A Novel MPE-LPP-ELM Recognition Method for the Fault Diagnosis of Spiral Bevel Gears
Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears...
        Saved in:
      
    
          | Published in | Shock and vibration Vol. 2021; no. 1 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cairo
          Hindawi
    
        2021
     John Wiley & Sons, Inc Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1070-9622 1875-9203 1875-9203  | 
| DOI | 10.1155/2021/5552048 | 
Cover
| Abstract | Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics. In previous studies, multiscale permutation entropy (MPE) has been proven to be an effective nonlinear analysis tool for complexity and irregularity evaluations of complex mechanical systems. Therefore, it is considered that MPE values can be used as the sensitive features for spiral bevel gears fault identifications. However, if the MPEs are used to directly construct the feature vectors, some problems will be encountered, such as large numbers of characteristic quantities, high dimensions, and issues related to diagnosis accuracy and efficiency, which have been proven difficult to obtain at the same time. In order to improve the accuracy and efficiency of fault recognition in spiral bevel gear evaluations, locality preserving projection (LPP) methods can be applied to reduce the high dimensionality feature vectors constructed by MPEs. They have the ability to extract low-dimensional sensitive information from high-dimensional feature data. In order to directly obtain the diagnostic results, classifications are necessary. When compared with traditional neural networks, it has been found that extreme learning machines (ELMs) have the advantages of faster training speeds and stronger learning abilities. In summary, this study proposed the use of MPE values which could be optimized and dimensionality reduced by LPP as the feature vectors, along with ELMs as the classifiers of the fault mode identifications, in order to carry out valuable research of fault diagnosis methods for spiral bevel gears. The proposed method was applied to the diagnoses of four types of fault state spiral bevel gears. Then, the MPE-LPP-ELM results were compared with those obtained using MPE-PCA-ELM and MPE-ELM methods. Their respective diagnostic accuracy is 100%, 98.75%, and 98.75%, and diagnostic time is 0.0023 s, 0.0033 s, and 0.0078 s. It was determined in this study that the results confirmed the accuracy and superiority of the proposed method. | 
    
|---|---|
| AbstractList | Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics. In previous studies, multiscale permutation entropy (MPE) has been proven to be an effective nonlinear analysis tool for complexity and irregularity evaluations of complex mechanical systems. Therefore, it is considered that MPE values can be used as the sensitive features for spiral bevel gears fault identifications. However, if the MPEs are used to directly construct the feature vectors, some problems will be encountered, such as large numbers of characteristic quantities, high dimensions, and issues related to diagnosis accuracy and efficiency, which have been proven difficult to obtain at the same time. In order to improve the accuracy and efficiency of fault recognition in spiral bevel gear evaluations, locality preserving projection (LPP) methods can be applied to reduce the high dimensionality feature vectors constructed by MPEs. They have the ability to extract low-dimensional sensitive information from high-dimensional feature data. In order to directly obtain the diagnostic results, classifications are necessary. When compared with traditional neural networks, it has been found that extreme learning machines (ELMs) have the advantages of faster training speeds and stronger learning abilities. In summary, this study proposed the use of MPE values which could be optimized and dimensionality reduced by LPP as the feature vectors, along with ELMs as the classifiers of the fault mode identifications, in order to carry out valuable research of fault diagnosis methods for spiral bevel gears. The proposed method was applied to the diagnoses of four types of fault state spiral bevel gears. Then, the MPE-LPP-ELM results were compared with those obtained using MPE-PCA-ELM and MPE-ELM methods. Their respective diagnostic accuracy is 100%, 98.75%, and 98.75%, and diagnostic time is 0.0023s, 0.0033s, and 0.0078s. It was determined in this study that the results confirmed the accuracy and superiority of the proposed method. Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics. In previous studies, multiscale permutation entropy (MPE) has been proven to be an effective nonlinear analysis tool for complexity and irregularity evaluations of complex mechanical systems. Therefore, it is considered that MPE values can be used as the sensitive features for spiral bevel gears fault identifications. However, if the MPEs are used to directly construct the feature vectors, some problems will be encountered, such as large numbers of characteristic quantities, high dimensions, and issues related to diagnosis accuracy and efficiency, which have been proven difficult to obtain at the same time. In order to improve the accuracy and efficiency of fault recognition in spiral bevel gear evaluations, locality preserving projection (LPP) methods can be applied to reduce the high dimensionality feature vectors constructed by MPEs. They have the ability to extract low-dimensional sensitive information from high-dimensional feature data. In order to directly obtain the diagnostic results, classifications are necessary. When compared with traditional neural networks, it has been found that extreme learning machines (ELMs) have the advantages of faster training speeds and stronger learning abilities. In summary, this study proposed the use of MPE values which could be optimized and dimensionality reduced by LPP as the feature vectors, along with ELMs as the classifiers of the fault mode identifications, in order to carry out valuable research of fault diagnosis methods for spiral bevel gears. The proposed method was applied to the diagnoses of four types of fault state spiral bevel gears. Then, the MPE-LPP-ELM results were compared with those obtained using MPE-PCA-ELM and MPE-ELM methods. Their respective diagnostic accuracy is 100%, 98.75%, and 98.75%, and diagnostic time is 0.0023 s, 0.0033 s, and 0.0078 s. It was determined in this study that the results confirmed the accuracy and superiority of the proposed method.  | 
    
| Audience | Academic | 
    
| Author | Hongchuang, Tan Dalian, Yang Lingli, Jiang Xuejun, Li  | 
    
| Author_xml | – sequence: 1 givenname: Jiang surname: Lingli fullname: Lingli, Jiang organization: School of Mechanical & Electrical EngineeringFoshan UniversityFoshan 528000Chinafosu.edu.cn – sequence: 2 givenname: Tan surname: Hongchuang fullname: Hongchuang, Tan organization: Hunan Provincial Key Laboratory of Health Maintenance for Mechanical EquipmentHunan University of Science and TechnologyXiangtanHunan 411201Chinahnust.edu.cn – sequence: 3 givenname: Li orcidid: 0000-0002-4962-0249 surname: Xuejun fullname: Xuejun, Li organization: School of Mechanical & Electrical EngineeringFoshan UniversityFoshan 528000Chinafosu.edu.cn – sequence: 4 givenname: Yang orcidid: 0000-0003-4349-3186 surname: Dalian fullname: Dalian, Yang organization: Hunan Provincial Key Laboratory of Health Maintenance for Mechanical EquipmentHunan University of Science and TechnologyXiangtanHunan 411201Chinahnust.edu.cn  | 
    
| BookMark | eNqFkUtvEzEUhS1UJNrCjh9giSVM6-eMZxlK-pCSNoKytq5fiaPpOHgmVP33dZiKBRIgL2xdfefo-NwTdNSn3iP0npIzSqU8Z4TRcyklI0K9QsdUNbJqGeFH5U0aUrU1Y2_QyTBsCSGS1-IY3c_wbfrpO7xczavFalXNF0v81du07uMYU4-Xftwkh0PKeNx4fAn7bsRfIqz7NMQBp4C_7WKGDn_2B5srD3l4i14H6Ab_7uU-Rd8v5_cX19Xi7urmYraorBBsrIyRSjBPTeNab13NmSeW1jVwElpKgAZXCxAMSMuAKWmCkdYAb5SVrfKBn6Kbydcl2Opdjg-Qn3SCqH8NUl5ryGO0ndeMN6CC8NbaRkgXjBJOiNaApYZzL4pXNXnt-x08PULX_TakRB_q1Yd69Uu9hf8w8bucfuz9MOpt2ue-fFczyYXgnNO6UGcTtYYSIvYhjRlsOc4_RFu2F2KZzxQVNZdCtUXAJoHNaRiyD9rGEQ6bKMLY_S3Lpz9E_4n-ccI3sXfwGP9NPwNEBLOH | 
    
| CitedBy_id | crossref_primary_10_1049_cim2_12064 crossref_primary_10_2478_msr_2021_0018 crossref_primary_10_1088_1742_6596_2933_1_012019  | 
    
| Cites_doi | 10.1016/j.knosys.2017.10.024 10.1109/INMIC.2005.334494 10.1155/2021/8880851 10.1016/j.ymssp.2016.11.005 10.1016/j.measurement.2011.11.018 10.1007/s11071-018-4170-9 10.1016/j.physa.2020.125686 10.1016/j.measurement.2015.08.034 10.1016/j.jsv.2016.01.046 10.1016/j.measurement.2015.03.017 10.1016/j.neucom.2013.04.033 10.3390/e21020170 10.1088/1361-6501/ab9841 10.1016/j.jsv.2014.09.026 10.1016/j.ymssp.2019.106556 10.1016/j.measurement.2019.107361 10.1016/j.measurement.2018.08.002 10.1016/j.measurement.2019.05.002 10.1155/2021/6660115 10.1016/j.ymssp.2017.12.008 10.1016/j.ymssp.2011.02.006 10.1016/j.ymssp.2019.106344 10.1007/s42417-019-00157-6 10.1115/1.4028833 10.1016/j.ijepes.2012.06.022 10.1103/physrevlett.88.174102 10.1155/2019/7806015 10.1016/j.measurement.2020.108815 10.3390/e19040176  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Jiang Lingli et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Jiang Lingli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: Copyright © 2021 Jiang Lingli et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Jiang Lingli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1155/2021/5552048 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1875-9203 | 
    
| Editor | Rainieri, Carlo | 
    
| Editor_xml | – sequence: 1 givenname: Carlo surname: Rainieri fullname: Rainieri, Carlo  | 
    
| ExternalDocumentID | oai_doaj_org_article_237a8f4eccc745dfb84d449bac1b33e4 10.1155/2021/5552048 A814635489 10_1155_2021_5552048  | 
    
| GrantInformation_xml | – fundername: National Aeronautical Science Foundation of China grantid: 20200033116001 – fundername: National Natural Science Foundation of China grantid: 11872022  | 
    
| GroupedDBID | 0R~ 123 4.4 5VS 8FE 8FG AAFWJ AAJEY ABDBF ABJCF ABJNI ACGFS ACIWK ADBBV AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU DU5 EAD EAP EBS EMK EPL EST ESX FRP GROUPED_DOAJ HCIFZ HZ~ I-F IAO IOS ITC KQ8 L6V M7S O9- OK1 PIMPY PROAC PTHSS RHU RHW RHX TUS ~02 1OB 24P AAMMB AAYXX ABUBZ ACCMX ACPQW ACUHS ADMLS AEFGJ AFRHK AGIAB AGXDD AIDQK AIDYY CAG CITATION COF EJD FEDTE H13 IL9 IPNFZ MET MIO PHGZM PHGZT PQGLB PUEGO RIG 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c442t-bb5842e1b7d9ecd632e0c166a30f910a1fd64a42a092a285bfb5cba378c598ef3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1070-9622 1875-9203  | 
    
| IngestDate | Fri Oct 03 12:51:26 EDT 2025 Tue Aug 19 21:33:03 EDT 2025 Fri Aug 08 08:40:59 EDT 2025 Mon Oct 20 16:59:10 EDT 2025 Wed Oct 01 02:04:44 EDT 2025 Thu Apr 24 23:03:06 EDT 2025 Sun Jun 02 18:54:56 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c442t-bb5842e1b7d9ecd632e0c166a30f910a1fd64a42a092a285bfb5cba378c598ef3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4962-0249 0000-0003-4349-3186  | 
    
| OpenAccessLink | https://doaj.org/article/237a8f4eccc745dfb84d449bac1b33e4 | 
    
| PQID | 2534433316 | 
    
| PQPubID | 2037353 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_237a8f4eccc745dfb84d449bac1b33e4 unpaywall_primary_10_1155_2021_5552048 proquest_journals_2534433316 gale_infotracacademiconefile_A814635489 crossref_citationtrail_10_1155_2021_5552048 crossref_primary_10_1155_2021_5552048 hindawi_primary_10_1155_2021_5552048  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-00-00 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cairo | 
    
| PublicationPlace_xml | – name: Cairo | 
    
| PublicationTitle | Shock and vibration | 
    
| PublicationYear | 2021 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 He X. F. (e_1_2_8_24_2) 2004 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_11_2  | 
    
| References_xml | – ident: e_1_2_8_30_2 doi: 10.1016/j.knosys.2017.10.024 – ident: e_1_2_8_14_2 doi: 10.1109/INMIC.2005.334494 – ident: e_1_2_8_1_2 doi: 10.1155/2021/8880851 – ident: e_1_2_8_8_2 doi: 10.1016/j.ymssp.2016.11.005 – ident: e_1_2_8_20_2 doi: 10.1016/j.measurement.2011.11.018 – ident: e_1_2_8_3_2 doi: 10.1007/s11071-018-4170-9 – ident: e_1_2_8_11_2 doi: 10.1016/j.physa.2020.125686 – ident: e_1_2_8_18_2 doi: 10.1016/j.measurement.2015.08.034 – ident: e_1_2_8_22_2 doi: 10.1016/j.jsv.2016.01.046 – ident: e_1_2_8_13_2 doi: 10.1016/j.measurement.2015.03.017 – ident: e_1_2_8_21_2 doi: 10.1016/j.neucom.2013.04.033 – ident: e_1_2_8_15_2 doi: 10.3390/e21020170 – ident: e_1_2_8_28_2 doi: 10.1088/1361-6501/ab9841 – start-page: 153 volume-title: Locality Preserving Projections, Neural Information Processing Systems16 year: 2004 ident: e_1_2_8_24_2 – ident: e_1_2_8_27_2 doi: 10.1016/j.jsv.2014.09.026 – ident: e_1_2_8_7_2 doi: 10.1016/j.ymssp.2019.106556 – ident: e_1_2_8_19_2 doi: 10.1016/j.measurement.2019.107361 – ident: e_1_2_8_10_2 doi: 10.1016/j.measurement.2018.08.002 – ident: e_1_2_8_29_2 doi: 10.1016/j.measurement.2019.05.002 – ident: e_1_2_8_9_2 doi: 10.1155/2021/6660115 – ident: e_1_2_8_17_2 doi: 10.1016/j.ymssp.2017.12.008 – ident: e_1_2_8_25_2 doi: 10.1016/j.ymssp.2011.02.006 – ident: e_1_2_8_26_2 doi: 10.1016/j.ymssp.2019.106344 – ident: e_1_2_8_5_2 doi: 10.1007/s42417-019-00157-6 – ident: e_1_2_8_2_2 doi: 10.1115/1.4028833 – ident: e_1_2_8_23_2 doi: 10.1016/j.ijepes.2012.06.022 – ident: e_1_2_8_12_2 doi: 10.1103/physrevlett.88.174102 – ident: e_1_2_8_4_2 doi: 10.1155/2019/7806015 – ident: e_1_2_8_6_2 doi: 10.1016/j.measurement.2020.108815 – ident: e_1_2_8_16_2 doi: 10.3390/e19040176  | 
    
| SSID | ssj0005364 | 
    
| Score | 2.2332294 | 
    
| Snippet | Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the... | 
    
| SourceID | doaj unpaywall proquest gale crossref hindawi  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Artificial neural networks Complexity Efficiency Entropy Evaluation Fault diagnosis Feature extraction Geospatial data Machine learning Mechanical systems Methods Neural networks Noise Nonlinear analysis Permutations Principal components analysis Recognition Spiral bevel gears Time series  | 
    
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbYpAl2QGOAFtiQDwMOyCKxnx372EFLhdapGpvUm2U7tjYpSifSMvHfY6dp2UD8OCZyEtvvvfh79ufPCB07wyyTuSJSOEagdJaoPLck-OhfYLipRNqNPDkT40v4POOzXiSp_X0JP452KT0v3nPOk8TsFtqSIjG3zsezn0wO1qlExUQmJ0pQuua3__LsvZGnE-jf_IZ3rlICfHt9D2Y-XDY35vutqes7I85oDz3uoSIerGz7BD3wzT7avSMguI92OgKna5-iiwE-m3_zNZ5Mh-R0OiXD0wk-X7OD5g2edEdF44hRccR8eGSW9QJ_XBHtrls8D_hLWnOv8UmiEeFPMQLaZ-hyNLz4MCb9iQnEAdAFsTbiCeoLW1bKu0ow6nNXCGFYHiIuMEWoBBigJlfUUMltsNxZw0rpuJI-sOdou5k3_gBha5QABWDKKoCtpApVyY1zubVSBm8z9G7dm9r1cuLpVItad2kF5zr1ve77PkOvN6VvVjIafyh3kgyzKZPEr7sb0SF0H0uastLIANH5XAm8ClZCBaCscYVlzEOG3iaz6hSisUrO9DsNYsOS2JUepGlPFlM1laHj3vL_qNXh2i10H-KtppwBMMYKkaE3G1f563te_N_nXqJH6XI10XOIthdfl_4oQp-FfdU5_g8UifZ3 priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKqopyQFBABAryocABWd31a-0DQgkkVKiJotJKva38hEqr3bRJqPj32Btv2h4o19XI8no-j2fG428AODCKaCIyiQQ3BNHCaCSzTCPvAr6oYsry-Bp5MuVHZ_T7OTvfAtPuLUwsq-xsYmuobWNijvwQM0IpISTnn-eXKHaNirerXQsNlVor2E8txdgDsI0jM1YPbA9H09nJTdEHaQmlQsyTIckx7krhGYtZgPyQMRaZbO8cUi2X_8Zi7_yKsfL1xR2P9OGqnqs_16qqbh1O4yfgcfIq4WANg6dgy9V74NEtrsE9sNPWeprFM3A6gNPmt6vgZDZCx7MZGh1P4ElXSNTUcNJ2lYbBnYXBPYRjtaqW8Ou6Ju9iARsPf8Tr-QoOY8UR_BY2y-I5OBuPTr8codRcARlK8RJpHVwP7HJdWOmM5QS7zOScK5L54EKo3FtOFcUqk1hhwbTXzGhFCmGYFM6TF6BXN7V7CaBWklNJqSqsp9oK6W3BgkYyrYXwTvfBx241S5OYx2MDjKpsIxDGyrj2ZVr7Pni3kZ6vGTf-ITeMitnIRJ7s9kNz9bNM267EpFDC04BTU1BmvRbUUiq1MrkmxNE--BDVWsbdHKZkVHqUEH4s8mKVg5ghJSGqk31wkDT_n1ntd7AokzVYlDfY7YP3G6jcO86r-8d5DXaj9DoXtA96y6uVexO8o6V-myD_F1HDB0I priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLag08S44DCGCAzkiwEXKF0SHxJfdtAyobWqgEpFXEQ-sokoqZZ2E1zxCDwjT4KdONWKxEHcRHL0y_Lht_399ufPABxIjgTKIhZmVKIQp1KELIpEaLT1L8wJV9TdRh5P6PEMv5mTuWdVurswyknEV1zV_VMXk16eNbO1b9f6sL5w0Xp8SAhxirP9hTLXwRYlFof3wNZsMh18aEmGUchoc4QQW0AesiRCHeudkI0sNtajRrZ_PTlv-yJsgM8bq3LBv1zyoriyDo1ug49dDVr6yef-ain68usv4o7_V8U74JaHp3DQ-tNdcE2Xu-DmFdHCXbDdkEZlfQ_MB3BSXegCjqfDH9--n0yn9js8GcO3HSupKuG4eaIaWmwMLdaEI74qlvBVS_A7q2Fl4Dt31l_AI0dfgq_tyKv3wGw0fP_yOPQvNYQS42QZCmFxTKJjkSqmpaIo0ZGMKeUoMhaP8NgoijlOeMQSnmREGEGk4CjNJGGZNug-6JVVqR8AKDijmGHMU2WwUBkzKiVcykiILDNaBOBF11-59DLm7jWNIm_CGUJy13q5b70APF1bL1r5jt_YHbmuX9s40e3mR3X-KfdjOE9QyjODrdPLFBNlRIYVxkxwGQuENA7Ac-c4uZsabJEk9zccbMWcyFY-cNutyIaILAAHvu__Uqr9zvHyzj_yhCCMEUIxDcCztTP-MZ-H_2r4COy4ZLvFtA96y_OVfmxB11I88aPrJ81HJW8 priority: 102 providerName: Unpaywall  | 
    
| Title | A Novel MPE-LPP-ELM Recognition Method for the Fault Diagnosis of Spiral Bevel Gears | 
    
| URI | https://dx.doi.org/10.1155/2021/5552048 https://www.proquest.com/docview/2534433316 https://downloads.hindawi.com/journals/sv/2021/5552048.pdf https://doaj.org/article/237a8f4eccc745dfb84d449bac1b33e4  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: KQ8 dateStart: 19930101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: ADMLS dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central (New) (NC LIVE) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1875-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1875-9203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005364 issn: 1875-9203 databaseCode: 24P dateStart: 19930101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagqAIOCAoVW0rkQ4EDsrrr19rHBJJGqImi0EjhZNleW1RabSqStOLfY-8jSg_QC5c9WJZ3PJ5Zf-MdfwPAmdXEEJFKJLgliObWIJmmBnkX7ItqpgsebyNPpny8oN-WbLlX6ivmhDX0wI3izjHJtfA0vMnmlBXeCFpQKo22mSHE1UygqZBdMNUld5CaOCrENimSHOMu5Z2xGO1n54yxyFh7bzOqOft3X-bDnzEmvru-hzyfbqsb_ftOl-XeJjR6CV606BH2G6lfgUeuOgLP9zgFj8BhndNp16_BVR9OV7euhJPZEF3OZmh4OYHzLmFoVcFJXT0aBtgKAwyEI70tN_Brk3t3vYYrD7_H3_AlHMTMIngRnGL9BixGw6svY9QWUUCWUrxBxgSIgV1m8kI6W3CCXWozzjVJfYAKOvMFp5pinUqssWDGG2aNJrmwTArnyTE4qFaVewug0ZJTSanOC09NIaQvcqatTY0RwjuTgM-dNpVtGcZjoYtS1ZEGYyrqXrW6T8CHXe-bhlnjL_0GcWF2fSIfdt0QrES1VqIespIEfIrLqqLXBpGsbi8fhIlF_ivVjyehJERvMgFn7co_INVpZxaq9fq1woxQSgjJeAI-7kzln-Oc_I_ZvQPP4pjNydApONj82rr3ASttTA88FqOLHngyGE5n817tJOE5Hy9D22I66__4A36bD8w | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGpmlwQDBAFAb4sMEBWUv8kcSHCbWspWNtVY1O2s34c5sUNWVtqfbP8bdhp0m3HRinXSPHct73c37vPQB2tSSKZBFHWaIJoqlWiEeRQs56-aKSSZOEauT-IOme0u9n7GwN_KlrYQKssraJpaE2hQ535PuYEUoJIXHyZfILhalR4e9qPUJDVqMVzEHZYqwq7Di21wufwk0Pjg49v_cw7rRHX7uomjKANKV4hpTyPhjbWKWGW20Sgm2k4ySRJHLel8rYmYRKimXEscQZU04xrSRJM814Zh3x-z4CG5RQ7pO_jVZ7MDy5AZmQsoGVz7EixBOMa-g9Y-HWId5njIXOuXecYjk7YOUhNi9Cbr64vBMBb83HE3m9kHl-yxl2noGnVRQLm0uxew7W7HgbPLnV23AbbJbYUj19AUZNOCh-2xz2h23UGw5Ru9eHJzVwqRjDfjnFGvrwGfpwFHbkPJ_BwyUG8HIKCwd_BDhADlsB4QS_eapPX4LTByHzK7A-Lsb2NYBK8oRySmVqHFUm486kzEtApFSWOasa4HNNTaGrTudh4EYuyoyHMRFoLyraN8DeavVk2eHjH-tagTGrNaEvd_mguDoXlZoLTFKZOer1QqeUGacyaijlSupYEWJpA3wKbBXBevgjaVkVQfgPC324RDPcyBKfRfIG2K04_59T7dRiISrrMxU3utIAH1eicu8-b-7f5wPY6o76PdE7Ghy_BY_Dm8t7qB2wPrua23c-Mpup95X4Q_DzoTXuLxGqRQA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfG0Pg4IBggCgN82OCArCb-SOIDQh1tt7F2qmCTdjO2Y8OkqClrS7V_jb8OvzTptgPjtGvkWM77fs7vvYfQttXMsCySJEssIzy1hsgoMsS7IF9cC50nUI08PEr2T_iXU3G6hv40tTAAq2xsYmWo89LCHXmbCsY5YyxO2r6GRYy6_U-TXwQmSMGf1macxlJEDt3FIqRv048H3cDrHUr7vePP-6SeMEAs53RGjAn-l7rYpLl0Nk8YdZGNk0SzyAc_qmOfJ1xzqiNJNc2E8UZYo1maWSEz51nY9w66m0IXd6hS7-9dwktY1boqZFcRkQmlDeheCLhviNtCCOiZe80dVlMDVr5h4ydk5Yuza7Hv_fl4oi8WuiiuuMH-Y_Sojl9xZylwT9CaG2-ih1e6Gm6ijQpVaqdP0XEHH5W_XYGHox4ZjEakNxjirw1kqRzjYTW_GofAGYdAFPf1vJjh7hL9dzbFpcffAAhQ4F3ANuG9QPPpM3RyK0R-jtbH5di9QNhomXDJuU5zz02eSZ-nQlsbGZNl3pkW-tBQU9m6xzmM2ihUlesIoYD2qqZ9C-2sVk-WvT3-sW4XGLNaAx25qwfl-Q9VK7iiLNWZ50EjbMpF7k3Gc86l0TY2jDneQu-BrQrsRjiS1XX5Q_gw6MClOnAXy0L-KFtou-b8f0611YiFqu3OVF1qSQu9W4nKjfu8vHmft-he0DM1ODg6fIUewIvLC6gttD47n7vXISSbmTeV7GP0_baV7S8VMEKa | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLag08S44DCGCAzkiwEXKF0SHxJfdtAyobWqgEpFXEQ-sokoqZZ2E1zxCDwjT4KdONWKxEHcRHL0y_Lht_399ufPABxIjgTKIhZmVKIQp1KELIpEaLT1L8wJV9TdRh5P6PEMv5mTuWdVurswyknEV1zV_VMXk16eNbO1b9f6sL5w0Xp8SAhxirP9hTLXwRYlFof3wNZsMh18aEmGUchoc4QQW0AesiRCHeudkI0sNtajRrZ_PTlv-yJsgM8bq3LBv1zyoriyDo1ug49dDVr6yef-ain68usv4o7_V8U74JaHp3DQ-tNdcE2Xu-DmFdHCXbDdkEZlfQ_MB3BSXegCjqfDH9--n0yn9js8GcO3HSupKuG4eaIaWmwMLdaEI74qlvBVS_A7q2Fl4Dt31l_AI0dfgq_tyKv3wGw0fP_yOPQvNYQS42QZCmFxTKJjkSqmpaIo0ZGMKeUoMhaP8NgoijlOeMQSnmREGEGk4CjNJGGZNug-6JVVqR8AKDijmGHMU2WwUBkzKiVcykiILDNaBOBF11-59DLm7jWNIm_CGUJy13q5b70APF1bL1r5jt_YHbmuX9s40e3mR3X-KfdjOE9QyjODrdPLFBNlRIYVxkxwGQuENA7Ac-c4uZsabJEk9zccbMWcyFY-cNutyIaILAAHvu__Uqr9zvHyzj_yhCCMEUIxDcCztTP-MZ-H_2r4COy4ZLvFtA96y_OVfmxB11I88aPrJ81HJW8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+MPE-LPP-ELM+Recognition+Method+for+the+Fault+Diagnosis+of+Spiral+Bevel+Gears&rft.jtitle=Shock+and+vibration&rft.au=Jiang+Lingli&rft.au=Tan+Hongchuang&rft.au=Li+Xuejun&rft.au=Yang+Dalian&rft.date=2021&rft.pub=Wiley&rft.issn=1070-9622&rft.eissn=1875-9203&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5552048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_237a8f4eccc745dfb84d449bac1b33e4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon |