Multiple Instance Classification via Successive Linear Programming
The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or...
Saved in:
Published in | Journal of optimization theory and applications Vol. 137; no. 3; pp. 555 - 568 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.06.2008
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3239 1573-2878 |
DOI | 10.1007/s10957-007-9343-5 |
Cover
Abstract | The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [
1998
]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [
1997
]; Long et al., Mach. Learn. 30(1):7–22, [
1998
]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features. |
---|---|
AbstractList | The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31-71, [1998]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21-29, Morgan Kaufmann, San Mateo, [1997]; Long et al., Mach. Learn. 30(1):7-22, [1998]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features. The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31-71, [1998]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21-29, Morgan Kaufmann, San Mateo, [1997]; Long et al., Mach. Learn. 30(1):7-22, [1998]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features. [PUBLICATION ABSTRACT] The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [ 1998 ]; Auer, Proceedings of 14th International Conference on Machine Learning, pp. 21–29, Morgan Kaufmann, San Mateo, [ 1997 ]; Long et al., Mach. Learn. 30(1):7–22, [ 1998 ]) is formulated using a linear or nonlinear kernel as the minimization of a linear function in a finite-dimensional (noninteger) real space subject to linear and bilinear constraints. A linearization algorithm is proposed that solves a succession of fast linear programs that converges in a few iterations to a local solution. Computational results on a number of datasets indicate that the proposed algorithm is competitive with the considerably more complex integer programming and other formulations. A distinguishing aspect of our linear classifier not shared by other multiple instance classifiers is the sparse number of features it utilizes. In some tasks, the reduction amounts to less than one percent of the original features. |
Author | Mangasarian, O. L. Wild, E. W. |
Author_xml | – sequence: 1 givenname: O. L. surname: Mangasarian fullname: Mangasarian, O. L. email: olvi@cs.wisc.edu organization: Computer Sciences Department, University of Wisconsin – sequence: 2 givenname: E. W. surname: Wild fullname: Wild, E. W. organization: Computer Sciences Department, University of Wisconsin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20350801$$DView record in Pascal Francis |
BookMark | eNqNkdtKAzEQhoNUsB4ewLsiKN6sTpLdbHIppR6goqBehzSbLZFttia7Bd-mz9InM2uLSMHi1QzD98_pP0Q9VzuD0CmGKwyQXwcMIsuTmCaCpjTJ9lAfZzlNCM95D_UBCEkooeIAHYbwDgCC52kfjR7bqrHzygweXGiU02YwrFQItrRaNbZ2g4VVq-VLq7WJ1YVZLcfWGeVXy2dfT72azaybHqP9UlXBnGziEXq7Hb0O75Px093D8Gac6DQlTaJxVnJGC6YxN5AakpVskk5YahRoQQrMiGAlneSGFVQoRXhRMJFxKKkihDJ6hC7Wfee-_mhNaOTMBm2qSjlTt0FSCvEPQkTwcieIgRMcwTT_J8opZBE920Lf69a7eLHEgjHADHejzzeQClpVpY9PtUHOvZ0p_ykJ0Aw44MjhNad9HYI35Q-CQXaeyrWnsks7T2W3QL6l0bb5tqnxylY7lWStDHGKmxr_a_U_RV-m5bf4 |
CODEN | JOTABN |
CitedBy_id | crossref_primary_10_1016_j_amc_2014_05_016 crossref_primary_10_1007_s12046_021_01659_4 crossref_primary_10_1016_j_apnum_2009_05_013 crossref_primary_10_1109_TNNLS_2018_2820055 crossref_primary_10_1109_TNNLS_2018_2885852 crossref_primary_10_1016_j_ins_2010_07_031 crossref_primary_10_1016_j_ejco_2023_100070 crossref_primary_10_1007_s00500_019_04255_1 crossref_primary_10_1016_j_patcog_2016_08_028 crossref_primary_10_1109_TPAMI_2010_155 crossref_primary_10_1109_TKDE_2018_2791611 crossref_primary_10_1007_s00521_012_1008_0 crossref_primary_10_1016_j_eswa_2024_125551 crossref_primary_10_1016_j_artint_2013_06_003 crossref_primary_10_1007_s00500_021_06713_1 crossref_primary_10_1016_j_ins_2016_09_060 crossref_primary_10_1109_TPAMI_2011_194 crossref_primary_10_1007_s11590_023_02022_8 crossref_primary_10_1016_j_cor_2013_05_009 crossref_primary_10_3390_a12120249 crossref_primary_10_1016_j_eswa_2009_03_059 crossref_primary_10_1109_TMI_2020_2987796 crossref_primary_10_1016_j_asoc_2022_109564 crossref_primary_10_1016_j_ins_2011_01_034 crossref_primary_10_1007_s10618_013_0333_y crossref_primary_10_4028_www_scientific_net_AMR_143_144_1235 crossref_primary_10_1109_TNNLS_2020_3015442 crossref_primary_10_1007_s00500_011_0794_0 crossref_primary_10_1007_s10479_012_1241_z crossref_primary_10_1007_s10589_008_9229_y crossref_primary_10_1016_j_asoc_2009_10_021 crossref_primary_10_1016_j_procs_2013_05_135 crossref_primary_10_1007_s10479_012_1193_3 crossref_primary_10_1109_TCBB_2010_94 crossref_primary_10_1016_j_patcog_2017_04_029 crossref_primary_10_1007_s10994_013_5429_5 crossref_primary_10_1016_j_neunet_2021_07_009 crossref_primary_10_1016_j_jksuci_2023_101883 crossref_primary_10_1109_TSMCB_2012_2201468 crossref_primary_10_1016_j_engappai_2016_12_015 crossref_primary_10_1016_j_patcog_2012_08_018 crossref_primary_10_1109_TPAMI_2015_2487987 crossref_primary_10_1016_j_patcog_2016_03_035 crossref_primary_10_1109_TPAMI_2016_2613865 crossref_primary_10_1007_s00521_012_1158_0 crossref_primary_10_3846_20294913_2012_661205 crossref_primary_10_1016_j_ejor_2021_11_022 crossref_primary_10_1007_s10898_021_01120_0 crossref_primary_10_1016_j_eswa_2011_05_044 crossref_primary_10_1007_s11063_017_9579_5 crossref_primary_10_1007_s13042_010_0002_z crossref_primary_10_1016_j_patcog_2017_10_009 |
Cites_doi | 10.1016/S0004-3702(96)00034-3 10.1145/1102351.1102439 10.2307/2279372 10.1023/A:1007450326753 10.1016/S0167-6377(98)00049-2 10.2307/2282330 10.1080/01621459.1937.10503522 10.1080/01621459.1961.10482090 10.1007/978-1-4757-3264-1 10.7551/mitpress/1113.003.0012 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2007 2008 INIST-CNRS Springer Science+Business Media, LLC 2008 |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2007 – notice: 2008 INIST-CNRS – notice: Springer Science+Business Media, LLC 2008 |
DBID | AAYXX CITATION IQODW 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L.0 L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10957-007-9343-5 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Research Library Science Database Engineering Database (subscription) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts ProQuest Business Collection (Alumni Edition) Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Applied Sciences |
EISSN | 1573-2878 |
EndPage | 568 |
ExternalDocumentID | 1472791261 20350801 10_1007_s10957_007_9343_5 |
Genre | Feature |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L.0 L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c442t-c15f863d6c18e04e25f6b4b64ea0c92d16296f3b7e6d39aa28dd69580f3a22363 |
IEDL.DBID | AGYKE |
ISSN | 0022-3239 |
IngestDate | Fri Sep 05 07:02:20 EDT 2025 Fri Sep 05 09:16:24 EDT 2025 Thu Sep 04 18:58:28 EDT 2025 Thu Aug 14 06:00:53 EDT 2025 Mon Jul 21 09:13:38 EDT 2025 Wed Oct 01 04:33:48 EDT 2025 Thu Apr 24 23:13:23 EDT 2025 Fri Feb 21 02:34:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Support vector machines Successive linearization algorithm Bilinear constraints Multiple instance learning Kernels Integer programming Learning (artificial intelligence) Vector support machine Minimization Linear programming Classifier Complex programming Multiple instance learning, Support vector machines, Successive linearization algorithm Competitive algorithms Linearization |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-c15f863d6c18e04e25f6b4b64ea0c92d16296f3b7e6d39aa28dd69580f3a22363 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 196601619 |
PQPubID | 23500 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_33010999 proquest_miscellaneous_1082199947 proquest_miscellaneous_1082198305 proquest_journals_196601619 pascalfrancis_primary_20350801 crossref_primary_10_1007_s10957_007_9343_5 crossref_citationtrail_10_1007_s10957_007_9343_5 springer_journals_10_1007_s10957_007_9343_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: New York, NY – name: New York |
PublicationTitle | Journal of optimization theory and applications |
PublicationTitleAbbrev | J Optim Theory Appl |
PublicationYear | 2008 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Zhu, Rosset, Hastie, Tibshirani, Thrun, Saul, Schölkopf (CR13) 2004 Andrews, Tsochantaridis, Hofmann, Becker, Thrun, Obermayer (CR4) 2003 CR16 CR15 CR24 Mangasarian, Smola, Bartlett, Schölkopf, Schuurmans (CR10) 2000 CR22 Ray, Craven (CR7) 2005 Bradley, Mangasarian, Shavlik (CR12) 1998 CR21 Mangasarian (CR14) 1999; 24 CR20 Vapnik (CR11) 2000 Demšar (CR19) 2006; 7 Auer (CR2) 1997 Dunn (CR18) 1961; 56 Maron, Ratan (CR23) 1998 Zhang, Goldman (CR5) 2002 Long, Tan (CR3) 1998; 30 Friedman (CR17) 1937; 32 Dietterich, Lathrop, Lozano-Perez (CR1) 1998; 89 Gartner, Flach, Kowalczyk, Smola, Sammut, Hoffmann (CR6) 2002 Schölkopf, Smola (CR8) 2002 Cortes, Vapnik (CR9) 1995; 20 B. Schölkopf (9343_CR8) 2002 P. Auer (9343_CR2) 1997 J. Demšar (9343_CR19) 2006; 7 9343_CR16 S. Ray (9343_CR7) 2005 9343_CR15 9343_CR24 O.L. Mangasarian (9343_CR14) 1999; 24 9343_CR21 O.J. Dunn (9343_CR18) 1961; 56 9343_CR22 C. Cortes (9343_CR9) 1995; 20 9343_CR20 P.M. Long (9343_CR3) 1998; 30 Q. Zhang (9343_CR5) 2002 O.L. Mangasarian (9343_CR10) 2000 T. Gartner (9343_CR6) 2002 S. Andrews (9343_CR4) 2003 P.S. Bradley (9343_CR12) 1998 T.G. Dietterich (9343_CR1) 1998; 89 V.N. Vapnik (9343_CR11) 2000 M. Friedman (9343_CR17) 1937; 32 J. Zhu (9343_CR13) 2004 O. Maron (9343_CR23) 1998 |
References_xml | – year: 2000 ident: CR11 publication-title: The Nature of Statistical Learning Theory – ident: CR21 – ident: CR22 – year: 2002 ident: CR8 publication-title: Learning with Kernels – volume: 89 start-page: 31 year: 1998 end-page: 71 ident: CR1 article-title: Solving the multiple-instance problem with axis-parallel rectangles publication-title: Artif. Intell. doi: 10.1016/S0004-3702(96)00034-3 – start-page: 697 year: 2005 end-page: 704 ident: CR7 article-title: Supervised versus multiple instance learning: an empirical comparison publication-title: Proceedings of 22nd International Conference on Machine Learning doi: 10.1145/1102351.1102439 – start-page: 135 year: 2000 end-page: 146 ident: CR10 article-title: Generalized support vector machines publication-title: Advances in Large Margin Classifiers – ident: CR15 – ident: CR16 – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: CR17 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: J. Am. Stat. Assoc. doi: 10.2307/2279372 – start-page: 21 year: 1997 end-page: 29 ident: CR2 article-title: On learning from multi-instance examples: empirical evaluation of a theoretical approach publication-title: Proceedings of 14th International Conference on Machine Learning – volume: 30 start-page: 7 issue: 1 year: 1998 end-page: 22 ident: CR3 article-title: PAC learning axis aligned rectangles with respect to product distributions from multiple instance examples publication-title: Mach. Learn. doi: 10.1023/A:1007450326753 – start-page: 1073 year: 2002 end-page: 1080 ident: CR5 article-title: EM-DD: an improved multiple-instance learning technique publication-title: Neural Information Processing Systems 2001 – start-page: 179 year: 2002 end-page: 186 ident: CR6 article-title: Multi-instance kernels publication-title: Proceedings of 19th International Conference on Machine Learning – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR19 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 15 year: 1999 end-page: 23 ident: CR14 article-title: Arbitrary-norm separating plane publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(98)00049-2 – start-page: 561 year: 2003 end-page: 568 ident: CR4 article-title: Support vector machines for multiple-instance learning publication-title: Advances in Neural Information Processing Systems 15 – volume: 20 start-page: 273 year: 1995 end-page: 279 ident: CR9 article-title: Support vector networks publication-title: Mach. Learn. – ident: CR24 – start-page: 82 year: 1998 end-page: 90 ident: CR12 article-title: Feature selection via concave minimization and support vector machines publication-title: Proceedings of 15th International Conference on Machine Learning – start-page: 49 year: 2004 end-page: 56 ident: CR13 article-title: 1-norm support vector machines publication-title: Advances in Neural Information Processing Systems 16–NIPS2003 – volume: 56 start-page: 52 year: 1961 end-page: 64 ident: CR18 article-title: Multiple comparisons among means publication-title: J. Am. Stat. Assoc. doi: 10.2307/2282330 – year: 1998 ident: CR23 article-title: Multiple-instance learning for natural scene classification publication-title: 15th International Conference on Machine Learning – ident: CR20 – ident: 9343_CR16 – start-page: 561 volume-title: Advances in Neural Information Processing Systems 15 year: 2003 ident: 9343_CR4 – start-page: 697 volume-title: Proceedings of 22nd International Conference on Machine Learning year: 2005 ident: 9343_CR7 doi: 10.1145/1102351.1102439 – volume: 7 start-page: 1 year: 2006 ident: 9343_CR19 publication-title: J. Mach. Learn. Res. – ident: 9343_CR21 – ident: 9343_CR15 – ident: 9343_CR22 – ident: 9343_CR20 – volume: 24 start-page: 15 year: 1999 ident: 9343_CR14 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(98)00049-2 – start-page: 179 volume-title: Proceedings of 19th International Conference on Machine Learning year: 2002 ident: 9343_CR6 – volume: 32 start-page: 675 year: 1937 ident: 9343_CR17 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1937.10503522 – volume: 56 start-page: 52 year: 1961 ident: 9343_CR18 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1961.10482090 – volume: 30 start-page: 7 issue: 1 year: 1998 ident: 9343_CR3 publication-title: Mach. Learn. doi: 10.1023/A:1007450326753 – volume-title: The Nature of Statistical Learning Theory year: 2000 ident: 9343_CR11 doi: 10.1007/978-1-4757-3264-1 – start-page: 49 volume-title: Advances in Neural Information Processing Systems 16–NIPS2003 year: 2004 ident: 9343_CR13 – start-page: 21 volume-title: Proceedings of 14th International Conference on Machine Learning year: 1997 ident: 9343_CR2 – start-page: 135 volume-title: Advances in Large Margin Classifiers year: 2000 ident: 9343_CR10 doi: 10.7551/mitpress/1113.003.0012 – volume: 89 start-page: 31 year: 1998 ident: 9343_CR1 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(96)00034-3 – start-page: 1073 volume-title: Neural Information Processing Systems 2001 year: 2002 ident: 9343_CR5 – ident: 9343_CR24 – volume-title: 15th International Conference on Machine Learning year: 1998 ident: 9343_CR23 – volume-title: Learning with Kernels year: 2002 ident: 9343_CR8 – start-page: 82 volume-title: Proceedings of 15th International Conference on Machine Learning year: 1998 ident: 9343_CR12 – volume: 20 start-page: 273 year: 1995 ident: 9343_CR9 publication-title: Mach. Learn. |
SSID | ssj0009874 |
Score | 2.1485133 |
Snippet | The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31–71, [
1998
]; Auer, Proceedings of 14th International Conference on... The multiple instance classification problem (Dietterich et al., Artif. Intell. 89:31-71, [1998]; Auer, Proceedings of 14th International Conference on Machine... |
SourceID | proquest pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | Algorithms Applications of Mathematics Applied sciences Calculus of Variations and Optimal Control; Optimization Classification Classifiers Engineering Exact sciences and technology Integer programming Learning Linear programming Mathematical models Mathematical programming Mathematics Mathematics and Statistics Minimization Nonlinearity Operational research and scientific management Operational research. Management science Operations Research/Decision Theory Optimization Quadratic programming Reduction Studies Support vector machines Theory of Computation |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS-QwEB_8eFHkOD-Oq55awScl3DZJZ5un4zxcP0ARVPCtpEkKgre72l3_fifph66gvrU0SZOZyWSSmfwGYF8mCWphU6YRNZOIihXW0S6l5NxJdLJnQoDsJZ7eyvO79K6JzamasMpWJwZFbUfGn5H_TjyMJJkn6s_4kfmkUd652mTQmIfFhJMg-Yvig5NXzN2sBWHmTHChWqdmfXNOpX3mz-mUkIKlM8vSylhXRKGyTm0xY3u-c5eGVWjwHb415mP8t-b3Ksy54RosvwEVpLeLDom1WoejiyZiMD4LhqBxcciD6SOEAlPi53sdX09D3kTSfDFtTkn446s6bus_NbkBt4Pjm3-nrMmbwIyUfMJMkpYZCosmyVxPOp6WWMgCpdNEeW4T5ApLUfQdWqG05pm1qNKsVwpN1gKKH7AwHA3dT4hLkciipNYc0VLZrJDOKd3XVhiB1mAEvZZsuWlAxX1ui4f8FQ7ZUzr3j57SeRrBQVdlXCNqfFZ4Z4YXXQ3uPaK0ukaw1TInb2ZflXeyEsFe95WmjfeF6KEbTSuPi0q6OiNt91UZpWQ_gt0PyggRfIv0p8NWMt7046NhbX7a6y1YqqNS_FnPL1iYPE3dNpk-k2InCPgLUXj-zg priority: 102 providerName: ProQuest |
Title | Multiple Instance Classification via Successive Linear Programming |
URI | https://link.springer.com/article/10.1007/s10957-007-9343-5 https://www.proquest.com/docview/196601619 https://www.proquest.com/docview/1082198305 https://www.proquest.com/docview/1082199947 https://www.proquest.com/docview/33010999 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: AFBBN dateStart: 19670701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-2878 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-2878 dateEnd: 20241005 omitProxy: true ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7R9AJCvCuWQlgkTiBXWT8m62OCkhZQowoaqZxWXtsrISCt2IQDvya_Jb-M8T7SpKKgnnZXHnttj8cee8bfALyWSYJGOMUMomESUbPcedqlFJx7iV72bOUgO8Gjqfxwps6ae9xl6-3emiSrmXrjsptWfRaO1rSQgqkd2FVhf9KB3cHhl4-jS6zdtAVf5kxwoVtj5t8K2VqO7l6YknqmqENabOmcV8yk1eozvg-nbb1rp5NvB4t5fmB_X4F0vGHDHsC9RhuNB_XweQi3_OwR3NnAKKSv4zWwa_kYRseNA2L8vtIrrY-rsJrB4ajicfzrq1ktPy-qOIw0k66WtNslaVotT2pPsB9U6hOYjken745YE4mBWSn5nNlEFSkKhzZJfU96rgrMZY7SG-IldwlyjYXI-x6d0Mbw1DnUKu0VwpD-gWIPOrPzmX8KcSESmRdUmicuaZfm0ntt-sYJK9BZjKDXMiSzDUx5iJbxPbsEWA79lYXX0F-ZiuDNOstFjdHxL-LuFpfXOXiwsdJ6HcF-y_askecySwKIKSnHOoJX61QSxGBdMTN_vigD0irN_inNn_-j0Vr2I3h5DY0QlbWS_vS2HS4b9biuWc9uRL0Pt2u_l3Ca9Bw6858L_4KUq3nehZ10fNglkRoPh5NuI1r0HI4mJ58odcoHfwB7_SFd |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgCEEE8RCq2R4AKy2NjObHxAiNeyS7sVEq3UW-rYjoQEuwvZBfGj-I-MnUe7SC2n3hLFcZyZ8czYM_4G4IlKUzTSZdwgGq4QNS-dp1VKJYRX6NXAxgTZfRwfqo9H2dEG_OnOwoS0yk4nRkXt5jbskb9IA4wkuSf61eI7D0WjQnC1q6DRSMWu__2LVmz1y8k7Yu9TIUbvD96OeVtUgFulxJLbNKtylA5tmvuB8iKrsFQlKm9oWMKlKDRWshx6dFIbI3LnUGf5oJKGTClK6vcSXFZSygDVn48-nGD85h3os-BSSN0FUZuTejob8rAvqKWSPFszg9cXpiaOVE0pjTVf95_wbLR6o5two3VX2etGvm7Bhp_dhmunQAzpbtojv9Z34M20zVBkk-h4Ws9i3c2QkRSFgP38YtjnVazTSJqW0WKYyMo-NXli36jLu3B4ISS9B5uz-czfB1bJVJUV9eaJltrlpfJem6Fx0kp0FhMYdGQrbAtiHmppfC1O4JcDpYtwGShdZAk8619ZNAge5zXeXuNF_4YIEViy5glsdcwp2tleF71sJvC4f0rTNMRezMzPV3XAYSXbkJN2_V8brdUwgZ0z2kgZY5n0peedZJwax1m_9eDcUe_AlfHBdK_Ym-zvbsHVJiMm7DM9hM3lj5V_RG7XstyOws7g-KJn11-29Tsv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYRAFeIpQmlrJLiArG5sx4kPFaKPVZfS1Qqo1Ftw_JAqld2F7BbxE_lXjPNqF6nl1FuiOI4zHs-MPTPfALwWcSw1twnVUmoqpFS0sA53KZ4xJ6QTfVMFyI7k4Yn4eJqcrsCfNhcmhFW2MrES1HZqwhn5dhxgJNE8Udu-iYoY7w_ez37QUEAqOFrbahq6qbJgdyq0sSbH48j9_oW7uXJnuI9T_4axwcHXvUPaFBygRgg2pyZOfCa5lSbOXF84lnhZiEIKp3HIzMaSKel5kTppudKaZdZKlWR9zzWqWcmx3zuwmoZ00R6s7h6Mxp8vEYCzFhKaUc64al2sdR6fSlIaTg0VF5wmS0pybaZLnC9fF9pYsoT_cd5WOnHwEB40xiz5UHPfI1hxk8dw_wrEId4dd7iw5RPYPW7iF8mwMkuNI1VVzhCvVLEIuTjT5MuiquKIcpjgVhkJS8Z1FNl37PIpnNwKUZ9BbzKduOdAPI9F4bE3h7RUNiuEc0qn2nLDpTUygn5Lttw0EOeh0sZ5fgnOHCidh8tA6TyJ4G33yqzG97ip8ebSXHRvsOCfRV0fwXo7OXkjC8q849wIXnVPcREHz4yeuOmiDCitqDkylL3_a6OUSCPYuqYN55WnE7_0ruWMK-O47rde3DjqLbiLKy3_NBwdrcO9OlwmHEK9hN7858JtoE02LzYbbifw7bYX2F-nd0YJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Instance+Classification+via+Successive+Linear+Programming&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Mangasarian%2C+O+L&rft.au=Wild%2C+E+W&rft.date=2008-06-01&rft.issn=0022-3239&rft.volume=137&rft.issue=3&rft.spage=555&rft.epage=568&rft_id=info:doi/10.1007%2Fs10957-007-9343-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |