oct 26 04:14:56 EDT 2025 Fri Jul 25 21:02:34 EDT 2025 Mon Oct 20 17:00:05 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Wed Oct 01 04:22:07 EDT 2025 Sun Jun 02 19:23:12 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-cb566307410d1c896bd82721d95f94c79692e45eff3e9de11e2c5a66cc14c61b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9488-5476 |
| OpenAccessLink | https://www.proquest.com/docview/2804975093?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2804975093 |
| PQPubID | 237300 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d6c1fe0ce893475c8c2799da256a85bf unpaywall_primary_10_1155_2023_5365673 proquest_journals_2804975093 gale_infotracacademiconefile_A746776729 crossref_primary_10_1155_2023_5365673 crossref_citationtrail_10_1155_2023_5365673 hindawi_primary_10_1155_2023_5365673 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-15 |
| PublicationDateYYYYMMDD | 2023-04-15 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Discrete dynamics in nature and society |
| PublicationYear | 2023 |
| Publisher | Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | 22 23 24 25 26 27 Y. Jing (3) 2017; 28 10 11 12 13 14 15 16 17 18 19 1 2 R. Amir Moeini (8) 2019; 12 4 5 6 7 9 20 21 |
| References_xml | – ident: 24 doi: 10.1016/j.apm.2018.01.017 – ident: 13 doi: 10.1016/j.cie.2018.11.033 – ident: 9 doi: 10.1016/j.infsof.2019.06.003 – ident: 23 doi: 10.1016/j.jpdc.2018.05.001 – ident: 17 doi: 10.1016/j.jsc.2016.07.030 – ident: 19 doi: 10.1016/j.jsc.2016.07.017 – ident: 10 doi: 10.1016/j.vlsi.2017.09.007 – ident: 1 doi: 10.1007/s10723-019-09504-z – ident: 21 doi: 10.1109/ms.2017.3571576 – volume: 12 start-page: 1471 issue: 5 year: 2019 ident: 8 article-title: Developing an automatic phenology-based algorithm for rice detection using sentinel-2time-series data. Selected topics in applied earth observations and remote sensing publication-title: IEEE Journal of – volume: 28 start-page: 374 issue: 2 year: 2017 ident: 3 article-title: Tag clustering algorithm LMMSK: improved K-means algorithm based on latent semantic analysis publication-title: Journal of Systems Engineering and Electronics doi: 10.21629/JSEE.2017.02.18 – ident: 26 doi: 10.1073/pnas.1611835114 – ident: 18 doi: 10.1016/j.neucom.2016.11.081 – ident: 4 doi: 10.1016/j.isprsjprs.2015.10.003 – ident: 11 doi: 10.1515/cmam-2017-0040 – ident: 14 doi: 10.1007/s40815-019-00707-w – ident: 2 doi: 10.1162/neco_a_01014 – ident: 5 doi: 10.1109/lgrs.2021.3098809 – ident: 20 doi: 10.1016/j.camwa.2017.06.049 – ident: 22 doi: 10.1016/j.knosys.2019.05.002 – ident: 7 doi: 10.19026/rjaset.14.4720 – ident: 16 doi: 10.1016/j.jsc.2017.01.003 – ident: 25 doi: 10.1109/tnnls.2015.2428738 – ident: 6 doi: 10.1007/s00521-016-2500-8 – ident: 15 doi: 10.1002/jnm.2339 – ident: 27 doi: 10.1109/taslp.2016.2520371 – ident: 12 doi: 10.1007/s13369-019-04280-0 |
| SSID | ssj0020892 |
| Score | 2.2814784 |
| SecondaryResourceType | retracted_publication |
| Snippet | Time series is a data type frequently encountered in data analysis. With the current depth and breadth of the data and the improvement in computer processing... |
| SourceID | doaj unpaywall proquest gale crossref hindawi |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis Big Data Cloud computing Cluster analysis Clustering Complexity Data analysis Data mining Data processing Datasets Forecasts and trends Information management Methods Optimization Outliers (statistics) Reduction Sequences Software Time series |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqJNRyqKClYikgH5b2UEXEiceJj8tjtaJaLi0SN8txnLJS9iHIasW_ZybrXS0HyoWr41j2zNjzfYlnhrGutq5QSWYjPPniSELmI03B7pQpXGiw0tr2lu-NGtzK6zu42yj1RXfClumBl4I7K5UTlY-dR8cqM3C5SzKtS4uu2uZQVHT6xrlekalAtbAlWV1zByCGn55BitglS184oDZP__o03r4nHrwYvUCbH-eTmX1a2LrecDz9XfY5IEbeW850j33wky9sZyOP4FfWp0AOTh-6_CP_8zQupnUIr-TDtkI0R2jKEerxS9tYPmyLQvDf0dCjo-K9-t_0YdTcj_fZbf_q78UgCgUSIidl0kSuQDCWEiiIS-FyrYoyT5DSlRoqLV2mlU68BF9VqdelF8InDqxSzgnplCjSb2xrMp34A8YReVQgvRf4gtRlVSAtgkp6kGWaxzrrsF8rqRkXsodTEYvatCwCwJCMTZBxh52ue8-WWTNe6XdOClj3oVzXbQNagAkWYN6ygA77SeoztCNxSs6GwAJcGOW2Mj2qqJIpZBEd1g0afmNWRyv1m7CjH02SI5cieIWPf6xN4r_jHL7H6r6zTzQm_cAScMS2moe5P0Yc1BQnrck_Az41_rM priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLYAaRoc0MYPUWCTD7AdUETs2E58LNuqClQO25B6sxzHoUihrdogxH_Pe6kbwdCAYxI7cfzs-Pvi975HyJG2Llc8tRF8-eJIyNRHGoPdUSmcaWmFtY2X76XqX4nzoRwGkaT5yy18WO2QnienMgHgkSarZDVT6Ln1uz9seVWc6cWmJkd_Wq6W_u3_1H228jQC_e1n-MMICfD9zTOY-fFuPLUP97aqnqw4vU9kM0BF2l3Y9jNZ8eMtsvFEQHCb9DCCg-IfLj-nfx5u80kV4irpoEkNTQGTUsB49KetLR002SDoRTTwsELRbnU9md3Uo9sdctX79fdHPwqZESInBK8jlwMKSxANxAVzmVZ5kXHgcoWWpRYu1UpzL6Qvy8TrwjPmuZNWKeeYcIrlyS5ZG0_Gfo9QgBylFN4zqCB0UebAh2QpvBRFksU67ZCTZa8ZF2TDMXtFZRr6IKXBPjahjzvkuC09Xchl_KfcGRqgLYMi180JMLwJc8YUyrHSx84DphKpdJnjqdaFBZRmM5mXHfIdzWdwKkKTnA0RBfBiKGpluphKJVVAHzrkKFj4jVYdLs1vwlSeG54BiUJcBZe_tUPi1fvsv-9xB2QdD3FvislDslbP7vwXgDh1_rUZ4I8fs-0n priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwR74HOIjoH8MOABpWsS24klXspHNYE6IUGl8oAsx3a2iSyZ2lTT-Ou5c51qReJDPCa5RP44n38X3_2OkAOpTSGSTEdg-YYR45mLJCa7I1N4LLlmWvso32NxNGUfZny2RV53uTAWKeIbbReDU_RJL8-8tQ7juji0tl6gv54e8hSQSAaOoC1vkG3BAYn3yPb0-NPoqz_gTDC21ldbQwq1CNbSrIt753zjExs7kifuX5vnm6ERG_Dz1rK-0FeXuqqu7UTju-Rb14dVAMr3wbItBubHL_SO_9vJe-ROgKh0tNKp-2TL1Q_IzjXiwodkjJkjFP-suQX9fHVeNFXI56QTX5KaAhamgC3pO91qOvFVKOjHaOJgZ6Sj6qSZn7Wn57tkOn7_5e1RFCoyRIaxpI1MAegvRRQytLHJpShsnoAPaSUvJTOZFDJxjLuyTJ20Lo5dYrgWwpiYGREX6SPSq5vaPSYUoE7JmXMxvMCkLQvww3jJHGc2zYcy65NX3awoE-jKsWpGpbzbwrnCEVJhhPrk-Vr6YkXT8Ru5NzjBaxkk1_Y3mvmJCmtVWWHi0g2NAyzHMm5yk2RSWg3oUOe8KPvkJaqHQhMATTI6ZDJAx5BMS42whEsmwG3pk4Mww39p1X6nXqrTApXk4LwhnoPHL9Yq98fv7P2r4BNyGy_xVCzm-6TXzpfuKYCrtngW1tBPe6QaRA priority: 102 providerName: Unpaywall |
| Title | Time Series Symbolization Method for the Data Mining K-Means Algorithm |
| URI | https://dx.doi.org/10.1155/2023/5365673 https://www.proquest.com/docview/2804975093 https://downloads.hindawi.com/journals/ddns/2023/5365673.pdf https://doaj.org/article/d6c1fe0ce893475c8c2799da256a85bf |
| UnpaywallVersion | publishedVersion |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1607-887X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: AMVHM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1607-887X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1607-887X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020892 issn: 1607-887X databaseCode: 24P dateStart: 19970101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELe2Tgh4QONjIjAqPwx4QNESx07iB4S6j64CtZoGFeXJcmxnQ8rasmWa9t9zlzrZ9sB4SSTrYjm-s_072_c7QnakNkXKMh3CzBeFXGQulBjsjkzhsRSaa93c8p2koyn_OhOzNTJpY2HwWmU7JzYTtV0Y3CPfZTlgWVzeki_LPyFmjcLT1TaFhvapFeznhmJsnWwwZMbqkY29w8nxSeeCRblcnX8yvHrL0vYqvBC4C5DsigTwTZbcW6QaLv9uxn50hr7y9e97iPTx1Xypb651Vd1ZnIab5JlHlXSwMoPnZM3NX5Cnd7gGX5IhBntQ3Axzl_T7zXmxqHwIJh03WaQpwFcKcJAe6FrTcZM4gn4Lxw4WMzqoTqEz6rPzV2Q6PPyxPwp9EoXQcM7q0BQA2BIEDpGNTS7TwuYM3D4rRSm5yWQqmePClWXipHVx7JgROk2NiblJ4yLZIr35Yu5eEwropBTcuRg-4NKWBbhOouROcJvkkcwC8qntNWU8wzgmuqhU42kIobCPle_jgLzvpJcrZo1_yO2hAjoZ5MNuChYXp8oPL2VTE5cuMg7gF8-EyQ3LpLQaAJ3ORVEG5COqT-GohSYZ7YMP4MeQ_0oNMOtKloKnEZAdr-H_tGq7Vb_yo_5S3dpoQD50JvFgPW8eructeYLSeHwVi23Sqy-u3DtAQXXRJ-v58KjvDRze-z8Pjkb9Zk8BniejGZRNJ8eDX38B9SAEKg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nc9MwEN0p6TCFA98MgQI6tOXAuLVlybYOHEJDSEnTC-3Qm5FluWVIk9A4kwk_ir_CX2LXkUPLDOXUA1ePLH89776VdvcBbChtsojH2kPL53tCxtZTVOxOncIDJbXQusryPYi6R-LDsTxegR91LQylVdY2sTLU-cjQGvkOT5DLknurlap7dj7D-GzyZq-NH3OT8867w92u5yQEPCMELz2TIV0JyW36eWASFWV5wjHoyZUslDCxihS3QtqiCK3KbRBYbqSOImMCYaIgC3HerfE3j1SqaDfXSXbcgFXEecAbsLr7qf2-uwzx_EQt9lc5pfbyqE61l5JWGcIdGSJ_isNLTrDSClh6hJunFIvPvlxivGvT4VjPZ3owuOD8OnfhZ_3aFjkvX7enZbZtvv_RUfL_ea_34I7j4ay1-HHuw4odPoDbF7ozPoQOlccwWj60E_ZxfpaNBq5olfUr3W2GhJ8hgWZtXWrWr6Q2WM_rW3T_rDU4wcuWp2eP4Ohanu0xNIajoX0CDPlcIYW1AZ4gVF5kGGzKQlgp8jDxVdyE1zUOUuN6spM0yCCtYjMpU0JN6lDThM3l6PGiF8lfxr0lSC3HUAfx6sDo_CR1BinNIxMU1jcWCauIpUkMj5XKNVJgncisaMIrAmRKdg5vyWhXroEPRh3D0hbp1MQRxmZN2HCY_cddrdcATJ2dnKS_0deErSXIr5zn6dXzvIS17mF_P93fO-g9g1t0Jm3-BXIdGuX51D5HDllmL9yPy-DzdcP8Fxt3d-E |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKK14H3ohAAR9aOKBtdr22d31AKDSElJAKiVb0Zrxeb4tIk9BsFIWfxl_hzzCz8YYWiXLqgevKtmzv55lv7HkQsqGMzSRLTACSLwy4SFygMNgdM4VHShhuTOXluyu7-_zdgThYIT_qWBh0q6xlYiWo85HFO_ImS4HLonqLm4V3i_jQ7rwafwuwghS-tNblNBYQ6bn5DMy3ycudNvzrTcY6b_a2u4GvMBBYzlkZ2AzYTIxaNcwjmyqZ5SkDmyhXolDcJkoq5rhwRRE7lbsocswKI6W1EbcyymIY9xJZS2UiQSisbX9qv-0uzb0wVYu3VoZuvkzWbvdC4I1D3BQxcKkkPqMQq7oBS-1w-Qjt8tmXM-z36nQ4NvOZGQxOKcLOTfKz3sKF_8vXrWmZbdnvf2SX_D_3-Ba54fk5bS0O1G2y4oZ3yPVTWRvvkg6GzVC8VnQT-nF-nI0GPpiV9qt63BQMAQrEmrZNaWi_KsFBe0HfAS2grcEhLLM8Or5H9i9kIffJ6nA0dA8IBZ5XCO5cBB24yosMjFBRcCd4HqehShrkRY0JbX2udiwZMtCVzSaERgRpj6AG2Vy2Hi9ylPyl3WuE17INZhavPoxODrUXVDqXNipcaB0QWZ4Im1qWKJUboMYmFVnRIM8RnBrlH0zJGh_GAQvDTGK6hfVrEgk2W4NsePz-Y1brNRi1l58T_RuJDfJsCfhzx3l4_jhPyRXAsn6_s9t7RK5hR3wTjMQ6WS1Ppu4xUMsye-LPMCWfLxrSvwCeW4Cp |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwR74HOIjoH8MOABpWsS24klXspHNYE6IUGl8oAsx3a2iSyZ2lTT-Ou5c51qReJDPCa5RP44n38X3_2OkAOpTSGSTEdg-YYR45mLJCa7I1N4LLlmWvso32NxNGUfZny2RV53uTAWKeIbbReDU_RJL8-8tQ7juji0tl6gv54e8hSQSAaOoC1vkG3BAYn3yPb0-NPoqz_gTDC21ldbQwq1CNbSrIt753zjExs7kifuX5vnm6ERG_Dz1rK-0FeXuqqu7UTju-Rb14dVAMr3wbItBubHL_SO_9vJe-ROgKh0tNKp-2TL1Q_IzjXiwodkjJkjFP-suQX9fHVeNFXI56QTX5KaAhamgC3pO91qOvFVKOjHaOJgZ6Sj6qSZn7Wn57tkOn7_5e1RFCoyRIaxpI1MAegvRRQytLHJpShsnoAPaSUvJTOZFDJxjLuyTJ20Lo5dYrgWwpiYGREX6SPSq5vaPSYUoE7JmXMxvMCkLQvww3jJHGc2zYcy65NX3awoE-jKsWpGpbzbwrnCEVJhhPrk-Vr6YkXT8Ru5NzjBaxkk1_Y3mvmJCmtVWWHi0g2NAyzHMm5yk2RSWg3oUOe8KPvkJaqHQhMATTI6ZDJAx5BMS42whEsmwG3pk4Mww39p1X6nXqrTApXk4LwhnoPHL9Yq98fv7P2r4BNyGy_xVCzm-6TXzpfuKYCrtngW1tBPe6QaRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+Series+Symbolization+Method+for+the+Data+Mining+K-Means+Algorithm&rft.jtitle=Discrete+dynamics+in+nature+and+society&rft.au=Wang%2C+Guisheng&rft.date=2023-04-15&rft.issn=1026-0226&rft.eissn=1607-887X&rft.volume=2023&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1155%2F2023%2F5365673&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2023_5365673 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1026-0226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1026-0226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1026-0226&client=summon |