SS-RNN: A Strengthened Skip Algorithm for Data Classification Based on Recurrent Neural Networks
Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multipl...
        Saved in:
      
    
          | Published in | Frontiers in genetics Vol. 12; p. 746181 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Frontiers Media S.A
    
        13.10.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1664-8021 1664-8021  | 
| DOI | 10.3389/fgene.2021.746181 | 
Cover
| Abstract | Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients. | 
    
|---|---|
| AbstractList | Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients. Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and difficulty in gradient back propagation. To solve these problems, this paper proposes a new algorithm called SS-RNN, which directly uses multiple historical information to predict the current time information. It can enhance the long-term memory ability. At the same time, for the time direction, it can improve the correlation of states at different moments. To include the historical information, we design two different processing methods for the SS-RNN in continuous and discontinuous ways, respectively. For each method, there are two ways for historical information addition: 1) direct addition and 2) adding weight weighting and function mapping to activation function. It provides six pathways so as to fully and deeply explore the effect and influence of historical information on the RNNs. By comparing the average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-score), it can be observed that our method can improve the average accuracy and optimize the structure of the recurrent neural network and effectively solve the problems of exploding and vanishing gradients.  | 
    
| Author | Qiu, Huahai Zhang, Bengong Cao, Wenjie Shi, Ya-Zhou  | 
    
| AuthorAffiliation | 1 Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan , China 2 School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan , China  | 
    
| AuthorAffiliation_xml | – name: 2 School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan , China – name: 1 Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan , China  | 
    
| Author_xml | – sequence: 1 givenname: Wenjie surname: Cao fullname: Cao, Wenjie – sequence: 2 givenname: Ya-Zhou surname: Shi fullname: Shi, Ya-Zhou – sequence: 3 givenname: Huahai surname: Qiu fullname: Qiu, Huahai – sequence: 4 givenname: Bengong surname: Zhang fullname: Zhang, Bengong  | 
    
| BookMark | eNqNkU1v1DAQhiNUREvpD-CWI5cs8VeccEBalq9K1SJ14Wwm_si69caL7VD13-PdVIhyQPgyo5l5nxm9fl6cjH7URfES1QtC2u61GfSoF7jGaMFpg1r0pDhDTUOrNpdO_shPi4sYb-r8aEcIoc-KU0I5RoyQs-L7ZlNdr9dvymW5SUGPQ9pmrCo3t3ZfLt3gg03bXWl8KN9DgnLlIEZrrIRk_Vi-g5iHc3Kt5RSyPpVrPQVwOaQ7H27ji-KpARf1xUM8L759_PB19bm6-vLpcrW8qiSlOFV9bxqGFQFEANdcIs37vm5rylCLJdYtA9opYD3GmuOmI7UyhjcGc5z7ypDz4nLmKg83Yh_sDsK98GDFseDDICAkK50WivWEIgSKSUOVNNAAk0Qyk_GoQTyz8Myaxj3c34Fzv4GoFgf3xdF9cXBfzO5n0dtZtJ_6nVYye5F9eHTJ485ot2LwP0XLaMspzYBXD4Dgf0w6JrGzUWrnYNR-igKzDmGCGDvsQvOoDD7GoM1_3cf_0kibjr-Yr7HuH8pfmT3AOQ | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3438848 crossref_primary_10_1142_S2737416524400015  | 
    
| Cites_doi | 10.1145/3321707.3321795 10.1016/j.procs.2018.05.045 10.1016/j.neucom.2018.12.016 10.1016/j.asoc.2018.09.013 10.1162/neco.1997.9.8.1735 10.1016/j.neunet.2020.10.015 10.1016/j.procs.2018.08.153 10.18653/v1/d16-1058 10.2478/jaiscr-2019-0006 10.1016/j.cmpb.2019.05.004 10.1109/ACCESS.2017.2707460 10.1207/s15516709cog1402_1 10.5772/intechopen.84856 10.1016/j.micpro.2020.103189 10.1162/089976600300015015 10.1162/neco_a_01199 10.1016/j.compbiomed.2019.05.012 10.1016/j.neucom.2018.11.066 10.24963/ijcai.2017/386 10.1007/s11633-016-1006-2 10.1109/TSG.2017.2753802 10.1109/CVPR.2018.00240 10.1109/CVPR.2018.00553 10.1609/aaai.v33i01.33016481 10.1145/3362743.3362965 10.1002/prot.25487 10.18653/v1/P17-1052 10.18201/ijisae.2019252786 10.14419/ijet.v7i3.8.15210 10.1016/j.procs.2018.03.076 10.1109/CVPR.2016.110 10.1609/aaai.v34i04.5781 10.1109/CVPR.2018.00635 10.1109/CVPR.2019.00144 10.1109/78.650093  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Cao, Shi, Qiu and Zhang. Copyright © 2021 Cao, Shi, Qiu and Zhang. 2021 Cao, Shi, Qiu and Zhang  | 
    
| Copyright_xml | – notice: Copyright © 2021 Cao, Shi, Qiu and Zhang. – notice: Copyright © 2021 Cao, Shi, Qiu and Zhang. 2021 Cao, Shi, Qiu and Zhang  | 
    
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3389/fgene.2021.746181 | 
    
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| DocumentTitleAlternate | Cao et al | 
    
| EISSN | 1664-8021 | 
    
| ExternalDocumentID | oai_doaj_org_article_d5b3411ad5cf4dcfa6a5c3c5fa5b1617 10.3389/fgene.2021.746181 PMC8548744 10_3389_fgene_2021_746181  | 
    
| GrantInformation_xml | – fundername: ; | 
    
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c442t-bbf652d3a13a207c1e7bb08045182c2e85a49da5b22e726930dff76f27282cdf3 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1664-8021 | 
    
| IngestDate | Fri Oct 03 12:45:41 EDT 2025 Sun Oct 26 04:09:25 EDT 2025 Thu Aug 21 18:18:05 EDT 2025 Thu Sep 04 18:31:50 EDT 2025 Wed Oct 01 02:29:59 EDT 2025 Thu Apr 24 22:58:11 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c442t-bbf652d3a13a207c1e7bb08045182c2e85a49da5b22e726930dff76f27282cdf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Robert Friedman, Retired, Columbia, SC, United States This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics Reviewed by: Huang Yu-an, Shenzhen University, China Hong Peng, South China University of Technology, China  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/fgene.2021.746181 | 
    
| PMID | 34721533 | 
    
| PQID | 2591231551 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d5b3411ad5cf4dcfa6a5c3c5fa5b1617 unpaywall_primary_10_3389_fgene_2021_746181 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8548744 proquest_miscellaneous_2591231551 crossref_primary_10_3389_fgene_2021_746181 crossref_citationtrail_10_3389_fgene_2021_746181  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-10-13 | 
    
| PublicationDateYYYYMMDD | 2021-10-13 | 
    
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-13 day: 13  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Frontiers in genetics | 
    
| PublicationYear | 2021 | 
    
| Publisher | Frontiers Media S.A | 
    
| Publisher_xml | – name: Frontiers Media S.A | 
    
| References | B20 Saritas (B35) 2019; 7 Schuster (B36) 1997; 45 Kerkeni (B22) 2019 Ororbia (B31) 2019 Das (B9) 2020; 34 Hochreiter (B18) 1997; 9 Ma (B26) 2021; 133 B28 B29 Gupta (B16) 2018 Hasan (B17) 2018 DiPietro (B10) 2017 Gers (B14) 2000; 12 Vemula (B43) 2018 Zhao (B50) 2020 Choi (B7) 2017 Chung (B8) 2015; 28 Keren (B21) 2016 Sadeghian (B33) 2019 Yildirim (B47) 2019; 176 Xu (B45) 2018 Yang (B46) 2019; 332 Abbasvandi (B1) 2019; 110 Aggarwal (B2) 2018; 7 Alahi (B3) 2016 Arpit (B4) 2018 Ostmeyer (B32) 2019; 331 Gui (B15) 2019; 33 Liu (B25) 2019 Trinh (B42) 2018 Zhang (B49) 2017; 5 B6 Kong (B23) 2019; 10 Elman (B11) 1990; 14 Chandrasekar (B5) 2020; 77 Fang (B13) 2018; 86 Mikolajczyk (B30) 2018 Shewalkar (B37) 2019; 9 Zhou (B51) 2016; 13 Salman (B34) 2018; 135 ElSaid (B12) 2018; 73 Johnson (B19) 2017; 1 Li (B24) 2018; 129 Singh (B38) 2018; 132 Wang (B44) 2016 Yu (B48) 2019; 31 Maginnis (B27) 2017 Tao (B41) 2019 Su (B40) 2017 Song (B39) 2018  | 
    
| References_xml | – start-page: 446 year: 2019 ident: B31 article-title: Investigating Recurrent Neural Network Memory Structures Using Neuro-Evolution doi: 10.1145/3321707.3321795 – volume: 132 start-page: 1290 year: 2018 ident: B38 article-title: Classification of Ecg Arrhythmia Using Recurrent Neural Networks publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2018.05.045 – volume: 332 start-page: 320 year: 2019 ident: B46 article-title: Traffic Flow Prediction Using LSTM with Feature Enhancement publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.12.016 – volume: 73 start-page: 969 year: 2018 ident: B12 article-title: Optimizing Long Short-Term Memory Recurrent Neural Networks Using Ant colony Optimization to Predict Turbine Engine Vibration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.09.013 – volume: 9 start-page: 1735 year: 1997 ident: B18 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 133 start-page: 177 year: 2021 ident: B26 article-title: Echo Memory-Augmented Network for Time Series Classification publication-title: Neural Networks doi: 10.1016/j.neunet.2020.10.015 – ident: B29 – volume: 135 start-page: 89 year: 2018 ident: B34 article-title: Single Layer & Multi-Layer Long Short-Term Memory (LSTM) Model with Intermediate Variables for Weather Forecasting publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2018.08.153 – start-page: 606 year: 2016 ident: B44 article-title: Attention-based LSTM for Aspect-Level Sentiment Classification doi: 10.18653/v1/d16-1058 – volume: 9 start-page: 235 year: 2019 ident: B37 article-title: Performance Evaluation of Deep Neural Networks Applied to Speech Recognition: RNN, LSTM and GRU publication-title: J. Artif. Intelligence Soft Comput. Res. doi: 10.2478/jaiscr-2019-0006 – start-page: 4965 year: 2018 ident: B42 article-title: Learning Longer-Term Dependencies in Rnns with Auxiliary Losses – start-page: 2392 year: 2017 ident: B7 article-title: Convolutional Recurrent Neural Networks for Music Classification – volume: 176 start-page: 121 year: 2019 ident: B47 article-title: A New Approach for Arrhythmia Classification Using Deep Coded Features and LSTM Networks publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.004 – year: 2017 ident: B27 article-title: Efficiently Applying Attention to Sequential Data with the Recurrent Discounted Attention Unit – volume: 5 start-page: 11805 year: 2017 ident: B49 article-title: Heartid: a Multiresolution Convolutional Neural Network for Ecg-Based Biometric Human Identification in Smart Health Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2707460 – volume: 14 start-page: 179 year: 1990 ident: B11 article-title: Finding Structure in Time publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1402_1 – year: 2019 ident: B22 article-title: Automatic Speech Emotion Recognition Using Machine Learning publication-title: Social Media and Machine Learning doi: 10.5772/intechopen.84856 – ident: B28 – ident: B6 – start-page: 117 year: 2018 ident: B30 article-title: Data Augmentation for Improving Deep Learning in Image Classification Problem – volume: 77 start-page: 103189 year: 2020 ident: B5 article-title: Disease Prediction Based on Micro Array Classification Using Deep Learning Techniques publication-title: Microprocessors and Microsystems doi: 10.1016/j.micpro.2020.103189 – volume: 12 start-page: 2451 year: 2000 ident: B14 article-title: Learning to Forget: Continual Prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 31 start-page: 1235 year: 2019 ident: B48 article-title: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 110 start-page: 93 year: 2019 ident: B1 article-title: A Self-Organized Recurrent Neural Network for Estimating the Effective Connectivity and its Application to EEG Data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.05.012 – start-page: 3412 year: 2016 ident: B21 article-title: Convolutional RNN: an Enhanced Model for Extracting Features from Sequential Data – start-page: 4601 year: 2018 ident: B43 article-title: Social Attention: Modeling Attention in Human Crowds – volume: 331 start-page: 281 year: 2019 ident: B32 article-title: Machine Learning on Sequential Data Using a Recurrent Weighted Average publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.066 – start-page: 1 year: 2017 ident: B40 article-title: Forecast the Plausible Paths in Crowd Scenes doi: 10.24963/ijcai.2017/386 – volume: 28 start-page: 2980 year: 2015 ident: B8 article-title: A Recurrent Latent Variable Model for Sequential Data publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 226 year: 2016 ident: B51 article-title: Minimal Gated Unit for Recurrent Neural Networks publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-016-1006-2 – ident: B20 – start-page: 4984 year: 2018 ident: B39 article-title: Dynamic Frame Skipping for Fast Speech Recognition in Recurrent Neural Network Based Acoustic Models – year: 2018 ident: B4 article-title: H-Detach: Modifying the LSTM Gradient towards Better Optimization – volume: 10 start-page: 841 year: 2019 ident: B23 article-title: Short-term Residential Load Forecasting Based on LSTM Recurrent Neural Network publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2753802 – start-page: 2255 year: 2018 ident: B16 article-title: Social gan: Socially Acceptable Trajectories with Generative Adversarial Networks doi: 10.1109/CVPR.2018.00240 – start-page: 5275 year: 2018 ident: B45 article-title: Encoding Crowd Interaction with Deep Neural Network for Pedestrian Trajectory Prediction doi: 10.1109/CVPR.2018.00553 – volume: 33 start-page: 6481 year: 2019 ident: B15 article-title: Long Short-Term Memory with Dynamic Skip Connections publication-title: Assoc. Adv. Artif. Intelligence doi: 10.1609/aaai.v33i01.33016481 – start-page: 31 year: 2019 ident: B41 article-title: Skipping Rnn State Updates without Retraining the Original Model doi: 10.1145/3362743.3362965 – volume: 86 start-page: 592 year: 2018 ident: B13 article-title: MUFOLD-SS: New Deep Inception-Inside-Inception Networks for Protein Secondary Structure Prediction publication-title: Proteins doi: 10.1002/prot.25487 – volume: 1 start-page: 562 year: 2017 ident: B19 article-title: Deep Pyramid Convolutional Neural Networks for Text Categorization publication-title: Proc. 55th Annu. Meet. Assoc. Comput. Linguistics doi: 10.18653/v1/P17-1052 – volume: 7 start-page: 88 year: 2019 ident: B35 article-title: Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification publication-title: Int. J. Intell. Syst. Appl. doi: 10.18201/ijisae.2019252786 – volume: 7 start-page: 11 year: 2018 ident: B2 article-title: A Review of Different Text Categorization Techniques publication-title: Int. J. Eng. Technol. (Ijet) doi: 10.14419/ijet.v7i3.8.15210 – volume: 129 start-page: 277 year: 2018 ident: B24 article-title: Prediction for Tourism Flow Based on LSTM Neural Network publication-title: Proced. Comput. Sci. doi: 10.1016/j.procs.2018.03.076 – start-page: 11365 year: 2020 ident: B50 article-title: Do rnn and Lstm Have Long Memory? – start-page: 1303 year: 2019 ident: B25 article-title: A LSTM and CNN Based Assemble Neural Network Framework for Arrhythmias Classification – start-page: 961 year: 2016 ident: B3 article-title: Social Lstm: Human Trajectory Prediction in Crowded Spaces doi: 10.1109/CVPR.2016.110 – volume: 34 start-page: 3717 year: 2020 ident: B9 article-title: A Skip-Connected Evolving Recurrent Neural Network for Data Stream Classification under Label Latency Scenario publication-title: Assoc. Adv. Artif. Intelligence doi: 10.1609/aaai.v34i04.5781 – start-page: 6067 year: 2018 ident: B17 article-title: Mx-lstm: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses doi: 10.1109/CVPR.2018.00635 – start-page: 1349 year: 2019 ident: B33 article-title: Sophie: An Attentive gan for Predicting Paths Compliant to Social and Physical Constraints doi: 10.1109/CVPR.2019.00144 – volume: 45 start-page: 2673 year: 1997 ident: B36 article-title: Bidirectional Recurrent Neural Networks publication-title: IEEE Trans. Signal. Process. doi: 10.1109/78.650093 – year: 2017 ident: B10 article-title: Analyzing and Exploiting NARX Recurrent Neural Networks for Long-Term Dependencies  | 
    
| SSID | ssj0000493334 | 
    
| Score | 2.2678154 | 
    
| Snippet | Recurrent neural networks are widely used in time series prediction and classification. However, they have problems such as insufficient memory ability and... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 746181 | 
    
| SubjectTerms | data classification deep learning Genetics LSTM RNN SS-RNN  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VSKi9VEBbNeWhReqJysXeh9fhFl6KOORAQOK2Xe8DQoMTgSPEv2fGm0RxD-XCzfJj157Z3fk-7-gbQn4CAgkpVyyB-A0EhXkGU8oDcQ0prMieQUhusnwHef9aXNzIm5VSX5gTFuWBo-EOnSxhoc2MkzYIZ4PJjbTcymBkidgcV9-06K6QqfuIeznnIm5jAgvrHgbwB8pisuy3EnlWZK1A1Oj1t0DmvymSH2fV1Lw8m_F4Jf6cb5DPc-BIe_GFN8kHX22R9VhK8uUL-TMcJpeDwRHtUdxorm5R1cA7Ovw7mtLe-HbyOKrvHihAVHpqakObYpiYJtR4hh5DMHMUDi7x_zsqNlGU7YAOBzFP_OkruT4_uzrpJ_PqCYkVgtVJWYZcMsdNxg1Llc28KkvAh0ICpbDMF9KIrgMrMuYVw4qILgSVB6aAhVkX-DeyVk0q_51QmXHnFDC9roGmbV444EEQ2RUsB1Ja0SHpwpTazqXFscLFWAPFQOvrxvoara-j9TvkYPnINOpq_O_mY_TP8kaUxG5OwEDR84Gi3xooHbK_8K6GKYT7Iqbyk9mTBgYI8RuxY4eolttbPbavVKO7Roy7QMonwAS_lgPk7Q_68R4ftE0-YZMYSDO-Q9bqx5nfBYRUl3vNZHgFNgIPAQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5VQRVcSltApLTVInFq5RCv95H0FtoixMFCpJHgtKz3ESJSJyKOKvrrO2ObCCPU0psfa6929jHf5x1_Q8gBIJDQTRSLwH8DQWGewZTyQFxDF1Zkz8All1G-qTwZ8dMLcVGLReO_MA_274E89Q8DmBHVLFncUVzG-JP1mhQAu1tkbZSeDS6RUEnJYaVlcbVr-fRzDb9TyvM3MOXjiMj1ZT43d7_MdPrA3RxvVoFai1KlEKNMbjrLIuvY3480HJ_VktfkVQ066aAaJW_IC5-_JS-rNJR3W-RqOIzO0_QLHVDcpM7HqIjgHR3eTOZ0MB3PbifF9U8K8JZ-M4WhZSJNDDEqe5UegSN0FA7O8ds9qj1RlPyACtMqxnyxTUbH3398PYnqzAuR5ZwVUZYFKZhLTJwY1lU29irLAFtyAXTEMt8ThvedERljXjHMpuhCUDIwBQzOupDskFY-y_0uoSJOnFPAEvsGXm1lzwGHAlSgYCkRwvI26d73i7a1LDlmx5hqoCdoOF0aTqPhdGW4Nvm0emReaXL8rfARdvaqIMpplxegb3Q9O7UTGXjz2DhhA3c2GGmETawI0EQkgG2yfz9UNEw_3FMxuZ8tFxrYI_h-xJ1tohpjqFFj804-uS6FvHtIFzmY4PNqtP27Qe_-q_Qe2cAz9LZx8p60itul_wAwqsg-1hPoD9z7F1s priority: 102 providerName: Unpaywall  | 
    
| Title | SS-RNN: A Strengthened Skip Algorithm for Data Classification Based on Recurrent Neural Networks | 
    
| URI | https://www.proquest.com/docview/2591231551 https://pubmed.ncbi.nlm.nih.gov/PMC8548744 https://doi.org/10.3389/fgene.2021.746181 https://doaj.org/article/d5b3411ad5cf4dcfa6a5c3c5fa5b1617  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 1664-8021 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M48 dateStart: 20101201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLWmTQheEJ-iAyoj8QTKqB07bpEQ6oAxIRGhlUrlyTj-6MqytLSpoP-ee5O0ImgC8VK1SZrI17k-58TOuYQ8BQYSerHiEeA3CBTuOaSUB-EaejAiew6QXK3yTZPTsfgwkZM9si1v1QRwdaW0w3pS42V-9PP75jUk_CtUnIC3LwKEGh0vOTtSImH4IvYBANUAKzl8bNj-t5oMx3E9z5wkAsZmzup5zqvP0kKqytC_xUL_XEN5fV0szOaHyfPfAOrkFrnZMEs6rG-F22TPF3fItbrW5OYu-ToaRWdp-pIOKc5EF1O0PfCOji5mCzrMp_PlrDy_pMBh6VtTGlpVy8R1RFXX0WNAO0fhyxk-oEdLJ4q-HnDBtF5IvrpHxifvPr85jZryCpEVgpdRloVEchcbFhveU5Z5lWVAIIUEzWG570sjBs7IjHOvOJZMdCGoJHAFMs26EN8n-8W88A8IlSx2ToEUHBg4tU36DoQSQL-C8UJKKzqktw2lto33OJbAyDVoEIy-rqKvMfq6jn6HPNv9ZVEbb_zt4GPsn92B6JldbZgvp7pJQe1kBpDNjJM2CGeDSYy0sZUBmogqr0OebHtXQ47hxIkp_Hy90iARAeCRXHaIanV764rtPcXsvHLr7qMmFBCC57sb5N8NOvyf1j8kN_AXIiqLH5H9crn2j4EqlVm3esQAn-8nrFslQ5ccjNNPwy-_AE8PEnU | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5VQRVcSltApLTVInFq5RCv95H0FtoixMFCpJHgtKz3ESJSJyKOKvrrO2ObCCPU0psfa6929jHf5x1_Q8gBIJDQTRSLwH8DQWGewZTyQFxDF1Zkz8All1G-qTwZ8dMLcVGLReO_MA_274E89Q8DmBHVLFncUVzG-JP1mhQAu1tkbZSeDS6RUEnJYaVlcbVr-fRzDb9TyvM3MOXjiMj1ZT43d7_MdPrA3RxvVoFai1KlEKNMbjrLIuvY3480HJ_VktfkVQ066aAaJW_IC5-_JS-rNJR3W-RqOIzO0_QLHVDcpM7HqIjgHR3eTOZ0MB3PbifF9U8K8JZ-M4WhZSJNDDEqe5UegSN0FA7O8ds9qj1RlPyACtMqxnyxTUbH3398PYnqzAuR5ZwVUZYFKZhLTJwY1lU29irLAFtyAXTEMt8ThvedERljXjHMpuhCUDIwBQzOupDskFY-y_0uoSJOnFPAEvsGXm1lzwGHAlSgYCkRwvI26d73i7a1LDlmx5hqoCdoOF0aTqPhdGW4Nvm0emReaXL8rfARdvaqIMpplxegb3Q9O7UTGXjz2DhhA3c2GGmETawI0EQkgG2yfz9UNEw_3FMxuZ8tFxrYI_h-xJ1tohpjqFFj804-uS6FvHtIFzmY4PNqtP27Qe_-q_Qe2cAz9LZx8p60itul_wAwqsg-1hPoD9z7F1s | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SS-RNN%3A+A+Strengthened+Skip+Algorithm+for+Data+Classification+Based+on+Recurrent+Neural+Networks&rft.jtitle=Frontiers+in+genetics&rft.au=Cao%2C+Wenjie&rft.au=Shi%2C+Ya-Zhou&rft.au=Qiu%2C+Huahai&rft.au=Zhang%2C+Bengong&rft.date=2021-10-13&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=12&rft_id=info:doi/10.3389%2Ffgene.2021.746181&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fgene_2021_746181 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |