Multiple Instance Classification via Successive Linear Programming

The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or...

Full description

Saved in:
Bibliographic Details
Published inJournal of optimization theory and applications Vol. 137; no. 3; pp. 555 - 568
Main Authors Mangasarian, O. L., Wild, E. W.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.06.2008
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-3239
1573-2878
DOI10.1007/s10957-007-9343-5

Cover

Abstract The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features.
AbstractList The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31-71, [1998]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21-29, Morgan Kaufmann, San Mateo, [1997]; Long et al., Mach. Learn. 30(1):7-22, [1998]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features.
The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31-71, [1998]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21-29, Morgan Kaufmann, San Mateo, [1997]; Long et al., Mach. Learn. 30(1):7-22, [1998]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features. [PUBLICATION ABSTRACT]
The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features.
Author Mangasarian, O. L.
Wild, E. W.
Author_xml – sequence: 1
  givenname: O. L.
  surname: Mangasarian
  fullname: Mangasarian, O. L.
  email: olvi@cs.wisc.edu
  organization: Computer Sciences Department, University of Wisconsin
– sequence: 2
  givenname: E. W.
  surname: Wild
  fullname: Wild, E. W.
  organization: Computer Sciences Department, University of Wisconsin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20350801$$DView record in Pascal Francis
BookMark eNqNkdtKAzEQhoNUsB4ewLsiKN6sTpLdbHIppR6goqBehzSbLZFttia7Bd-mz9InM2uLSMHi1QzD98_pP0Q9VzuD0CmGKwyQXwcMIsuTmCaCpjTJ9lAfZzlNCM95D_UBCEkooeIAHYbwDgCC52kfjR7bqrHzygweXGiU02YwrFQItrRaNbZ2g4VVq-VLq7WJ1YVZLcfWGeVXy2dfT72azaybHqP9UlXBnGziEXq7Hb0O75Px093D8Gac6DQlTaJxVnJGC6YxN5AakpVskk5YahRoQQrMiGAlneSGFVQoRXhRMJFxKKkihDJ6hC7Wfee-_mhNaOTMBm2qSjlTt0FSCvEPQkTwcieIgRMcwTT_J8opZBE920Lf69a7eLHEgjHADHejzzeQClpVpY9PtUHOvZ0p_ykJ0Aw44MjhNad9HYI35Q-CQXaeyrWnsks7T2W3QL6l0bb5tqnxylY7lWStDHGKmxr_a_U_RV-m5bf4
CODEN JOTABN
CitedBy_id crossref_primary_10_1016_j_amc_2014_05_016
crossref_primary_10_1007_s12046_021_01659_4
crossref_primary_10_1016_j_apnum_2009_05_013
crossref_primary_10_1109_TNNLS_2018_2820055
crossref_primary_10_1109_TNNLS_2018_2885852
crossref_primary_10_1016_j_ins_2010_07_031
crossref_primary_10_1016_j_ejco_2023_100070
crossref_primary_10_1007_s00500_019_04255_1
crossref_primary_10_1016_j_patcog_2016_08_028
crossref_primary_10_1109_TPAMI_2010_155
crossref_primary_10_1109_TKDE_2018_2791611
crossref_primary_10_1007_s00521_012_1008_0
crossref_primary_10_1016_j_eswa_2024_125551
crossref_primary_10_1016_j_artint_2013_06_003
crossref_primary_10_1007_s00500_021_06713_1
crossref_primary_10_1016_j_ins_2016_09_060
crossref_primary_10_1109_TPAMI_2011_194
crossref_primary_10_1007_s11590_023_02022_8
crossref_primary_10_1016_j_cor_2013_05_009
crossref_primary_10_3390_a12120249
crossref_primary_10_1016_j_eswa_2009_03_059
crossref_primary_10_1109_TMI_2020_2987796
crossref_primary_10_1016_j_asoc_2022_109564
crossref_primary_10_1016_j_ins_2011_01_034
crossref_primary_10_1007_s10618_013_0333_y
crossref_primary_10_4028_www_scientific_net_AMR_143_144_1235
crossref_primary_10_1109_TNNLS_2020_3015442
crossref_primary_10_1007_s00500_011_0794_0
crossref_primary_10_1007_s10479_012_1241_z
crossref_primary_10_1007_s10589_008_9229_y
crossref_primary_10_1016_j_asoc_2009_10_021
crossref_primary_10_1016_j_procs_2013_05_135
crossref_primary_10_1007_s10479_012_1193_3
crossref_primary_10_1109_TCBB_2010_94
crossref_primary_10_1016_j_patcog_2017_04_029
crossref_primary_10_1007_s10994_013_5429_5
crossref_primary_10_1016_j_neunet_2021_07_009
crossref_primary_10_1016_j_jksuci_2023_101883
crossref_primary_10_1109_TSMCB_2012_2201468
crossref_primary_10_1016_j_engappai_2016_12_015
crossref_primary_10_1016_j_patcog_2012_08_018
crossref_primary_10_1109_TPAMI_2015_2487987
crossref_primary_10_1016_j_patcog_2016_03_035
crossref_primary_10_1109_TPAMI_2016_2613865
crossref_primary_10_1007_s00521_012_1158_0
crossref_primary_10_3846_20294913_2012_661205
crossref_primary_10_1016_j_ejor_2021_11_022
crossref_primary_10_1007_s10898_021_01120_0
crossref_primary_10_1016_j_eswa_2011_05_044
crossref_primary_10_1007_s11063_017_9579_5
crossref_primary_10_1007_s13042_010_0002_z
crossref_primary_10_1016_j_patcog_2017_10_009
Cites_doi 10.1016/S0004-3702(96)00034-3
10.1145/1102351.1102439
10.2307/2279372
10.1023/A:1007450326753
10.1016/S0167-6377(98)00049-2
10.2307/2282330
10.1080/01621459.1937.10503522
10.1080/01621459.1961.10482090
10.1007/978-1-4757-3264-1
10.7551/mitpress/1113.003.0012
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2007
2008 INIST-CNRS
Springer Science+Business Media, LLC 2008
Copyright_xml – notice: Springer Science+Business Media, LLC 2007
– notice: 2008 INIST-CNRS
– notice: Springer Science+Business Media, LLC 2008
DBID AAYXX
CITATION
IQODW
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10957-007-9343-5
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database
Engineering Database (subscription)
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts
ProQuest Business Collection (Alumni Edition)

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1573-2878
EndPage 568
ExternalDocumentID 1472791261
20350801
10_1007_s10957_007_9343_5
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c442t-c15f863d6c18e04e25f6b4b64ea0c92d16296f3b7e6d39aa28dd69580f3a22363
IEDL.DBID AGYKE
ISSN 0022-3239
IngestDate Fri Sep 05 07:02:20 EDT 2025
Fri Sep 05 09:16:24 EDT 2025
Thu Sep 04 18:58:28 EDT 2025
Thu Aug 14 06:00:53 EDT 2025
Mon Jul 21 09:13:38 EDT 2025
Wed Oct 01 04:33:48 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
Fri Feb 21 02:34:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Support vector machines
Successive linearization algorithm
Bilinear constraints
Multiple instance learning
Kernels
Integer programming
Learning (artificial intelligence)
Vector support machine
Minimization
Linear programming
Classifier
Complex programming
Multiple instance learning, Support vector machines, Successive linearization algorithm
Competitive algorithms
Linearization
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-c15f863d6c18e04e25f6b4b64ea0c92d16296f3b7e6d39aa28dd69580f3a22363
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 196601619
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_33010999
proquest_miscellaneous_1082199947
proquest_miscellaneous_1082198305
proquest_journals_196601619
pascalfrancis_primary_20350801
crossref_primary_10_1007_s10957_007_9343_5
crossref_citationtrail_10_1007_s10957_007_9343_5
springer_journals_10_1007_s10957_007_9343_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York, NY
– name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2008
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Zhu, Rosset, Hastie, Tibshirani, Thrun, Saul, Schölkopf (CR13) 2004
Andrews, Tsochantaridis, Hofmann, Becker, Thrun, Obermayer (CR4) 2003
CR16
CR15
CR24
Mangasarian, Smola, Bartlett, Schölkopf, Schuurmans (CR10) 2000
CR22
Ray, Craven (CR7) 2005
Bradley, Mangasarian, Shavlik (CR12) 1998
CR21
Mangasarian (CR14) 1999; 24
CR20
Vapnik (CR11) 2000
Demšar (CR19) 2006; 7
Auer (CR2) 1997
Dunn (CR18) 1961; 56
Maron, Ratan (CR23) 1998
Zhang, Goldman (CR5) 2002
Long, Tan (CR3) 1998; 30
Friedman (CR17) 1937; 32
Dietterich, Lathrop, Lozano-Perez (CR1) 1998; 89
Gartner, Flach, Kowalczyk, Smola, Sammut, Hoffmann (CR6) 2002
Schölkopf, Smola (CR8) 2002
Cortes, Vapnik (CR9) 1995; 20
B. Schölkopf (9343_CR8) 2002
P. Auer (9343_CR2) 1997
J. Demšar (9343_CR19) 2006; 7
9343_CR16
S. Ray (9343_CR7) 2005
9343_CR15
9343_CR24
O.L. Mangasarian (9343_CR14) 1999; 24
9343_CR21
O.J. Dunn (9343_CR18) 1961; 56
9343_CR22
C. Cortes (9343_CR9) 1995; 20
9343_CR20
P.M. Long (9343_CR3) 1998; 30
Q. Zhang (9343_CR5) 2002
O.L. Mangasarian (9343_CR10) 2000
T. Gartner (9343_CR6) 2002
S. Andrews (9343_CR4) 2003
P.S. Bradley (9343_CR12) 1998
T.G. Dietterich (9343_CR1) 1998; 89
V.N. Vapnik (9343_CR11) 2000
M. Friedman (9343_CR17) 1937; 32
J. Zhu (9343_CR13) 2004
O. Maron (9343_CR23) 1998
References_xml – year: 2000
  ident: CR11
  publication-title: The Nature of Statistical Learning Theory
– ident: CR21
– ident: CR22
– year: 2002
  ident: CR8
  publication-title: Learning with Kernels
– volume: 89
  start-page: 31
  year: 1998
  end-page: 71
  ident: CR1
  article-title: Solving the multiple-instance problem with axis-parallel rectangles
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(96)00034-3
– start-page: 697
  year: 2005
  end-page: 704
  ident: CR7
  article-title: Supervised versus multiple instance learning: an empirical comparison
  publication-title: Proceedings of 22nd International Conference on Machine Learning
  doi: 10.1145/1102351.1102439
– start-page: 135
  year: 2000
  end-page: 146
  ident: CR10
  article-title: Generalized support vector machines
  publication-title: Advances in Large Margin Classifiers
– ident: CR15
– ident: CR16
– volume: 32
  start-page: 675
  year: 1937
  end-page: 701
  ident: CR17
  article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2279372
– start-page: 21
  year: 1997
  end-page: 29
  ident: CR2
  article-title: On learning from multi-instance examples: empirical evaluation of a theoretical approach
  publication-title: Proceedings of 14th International Conference on Machine Learning
– volume: 30
  start-page: 7
  issue: 1
  year: 1998
  end-page: 22
  ident: CR3
  article-title: PAC learning axis aligned rectangles with respect to product distributions from multiple instance examples
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007450326753
– start-page: 1073
  year: 2002
  end-page: 1080
  ident: CR5
  article-title: EM-DD: an improved multiple-instance learning technique
  publication-title: Neural Information Processing Systems 2001
– start-page: 179
  year: 2002
  end-page: 186
  ident: CR6
  article-title: Multi-instance kernels
  publication-title: Proceedings of 19th International Conference on Machine Learning
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR19
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 15
  year: 1999
  end-page: 23
  ident: CR14
  article-title: Arbitrary-norm separating plane
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(98)00049-2
– start-page: 561
  year: 2003
  end-page: 568
  ident: CR4
  article-title: Support vector machines for multiple-instance learning
  publication-title: Advances in Neural Information Processing Systems 15
– volume: 20
  start-page: 273
  year: 1995
  end-page: 279
  ident: CR9
  article-title: Support vector networks
  publication-title: Mach. Learn.
– ident: CR24
– start-page: 82
  year: 1998
  end-page: 90
  ident: CR12
  article-title: Feature selection via concave minimization and support vector machines
  publication-title: Proceedings of 15th International Conference on Machine Learning
– start-page: 49
  year: 2004
  end-page: 56
  ident: CR13
  article-title: 1-norm support vector machines
  publication-title: Advances in Neural Information Processing Systems 16–NIPS2003
– volume: 56
  start-page: 52
  year: 1961
  end-page: 64
  ident: CR18
  article-title: Multiple comparisons among means
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2282330
– year: 1998
  ident: CR23
  article-title: Multiple-instance learning for natural scene classification
  publication-title: 15th International Conference on Machine Learning
– ident: CR20
– ident: 9343_CR16
– start-page: 561
  volume-title: Advances in Neural Information Processing Systems 15
  year: 2003
  ident: 9343_CR4
– start-page: 697
  volume-title: Proceedings of 22nd International Conference on Machine Learning
  year: 2005
  ident: 9343_CR7
  doi: 10.1145/1102351.1102439
– volume: 7
  start-page: 1
  year: 2006
  ident: 9343_CR19
  publication-title: J. Mach. Learn. Res.
– ident: 9343_CR21
– ident: 9343_CR15
– ident: 9343_CR22
– ident: 9343_CR20
– volume: 24
  start-page: 15
  year: 1999
  ident: 9343_CR14
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(98)00049-2
– start-page: 179
  volume-title: Proceedings of 19th International Conference on Machine Learning
  year: 2002
  ident: 9343_CR6
– volume: 32
  start-page: 675
  year: 1937
  ident: 9343_CR17
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1937.10503522
– volume: 56
  start-page: 52
  year: 1961
  ident: 9343_CR18
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1961.10482090
– volume: 30
  start-page: 7
  issue: 1
  year: 1998
  ident: 9343_CR3
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007450326753
– volume-title: The Nature of Statistical Learning Theory
  year: 2000
  ident: 9343_CR11
  doi: 10.1007/978-1-4757-3264-1
– start-page: 49
  volume-title: Advances in Neural Information Processing Systems 16–NIPS2003
  year: 2004
  ident: 9343_CR13
– start-page: 21
  volume-title: Proceedings of 14th International Conference on Machine Learning
  year: 1997
  ident: 9343_CR2
– start-page: 135
  volume-title: Advances in Large Margin Classifiers
  year: 2000
  ident: 9343_CR10
  doi: 10.7551/mitpress/1113.003.0012
– volume: 89
  start-page: 31
  year: 1998
  ident: 9343_CR1
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(96)00034-3
– start-page: 1073
  volume-title: Neural Information Processing Systems 2001
  year: 2002
  ident: 9343_CR5
– ident: 9343_CR24
– volume-title: 15th International Conference on Machine Learning
  year: 1998
  ident: 9343_CR23
– volume-title: Learning with Kernels
  year: 2002
  ident: 9343_CR8
– start-page: 82
  volume-title: Proceedings of 15th International Conference on Machine Learning
  year: 1998
  ident: 9343_CR12
– volume: 20
  start-page: 273
  year: 1995
  ident: 9343_CR9
  publication-title: Mach. Learn.
SSID ssj0009874
Score 2.1485133
Snippet The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on...
The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31-71, [1998]; Auer, Proceedings of 14th International Conference on Machine...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms Algorithms
Applications of Mathematics
Applied sciences
Calculus of Variations and Optimal Control; Optimization
Classification
Classifiers
Engineering
Exact sciences and technology
Integer programming
Learning
Linear programming
Mathematical models
Mathematical programming
Mathematics
Mathematics and Statistics
Minimization
Nonlinearity
Operational research and scientific management
Operational research. Management science
Operations Research/Decision Theory
Optimization
Quadratic programming
Reduction
Studies
Support vector machines
Theory of Computation
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS-QwEB_8eFHkOD-Oq55awScl3DZJZ5un4zxcP0ARVPCtpEkKgre72l3_fifph66gvrU0SZOZyWSSmfwGYF8mCWphU6YRNZOIihXW0S6l5NxJdLJnQoDsJZ7eyvO79K6JzamasMpWJwZFbUfGn5H_TjyMJJkn6s_4kfmkUd652mTQmIfFhJMg-Yvig5NXzN2sBWHmTHChWqdmfXNOpX3mz-mUkIKlM8vSylhXRKGyTm0xY3u-c5eGVWjwHb415mP8t-b3Ksy54RosvwEVpLeLDom1WoejiyZiMD4LhqBxcciD6SOEAlPi53sdX09D3kTSfDFtTkn446s6bus_NbkBt4Pjm3-nrMmbwIyUfMJMkpYZCosmyVxPOp6WWMgCpdNEeW4T5ApLUfQdWqG05pm1qNKsVwpN1gKKH7AwHA3dT4hLkciipNYc0VLZrJDOKd3XVhiB1mAEvZZsuWlAxX1ui4f8FQ7ZUzr3j57SeRrBQVdlXCNqfFZ4Z4YXXQ3uPaK0ukaw1TInb2ZflXeyEsFe95WmjfeF6KEbTSuPi0q6OiNt91UZpWQ_gt0PyggRfIv0p8NWMt7046NhbX7a6y1YqqNS_FnPL1iYPE3dNpk-k2InCPgLUXj-zg
  priority: 102
  providerName: ProQuest
Title Multiple Instance Classification via Successive Linear Programming
URI https://link.springer.com/article/10.1007/s10957-007-9343-5
https://www.proquest.com/docview/196601619
https://www.proquest.com/docview/1082198305
https://www.proquest.com/docview/1082199947
https://www.proquest.com/docview/33010999
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: AFBBN
  dateStart: 19670701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-2878
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 20241005
  omitProxy: true
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7R9AJCvCuWQlgkTiBXWT8m62OCkhZQowoaqZxWXtsrISCt2IQDvya_Jb-M8T7SpKKgnnZXHnttj8cee8bfALyWSYJGOMUMomESUbPcedqlFJx7iV72bOUgO8Gjqfxwps6ae9xl6-3emiSrmXrjsptWfRaO1rSQgqkd2FVhf9KB3cHhl4-jS6zdtAVf5kxwoVtj5t8K2VqO7l6YknqmqENabOmcV8yk1eozvg-nbb1rp5NvB4t5fmB_X4F0vGHDHsC9RhuNB_XweQi3_OwR3NnAKKSv4zWwa_kYRseNA2L8vtIrrY-rsJrB4ajicfzrq1ktPy-qOIw0k66WtNslaVotT2pPsB9U6hOYjken745YE4mBWSn5nNlEFSkKhzZJfU96rgrMZY7SG-IldwlyjYXI-x6d0Mbw1DnUKu0VwpD-gWIPOrPzmX8KcSESmRdUmicuaZfm0ntt-sYJK9BZjKDXMiSzDUx5iJbxPbsEWA79lYXX0F-ZiuDNOstFjdHxL-LuFpfXOXiwsdJ6HcF-y_askecySwKIKSnHOoJX61QSxGBdMTN_vigD0irN_inNn_-j0Vr2I3h5DY0QlbWS_vS2HS4b9biuWc9uRL0Pt2u_l3Ca9Bw6858L_4KUq3nehZ10fNglkRoPh5NuI1r0HI4mJ58odcoHfwB7_SFd
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE8RCq2R4AKy2NjObHxAiNeyS7sVEq3UW-rYjoQEuwvZBfGj-I-MnUe7SC2n3hLFcZyZ8czYM_4G4IlKUzTSZdwgGq4QNS-dp1VKJYRX6NXAxgTZfRwfqo9H2dEG_OnOwoS0yk4nRkXt5jbskb9IA4wkuSf61eI7D0WjQnC1q6DRSMWu__2LVmz1y8k7Yu9TIUbvD96OeVtUgFulxJLbNKtylA5tmvuB8iKrsFQlKm9oWMKlKDRWshx6dFIbI3LnUGf5oJKGTClK6vcSXFZSygDVn48-nGD85h3os-BSSN0FUZuTejob8rAvqKWSPFszg9cXpiaOVE0pjTVf95_wbLR6o5two3VX2etGvm7Bhp_dhmunQAzpbtojv9Z34M20zVBkk-h4Ws9i3c2QkRSFgP38YtjnVazTSJqW0WKYyMo-NXli36jLu3B4ISS9B5uz-czfB1bJVJUV9eaJltrlpfJem6Fx0kp0FhMYdGQrbAtiHmppfC1O4JcDpYtwGShdZAk8619ZNAge5zXeXuNF_4YIEViy5glsdcwp2tleF71sJvC4f0rTNMRezMzPV3XAYSXbkJN2_V8brdUwgZ0z2kgZY5n0peedZJwax1m_9eDcUe_AlfHBdK_Ym-zvbsHVJiMm7DM9hM3lj5V_RG7XstyOws7g-KJn11-29Tsv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYRAFeIpQmlrJLiArG5sx4kPFaKPVZfS1Qqo1Ftw_JAqld2F7BbxE_lXjPNqF6nl1FuiOI4zHs-MPTPfALwWcSw1twnVUmoqpFS0sA53KZ4xJ6QTfVMFyI7k4Yn4eJqcrsCfNhcmhFW2MrES1HZqwhn5dhxgJNE8Udu-iYoY7w_ez37QUEAqOFrbahq6qbJgdyq0sSbH48j9_oW7uXJnuI9T_4axwcHXvUPaFBygRgg2pyZOfCa5lSbOXF84lnhZiEIKp3HIzMaSKel5kTppudKaZdZKlWR9zzWqWcmx3zuwmoZ00R6s7h6Mxp8vEYCzFhKaUc64al2sdR6fSlIaTg0VF5wmS0pybaZLnC9fF9pYsoT_cd5WOnHwEB40xiz5UHPfI1hxk8dw_wrEId4dd7iw5RPYPW7iF8mwMkuNI1VVzhCvVLEIuTjT5MuiquKIcpjgVhkJS8Z1FNl37PIpnNwKUZ9BbzKduOdAPI9F4bE3h7RUNiuEc0qn2nLDpTUygn5Lttw0EOeh0sZ5fgnOHCidh8tA6TyJ4G33yqzG97ip8ebSXHRvsOCfRV0fwXo7OXkjC8q849wIXnVPcREHz4yeuOmiDCitqDkylL3_a6OUSCPYuqYN55WnE7_0ruWMK-O47rde3DjqLbiLKy3_NBwdrcO9OlwmHEK9hN7858JtoE02LzYbbifw7bYX2F-nd0YJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Instance+Classification+via+Successive+Linear+Programming&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Mangasarian%2C+O+L&rft.au=Wild%2C+E+W&rft.date=2008-06-01&rft.issn=0022-3239&rft.volume=137&rft.issue=3&rft.spage=555&rft.epage=568&rft_id=info:doi/10.1007%2Fs10957-007-9343-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon