A Novel MPE-LPP-ELM Recognition Method for the Fault Diagnosis of Spiral Bevel Gears

Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2021; no. 1
Main Authors Lingli, Jiang, Hongchuang, Tan, Xuejun, Li, Dalian, Yang
Format Journal Article
LanguageEnglish
Published Cairo Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1070-9622
1875-9203
1875-9203
DOI10.1155/2021/5552048

Cover

Abstract Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics. In previous studies, multiscale permutation entropy (MPE) has been proven to be an effective nonlinear analysis tool for complexity and irregularity evaluations of complex mechanical systems. Therefore, it is considered that MPE values can be used as the sensitive features for spiral bevel gears fault identifications. However, if the MPEs are used to directly construct the feature vectors, some problems will be encountered, such as large numbers of characteristic quantities, high dimensions, and issues related to diagnosis accuracy and efficiency, which have been proven difficult to obtain at the same time. In order to improve the accuracy and efficiency of fault recognition in spiral bevel gear evaluations, locality preserving projection (LPP) methods can be applied to reduce the high dimensionality feature vectors constructed by MPEs. They have the ability to extract low-dimensional sensitive information from high-dimensional feature data. In order to directly obtain the diagnostic results, classifications are necessary. When compared with traditional neural networks, it has been found that extreme learning machines (ELMs) have the advantages of faster training speeds and stronger learning abilities. In summary, this study proposed the use of MPE values which could be optimized and dimensionality reduced by LPP as the feature vectors, along with ELMs as the classifiers of the fault mode identifications, in order to carry out valuable research of fault diagnosis methods for spiral bevel gears. The proposed method was applied to the diagnoses of four types of fault state spiral bevel gears. Then, the MPE-LPP-ELM results were compared with those obtained using MPE-PCA-ELM and MPE-ELM methods. Their respective diagnostic accuracy is 100%, 98.75%, and 98.75%, and diagnostic time is 0.0023 s, 0.0033 s, and 0.0078 s. It was determined in this study that the results confirmed the accuracy and superiority of the proposed method.
AbstractList Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics. In previous studies, multiscale permutation entropy (MPE) has been proven to be an effective nonlinear analysis tool for complexity and irregularity evaluations of complex mechanical systems. Therefore, it is considered that MPE values can be used as the sensitive features for spiral bevel gears fault identifications. However, if the MPEs are used to directly construct the feature vectors, some problems will be encountered, such as large numbers of characteristic quantities, high dimensions, and issues related to diagnosis accuracy and efficiency, which have been proven difficult to obtain at the same time. In order to improve the accuracy and efficiency of fault recognition in spiral bevel gear evaluations, locality preserving projection (LPP) methods can be applied to reduce the high dimensionality feature vectors constructed by MPEs. They have the ability to extract low-dimensional sensitive information from high-dimensional feature data. In order to directly obtain the diagnostic results, classifications are necessary. When compared with traditional neural networks, it has been found that extreme learning machines (ELMs) have the advantages of faster training speeds and stronger learning abilities. In summary, this study proposed the use of MPE values which could be optimized and dimensionality reduced by LPP as the feature vectors, along with ELMs as the classifiers of the fault mode identifications, in order to carry out valuable research of fault diagnosis methods for spiral bevel gears. The proposed method was applied to the diagnoses of four types of fault state spiral bevel gears. Then, the MPE-LPP-ELM results were compared with those obtained using MPE-PCA-ELM and MPE-ELM methods. Their respective diagnostic accuracy is 100%, 98.75%, and 98.75%, and diagnostic time is 0.0023s, 0.0033s, and 0.0078s. It was determined in this study that the results confirmed the accuracy and superiority of the proposed method.
Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the monitoring and diagnosis of running states for ensuring the safe operations of entire equipment setups. The vibration signals of spiral bevel gears are typically quite complicated, as they present both nonlinear and nonstationary characteristics. In previous studies, multiscale permutation entropy (MPE) has been proven to be an effective nonlinear analysis tool for complexity and irregularity evaluations of complex mechanical systems. Therefore, it is considered that MPE values can be used as the sensitive features for spiral bevel gears fault identifications. However, if the MPEs are used to directly construct the feature vectors, some problems will be encountered, such as large numbers of characteristic quantities, high dimensions, and issues related to diagnosis accuracy and efficiency, which have been proven difficult to obtain at the same time. In order to improve the accuracy and efficiency of fault recognition in spiral bevel gear evaluations, locality preserving projection (LPP) methods can be applied to reduce the high dimensionality feature vectors constructed by MPEs. They have the ability to extract low-dimensional sensitive information from high-dimensional feature data. In order to directly obtain the diagnostic results, classifications are necessary. When compared with traditional neural networks, it has been found that extreme learning machines (ELMs) have the advantages of faster training speeds and stronger learning abilities. In summary, this study proposed the use of MPE values which could be optimized and dimensionality reduced by LPP as the feature vectors, along with ELMs as the classifiers of the fault mode identifications, in order to carry out valuable research of fault diagnosis methods for spiral bevel gears. The proposed method was applied to the diagnoses of four types of fault state spiral bevel gears. Then, the MPE-LPP-ELM results were compared with those obtained using MPE-PCA-ELM and MPE-ELM methods. Their respective diagnostic accuracy is 100%, 98.75%, and 98.75%, and diagnostic time is 0.0023 s, 0.0033 s, and 0.0078 s. It was determined in this study that the results confirmed the accuracy and superiority of the proposed method.
Audience Academic
Author Hongchuang, Tan
Dalian, Yang
Lingli, Jiang
Xuejun, Li
Author_xml – sequence: 1
  givenname: Jiang
  surname: Lingli
  fullname: Lingli, Jiang
  organization: School of Mechanical & Electrical EngineeringFoshan UniversityFoshan 528000Chinafosu.edu.cn
– sequence: 2
  givenname: Tan
  surname: Hongchuang
  fullname: Hongchuang, Tan
  organization: Hunan Provincial Key Laboratory of Health Maintenance for Mechanical EquipmentHunan University of Science and TechnologyXiangtanHunan 411201Chinahnust.edu.cn
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-4962-0249
  surname: Xuejun
  fullname: Xuejun, Li
  organization: School of Mechanical & Electrical EngineeringFoshan UniversityFoshan 528000Chinafosu.edu.cn
– sequence: 4
  givenname: Yang
  orcidid: 0000-0003-4349-3186
  surname: Dalian
  fullname: Dalian, Yang
  organization: Hunan Provincial Key Laboratory of Health Maintenance for Mechanical EquipmentHunan University of Science and TechnologyXiangtanHunan 411201Chinahnust.edu.cn
BookMark eNqFkUtvEzEUhS1UJNrCjh9giSVM6-eMZxlK-pCSNoKytq5fiaPpOHgmVP33dZiKBRIgL2xdfefo-NwTdNSn3iP0npIzSqU8Z4TRcyklI0K9QsdUNbJqGeFH5U0aUrU1Y2_QyTBsCSGS1-IY3c_wbfrpO7xczavFalXNF0v81du07uMYU4-Xftwkh0PKeNx4fAn7bsRfIqz7NMQBp4C_7WKGDn_2B5srD3l4i14H6Ab_7uU-Rd8v5_cX19Xi7urmYraorBBsrIyRSjBPTeNab13NmSeW1jVwElpKgAZXCxAMSMuAKWmCkdYAb5SVrfKBn6Kbydcl2Opdjg-Qn3SCqH8NUl5ryGO0ndeMN6CC8NbaRkgXjBJOiNaApYZzL4pXNXnt-x08PULX_TakRB_q1Yd69Uu9hf8w8bucfuz9MOpt2ue-fFczyYXgnNO6UGcTtYYSIvYhjRlsOc4_RFu2F2KZzxQVNZdCtUXAJoHNaRiyD9rGEQ6bKMLY_S3Lpz9E_4n-ccI3sXfwGP9NPwNEBLOH
CitedBy_id crossref_primary_10_1049_cim2_12064
crossref_primary_10_2478_msr_2021_0018
crossref_primary_10_1088_1742_6596_2933_1_012019
Cites_doi 10.1016/j.knosys.2017.10.024
10.1109/INMIC.2005.334494
10.1155/2021/8880851
10.1016/j.ymssp.2016.11.005
10.1016/j.measurement.2011.11.018
10.1007/s11071-018-4170-9
10.1016/j.physa.2020.125686
10.1016/j.measurement.2015.08.034
10.1016/j.jsv.2016.01.046
10.1016/j.measurement.2015.03.017
10.1016/j.neucom.2013.04.033
10.3390/e21020170
10.1088/1361-6501/ab9841
10.1016/j.jsv.2014.09.026
10.1016/j.ymssp.2019.106556
10.1016/j.measurement.2019.107361
10.1016/j.measurement.2018.08.002
10.1016/j.measurement.2019.05.002
10.1155/2021/6660115
10.1016/j.ymssp.2017.12.008
10.1016/j.ymssp.2011.02.006
10.1016/j.ymssp.2019.106344
10.1007/s42417-019-00157-6
10.1115/1.4028833
10.1016/j.ijepes.2012.06.022
10.1103/physrevlett.88.174102
10.1155/2019/7806015
10.1016/j.measurement.2020.108815
10.3390/e19040176
ContentType Journal Article
Copyright Copyright © 2021 Jiang Lingli et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Jiang Lingli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Jiang Lingli et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Jiang Lingli et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1155/2021/5552048
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1875-9203
Editor Rainieri, Carlo
Editor_xml – sequence: 1
  givenname: Carlo
  surname: Rainieri
  fullname: Rainieri, Carlo
ExternalDocumentID oai_doaj_org_article_237a8f4eccc745dfb84d449bac1b33e4
10.1155/2021/5552048
A814635489
10_1155_2021_5552048
GrantInformation_xml – fundername: National Aeronautical Science Foundation of China
  grantid: 20200033116001
– fundername: National Natural Science Foundation of China
  grantid: 11872022
GroupedDBID 0R~
123
4.4
5VS
8FE
8FG
AAFWJ
AAJEY
ABDBF
ABJCF
ABJNI
ACGFS
ACIWK
ADBBV
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
DU5
EAD
EAP
EBS
EMK
EPL
EST
ESX
FRP
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
IOS
ITC
KQ8
L6V
M7S
O9-
OK1
PIMPY
PROAC
PTHSS
RHU
RHW
RHX
TUS
~02
1OB
24P
AAMMB
AAYXX
ABUBZ
ACCMX
ACPQW
ACUHS
ADMLS
AEFGJ
AFRHK
AGIAB
AGXDD
AIDQK
AIDYY
CAG
CITATION
COF
EJD
FEDTE
H13
IL9
IPNFZ
MET
MIO
PHGZM
PHGZT
PQGLB
PUEGO
RIG
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c442t-bb5842e1b7d9ecd632e0c166a30f910a1fd64a42a092a285bfb5cba378c598ef3
IEDL.DBID DOA
ISSN 1070-9622
1875-9203
IngestDate Fri Oct 03 12:51:26 EDT 2025
Tue Aug 19 21:33:03 EDT 2025
Fri Aug 08 08:40:59 EDT 2025
Mon Oct 20 16:59:10 EDT 2025
Wed Oct 01 02:04:44 EDT 2025
Thu Apr 24 23:03:06 EDT 2025
Sun Jun 02 18:54:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-bb5842e1b7d9ecd632e0c166a30f910a1fd64a42a092a285bfb5cba378c598ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4962-0249
0000-0003-4349-3186
OpenAccessLink https://doaj.org/article/237a8f4eccc745dfb84d449bac1b33e4
PQID 2534433316
PQPubID 2037353
ParticipantIDs doaj_primary_oai_doaj_org_article_237a8f4eccc745dfb84d449bac1b33e4
unpaywall_primary_10_1155_2021_5552048
proquest_journals_2534433316
gale_infotracacademiconefile_A814635489
crossref_citationtrail_10_1155_2021_5552048
crossref_primary_10_1155_2021_5552048
hindawi_primary_10_1155_2021_5552048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Cairo
PublicationPlace_xml – name: Cairo
PublicationTitle Shock and vibration
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
He X. F. (e_1_2_8_24_2) 2004
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
References_xml – ident: e_1_2_8_30_2
  doi: 10.1016/j.knosys.2017.10.024
– ident: e_1_2_8_14_2
  doi: 10.1109/INMIC.2005.334494
– ident: e_1_2_8_1_2
  doi: 10.1155/2021/8880851
– ident: e_1_2_8_8_2
  doi: 10.1016/j.ymssp.2016.11.005
– ident: e_1_2_8_20_2
  doi: 10.1016/j.measurement.2011.11.018
– ident: e_1_2_8_3_2
  doi: 10.1007/s11071-018-4170-9
– ident: e_1_2_8_11_2
  doi: 10.1016/j.physa.2020.125686
– ident: e_1_2_8_18_2
  doi: 10.1016/j.measurement.2015.08.034
– ident: e_1_2_8_22_2
  doi: 10.1016/j.jsv.2016.01.046
– ident: e_1_2_8_13_2
  doi: 10.1016/j.measurement.2015.03.017
– ident: e_1_2_8_21_2
  doi: 10.1016/j.neucom.2013.04.033
– ident: e_1_2_8_15_2
  doi: 10.3390/e21020170
– ident: e_1_2_8_28_2
  doi: 10.1088/1361-6501/ab9841
– start-page: 153
  volume-title: Locality Preserving Projections, Neural Information Processing Systems16
  year: 2004
  ident: e_1_2_8_24_2
– ident: e_1_2_8_27_2
  doi: 10.1016/j.jsv.2014.09.026
– ident: e_1_2_8_7_2
  doi: 10.1016/j.ymssp.2019.106556
– ident: e_1_2_8_19_2
  doi: 10.1016/j.measurement.2019.107361
– ident: e_1_2_8_10_2
  doi: 10.1016/j.measurement.2018.08.002
– ident: e_1_2_8_29_2
  doi: 10.1016/j.measurement.2019.05.002
– ident: e_1_2_8_9_2
  doi: 10.1155/2021/6660115
– ident: e_1_2_8_17_2
  doi: 10.1016/j.ymssp.2017.12.008
– ident: e_1_2_8_25_2
  doi: 10.1016/j.ymssp.2011.02.006
– ident: e_1_2_8_26_2
  doi: 10.1016/j.ymssp.2019.106344
– ident: e_1_2_8_5_2
  doi: 10.1007/s42417-019-00157-6
– ident: e_1_2_8_2_2
  doi: 10.1115/1.4028833
– ident: e_1_2_8_23_2
  doi: 10.1016/j.ijepes.2012.06.022
– ident: e_1_2_8_12_2
  doi: 10.1103/physrevlett.88.174102
– ident: e_1_2_8_4_2
  doi: 10.1155/2019/7806015
– ident: e_1_2_8_6_2
  doi: 10.1016/j.measurement.2020.108815
– ident: e_1_2_8_16_2
  doi: 10.3390/e19040176
SSID ssj0005364
Score 2.2332294
Snippet Spiral bevel gears are basic transmission components which are widely used in mechanical equipment. These components are important elements used in the...
SourceID doaj
unpaywall
proquest
gale
crossref
hindawi
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Artificial neural networks
Complexity
Efficiency
Entropy
Evaluation
Fault diagnosis
Feature extraction
Geospatial data
Machine learning
Mechanical systems
Methods
Neural networks
Noise
Nonlinear analysis
Permutations
Principal components analysis
Recognition
Spiral bevel gears
Time series
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFLbYpAl2QGOAFtiQDwMOyCKxnx372EFLhdapGpvUm2U7tjYpSifSMvHfY6dp2UD8OCZyEtvvvfh79ufPCB07wyyTuSJSOEagdJaoPLck-OhfYLipRNqNPDkT40v4POOzXiSp_X0JP452KT0v3nPOk8TsFtqSIjG3zsezn0wO1qlExUQmJ0pQuua3__LsvZGnE-jf_IZ3rlICfHt9D2Y-XDY35vutqes7I85oDz3uoSIerGz7BD3wzT7avSMguI92OgKna5-iiwE-m3_zNZ5Mh-R0OiXD0wk-X7OD5g2edEdF44hRccR8eGSW9QJ_XBHtrls8D_hLWnOv8UmiEeFPMQLaZ-hyNLz4MCb9iQnEAdAFsTbiCeoLW1bKu0ow6nNXCGFYHiIuMEWoBBigJlfUUMltsNxZw0rpuJI-sOdou5k3_gBha5QABWDKKoCtpApVyY1zubVSBm8z9G7dm9r1cuLpVItad2kF5zr1ve77PkOvN6VvVjIafyh3kgyzKZPEr7sb0SF0H0uastLIANH5XAm8ClZCBaCscYVlzEOG3iaz6hSisUrO9DsNYsOS2JUepGlPFlM1laHj3vL_qNXh2i10H-KtppwBMMYKkaE3G1f563te_N_nXqJH6XI10XOIthdfl_4oQp-FfdU5_g8UifZ3
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZKqopyQFBABAryocABWd31a-0DQgkkVKiJotJKva38hEqr3bRJqPj32Btv2h4o19XI8no-j2fG428AODCKaCIyiQQ3BNHCaCSzTCPvAr6oYsry-Bp5MuVHZ_T7OTvfAtPuLUwsq-xsYmuobWNijvwQM0IpISTnn-eXKHaNirerXQsNlVor2E8txdgDsI0jM1YPbA9H09nJTdEHaQmlQsyTIckx7krhGYtZgPyQMRaZbO8cUi2X_8Zi7_yKsfL1xR2P9OGqnqs_16qqbh1O4yfgcfIq4WANg6dgy9V74NEtrsE9sNPWeprFM3A6gNPmt6vgZDZCx7MZGh1P4ElXSNTUcNJ2lYbBnYXBPYRjtaqW8Ou6Ju9iARsPf8Tr-QoOY8UR_BY2y-I5OBuPTr8codRcARlK8RJpHVwP7HJdWOmM5QS7zOScK5L54EKo3FtOFcUqk1hhwbTXzGhFCmGYFM6TF6BXN7V7CaBWklNJqSqsp9oK6W3BgkYyrYXwTvfBx241S5OYx2MDjKpsIxDGyrj2ZVr7Pni3kZ6vGTf-ITeMitnIRJ7s9kNz9bNM267EpFDC04BTU1BmvRbUUiq1MrkmxNE--BDVWsbdHKZkVHqUEH4s8mKVg5ghJSGqk31wkDT_n1ntd7AokzVYlDfY7YP3G6jcO86r-8d5DXaj9DoXtA96y6uVexO8o6V-myD_F1HDB0I
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLag08S44DCGCAzkiwEXKF0SHxJfdtAyobWqgEpFXEQ-sokoqZZ2E1zxCDwjT4KdONWKxEHcRHL0y_Lht_399ufPABxIjgTKIhZmVKIQp1KELIpEaLT1L8wJV9TdRh5P6PEMv5mTuWdVurswyknEV1zV_VMXk16eNbO1b9f6sL5w0Xp8SAhxirP9hTLXwRYlFof3wNZsMh18aEmGUchoc4QQW0AesiRCHeudkI0sNtajRrZ_PTlv-yJsgM8bq3LBv1zyoriyDo1ug49dDVr6yef-ain68usv4o7_V8U74JaHp3DQ-tNdcE2Xu-DmFdHCXbDdkEZlfQ_MB3BSXegCjqfDH9--n0yn9js8GcO3HSupKuG4eaIaWmwMLdaEI74qlvBVS_A7q2Fl4Dt31l_AI0dfgq_tyKv3wGw0fP_yOPQvNYQS42QZCmFxTKJjkSqmpaIo0ZGMKeUoMhaP8NgoijlOeMQSnmREGEGk4CjNJGGZNug-6JVVqR8AKDijmGHMU2WwUBkzKiVcykiILDNaBOBF11-59DLm7jWNIm_CGUJy13q5b70APF1bL1r5jt_YHbmuX9s40e3mR3X-KfdjOE9QyjODrdPLFBNlRIYVxkxwGQuENA7Ac-c4uZsabJEk9zccbMWcyFY-cNutyIaILAAHvu__Uqr9zvHyzj_yhCCMEUIxDcCztTP-MZ-H_2r4COy4ZLvFtA96y_OVfmxB11I88aPrJ81HJW8
  priority: 102
  providerName: Unpaywall
Title A Novel MPE-LPP-ELM Recognition Method for the Fault Diagnosis of Spiral Bevel Gears
URI https://dx.doi.org/10.1155/2021/5552048
https://www.proquest.com/docview/2534433316
https://downloads.hindawi.com/journals/sv/2021/5552048.pdf
https://doaj.org/article/237a8f4eccc745dfb84d449bac1b33e4
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: KQ8
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central (New) (NC LIVE)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1875-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005364
  issn: 1875-9203
  databaseCode: 24P
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELagqAIOCAoVW0rkQ4EDsrrr19rHBJJGqImi0EjhZNleW1RabSqStOLfY-8jSg_QC5c9WJZ3PJ5Zf-MdfwPAmdXEEJFKJLgliObWIJmmBnkX7ItqpgsebyNPpny8oN-WbLlX6ivmhDX0wI3izjHJtfA0vMnmlBXeCFpQKo22mSHE1UygqZBdMNUld5CaOCrENimSHOMu5Z2xGO1n54yxyFh7bzOqOft3X-bDnzEmvru-hzyfbqsb_ftOl-XeJjR6CV606BH2G6lfgUeuOgLP9zgFj8BhndNp16_BVR9OV7euhJPZEF3OZmh4OYHzLmFoVcFJXT0aBtgKAwyEI70tN_Brk3t3vYYrD7_H3_AlHMTMIngRnGL9BixGw6svY9QWUUCWUrxBxgSIgV1m8kI6W3CCXWozzjVJfYAKOvMFp5pinUqssWDGG2aNJrmwTArnyTE4qFaVewug0ZJTSanOC09NIaQvcqatTY0RwjuTgM-dNpVtGcZjoYtS1ZEGYyrqXrW6T8CHXe-bhlnjL_0GcWF2fSIfdt0QrES1VqIespIEfIrLqqLXBpGsbi8fhIlF_ivVjyehJERvMgFn7co_INVpZxaq9fq1woxQSgjJeAI-7kzln-Oc_I_ZvQPP4pjNydApONj82rr3ASttTA88FqOLHngyGE5n817tJOE5Hy9D22I66__4A36bD8w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGpmlwQDBAFAb4sMEBWUv8kcSHCbWspWNtVY1O2s34c5sUNWVtqfbP8bdhp0m3HRinXSPHct73c37vPQB2tSSKZBFHWaIJoqlWiEeRQs56-aKSSZOEauT-IOme0u9n7GwN_KlrYQKssraJpaE2hQ535PuYEUoJIXHyZfILhalR4e9qPUJDVqMVzEHZYqwq7Di21wufwk0Pjg49v_cw7rRHX7uomjKANKV4hpTyPhjbWKWGW20Sgm2k4ySRJHLel8rYmYRKimXEscQZU04xrSRJM814Zh3x-z4CG5RQ7pO_jVZ7MDy5AZmQsoGVz7EixBOMa-g9Y-HWId5njIXOuXecYjk7YOUhNi9Cbr64vBMBb83HE3m9kHl-yxl2noGnVRQLm0uxew7W7HgbPLnV23AbbJbYUj19AUZNOCh-2xz2h23UGw5Ru9eHJzVwqRjDfjnFGvrwGfpwFHbkPJ_BwyUG8HIKCwd_BDhADlsB4QS_eapPX4LTByHzK7A-Lsb2NYBK8oRySmVqHFUm486kzEtApFSWOasa4HNNTaGrTudh4EYuyoyHMRFoLyraN8DeavVk2eHjH-tagTGrNaEvd_mguDoXlZoLTFKZOer1QqeUGacyaijlSupYEWJpA3wKbBXBevgjaVkVQfgPC324RDPcyBKfRfIG2K04_59T7dRiISrrMxU3utIAH1eicu8-b-7f5wPY6o76PdE7Ghy_BY_Dm8t7qB2wPrua23c-Mpup95X4Q_DzoTXuLxGqRQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfG0Pg4IBggCgN82OCArCb-SOIDQh1tt7F2qmCTdjO2Y8OkqClrS7V_jb8OvzTptgPjtGvkWM77fs7vvYfQttXMsCySJEssIzy1hsgoMsS7IF9cC50nUI08PEr2T_iXU3G6hv40tTAAq2xsYmWo89LCHXmbCsY5YyxO2r6GRYy6_U-TXwQmSMGf1macxlJEDt3FIqRv048H3cDrHUr7vePP-6SeMEAs53RGjAn-l7rYpLl0Nk8YdZGNk0SzyAc_qmOfJ1xzqiNJNc2E8UZYo1maWSEz51nY9w66m0IXd6hS7-9dwktY1boqZFcRkQmlDeheCLhviNtCCOiZe80dVlMDVr5h4ydk5Yuza7Hv_fl4oi8WuiiuuMH-Y_Sojl9xZylwT9CaG2-ih1e6Gm6ijQpVaqdP0XEHH5W_XYGHox4ZjEakNxjirw1kqRzjYTW_GofAGYdAFPf1vJjh7hL9dzbFpcffAAhQ4F3ANuG9QPPpM3RyK0R-jtbH5di9QNhomXDJuU5zz02eSZ-nQlsbGZNl3pkW-tBQU9m6xzmM2ihUlesIoYD2qqZ9C-2sVk-WvT3-sW4XGLNaAx25qwfl-Q9VK7iiLNWZ50EjbMpF7k3Gc86l0TY2jDneQu-BrQrsRjiS1XX5Q_gw6MClOnAXy0L-KFtou-b8f0611YiFqu3OVF1qSQu9W4nKjfu8vHmft-he0DM1ODg6fIUewIvLC6gttD47n7vXISSbmTeV7GP0_baV7S8VMEKa
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLag08S44DCGCAzkiwEXKF0SHxJfdtAyobWqgEpFXEQ-sokoqZZ2E1zxCDwjT4KdONWKxEHcRHL0y_Lht_399ufPABxIjgTKIhZmVKIQp1KELIpEaLT1L8wJV9TdRh5P6PEMv5mTuWdVurswyknEV1zV_VMXk16eNbO1b9f6sL5w0Xp8SAhxirP9hTLXwRYlFof3wNZsMh18aEmGUchoc4QQW0AesiRCHeudkI0sNtajRrZ_PTlv-yJsgM8bq3LBv1zyoriyDo1ug49dDVr6yef-ain68usv4o7_V8U74JaHp3DQ-tNdcE2Xu-DmFdHCXbDdkEZlfQ_MB3BSXegCjqfDH9--n0yn9js8GcO3HSupKuG4eaIaWmwMLdaEI74qlvBVS_A7q2Fl4Dt31l_AI0dfgq_tyKv3wGw0fP_yOPQvNYQS42QZCmFxTKJjkSqmpaIo0ZGMKeUoMhaP8NgoijlOeMQSnmREGEGk4CjNJGGZNug-6JVVqR8AKDijmGHMU2WwUBkzKiVcykiILDNaBOBF11-59DLm7jWNIm_CGUJy13q5b70APF1bL1r5jt_YHbmuX9s40e3mR3X-KfdjOE9QyjODrdPLFBNlRIYVxkxwGQuENA7Ac-c4uZsabJEk9zccbMWcyFY-cNutyIaILAAHvu__Uqr9zvHyzj_yhCCMEUIxDcCztTP-MZ-H_2r4COy4ZLvFtA96y_OVfmxB11I88aPrJ81HJW8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+MPE-LPP-ELM+Recognition+Method+for+the+Fault+Diagnosis+of+Spiral+Bevel+Gears&rft.jtitle=Shock+and+vibration&rft.au=Jiang+Lingli&rft.au=Tan+Hongchuang&rft.au=Li+Xuejun&rft.au=Yang+Dalian&rft.date=2021&rft.pub=Wiley&rft.issn=1070-9622&rft.eissn=1875-9203&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5552048&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_237a8f4eccc745dfb84d449bac1b33e4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9622&client=summon