Development of an Algorithm to Identify Cases of Nonalcoholic Steatohepatitis Cirrhosis in the Electronic Health Record

Background and Aims Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis...

Full description

Saved in:
Bibliographic Details
Published inDigestive diseases and sciences Vol. 66; no. 5; pp. 1452 - 1460
Main Authors Danford, Christopher J., Lee, Jennifer Y., Strohbehn, Ian A., Corey, Kathleen E., Lai, Michelle
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0163-2116
1573-2568
1573-2568
DOI10.1007/s10620-020-06388-y

Cover

Abstract Background and Aims Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR. Methods We used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases ( n  = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV ≥ 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital. Results The algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of ≥ 3 counts of “cirrhosis, no mention of alcohol” (571.5, K74.6) and ≥ 3 counts of “nonalcoholic fatty liver” (571.8–571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease. Conclusions We developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
AbstractList Background and Aims Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR. Methods We used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases (n = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV [greater than or equal to] 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital. Results The algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of [greater than or equal to] 3 counts of "cirrhosis, no mention of alcohol" (571.5, K74.6) and [greater than or equal to] 3 counts of "nonalcoholic fatty liver" (571.8-571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease. Conclusions We developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
Background and AimsCurrent genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR.MethodsWe used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases (n = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV ≥ 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital.ResultsThe algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of ≥ 3 counts of “cirrhosis, no mention of alcohol” (571.5, K74.6) and ≥ 3 counts of “nonalcoholic fatty liver” (571.8–571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease.ConclusionsWe developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR. We used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases (n = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV [greater than or equal to] 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital. The algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of [greater than or equal to] 3 counts of "cirrhosis, no mention of alcohol" (571.5, K74.6) and [greater than or equal to] 3 counts of "nonalcoholic fatty liver" (571.8-571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease. We developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
Background and Aims Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR. Methods We used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases ( n  = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV ≥ 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital. Results The algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of ≥ 3 counts of “cirrhosis, no mention of alcohol” (571.5, K74.6) and ≥ 3 counts of “nonalcoholic fatty liver” (571.8–571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease. Conclusions We developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR. We used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases (n = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV ≥ 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital. The algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of ≥ 3 counts of "cirrhosis, no mention of alcohol" (571.5, K74.6) and ≥ 3 counts of "nonalcoholic fatty liver" (571.8-571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease. We developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR.BACKGROUND AND AIMSCurrent genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our objective was to develop and validate an electronic health record (EHR) algorithm to accurately identify cases of NASH cirrhosis in the EHR.We used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases (n = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV ≥ 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital.METHODSWe used Clinical Query 2, a search tool at Beth Israel Deaconess Medical Center, to create a pool of potential NASH cirrhosis cases (n = 5415). We created a training set of 300 randomly selected patients for chart review to confirm cases of NASH cirrhosis. Test characteristics of different algorithms, consisting of diagnosis codes, laboratory values, anthropomorphic measurements, and medication records, were calculated. The algorithms with the highest positive predictive value (PPV) and the highest F score with a PPV ≥ 80% were selected for internal validation using a separate random set of 100 patients from the potential NASH cirrhosis pool. These were then externally validated in another random set of 100 individuals using the research patient data registry tool at Massachusetts General Hospital.The algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of ≥ 3 counts of "cirrhosis, no mention of alcohol" (571.5, K74.6) and ≥ 3 counts of "nonalcoholic fatty liver" (571.8-571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease.RESULTSThe algorithm with the highest PPV of 100% on internal validation and 92% on external validation consisted of ≥ 3 counts of "cirrhosis, no mention of alcohol" (571.5, K74.6) and ≥ 3 counts of "nonalcoholic fatty liver" (571.8-571.9, K75.81, K76.0) codes in the absence of any diagnosis codes for other common causes of chronic liver disease.We developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.CONCLUSIONSWe developed and validated an EHR algorithm using diagnosis codes that accurately identifies patients with NASH cirrhosis.
Audience Professional
Academic
Author Lai, Michelle
Corey, Kathleen E.
Danford, Christopher J.
Strohbehn, Ian A.
Lee, Jennifer Y.
Author_xml – sequence: 1
  givenname: Christopher J.
  orcidid: 0000-0003-0322-7705
  surname: Danford
  fullname: Danford, Christopher J.
  email: cdanford@bidmc.harvard.edu
  organization: Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Liver Center
– sequence: 2
  givenname: Jennifer Y.
  surname: Lee
  fullname: Lee, Jennifer Y.
  organization: Department of Medicine, Beth Israel Deaconess Medical Center
– sequence: 3
  givenname: Ian A.
  surname: Strohbehn
  fullname: Strohbehn, Ian A.
  organization: Gastrointestinal Unit, Massachusetts General Hospital
– sequence: 4
  givenname: Kathleen E.
  surname: Corey
  fullname: Corey, Kathleen E.
  organization: Gastrointestinal Unit, Massachusetts General Hospital
– sequence: 5
  givenname: Michelle
  surname: Lai
  fullname: Lai, Michelle
  organization: Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Liver Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32535780$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rHCEUhqWkNJu0f6AXZaA3vZnUj1FnL5dN2gRCC_24Ftc57hgc3arbsv--DpsQGkqQg0d93lc8njN0EmIAhN4SfEEwlh8zwYLiFs8hWN-3hxdoQbhkLeWiP0ELTETNCRGn6CznO4zxUhLxCp0yyhmXPV6gP5fwG3zcTRBKE22jQ7Py25hcGaemxOZmqAfOHpq1zpBn4ksM2ps4Ru9M872ALnGEnS6uuNysXUpjzDVzoSkjNFceTEkxVPYatC9j8w1MTMNr9NJqn-HN_XyOfn66-rG-bm-_fr5Zr25b03W0tEvL6EC46YUVHZiBCtP1XFtmpQC5sbwujdEScwK9lRKWmkq-GagZxGAHys7Rh6PvLsVfe8hFTS4b8F4HiPusaEe6Wpcey4q-f4LexX2qj60UJ0xSzDrxSG21B-WCjSVpM5uqlSR0yRjvSKUu_kPVMcDkTP1G6-r-P4J395fvNxMMapfcpNNBPfxUBfojYFLMOYFVxpVa9Riqs_OKYDU3hTo2hcJzzE2hDlVKn0gf3J8VsaMoVzhsIT1W4xnVXyCTyVI
CitedBy_id crossref_primary_10_1186_s43066_022_00224_w
crossref_primary_10_1080_00365521_2023_2185475
crossref_primary_10_1136_bmjhci_2021_100510
crossref_primary_10_1186_s12967_024_05726_2
crossref_primary_10_14309_ajg_0000000000002254
Cites_doi 10.1016/j.ajhg.2011.09.008
10.1016/j.cgh.2017.09.041
10.1186/s13073-015-0166-y
10.1038/clpt.2011.221
10.1056/NEJMp1006114
10.1093/jamia/ocw071
10.1186/1471-2288-14-137
10.1093/ije/dyx239
10.1111/apt.12923
10.1016/j.ajhg.2010.03.003
10.2105/AJPH.41.3.279
10.1053/j.gastro.2015.07.056
10.1007/s10620-015-3952-x
10.1002/acr.20184
10.1093/nar/gkt1229
10.1136/amiajnl-2011-000439
10.1016/S0016-5085(99)70506-8
10.1016/j.jhep.2018.03.019
10.1136/amiajnl-2012-000896
10.1371/journal.pmed.1001779
10.1016/j.ajhg.2017.06.005
10.1016/j.ajhg.2010.12.007
10.1016/j.jhep.2018.08.013
10.1126/scitranslmed.3008604
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
FYUFA
GHDGH
K9-
K9.
KB0
M0R
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10620-020-06388-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Consumer Health Database
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Academic Middle East (New)


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-2568
EndPage 1460
ExternalDocumentID A712933541
32535780
10_1007_s10620_020_06388_y
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
-~X
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
354
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKAS
AANXM
AANZL
AAQQT
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZCM
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BKNYI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IH2
IHE
IHR
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JCJTX
JZLTJ
K9-
KDC
KOV
KOW
KPH
L7B
LAK
LLZTM
M0R
M1P
M4Y
MA-
MJL
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHH
OVD
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RXW
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJN
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VVN
W23
W48
WH7
WJK
WK8
WOW
X7M
XOL
YLTOR
YOC
Z45
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z87
Z88
Z8O
Z8P
Z8Q
Z8R
Z8V
Z8W
Z91
ZGI
ZMTXR
ZOVNA
ZXP
ZY1
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c442t-9f32d15c86f64ecd26c485af3f76e7bf5c48cca7051e8f77e9a275bd2cd6dfd23
IEDL.DBID U2A
ISSN 0163-2116
1573-2568
IngestDate Fri Sep 05 13:19:22 EDT 2025
Mon Oct 06 18:27:32 EDT 2025
Mon Oct 20 22:28:56 EDT 2025
Mon Oct 20 16:48:30 EDT 2025
Wed Feb 19 02:28:50 EST 2025
Wed Oct 01 04:24:45 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Fri Feb 21 02:48:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Genetics
NAFLD
NASH
Electronic medical record
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-9f32d15c86f64ecd26c485af3f76e7bf5c48cca7051e8f77e9a275bd2cd6dfd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-0322-7705
PMID 32535780
PQID 2513720346
PQPubID 41056
PageCount 9
ParticipantIDs proquest_miscellaneous_2414000807
proquest_journals_2513720346
gale_infotracmisc_A712933541
gale_infotracacademiconefile_A712933541
pubmed_primary_32535780
crossref_citationtrail_10_1007_s10620_020_06388_y
crossref_primary_10_1007_s10620_020_06388_y
springer_journals_10_1007_s10620_020_06388_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210500
2021-05-00
2021-May
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Digestive diseases and sciences
PublicationTitleAbbrev Dig Dis Sci
PublicationTitleAlternate Dig Dis Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Visscher, Wray, Zhang (CR2) 2017; 101
Rich, Oji, Mufti (CR23) 2018; 16
Corey, Kartoun, Zheng, Shaw (CR12) 2016; 61
Liao, Cai, Gainer (CR18) 2010; 62
Dawber, Meadors, Moore (CR3) 1951; 41
Ritchie, Denny, Crawford (CR9) 2010; 86
Kho, Hayes, Rasmussen-Torvik (CR5) 2012; 19
Denny, Crawford, Ritchie (CR8) 2011; 89
Welter, MacArthur, Morales (CR1) 2014; 42
Matteoni, Gramlich (CR13) 1999; 116
Newton, Peissig, Kho (CR17) 2013; 20
Delaney, Ramirez, Bowton (CR25) 2012; 91
Teixeira, Wei, Cronin (CR24) 2017; 24
Younossi, Gramlich, Liu (CR15) 1998; 11
Blumenthal, Tavenner (CR6) 2010; 363
Borodulin, Tolonen, Jousilahti (CR22) 2018; 47
Wei, Denny (CR4) 2015; 7
Husain, Blais, Kramer (CR20) 2014; 40
van der Ploeg, Austin, Steyerberg (CR19) 2014; 14
Sudlow, Gallacher, Allen (CR21) 2015; 12
Bowton, Field, Wang (CR26) 2014; 6
Galle, Forner, Llovet (CR14) 2018; 69
Kurreeman, Liao, Chibnik (CR10) 2011; 88
Beste, Leipertz, Green (CR11) 2015; 149
Newton, Peissig, Kho (CR7) 2013; 20
Younossi, Stepanova, Sanyal (CR16) 2018; 69
AN Kho (6388_CR5) 2012; 19
KM Newton (6388_CR17) 2013; 20
T van der Ploeg (6388_CR19) 2014; 14
MD Ritchie (6388_CR9) 2010; 86
JT Delaney (6388_CR25) 2012; 91
WQ Wei (6388_CR4) 2015; 7
PM Visscher (6388_CR2) 2017; 101
F Kurreeman (6388_CR10) 2011; 88
N Husain (6388_CR20) 2014; 40
Z Younossi (6388_CR16) 2018; 69
E Bowton (6388_CR26) 2014; 6
PL Teixeira (6388_CR24) 2017; 24
KE Corey (6388_CR12) 2016; 61
KP Liao (6388_CR18) 2010; 62
JC Denny (6388_CR8) 2011; 89
D Welter (6388_CR1) 2014; 42
CZY Matteoni (6388_CR13) 1999; 116
NE Rich (6388_CR23) 2018; 16
ZM Younossi (6388_CR15) 1998; 11
C Sudlow (6388_CR21) 2015; 12
KM Newton (6388_CR7) 2013; 20
LA Beste (6388_CR11) 2015; 149
K Borodulin (6388_CR22) 2018; 47
D Blumenthal (6388_CR6) 2010; 363
TR Dawber (6388_CR3) 1951; 41
PR Galle (6388_CR14) 2018; 69
References_xml – volume: 89
  start-page: 529
  issue: 4
  year: 2011
  end-page: 542
  ident: CR8
  article-title: Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.09.008
– volume: 16
  start-page: 198–210.e2
  issue: 2
  year: 2018
  ident: CR23
  article-title: Racial and ethnic disparities in nonalcoholic fatty liver disease prevalence, severity, and outcomes in the united states: a systematic review and meta-analysis
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2017.09.041
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  end-page: 14
  ident: CR4
  article-title: Extracting research-quality phenotypes from electronic health records to support precision medicine
  publication-title: Genome Med
  doi: 10.1186/s13073-015-0166-y
– volume: 91
  start-page: 257
  issue: 2
  year: 2012
  end-page: 263
  ident: CR25
  article-title: Predicting clopidogrel response using DNA samples linked to an electronic health record
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2011.221
– volume: 363
  start-page: 501
  issue: 6
  year: 2010
  end-page: 504
  ident: CR6
  article-title: The, “meaningful use” regulation for electronic health records
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1006114
– volume: 24
  start-page: 162
  issue: 1
  year: 2017
  end-page: 171
  ident: CR24
  article-title: Evaluating electronic health record data sources and algorithmic approaches to identify hypertensive individuals
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw071
– volume: 14
  start-page: 137
  year: 2014
  ident: CR19
  article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-137
– volume: 47
  start-page: 696
  issue: 3
  year: 2018
  end-page: 1471
  ident: CR22
  article-title: Cohort profile: the national FINRISK study
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx239
– volume: 40
  start-page: 949
  issue: 8
  year: 2014
  end-page: 954
  ident: CR20
  article-title: Nonalcoholic fatty liver disease (NAFLD) in the Veterans Administration population: development and validation of an algorithm for NAFLD using automated data
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.12923
– volume: 86
  start-page: 560
  issue: 4
  year: 2010
  end-page: 572
  ident: CR9
  article-title: Robust replication of genotype-phenotype associations across multiple diseases in an electronic medical record
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.03.003
– volume: 41
  start-page: 279
  issue: 3
  year: 1951
  end-page: 281
  ident: CR3
  article-title: Epidemiological approaches to heart disease: the Framingham study
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.41.3.279
– volume: 149
  start-page: 1471–1482.e5
  issue: 6
  year: 2015
  ident: CR11
  article-title: Trends in burden of cirrhosis and hepatocellular carcinoma by underlying liver disease in US Veterans, 2001–2013
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.07.056
– volume: 61
  start-page: 913
  issue: 3
  year: 2016
  end-page: 919
  ident: CR12
  article-title: Development and validation of an algorithm to identify nonalcoholic fatty liver disease in the electronic medical record
  publication-title: Dig Dis Sci
  doi: 10.1007/s10620-015-3952-x
– volume: 11
  start-page: 560
  issue: 6
  year: 1998
  end-page: 565
  ident: CR15
  article-title: Nonalcoholic fatty liver disease: assessment of variability in pathologic interpretations
  publication-title: Mod Pathol
– volume: 62
  start-page: 1120
  issue: 8
  year: 2010
  end-page: 1127
  ident: CR18
  article-title: Electronic medical records for discovery research in rheumatoid arthritis
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.20184
– volume: 42
  start-page: D1001
  issue: D1
  year: 2014
  end-page: D1006
  ident: CR1
  article-title: The NHGRI GWAS Catalog, a curated resource of SNP-trait associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1229
– volume: 19
  start-page: 212
  issue: 2
  year: 2012
  end-page: 218
  ident: CR5
  article-title: Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study
  publication-title: J Am Med Informa Assoc
  doi: 10.1136/amiajnl-2011-000439
– volume: 116
  start-page: 1413
  issue: 6
  year: 1999
  end-page: 1419
  ident: CR13
  article-title: Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(99)70506-8
– volume: 69
  start-page: 182
  issue: 1
  year: 2018
  end-page: 236
  ident: CR14
  article-title: EASL clinical practice guidelines: management of hepatocellular carcinoma
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.03.019
– volume: 20
  start-page: e147
  issue: e1
  year: 2013
  end-page: e154
  ident: CR17
  article-title: Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-000896
– volume: 20
  start-page: 147
  issue: E1
  year: 2013
  end-page: 154
  ident: CR7
  article-title: Validation of electronic medical record-based phenotyping algorithms: results and lessons learned from the eMERGE network
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-000896
– volume: 12
  start-page: 1
  issue: 3
  year: 2015
  end-page: 10
  ident: CR21
  article-title: UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 101
  start-page: 5
  issue: 1
  year: 2017
  end-page: 22
  ident: CR2
  article-title: 10 Years of GWAS discovery: biology, function, and translation
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.06.005
– volume: 88
  start-page: 57
  issue: 1
  year: 2011
  end-page: 69
  ident: CR10
  article-title: Genetic basis of autoantibody positive and negative rheumatoid arthritis risk in a multi-ethnic cohort derived from electronic health records
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.12.007
– volume: 69
  start-page: 1365
  issue: 6
  year: 2018
  end-page: 1370
  ident: CR16
  article-title: The conundrum of cryptogenic cirrhosis: adverse outcomes without treatment options
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.08.013
– volume: 6
  start-page: 234cm3
  issue: 234
  year: 2014
  ident: CR26
  article-title: Biobanks and electronic medical records: enabling cost-effective research
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3008604
– volume: 69
  start-page: 1365
  issue: 6
  year: 2018
  ident: 6388_CR16
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.08.013
– volume: 116
  start-page: 1413
  issue: 6
  year: 1999
  ident: 6388_CR13
  publication-title: Gastroenterology
  doi: 10.1016/S0016-5085(99)70506-8
– volume: 24
  start-page: 162
  issue: 1
  year: 2017
  ident: 6388_CR24
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocw071
– volume: 86
  start-page: 560
  issue: 4
  year: 2010
  ident: 6388_CR9
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.03.003
– volume: 69
  start-page: 182
  issue: 1
  year: 2018
  ident: 6388_CR14
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.03.019
– volume: 14
  start-page: 137
  year: 2014
  ident: 6388_CR19
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-14-137
– volume: 149
  start-page: 1471–1482.e5
  issue: 6
  year: 2015
  ident: 6388_CR11
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.07.056
– volume: 88
  start-page: 57
  issue: 1
  year: 2011
  ident: 6388_CR10
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.12.007
– volume: 89
  start-page: 529
  issue: 4
  year: 2011
  ident: 6388_CR8
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.09.008
– volume: 101
  start-page: 5
  issue: 1
  year: 2017
  ident: 6388_CR2
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2017.06.005
– volume: 20
  start-page: 147
  issue: E1
  year: 2013
  ident: 6388_CR7
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-000896
– volume: 20
  start-page: e147
  issue: e1
  year: 2013
  ident: 6388_CR17
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-000896
– volume: 40
  start-page: 949
  issue: 8
  year: 2014
  ident: 6388_CR20
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.12923
– volume: 91
  start-page: 257
  issue: 2
  year: 2012
  ident: 6388_CR25
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2011.221
– volume: 41
  start-page: 279
  issue: 3
  year: 1951
  ident: 6388_CR3
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.41.3.279
– volume: 47
  start-page: 696
  issue: 3
  year: 2018
  ident: 6388_CR22
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx239
– volume: 19
  start-page: 212
  issue: 2
  year: 2012
  ident: 6388_CR5
  publication-title: J Am Med Informa Assoc
  doi: 10.1136/amiajnl-2011-000439
– volume: 363
  start-page: 501
  issue: 6
  year: 2010
  ident: 6388_CR6
  publication-title: N Engl J Med
  doi: 10.1056/NEJMp1006114
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  ident: 6388_CR4
  publication-title: Genome Med
  doi: 10.1186/s13073-015-0166-y
– volume: 16
  start-page: 198–210.e2
  issue: 2
  year: 2018
  ident: 6388_CR23
  publication-title: Clin Gastroenterol Hepatol
  doi: 10.1016/j.cgh.2017.09.041
– volume: 61
  start-page: 913
  issue: 3
  year: 2016
  ident: 6388_CR12
  publication-title: Dig Dis Sci
  doi: 10.1007/s10620-015-3952-x
– volume: 6
  start-page: 234cm3
  issue: 234
  year: 2014
  ident: 6388_CR26
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3008604
– volume: 12
  start-page: 1
  issue: 3
  year: 2015
  ident: 6388_CR21
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 42
  start-page: D1001
  issue: D1
  year: 2014
  ident: 6388_CR1
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1229
– volume: 62
  start-page: 1120
  issue: 8
  year: 2010
  ident: 6388_CR18
  publication-title: Arthritis Care Res (Hoboken)
  doi: 10.1002/acr.20184
– volume: 11
  start-page: 560
  issue: 6
  year: 1998
  ident: 6388_CR15
  publication-title: Mod Pathol
SSID ssj0009716
Score 2.3634696
Snippet Background and Aims Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large...
Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large scale. Our...
Background and Aims Current genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large...
Background and AimsCurrent genetic research of nonalcoholic steatohepatitis (NASH) cirrhosis is limited by our ability to accurately identify cases on a large...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1452
SubjectTerms Alcohol
Algorithms
Anthropomorphism
Biochemistry
Codes
Electronic health records
Electronic records
Esophagus
Fatty liver
Gastroenterology
Genetics
Genomes
Hepatitis C
Hepatology
Hospitals
Laboratories
Liver
Liver cancer
Liver cirrhosis
Liver diseases
Medical centers
Medical records
Medical research
Medicine
Medicine & Public Health
Medicine, Experimental
Oncology
Original Article
Patients
Peritonitis
Transplant Surgery
Type 2 diabetes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6FMZexrpPr93QYLCHzSyRZMl-GCMNKWXQMMYKfTO2PppAZ3eJy8h_3ztbTprCCjbYWDayT6f7nXV3P4CPljvEHcLHqctsLJ3QcWadiu3QqJLjpgvKRj6bqdNz-eMiudiDWZ8LQ2GV_ZzYTtS2NvSP_CvaYSJUEVJ9v_4bE2sUra72FBpFoFaw39oSY49gn1NlrAHsH09nP39ty_DqlgwVcY6I0fVRIY0mJNMpdKXInSIznsbrHVN1f8K-Y7HuLaG2lunkGTwNkJKNuzFwAHuueg6Pz8Ki-Qv4dycwiNWeFRUbX13iuzXzP6ypWZer69dsghZtRS1mBM9b6tyFYRTx29RzR6HXzWLFJovlcl6v8GhRMYSPbLph0mFdUhPrfNqXcH4y_T05jQPfQmyk5E2cecHtKDGp8ko6Y7kyMk0KL7xWTpc-wVMUuEY9dqnX2mUF10lpubHKesvFKxhUdeXeAEtSK1L0rkWBGMAiSkxTBFolH0qbyTLzEYz6T5ubUIycODGu8m0ZZRJHPqSdxJGvI_i8uee6K8XxYOtPJLGc9BSfbIqQboD9o4pX-VgT0hGJHEVwtNMS9cvsXu5lngf9XuXb0RjBh81lupNi1ipX32Abic4rIXIdweturGz6LXhCZYaGEXzpB8_24f9_qbcP9-UQnnAKuWnjMY9g0Cxv3DvETE35PijCLeg5ETQ
  priority: 102
  providerName: ProQuest
Title Development of an Algorithm to Identify Cases of Nonalcoholic Steatohepatitis Cirrhosis in the Electronic Health Record
URI https://link.springer.com/article/10.1007/s10620-020-06388-y
https://www.ncbi.nlm.nih.gov/pubmed/32535780
https://www.proquest.com/docview/2513720346
https://www.proquest.com/docview/2414000807
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009716
  issn: 0163-2116
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009716
  issn: 0163-2116
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009716
  issn: 0163-2116
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ri9QwEB-8OxC_HL7teS4RBD9oYTdJk_Zjd9n1UG4RcWH9VNomcRfOVrY9ZP97Z_rYx6GC0JKWTEPbyWR-Q-YB8MZwi7hDOD-0kfGlFdqPjFW-GeYq43jolKKRr-fqaiE_LoNlFxRW9d7u_ZZks1IfBLspNHXI3CE1G_rbEzgLKJ0XzuIFj_epdnVT8BSxjPDRvFFdqMyfxzhSR3cX5QOtdGebtNE-s4dw3sFGFrd8fgT3bPEY7l93G-NP4NeB8w8rHUsLFt98L9HyX_1gdcnaeFy3ZRPUWhVRzAmCN-Vx1zkjr966XFlyr67XFZusN5tVWeHVumAIEdl0Vy2HtYFLrLVbn8JiNv06ufK7mgp-LiWv_cgJbkZBHiqnpM0NV7kMg9QJp5XVmQvwFpmqUVZt6LS2Ucp1kBmeG2Wc4eIZnBZlYV8AC0IjQrSgRYp63iAnwhDBVMaH0kQyi5wHo_7XJnmXcJzqXtwk-1TJxI5kSCexI9l68G73zM823cY_qd8SxxKSRRw5T7uQAnw_ymqVxJrQjAjkyIPLI0qUofy4u-d50slwlSDyoxI-QioPXu-66UnySytseYs0Eg1UQt3ag-ftXNm9t-ABpRIaevC-nzz7wf_-URf_R_4SHnBys2l8MC_htN7c2leIk-psACd6qQdwFs_G4zm1H759mmI7ns4_fxk0QvMb4H0Nuw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBalhW0vY_e56zYNNvawmSWSLNkPZWRZSro2YYwW-ubauiyB1u4Sl5I_t9-2c2w5aQrrW8EBB8tG1jnS-T7rXAh5b5gF3MFdGNvEhMJyFSbGytB0tMwZHCrDaOTRWA6PxY-T6GSD_G1jYdCtsl0T64XalBq_kX8BO4wFVbiQXy_-hFg1CndX2xIamS-tYHbrFGM-sOPALq6Aws1397-DvD8wtjc46g9DX2Ug1EKwKkwcZ6Yb6Vg6Kaw2TGoRR5njTkmrchfBX3hNBdprY6eUTTKmotwwbaRxBhMfgAnYElwkQP62vg3GP3-t0v6quvgq4CoeAtWSPmzHB-9JoG5I3xA2xOFizTTeNBDXLOSNLdvaEu49Ig89hKW9Rucekw1bPCH3Rn6T_im5uuaIREtHs4L2zn7DWFaTc1qVtIkNdgvaBws6xxZjpAN1qd6ppuhhXJUTi67e1XRO-9PZbFLO4WxaUICrdLCs3EObICracOhn5PhORv452SzKwr4kNIoNj4HN8wwwhwFUGscA7HLWESYReeIC0m2HNtU--TnW4DhLV2mbURxpB38ojnQRkE_Ley6a1B-3tv6IEktxXYAn68yHN0D_MMNW2lOIrHgkugHZWWsJ81mvX25lnvr1ZJ6utD8g75aX8U70kStseQltBJBlZAAqIC8aXVn2m7MI0xp1AvK5VZ7Vw___Utu39-UtuT88Gh2mh_vjg1fkAUN3n9oXdIdsVrNL-xrwWpW_8ZOCktO7nof_AOqdUAo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB5CCqGX0nfVpu0WWnpoRezd1a50KMU4MUnTmB4a8E2V9hEbUim1FYL_Wn9dZ_Sw40BzC0ggodWy2pmd-UY7D4D3ljvEHcKHsUtsKJ3QYWKdCm3PqJzjoTOKRj4Zq8NT-W0STbbgbxcLQ26VnUysBbUtDf0j30M9TAVVhFR7vnWL-LE_-nrxJ6QKUrTT2pXTaFjk2C2v0HxbfDnaR1p_4Hx08HN4GLYVBkIjJa_CxAtu-5GJlVfSGcuVkXGUeeG1cjr3Ed7iJ2rkXBd7rV2ScR3llhurrLeU9ADF_z0tRELuhHqi1wl_dV12FRGVCNHIUm3AThu2p9BoI8ONAEMcLjeU4k3VcE033tisrXXg6CE8aMErGzTc9gi2XPEYdk7a7fkncHXNBYmVnmUFG5yf4cxV09-sKlkTFeyXbIi6c0EtxmQI1EV6Z4aRb3FVTh05eVezBRvO5vNpucCrWcEQqLKDVc0e1oRPscZ6fgqndzLvz2C7KAv3AlgUWxGjHS8yRBsW8WgcI6TLeU_aROaJD6DfTW1q2rTnVH3jPF0nbCZypD06iRzpMoBPq3cumqQft7b-SBRLSSJgzyZrAxtwfJRbKx1owlQikv0Adjda4ko2m487mqetJFmka74P4N3qMb1J3nGFKy-xjUQzmbC_DuB5wyurcQseUUKjXgCfO-ZZd_7_j3p5-1jewg6uvvT70fj4Fdzn5OdTO4HuwnY1v3SvEahV-Zt6RTD4dddL8B-rck2k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+an+Algorithm+to+Identify+Cases+of+Nonalcoholic+Steatohepatitis+Cirrhosis+in+the+Electronic+Health+Record&rft.jtitle=Digestive+diseases+and+sciences&rft.au=Danford%2C+Christopher+J&rft.au=Lee%2C+Jennifer+Y&rft.au=Strohbehn%2C+Ian+A&rft.au=Corey%2C+Kathleen+E&rft.date=2021-05-01&rft.pub=Springer&rft.issn=0163-2116&rft.volume=66&rft.issue=5&rft.spage=1452&rft_id=info:doi/10.1007%2Fs10620-020-06388-y&rft.externalDocID=A712933541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-2116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-2116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-2116&client=summon