SS-RNN: A Strengthened Skip Algorithm for Data Classification Based on Recurrent Neural Networks

Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multipl...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 12; p. 746181
Main Authors Cao, Wenjie, Shi, Ya-Zhou, Qiu, Huahai, Zhang, Bengong
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 13.10.2021
Subjects
Online AccessGet full text
ISSN1664-8021
1664-8021
DOI10.3389/fgene.2021.746181

Cover

Abstract Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.
AbstractList Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.
Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.
Author Qiu, Huahai
Zhang, Bengong
Cao, Wenjie
Shi, Ya-Zhou
AuthorAffiliation 1 Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan , China
2 School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan , China
AuthorAffiliation_xml – name: 2 School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan , China
– name: 1 Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan , China
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Cao
  fullname: Cao, Wenjie
– sequence: 2
  givenname: Ya-Zhou
  surname: Shi
  fullname: Shi, Ya-Zhou
– sequence: 3
  givenname: Huahai
  surname: Qiu
  fullname: Qiu, Huahai
– sequence: 4
  givenname: Bengong
  surname: Zhang
  fullname: Zhang, Bengong
BookMark eNqNkU1v1DAQhiNUREvpD-CWI5cs8VeccEBalq9K1SJ14Wwm_si69caL7VD13-PdVIhyQPgyo5l5nxm9fl6cjH7URfES1QtC2u61GfSoF7jGaMFpg1r0pDhDTUOrNpdO_shPi4sYb-r8aEcIoc-KU0I5RoyQs-L7ZlNdr9dvymW5SUGPQ9pmrCo3t3ZfLt3gg03bXWl8KN9DgnLlIEZrrIRk_Vi-g5iHc3Kt5RSyPpVrPQVwOaQ7H27ji-KpARf1xUM8L759_PB19bm6-vLpcrW8qiSlOFV9bxqGFQFEANdcIs37vm5rylCLJdYtA9opYD3GmuOmI7UyhjcGc5z7ypDz4nLmKg83Yh_sDsK98GDFseDDICAkK50WivWEIgSKSUOVNNAAk0Qyk_GoQTyz8Myaxj3c34Fzv4GoFgf3xdF9cXBfzO5n0dtZtJ_6nVYye5F9eHTJ485ot2LwP0XLaMspzYBXD4Dgf0w6JrGzUWrnYNR-igKzDmGCGDvsQvOoDD7GoM1_3cf_0kibjr-Yr7HuH8pfmT3AOQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3438848
crossref_primary_10_1142_S2737416524400015
Cites_doi 10.1145/3321707.3321795
10.1016/j.procs.2018.05.045
10.1016/j.neucom.2018.12.016
10.1016/j.asoc.2018.09.013
10.1162/neco.1997.9.8.1735
10.1016/j.neunet.2020.10.015
10.1016/j.procs.2018.08.153
10.18653/v1/d16-1058
10.2478/jaiscr-2019-0006
10.1016/j.cmpb.2019.05.004
10.1109/ACCESS.2017.2707460
10.1207/s15516709cog1402_1
10.5772/intechopen.84856
10.1016/j.micpro.2020.103189
10.1162/089976600300015015
10.1162/neco_a_01199
10.1016/j.compbiomed.2019.05.012
10.1016/j.neucom.2018.11.066
10.24963/ijcai.2017/386
10.1007/s11633-016-1006-2
10.1109/TSG.2017.2753802
10.1109/CVPR.2018.00240
10.1109/CVPR.2018.00553
10.1609/aaai.v33i01.33016481
10.1145/3362743.3362965
10.1002/prot.25487
10.18653/v1/P17-1052
10.18201/ijisae.2019252786
10.14419/ijet.v7i3.8.15210
10.1016/j.procs.2018.03.076
10.1109/CVPR.2016.110
10.1609/aaai.v34i04.5781
10.1109/CVPR.2018.00635
10.1109/CVPR.2019.00144
10.1109/78.650093
ContentType Journal Article
Copyright Copyright © 2021 Cao, Shi, Qiu and Zhang.
Copyright © 2021 Cao, Shi, Qiu and Zhang. 2021 Cao, Shi, Qiu and Zhang
Copyright_xml – notice: Copyright © 2021 Cao, Shi, Qiu and Zhang.
– notice: Copyright © 2021 Cao, Shi, Qiu and Zhang. 2021 Cao, Shi, Qiu and Zhang
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fgene.2021.746181
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Cao et al
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_d5b3411ad5cf4dcfa6a5c3c5fa5b1617
10.3389/fgene.2021.746181
PMC8548744
10_3389_fgene_2021_746181
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c442t-bbf652d3a13a207c1e7bb08045182c2e85a49da5b22e726930dff76f27282cdf3
IEDL.DBID M48
ISSN 1664-8021
IngestDate Fri Oct 03 12:45:41 EDT 2025
Sun Oct 26 04:09:25 EDT 2025
Thu Aug 21 18:18:05 EDT 2025
Thu Sep 04 18:31:50 EDT 2025
Wed Oct 01 02:29:59 EDT 2025
Thu Apr 24 22:58:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-bbf652d3a13a207c1e7bb08045182c2e85a49da5b22e726930dff76f27282cdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Robert Friedman, Retired, Columbia, SC, United States
This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics
Reviewed by: Huang Yu-an, Shenzhen University, China
Hong Peng, South China University of Technology, China
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/fgene.2021.746181
PMID 34721533
PQID 2591231551
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d5b3411ad5cf4dcfa6a5c3c5fa5b1617
unpaywall_primary_10_3389_fgene_2021_746181
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8548744
proquest_miscellaneous_2591231551
crossref_primary_10_3389_fgene_2021_746181
crossref_citationtrail_10_3389_fgene_2021_746181
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-13
PublicationDateYYYYMMDD 2021-10-13
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-13
  day: 13
PublicationDecade 2020
PublicationTitle Frontiers in genetics
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References B20
Saritas (B35) 2019; 7
Schuster (B36) 1997; 45
Kerkeni (B22) 2019
Ororbia (B31) 2019
Das (B9) 2020; 34
Hochreiter (B18) 1997; 9
Ma (B26) 2021; 133
B28
B29
Gupta (B16) 2018
Hasan (B17) 2018
DiPietro (B10) 2017
Gers (B14) 2000; 12
Vemula (B43) 2018
Zhao (B50) 2020
Choi (B7) 2017
Chung (B8) 2015; 28
Keren (B21) 2016
Sadeghian (B33) 2019
Yildirim (B47) 2019; 176
Xu (B45) 2018
Yang (B46) 2019; 332
Abbasvandi (B1) 2019; 110
Aggarwal (B2) 2018; 7
Alahi (B3) 2016
Arpit (B4) 2018
Ostmeyer (B32) 2019; 331
Gui (B15) 2019; 33
Liu (B25) 2019
Trinh (B42) 2018
Zhang (B49) 2017; 5
B6
Kong (B23) 2019; 10
Elman (B11) 1990; 14
Chandrasekar (B5) 2020; 77
Fang (B13) 2018; 86
Mikolajczyk (B30) 2018
Shewalkar (B37) 2019; 9
Zhou (B51) 2016; 13
Salman (B34) 2018; 135
ElSaid (B12) 2018; 73
Johnson (B19) 2017; 1
Li (B24) 2018; 129
Singh (B38) 2018; 132
Wang (B44) 2016
Yu (B48) 2019; 31
Maginnis (B27) 2017
Tao (B41) 2019
Su (B40) 2017
Song (B39) 2018
References_xml – start-page: 446
  year: 2019
  ident: B31
  article-title: Investigating Recurrent Neural Network Memory Structures Using Neuro-Evolution
  doi: 10.1145/3321707.3321795
– volume: 132
  start-page: 1290
  year: 2018
  ident: B38
  article-title: Classification of Ecg Arrhythmia Using Recurrent Neural Networks
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2018.05.045
– volume: 332
  start-page: 320
  year: 2019
  ident: B46
  article-title: Traffic Flow Prediction Using LSTM with Feature Enhancement
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.12.016
– volume: 73
  start-page: 969
  year: 2018
  ident: B12
  article-title: Optimizing Long Short-Term Memory Recurrent Neural Networks Using Ant colony Optimization to Predict Turbine Engine Vibration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.09.013
– volume: 9
  start-page: 1735
  year: 1997
  ident: B18
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 133
  start-page: 177
  year: 2021
  ident: B26
  article-title: Echo Memory-Augmented Network for Time Series Classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2020.10.015
– ident: B29
– volume: 135
  start-page: 89
  year: 2018
  ident: B34
  article-title: Single Layer & Multi-Layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2018.08.153
– start-page: 606
  year: 2016
  ident: B44
  article-title: Attention-based LSTM for Aspect-Level Sentiment Classification
  doi: 10.18653/v1/d16-1058
– volume: 9
  start-page: 235
  year: 2019
  ident: B37
  article-title: Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU
  publication-title: J. Artif. Intelligence Soft Comput. Res.
  doi: 10.2478/jaiscr-2019-0006
– start-page: 4965
  year: 2018
  ident: B42
  article-title: Learning Longer-Term Dependencies in Rnns with Auxiliary Losses
– start-page: 2392
  year: 2017
  ident: B7
  article-title: Convolutional Recurrent Neural Networks for Music Classification
– volume: 176
  start-page: 121
  year: 2019
  ident: B47
  article-title: A New Approach for Arrhythmia Classification Using Deep Coded Features and LSTM Networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.004
– year: 2017
  ident: B27
  article-title: Efficiently Applying Attention to Sequential Data with the Recurrent Discounted Attention Unit
– volume: 5
  start-page: 11805
  year: 2017
  ident: B49
  article-title: Heartid: a Multiresolution Convolutional Neural Network for Ecg-Based Biometric Human Identification in Smart Health Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2707460
– volume: 14
  start-page: 179
  year: 1990
  ident: B11
  article-title: Finding Structure in Time
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1402_1
– year: 2019
  ident: B22
  article-title: Automatic Speech Emotion Recognition Using Machine Learning
  publication-title: Social Media and Machine Learning
  doi: 10.5772/intechopen.84856
– ident: B28
– ident: B6
– start-page: 117
  year: 2018
  ident: B30
  article-title: Data Augmentation for Improving Deep Learning in Image Classification Problem
– volume: 77
  start-page: 103189
  year: 2020
  ident: B5
  article-title: Disease Prediction Based on Micro Array Classification Using Deep Learning Techniques
  publication-title: Microprocessors and Microsystems
  doi: 10.1016/j.micpro.2020.103189
– volume: 12
  start-page: 2451
  year: 2000
  ident: B14
  article-title: Learning to Forget: Continual Prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 31
  start-page: 1235
  year: 2019
  ident: B48
  article-title: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 110
  start-page: 93
  year: 2019
  ident: B1
  article-title: A Self-Organized Recurrent Neural Network for Estimating the Effective Connectivity and its Application to EEG Data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.05.012
– start-page: 3412
  year: 2016
  ident: B21
  article-title: Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data
– start-page: 4601
  year: 2018
  ident: B43
  article-title: Social Attention: Modeling Attention in Human Crowds
– volume: 331
  start-page: 281
  year: 2019
  ident: B32
  article-title: Machine Learning on Sequential Data Using a Recurrent Weighted Average
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.066
– start-page: 1
  year: 2017
  ident: B40
  article-title: Forecast the Plausible Paths in Crowd Scenes
  doi: 10.24963/ijcai.2017/386
– volume: 28
  start-page: 2980
  year: 2015
  ident: B8
  article-title: A Recurrent Latent Variable Model for Sequential Data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 226
  year: 2016
  ident: B51
  article-title: Minimal Gated Unit for Recurrent Neural Networks
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-016-1006-2
– ident: B20
– start-page: 4984
  year: 2018
  ident: B39
  article-title: Dynamic Frame Skipping for Fast Speech Recognition in Recurrent Neural Network Based Acoustic Models
– year: 2018
  ident: B4
  article-title: H-Detach: Modifying the LSTM Gradient towards Better Optimization
– volume: 10
  start-page: 841
  year: 2019
  ident: B23
  article-title: Short-term Residential Load Forecasting Based on LSTM Recurrent Neural Network
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2753802
– start-page: 2255
  year: 2018
  ident: B16
  article-title: Social gan: Socially Acceptable Trajectories with Generative Adversarial Networks
  doi: 10.1109/CVPR.2018.00240
– start-page: 5275
  year: 2018
  ident: B45
  article-title: Encoding Crowd Interaction with Deep Neural Network for Pedestrian Trajectory Prediction
  doi: 10.1109/CVPR.2018.00553
– volume: 33
  start-page: 6481
  year: 2019
  ident: B15
  article-title: Long Short-Term Memory with Dynamic Skip Connections
  publication-title: Assoc. Adv. Artif. Intelligence
  doi: 10.1609/aaai.v33i01.33016481
– start-page: 31
  year: 2019
  ident: B41
  article-title: Skipping Rnn State Updates without Retraining the Original Model
  doi: 10.1145/3362743.3362965
– volume: 86
  start-page: 592
  year: 2018
  ident: B13
  article-title: MUFOLD-SS: New Deep Inception-Inside-Inception Networks for Protein Secondary Structure Prediction
  publication-title: Proteins
  doi: 10.1002/prot.25487
– volume: 1
  start-page: 562
  year: 2017
  ident: B19
  article-title: Deep Pyramid Convolutional Neural Networks for Text Categorization
  publication-title: Proc. 55th Annu. Meet. Assoc. Comput. Linguistics
  doi: 10.18653/v1/P17-1052
– volume: 7
  start-page: 88
  year: 2019
  ident: B35
  article-title: Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification
  publication-title: Int. J. Intell. Syst. Appl.
  doi: 10.18201/ijisae.2019252786
– volume: 7
  start-page: 11
  year: 2018
  ident: B2
  article-title: A Review of Different Text Categorization Techniques
  publication-title: Int. J. Eng. Technol. (Ijet)
  doi: 10.14419/ijet.v7i3.8.15210
– volume: 129
  start-page: 277
  year: 2018
  ident: B24
  article-title: Prediction for Tourism Flow Based on LSTM Neural Network
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2018.03.076
– start-page: 11365
  year: 2020
  ident: B50
  article-title: Do rnn and Lstm Have Long Memory?
– start-page: 1303
  year: 2019
  ident: B25
  article-title: A LSTM and CNN Based Assemble Neural Network Framework for Arrhythmias Classification
– start-page: 961
  year: 2016
  ident: B3
  article-title: Social Lstm: Human Trajectory Prediction in Crowded Spaces
  doi: 10.1109/CVPR.2016.110
– volume: 34
  start-page: 3717
  year: 2020
  ident: B9
  article-title: A Skip-Connected Evolving Recurrent Neural Network for Data Stream Classification under Label Latency Scenario
  publication-title: Assoc. Adv. Artif. Intelligence
  doi: 10.1609/aaai.v34i04.5781
– start-page: 6067
  year: 2018
  ident: B17
  article-title: Mx-lstm: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses
  doi: 10.1109/CVPR.2018.00635
– start-page: 1349
  year: 2019
  ident: B33
  article-title: Sophie: An Attentive gan for Predicting Paths Compliant to Social and Physical Constraints
  doi: 10.1109/CVPR.2019.00144
– volume: 45
  start-page: 2673
  year: 1997
  ident: B36
  article-title: Bidirectional Recurrent Neural Networks
  publication-title: IEEE Trans. Signal. Process.
  doi: 10.1109/78.650093
– year: 2017
  ident: B10
  article-title: Analyzing and Exploiting NARX Recurrent Neural Networks for Long-Term Dependencies
SSID ssj0000493334
Score 2.2678154
Snippet Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 746181
SubjectTerms data classification
deep learning
Genetics
LSTM
RNN
SS-RNN
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VSKi9VEBbNeWhReqJysXeh9fhFl6KOORAQOK2Xe8DQoMTgSPEv2fGm0RxD-XCzfJj157Z3fk-7-gbQn4CAgkpVyyB-A0EhXkGU8oDcQ0prMieQUhusnwHef9aXNzIm5VSX5gTFuWBo-EOnSxhoc2MkzYIZ4PJjbTcymBkidgcV9-06K6QqfuIeznnIm5jAgvrHgbwB8pisuy3EnlWZK1A1Oj1t0DmvymSH2fV1Lw8m_F4Jf6cb5DPc-BIe_GFN8kHX22R9VhK8uUL-TMcJpeDwRHtUdxorm5R1cA7Ovw7mtLe-HbyOKrvHihAVHpqakObYpiYJtR4hh5DMHMUDi7x_zsqNlGU7YAOBzFP_OkruT4_uzrpJ_PqCYkVgtVJWYZcMsdNxg1Llc28KkvAh0ICpbDMF9KIrgMrMuYVw4qILgSVB6aAhVkX-DeyVk0q_51QmXHnFDC9roGmbV444EEQ2RUsB1Ja0SHpwpTazqXFscLFWAPFQOvrxvoara-j9TvkYPnINOpq_O_mY_TP8kaUxG5OwEDR84Gi3xooHbK_8K6GKYT7Iqbyk9mTBgYI8RuxY4eolttbPbavVKO7Roy7QMonwAS_lgPk7Q_68R4ftE0-YZMYSDO-Q9bqx5nfBYRUl3vNZHgFNgIPAQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5VQRVcSltApLTVInFq5RCv95H0FtoixMFCpJHgtKz3ESJSJyKOKvrrO2ObCCPU0psfa6929jHf5x1_Q8gBIJDQTRSLwH8DQWGewZTyQFxDF1Zkz8All1G-qTwZ8dMLcVGLReO_MA_274E89Q8DmBHVLFncUVzG-JP1mhQAu1tkbZSeDS6RUEnJYaVlcbVr-fRzDb9TyvM3MOXjiMj1ZT43d7_MdPrA3RxvVoFai1KlEKNMbjrLIuvY3480HJ_VktfkVQ066aAaJW_IC5-_JS-rNJR3W-RqOIzO0_QLHVDcpM7HqIjgHR3eTOZ0MB3PbifF9U8K8JZ-M4WhZSJNDDEqe5UegSN0FA7O8ds9qj1RlPyACtMqxnyxTUbH3398PYnqzAuR5ZwVUZYFKZhLTJwY1lU29irLAFtyAXTEMt8ThvedERljXjHMpuhCUDIwBQzOupDskFY-y_0uoSJOnFPAEvsGXm1lzwGHAlSgYCkRwvI26d73i7a1LDlmx5hqoCdoOF0aTqPhdGW4Nvm0emReaXL8rfARdvaqIMpplxegb3Q9O7UTGXjz2DhhA3c2GGmETawI0EQkgG2yfz9UNEw_3FMxuZ8tFxrYI_h-xJ1tohpjqFFj804-uS6FvHtIFzmY4PNqtP27Qe_-q_Qe2cAz9LZx8p60itul_wAwqsg-1hPoD9z7F1s
  priority: 102
  providerName: Unpaywall
Title SS-RNN: A Strengthened Skip Algorithm for Data Classification Based on Recurrent Neural Networks
URI https://www.proquest.com/docview/2591231551
https://pubmed.ncbi.nlm.nih.gov/PMC8548744
https://doi.org/10.3389/fgene.2021.746181
https://doaj.org/article/d5b3411ad5cf4dcfa6a5c3c5fa5b1617
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M48
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLWmTQheEJ-iAyoj8QTKqB07bpEQ6oAxIRGhlUrlyTj-6MqytLSpoP-ee5O0ImgC8VK1SZrI17k-58TOuYQ8BQYSerHiEeA3CBTuOaSUB-EaejAiew6QXK3yTZPTsfgwkZM9si1v1QRwdaW0w3pS42V-9PP75jUk_CtUnIC3LwKEGh0vOTtSImH4IvYBANUAKzl8bNj-t5oMx3E9z5wkAsZmzup5zqvP0kKqytC_xUL_XEN5fV0szOaHyfPfAOrkFrnZMEs6rG-F22TPF3fItbrW5OYu-ToaRWdp-pIOKc5EF1O0PfCOji5mCzrMp_PlrDy_pMBh6VtTGlpVy8R1RFXX0WNAO0fhyxk-oEdLJ4q-HnDBtF5IvrpHxifvPr85jZryCpEVgpdRloVEchcbFhveU5Z5lWVAIIUEzWG570sjBs7IjHOvOJZMdCGoJHAFMs26EN8n-8W88A8IlSx2ToEUHBg4tU36DoQSQL-C8UJKKzqktw2lto33OJbAyDVoEIy-rqKvMfq6jn6HPNv9ZVEbb_zt4GPsn92B6JldbZgvp7pJQe1kBpDNjJM2CGeDSYy0sZUBmogqr0OebHtXQ47hxIkp_Hy90iARAeCRXHaIanV764rtPcXsvHLr7qMmFBCC57sb5N8NOvyf1j8kN_AXIiqLH5H9crn2j4EqlVm3esQAn-8nrFslQ5ccjNNPwy-_AE8PEnU
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5VQRVcSltApLTVInFq5RCv95H0FtoixMFCpJHgtKz3ESJSJyKOKvrrO2ObCCPU0psfa6929jHf5x1_Q8gBIJDQTRSLwH8DQWGewZTyQFxDF1Zkz8All1G-qTwZ8dMLcVGLReO_MA_274E89Q8DmBHVLFncUVzG-JP1mhQAu1tkbZSeDS6RUEnJYaVlcbVr-fRzDb9TyvM3MOXjiMj1ZT43d7_MdPrA3RxvVoFai1KlEKNMbjrLIuvY3480HJ_VktfkVQ066aAaJW_IC5-_JS-rNJR3W-RqOIzO0_QLHVDcpM7HqIjgHR3eTOZ0MB3PbifF9U8K8JZ-M4WhZSJNDDEqe5UegSN0FA7O8ds9qj1RlPyACtMqxnyxTUbH3398PYnqzAuR5ZwVUZYFKZhLTJwY1lU29irLAFtyAXTEMt8ThvedERljXjHMpuhCUDIwBQzOupDskFY-y_0uoSJOnFPAEvsGXm1lzwGHAlSgYCkRwvI26d73i7a1LDlmx5hqoCdoOF0aTqPhdGW4Nvm0emReaXL8rfARdvaqIMpplxegb3Q9O7UTGXjz2DhhA3c2GGmETawI0EQkgG2yfz9UNEw_3FMxuZ8tFxrYI_h-xJ1tohpjqFFj804-uS6FvHtIFzmY4PNqtP27Qe_-q_Qe2cAz9LZx8p60itul_wAwqsg-1hPoD9z7F1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SS-RNN%3A+A+Strengthened+Skip+Algorithm+for+Data+Classification+Based+on+Recurrent+Neural+Networks&rft.jtitle=Frontiers+in+genetics&rft.au=Cao%2C+Wenjie&rft.au=Shi%2C+Ya-Zhou&rft.au=Qiu%2C+Huahai&rft.au=Zhang%2C+Bengong&rft.date=2021-10-13&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=12&rft_id=info:doi/10.3389%2Ffgene.2021.746181&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fgene_2021_746181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon