Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes
We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-a...
Saved in:
Published in | Nature methods Vol. 18; no. 6; pp. 678 - 687 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.06.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/s41592-021-01155-x |
Cover
Abstract | We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.
Three-dimensional residual channel attention networks (RCAN) enable improved image denoising and resolution enhancement on volumetric time-lapse fluorescence microscopy data, allowing longitudinal super-resolution imaging of living samples. |
---|---|
AbstractList | We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. Three-dimensional residual channel attention networks (RCAN) enable improved image denoising and resolution enhancement on volumetric time-lapse fluorescence microscopy data, allowing longitudinal super-resolution imaging of living samples. We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. Three-dimensional residual channel attention networks (RCAN) enable improved image denoising and resolution enhancement on volumetric time-lapse fluorescence microscopy data, allowing longitudinal super-resolution imaging of living samples. We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. |
Audience | Academic |
Author | Lai, Hoyin Rey-Suarez, Ivan Su, Yijun Chen, Jiji Zhovmer, Alexander Combs, Christian A. Wu, Yicong Lee, Shih-Jong J. Huang, Chi Chou Chang, Hung-Yu Guo, Min Li, Xuesong Nizambad, Srineil Upadhyaya, Arpita Shroff, Hari Sasaki, Hideki Lucas, Luciano A. G. Liu, Jiamin |
Author_xml | – sequence: 1 givenname: Jiji orcidid: 0000-0002-4426-3035 surname: Chen fullname: Chen, Jiji email: jiji.chen@nih.gov organization: Advanced Imaging and Microscopy Resource, National Institutes of Health – sequence: 2 givenname: Hideki orcidid: 0000-0002-5926-3740 surname: Sasaki fullname: Sasaki, Hideki email: hideki.sasaki@aivia-software.com organization: Leica Microsystems, Inc., SVision LLC – sequence: 3 givenname: Hoyin surname: Lai fullname: Lai, Hoyin organization: Leica Microsystems, Inc., SVision LLC – sequence: 4 givenname: Yijun surname: Su fullname: Su, Yijun organization: Advanced Imaging and Microscopy Resource, National Institutes of Health, Leica Microsystems, Inc., SVision LLC, Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health – sequence: 5 givenname: Jiamin surname: Liu fullname: Liu, Jiamin organization: Advanced Imaging and Microscopy Resource, National Institutes of Health – sequence: 6 givenname: Yicong surname: Wu fullname: Wu, Yicong organization: Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health – sequence: 7 givenname: Alexander surname: Zhovmer fullname: Zhovmer, Alexander organization: Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health – sequence: 8 givenname: Christian A. surname: Combs fullname: Combs, Christian A. organization: NHLBI Light Microscopy Facility, National Institutes of Health – sequence: 9 givenname: Ivan surname: Rey-Suarez fullname: Rey-Suarez, Ivan organization: Biophysics Program, University of Maryland, Institute for Physical Science and Technology, University of Maryland – sequence: 10 givenname: Hung-Yu orcidid: 0000-0002-7666-4511 surname: Chang fullname: Chang, Hung-Yu organization: Leica Microsystems, Inc., SVision LLC – sequence: 11 givenname: Chi Chou surname: Huang fullname: Huang, Chi Chou organization: Leica Microsystems, Inc., SVision LLC – sequence: 12 givenname: Xuesong surname: Li fullname: Li, Xuesong organization: Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health – sequence: 13 givenname: Min orcidid: 0000-0002-2093-8771 surname: Guo fullname: Guo, Min organization: Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health – sequence: 14 givenname: Srineil surname: Nizambad fullname: Nizambad, Srineil organization: Advanced Imaging and Microscopy Resource, National Institutes of Health – sequence: 15 givenname: Arpita surname: Upadhyaya fullname: Upadhyaya, Arpita organization: Biophysics Program, University of Maryland, Institute for Physical Science and Technology, University of Maryland, Department of Physics, University of Maryland – sequence: 16 givenname: Shih-Jong J. surname: Lee fullname: Lee, Shih-Jong J. organization: Leica Microsystems, Inc., SVision LLC – sequence: 17 givenname: Luciano A. G. surname: Lucas fullname: Lucas, Luciano A. G. organization: Leica Microsystems, Inc., SVision LLC – sequence: 18 givenname: Hari surname: Shroff fullname: Shroff, Hari organization: Advanced Imaging and Microscopy Resource, National Institutes of Health, Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34059829$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu3SAQhlGUqrn1BbqokLrpximYi_EyinqTInWTrBHHDOeQYjgFu0nevjgnaZSoilgwgu-fGf0zR2g_pggIvafklBKmPhdORd82pKUNoVSI5nYPHVLBVdNRIvYfY9LTA3RUyjUhjPFWvEUHjBPRq7Y_ROlykwEa60eIxadoAs5QvJ1rMGxMjBCwmSaIU_3EEaablH8VbCEmXwCbaHHZmLyFiF2YU9UOEAfAox9yKkPa3mE_mjXgPynMI5QT9MaZUODdw32Mrr5-uTz_3lz8_Pbj_OyiGThvp6a3rpOc8E6BlIL0naTSrXoqlRKOs444J61jRinnLBlWBihwCStgHVfUCnaMPu3ybnP6PUOZ9OhrayGYCGkuuhVMKMY6uqAfX6DXac7ViXuqY13fc_pErU0A7aNLUzbDklSfSVlbaglllTr9D1WPhepIHZ_z9f2Z4MND8Xk1gtXbXO3Kd_pxQhVod8DiZ8ng_iGU6GUN9G4NdF0Dfb8G-raK1AvR4CezjLC248PrUraTllonriE_ufGK6i_PfMc9 |
CitedBy_id | crossref_primary_10_3390_ijms222111792 crossref_primary_10_1364_OPTICA_544943 crossref_primary_10_3390_jimaging11020059 crossref_primary_10_1091_mbc_E22_09_0448 crossref_primary_10_1242_jcs_258986 crossref_primary_10_1038_s41467_023_37123_6 crossref_primary_10_1038_s42003_025_07684_x crossref_primary_10_1002_jbio_202400489 crossref_primary_10_1080_17452759_2024_2325572 crossref_primary_10_1186_s43593_024_00073_7 crossref_primary_10_1016_j_bspc_2022_104428 crossref_primary_10_1186_s43074_024_00121_y crossref_primary_10_1364_OL_503238 crossref_primary_10_1016_j_optlaseng_2023_107913 crossref_primary_10_1002_adem_202402559 crossref_primary_10_1038_s41556_023_01154_4 crossref_primary_10_1038_s42256_023_00704_7 crossref_primary_10_1016_j_trac_2025_118227 crossref_primary_10_1002_adpr_202300308 crossref_primary_10_1038_s44172_024_00205_4 crossref_primary_10_1016_j_addr_2025_115520 crossref_primary_10_1038_s43588_023_00568_2 crossref_primary_10_1038_s41377_024_01710_z crossref_primary_10_1039_D2LC00813K crossref_primary_10_1038_s41377_022_00975_6 crossref_primary_10_1016_j_ceb_2023_102271 crossref_primary_10_1364_OE_537581 crossref_primary_10_1364_OPTICA_448287 crossref_primary_10_1038_s41522_022_00362_4 crossref_primary_10_1016_j_compmedimag_2025_102492 crossref_primary_10_1093_bib_bbad329 crossref_primary_10_1111_jmi_13362 crossref_primary_10_1242_jcs_261545 crossref_primary_10_1038_s44222_024_00163_8 crossref_primary_10_1038_s41592_022_01589_x crossref_primary_10_1002_VIW_20230087 crossref_primary_10_3389_fphy_2022_965095 crossref_primary_10_1364_OE_504606 crossref_primary_10_1364_OE_546724 crossref_primary_10_1038_s41592_022_01395_5 crossref_primary_10_1038_s42003_023_05468_9 crossref_primary_10_1186_s13059_022_02824_6 crossref_primary_10_3389_fphy_2022_1083558 crossref_primary_10_1146_annurev_cellbio_111822_114733 crossref_primary_10_3390_app14146266 crossref_primary_10_1007_s12268_022_1850_2 crossref_primary_10_1038_s41587_025_02553_8 crossref_primary_10_1016_j_displa_2025_102968 crossref_primary_10_1016_j_biocel_2021_106077 crossref_primary_10_1126_sciadv_adg9245 crossref_primary_10_21769_BioProtoc_5072 crossref_primary_10_1109_JSTQE_2023_3279341 crossref_primary_10_1038_s41587_022_01450_8 crossref_primary_10_1038_s41592_022_01652_7 crossref_primary_10_1364_PRJ_469231 crossref_primary_10_1038_s43586_024_00335_1 crossref_primary_10_1186_s12859_024_05894_4 crossref_primary_10_1002_smsc_202400385 crossref_primary_10_1038_s41467_022_32886_w crossref_primary_10_1117_1_JMI_10_6_064004 crossref_primary_10_1155_2022_7733860 crossref_primary_10_1007_s00418_022_02147_4 crossref_primary_10_1038_s41467_023_38452_2 crossref_primary_10_1038_s42003_023_05636_x crossref_primary_10_1016_j_matchar_2025_114725 crossref_primary_10_1364_BOE_527919 crossref_primary_10_1038_s41467_025_56078_4 crossref_primary_10_1038_s41592_025_02595_5 crossref_primary_10_1038_s41592_024_02327_1 crossref_primary_10_1021_jacs_4c09831 crossref_primary_10_1038_s41587_022_01651_1 crossref_primary_10_1016_j_pacs_2022_100429 crossref_primary_10_3788_AOS221657 crossref_primary_10_1364_OE_539117 crossref_primary_10_1038_s41377_022_00768_x crossref_primary_10_1038_s41592_024_02244_3 crossref_primary_10_1002_lpor_202200029 crossref_primary_10_7498_aps_72_20230912 crossref_primary_10_1126_sciadv_adu1153 crossref_primary_10_1109_ACCESS_2023_3287854 crossref_primary_10_3390_s24196248 crossref_primary_10_1021_acs_analchem_4c07047 crossref_primary_10_1038_s43856_024_00483_1 crossref_primary_10_1038_s41467_024_55267_x crossref_primary_10_1038_s41598_024_68918_2 crossref_primary_10_1364_OE_512285 crossref_primary_10_1038_s42256_023_00689_3 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_1093_gigascience_giad120 crossref_primary_10_1038_s41467_024_44864_5 crossref_primary_10_1038_s41377_023_01230_2 crossref_primary_10_1109_TGRS_2024_3401843 crossref_primary_10_1117_1_JBO_28_12_126006 crossref_primary_10_1364_OL_491899 crossref_primary_10_1038_s41467_024_48575_9 crossref_primary_10_1016_j_tcb_2023_10_010 crossref_primary_10_1038_s42003_024_07080_x crossref_primary_10_1038_s41580_024_00702_6 crossref_primary_10_1038_s41592_024_02400_9 crossref_primary_10_1063_5_0244272 crossref_primary_10_1038_s41586_021_04110_0 crossref_primary_10_1186_s43074_023_00117_0 crossref_primary_10_1109_TMI_2022_3231428 crossref_primary_10_1364_BOE_474082 crossref_primary_10_3389_fonc_2024_1435204 crossref_primary_10_1038_s42003_023_05054_z crossref_primary_10_1364_OL_458514 crossref_primary_10_1364_BOE_537589 |
Cites_doi | 10.1038/s41592-018-0238-1 10.1016/S1074-7613(01)00112-1 10.1083/jcb.201710087 10.1126/science.aab3500 10.1145/3422622 10.1038/nature14539 10.1038/s41592-018-0211-z 10.1038/s41592-018-0239-0 10.1126/science.1260088 10.1093/bioinformatics/bts543 10.1109/TPAMI.2019.2913372 10.1038/s41592-020-01048-5 10.1109/TCI.2016.2644865 10.1083/jcb.201301004 10.1016/j.cbpa.2014.04.008 10.1038/s41592-018-0216-7 10.1038/nmeth.4344 10.1038/nmeth.2687 10.1038/nmeth.3402 10.1038/ncomms9497 10.1038/s41592-019-0515-7 10.1038/nbt.4106 10.1038/s41592-021-01080-z 10.1038/s41467-020-15784-x 10.1529/biophysj.107.120345 10.1038/ncb1814 10.1109/CVPR.2017.243 10.1007/978-3-030-11021-5_21 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-11021-5_5 10.1007/978-1-4614-7657-3 10.1109/CVPR.2016.90 10.1007/978-3-030-01234-2_18 10.1109/CVPR.2017.19 |
ContentType | Journal Article |
Copyright | This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021 COPYRIGHT 2021 Nature Publishing Group This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021. |
Copyright_xml | – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 |
DOI | 10.1038/s41592-021-01155-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 687 |
ExternalDocumentID | A664372013 34059829 10_1038_s41592_021_01155_x |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: The Office of Data Science Strategy at NIH – fundername: National Institute of General Medical Sciences – fundername: NIH R01 GM131054 and NSF PHY 1607645 grants – fundername: NIGMS NIH HHS grantid: R01 GM131054 – fundername: NIGMS NIH HHS grantid: U44 GM136091 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
ID | FETCH-LOGICAL-c442t-9df7640478e665097616fb916885f4370ff6df3a88ffd0cbae1e46ebe37481d53 |
IEDL.DBID | 7X7 |
ISSN | 1548-7091 1548-7105 |
IngestDate | Thu Sep 04 18:18:59 EDT 2025 Fri Jul 25 09:01:44 EDT 2025 Tue Jun 17 21:44:23 EDT 2025 Tue Jun 10 20:47:30 EDT 2025 Mon Jul 21 06:05:47 EDT 2025 Thu Apr 24 22:50:48 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-9df7640478e665097616fb916885f4370ff6df3a88ffd0cbae1e46ebe37481d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2093-8771 0000-0002-5926-3740 0000-0002-7666-4511 0000-0002-4426-3035 |
PMID | 34059829 |
PQID | 2537379941 |
PQPubID | 28015 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2535833715 proquest_journals_2537379941 gale_infotracmisc_A664372013 gale_infotracacademiconefile_A664372013 pubmed_primary_34059829 crossref_primary_10_1038_s41592_021_01155_x crossref_citationtrail_10_1038_s41592_021_01155_x springer_journals_10_1038_s41592_021_01155_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Galland (CR2) 2015; 12 Descloux, Grußmayer, Radenovic (CR24) 2019; 16 Fang (CR14) 2021; 18 Fadero (CR23) 2018; 217 Pietzch, Preibisch, Tomancak, Saalfeld (CR40) 2012; 28 York (CR3) 2013; 10 LeCun, Bengio, Hinton (CR8) 2015; 521 CR17 Yi (CR29) 2013; 202 CR39 CR16 CR38 CR37 CR36 Laissue, Alghamdi, Tomancak, Reynaud (CR7) 2017; 14 CR35 CR34 CR33 CR10 CR30 Gustafsson (CR1) 2008; 94 Hu, Shen, Albanie, Sun, Wu (CR19) 2020; 42 Zhao, Gallo, Frosio, Kautz (CR32) 2017; 3 Lukinavičius (CR25) 2015; 6 Chen, Tillberg, Boyden (CR18) 2015; 347 Ouyang, Aristov, Lelek, Hao, Zimmer (CR13) 2018; 36 Li (CR6) 2015; 349 Goodfellow (CR11) 2020; 63 Gambarotto (CR26) 2019; 16 Weigert (CR9) 2018; 15 CR22 Winter, Shroff (CR5) 2014; 20 CR21 CR20 Qiao (CR31) 2021; 18 Miller, Bement (CR27) 2009; 11 Bunnell, Kapoor, Trible, Zhang, Samelson (CR28) 2001; 14 Jin (CR15) 2020; 11 Wu, Shroff (CR4) 2018; 15 Wang (CR12) 2019; 16 Y Wu (1155_CR4) 2018; 15 D Gambarotto (1155_CR26) 2019; 16 1155_CR30 1155_CR10 1155_CR33 1155_CR34 M Weigert (1155_CR9) 2018; 15 J Yi (1155_CR29) 2013; 202 J Hu (1155_CR19) 2020; 42 AG York (1155_CR3) 2013; 10 Y LeCun (1155_CR8) 2015; 521 L Jin (1155_CR15) 2020; 11 1155_CR35 1155_CR36 1155_CR37 1155_CR16 1155_CR38 1155_CR17 SC Bunnell (1155_CR28) 2001; 14 1155_CR39 R Galland (1155_CR2) 2015; 12 G Lukinavičius (1155_CR25) 2015; 6 AL Miller (1155_CR27) 2009; 11 W Ouyang (1155_CR13) 2018; 36 PP Laissue (1155_CR7) 2017; 14 1155_CR20 1155_CR21 1155_CR22 T Pietzch (1155_CR40) 2012; 28 H Wang (1155_CR12) 2019; 16 PW Winter (1155_CR5) 2014; 20 A Descloux (1155_CR24) 2019; 16 H Zhao (1155_CR32) 2017; 3 L Fang (1155_CR14) 2021; 18 I Goodfellow (1155_CR11) 2020; 63 C Qiao (1155_CR31) 2021; 18 TC Fadero (1155_CR23) 2018; 217 MGL Gustafsson (1155_CR1) 2008; 94 D Li (1155_CR6) 2015; 349 F Chen (1155_CR18) 2015; 347 |
References_xml | – volume: 16 start-page: 71 year: 2019 end-page: 74 ident: CR26 article-title: Imaging cellular ultrastructures using expansion microscopy (U-ExM) publication-title: Nat. Methods doi: 10.1038/s41592-018-0238-1 – volume: 14 start-page: 315 year: 2001 end-page: 329 ident: CR28 article-title: Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT publication-title: Immunity doi: 10.1016/S1074-7613(01)00112-1 – ident: CR22 – volume: 217 start-page: 1869 year: 2018 end-page: 1882 ident: CR23 article-title: LITE microscopy: tilted light-sheet excitation of model organisms offers high resolution and low photobleaching publication-title: J. Cell Biol. doi: 10.1083/jcb.201710087 – volume: 349 start-page: aab3500 year: 2015 ident: CR6 article-title: Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics publication-title: Science doi: 10.1126/science.aab3500 – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: CR11 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR8 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 15 start-page: 1011 year: 2018 end-page: 1019 ident: CR4 article-title: Faster, sharper, and deeper: structured illumination microscopy for biological imaging publication-title: Nat. Methods doi: 10.1038/s41592-018-0211-z – ident: CR39 – volume: 16 start-page: 103 year: 2019 end-page: 110 ident: CR12 article-title: Deep learning enables cross-modality super-resolution in fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0239-0 – ident: CR16 – volume: 347 start-page: 543 year: 2015 end-page: 548 ident: CR18 article-title: Expansion microscopy publication-title: Science doi: 10.1126/science.1260088 – ident: CR37 – volume: 28 start-page: 3009 year: 2012 end-page: 3011 ident: CR40 article-title: ImgLib2-generic image processing in Java publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts543 – volume: 42 start-page: 2011 year: 2020 end-page: 2023 ident: CR19 article-title: Squeeze-and-excitation networks publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.2019.2913372 – ident: CR30 – ident: CR10 – volume: 18 start-page: 194 year: 2021 end-page: 202 ident: CR31 article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy publication-title: Nat. Methods doi: 10.1038/s41592-020-01048-5 – ident: CR33 – volume: 3 start-page: 47 year: 2017 end-page: 57 ident: CR32 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2016.2644865 – ident: CR35 – volume: 202 start-page: 779 year: 2013 end-page: 792 ident: CR29 article-title: Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage publication-title: J. Cell Biol. doi: 10.1083/jcb.201301004 – volume: 20 start-page: 46 year: 2014 end-page: 53 ident: CR5 article-title: Faster fluorescence microscopy: advances in high speed biological imaging publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.04.008 – volume: 15 start-page: 1090 year: 2018 end-page: 1097 ident: CR9 article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy publication-title: Nat. Methods doi: 10.1038/s41592-018-0216-7 – ident: CR21 – volume: 14 start-page: 657 year: 2017 end-page: 661 ident: CR7 article-title: Assessing phototoxicity in live fluorescence imaging publication-title: Nat. Methods doi: 10.1038/nmeth.4344 – volume: 10 start-page: 1122 year: 2013 end-page: 1126 ident: CR3 article-title: Instant super-resolution imaging in live cells and embryos via analog image processing publication-title: Nat. Methods doi: 10.1038/nmeth.2687 – volume: 12 start-page: 641 year: 2015 end-page: 644 ident: CR2 article-title: 3D high- and super-resolution imaging using single-objective SPIM publication-title: Nat. Methods doi: 10.1038/nmeth.3402 – ident: CR38 – volume: 6 year: 2015 ident: CR25 article-title: SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy publication-title: Nat. Commun. doi: 10.1038/ncomms9497 – ident: CR17 – volume: 16 start-page: 918 year: 2019 end-page: 924 ident: CR24 article-title: Parameter-free image resolution estimation based on decorrelation analysis publication-title: Nat. Methods doi: 10.1038/s41592-019-0515-7 – volume: 36 start-page: 460 year: 2018 end-page: 468 ident: CR13 article-title: Deep learning massively accelerates super-resolution localization microscopy publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4106 – volume: 18 start-page: 406 year: 2021 end-page: 416 ident: CR14 article-title: Deep learning-based point-scanning super-resolution imaging publication-title: Nat. Methods doi: 10.1038/s41592-021-01080-z – volume: 11 year: 2020 ident: CR15 article-title: Deep learning enables structured illumination microscopy with low light levels and enhanced speed publication-title: Nat. Commun. doi: 10.1038/s41467-020-15784-x – ident: CR34 – ident: CR36 – volume: 94 start-page: 4957 year: 2008 end-page: 4970 ident: CR1 article-title: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination publication-title: Biophys. J. doi: 10.1529/biophysj.107.120345 – volume: 11 start-page: 71 year: 2009 end-page: 77 ident: CR27 article-title: Regulation of cytokinesis by Rho GTPase flux publication-title: Nat. Cell Biol. doi: 10.1038/ncb1814 – ident: CR20 – volume: 20 start-page: 46 year: 2014 ident: 1155_CR5 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.04.008 – volume: 16 start-page: 71 year: 2019 ident: 1155_CR26 publication-title: Nat. Methods doi: 10.1038/s41592-018-0238-1 – volume: 16 start-page: 918 year: 2019 ident: 1155_CR24 publication-title: Nat. Methods doi: 10.1038/s41592-019-0515-7 – volume: 18 start-page: 194 year: 2021 ident: 1155_CR31 publication-title: Nat. Methods doi: 10.1038/s41592-020-01048-5 – volume: 18 start-page: 406 year: 2021 ident: 1155_CR14 publication-title: Nat. Methods doi: 10.1038/s41592-021-01080-z – ident: 1155_CR36 doi: 10.1109/CVPR.2017.243 – volume: 347 start-page: 543 year: 2015 ident: 1155_CR18 publication-title: Science doi: 10.1126/science.1260088 – volume: 12 start-page: 641 year: 2015 ident: 1155_CR2 publication-title: Nat. Methods doi: 10.1038/nmeth.3402 – volume: 11 start-page: 71 year: 2009 ident: 1155_CR27 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1814 – ident: 1155_CR22 doi: 10.1007/978-3-030-11021-5_21 – volume: 521 start-page: 436 year: 2015 ident: 1155_CR8 publication-title: Nature doi: 10.1038/nature14539 – volume: 349 start-page: aab3500 year: 2015 ident: 1155_CR6 publication-title: Science doi: 10.1126/science.aab3500 – ident: 1155_CR37 – volume: 15 start-page: 1011 year: 2018 ident: 1155_CR4 publication-title: Nat. Methods doi: 10.1038/s41592-018-0211-z – ident: 1155_CR10 doi: 10.1007/978-3-319-24574-4_28 – ident: 1155_CR16 – ident: 1155_CR33 – volume: 42 start-page: 2011 year: 2020 ident: 1155_CR19 publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/TPAMI.2019.2913372 – volume: 6 year: 2015 ident: 1155_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms9497 – volume: 16 start-page: 103 year: 2019 ident: 1155_CR12 publication-title: Nat. Methods doi: 10.1038/s41592-018-0239-0 – ident: 1155_CR21 doi: 10.1007/978-3-030-11021-5_5 – volume: 10 start-page: 1122 year: 2013 ident: 1155_CR3 publication-title: Nat. Methods doi: 10.1038/nmeth.2687 – volume: 14 start-page: 315 year: 2001 ident: 1155_CR28 publication-title: Immunity doi: 10.1016/S1074-7613(01)00112-1 – ident: 1155_CR39 doi: 10.1007/978-1-4614-7657-3 – volume: 11 year: 2020 ident: 1155_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15784-x – volume: 15 start-page: 1090 year: 2018 ident: 1155_CR9 publication-title: Nat. Methods doi: 10.1038/s41592-018-0216-7 – ident: 1155_CR30 – volume: 202 start-page: 779 year: 2013 ident: 1155_CR29 publication-title: J. Cell Biol. doi: 10.1083/jcb.201301004 – ident: 1155_CR35 doi: 10.1109/CVPR.2016.90 – volume: 28 start-page: 3009 year: 2012 ident: 1155_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts543 – ident: 1155_CR17 doi: 10.1007/978-3-030-01234-2_18 – volume: 14 start-page: 657 year: 2017 ident: 1155_CR7 publication-title: Nat. Methods doi: 10.1038/nmeth.4344 – volume: 36 start-page: 460 year: 2018 ident: 1155_CR13 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4106 – ident: 1155_CR38 – volume: 217 start-page: 1869 year: 2018 ident: 1155_CR23 publication-title: J. Cell Biol. doi: 10.1083/jcb.201710087 – ident: 1155_CR34 – volume: 94 start-page: 4957 year: 2008 ident: 1155_CR1 publication-title: Biophys. J. doi: 10.1529/biophysj.107.120345 – ident: 1155_CR20 doi: 10.1109/CVPR.2017.19 – volume: 3 start-page: 47 year: 2017 ident: 1155_CR32 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2016.2644865 – volume: 63 start-page: 139 year: 2020 ident: 1155_CR11 publication-title: Commun. ACM doi: 10.1145/3422622 |
SSID | ssj0033425 |
Score | 2.666282 |
Snippet | We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 678 |
SubjectTerms | 631/114/1305 631/1647/245/2225 Algorithms Benchmarks Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Confocal microscopy Deep Learning Depletion Fluorescence Fluorescence microscopy Image enhancement Image Processing, Computer-Assisted Image resolution Image restoration Life Sciences Methods Microscopes Microscopy Microscopy, Fluorescence - methods Neural networks Noise reduction Photobleaching Proteomics Spatial discrimination Spatial resolution Stimulated emission |
Title | Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes |
URI | https://link.springer.com/article/10.1038/s41592-021-01155-x https://www.ncbi.nlm.nih.gov/pubmed/34059829 https://www.proquest.com/docview/2537379941 https://www.proquest.com/docview/2535833715 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFexrpPrx9oMNjDZmpZsiU_jaQ0K4OFMVrIm7BliRZSu6sTaP_73slO2hTWl4Rg2cj5ne5OurvfAXxBnVclVSVitH1FLG2t4kpr_FlrJ2Xivc-owPn3ND85k79m2Ww4cOuGtMqVTgyKum4tnZEfpplQQhWF5D-u_sXUNYqiq0MLjeewzdETodYNarbecAkhQ9NV8spjhYZxKJpJhD7s0HBR3mVKm2m0qfHNhmF6rJ4f2KdHAdNghyav4dXgQLJRj_gOPHPNG3jRt5S8fQvtKYLj4ppI-3vCDYYb6lBxxajIt3FzRpSaIcmRNX0SeMdQ-7QXnWNlU7PunGIyDfPzZXsd2J6sY5eUuEclLLfs4hJ1EOvVWvcOzibHp0cn8dBUIbZSpgsEwatcEiePy4k9T-U89xU6iVpnXgqF8OS1F6XW3teJrUrHncwRauKp4XUm3sNW0zbuIzAurfIeHT50IyRqjtJpr7Mk8bawvvI8Ar76R40dGMep8cXchMi30KZHwSAKJqBgbiL4tr7nqufbeHL0VwLK0GLEJ9tyqCnA-RGtlRnlIS6Jbm4EexsjcRHZzcsrqM2wiDtzL3IRfF5fpjspMa1x7TKMobo1xbMIPvQisp63QGe40GkRwfeVzNw__P8v9enpuezCyzSILZ0E7cHW4nrp9tExWlQHQfrxU09-HsD2aDIeT_F7fDz98_cOxXkM4Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-QI0ZfjPhZRVwTjQ_a0Ha37faBEFDIIXAx5kh4W9vtbiQ5WqR3kfvn_Nuc2baHRyJvPDbdNtPO7HzszPwG4B3qvCIoCu6j7ct8ocvUL6TEy1IaIQJrbUwNzsejZHgivp7Gpyvwp--FobLKXic6RV3Wms7IN6OYpzzNMhFuX_zyaWoUZVf7ERp5N1qh3HIQY11jx6GZ_8YQrtk6-IL8fh9F-3vjz0O_mzLgayGiKVJl00QQSI1JCE4O4_rEFug1SRlbwVOkNyktz6W0tgx0kZvQiAS_nYBbwpKmRqAJWBV0gDKA1d290bfvvS3gXLixrxQX-Cma5q5tJ-Bys0HTSZWfEYXzSLV_tWQabxqIfyzkjZSts4T7j-Bh58KynVbm1mDFVI_hXjvUcv4E6jGKh_FLGhvQQn4wDOldzxejNuPKTBiBeroyS1a1ZegNQ_1XnzWG5VXJmp-UFaqYnczqS4c3pQ07p9JBaqKZs7Nz1IKsVazNUzi5kx_-DAZVXZkXwEKhU2vR5URHRqDuyo20Mg4CqzNtCxt6EPZ_VOkO85xGb0yUy71zqVouKOSCclxQVx58XDxz0SJ-3Lr6AzFKkTrAN-u862pA-ghYS-0kLjOKjrYH60srcRvr5ds9q1WnRhp1LfQevF3cpiepNK4y9cytoc65NIw9eN6KyIJuju54JqPMg0-9zFy__P8f9fJ2Wt7A_eH4-EgdHYwOX8GDyIkwnUutw2B6OTOv0U2bFhvdXmDw4663318z7Uwd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8QiMYX47dV1DXR-KDNtd1tu30gBoULiF6IgYS3td3uRpKjRXpE7l_0r3Jmuz08Ennjsem2me7Mzkdn5jcAb1DnVVFV8RBtXxEKXedhJSVe1tIIEVlrU2pw_jbJdg7Fl6P0aAX-DL0wVFY56ESnqOtW0z_yUZLynOdFIeKR9WUR-1vjj6e_QpogRZnWYZxG6ccs1BsObsw3eeyZ-W8M57qN3S3k_dskGW8ffN4J_cSBUAuRzJBCm2eCAGtMRtByGONntkIPSsrUCp4j7VlteSmltXWkq9LERmS4DwTiEtc0QQLNwVqOVh8DwbVP25P974Nd4Fy4EbAUI4Q5mmnfwhNxOerQjFIVaEKhPVIdXiyZyavG4h9reSV966zi-B7c9e4s2-zl7z6smOYB3OoHXM4fQnuAomLCmkYI9PAfDMN71__FqOW4MVNGAJ-u5JI1fUl6x1AXtsedYWVTs-4nZYgaZqfn7ZnDntKGnVAZITXUzNnxCWpE1ivZ7hEc3siGP4bVpm3MU2Cx0Lm16H6iUyNQj5VGWplGkdWFtpWNA4iHHVXa45_TGI6pcnl4LlXPBYVcUI4L6iKA94tnTnv0j2tXvyNGKVIN-GZd-g4HpI9AttRm5rKk6HQHsL60Eo-0Xr49sFp5ldKpywMQwOvFbXqSyuQa0567NdRFl8dpAE96EVnQzdE1L2RSBPBhkJnLl___o55dT8sruI3HUH3dnew9hzuJk2D6RbUOq7Ozc_MCPbZZ9dIfBQY_bvr0_QUMt1Bh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+residual+channel+attention+networks+denoise+and+sharpen+fluorescence+microscopy+image+volumes&rft.jtitle=Nature+methods&rft.au=Chen%2C+Jiji&rft.au=Sasaki%2C+Hideki&rft.au=Lai%2C+Hoyin&rft.au=Su%2C+Yijun&rft.date=2021-06-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=18&rft.issue=6&rft.spage=678&rft.epage=687&rft_id=info:doi/10.1038%2Fs41592-021-01155-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41592_021_01155_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |