Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes

We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-a...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 18; no. 6; pp. 678 - 687
Main Authors Chen, Jiji, Sasaki, Hideki, Lai, Hoyin, Su, Yijun, Liu, Jiamin, Wu, Yicong, Zhovmer, Alexander, Combs, Christian A., Rey-Suarez, Ivan, Chang, Hung-Yu, Huang, Chi Chou, Li, Xuesong, Guo, Min, Nizambad, Srineil, Upadhyaya, Arpita, Lee, Shih-Jong J., Lucas, Luciano A. G., Shroff, Hari
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.06.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/s41592-021-01155-x

Cover

Abstract We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. Three-dimensional residual channel attention networks (RCAN) enable improved image denoising and resolution enhancement on volumetric time-lapse fluorescence microscopy data, allowing longitudinal super-resolution imaging of living samples.
AbstractList We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. Three-dimensional residual channel attention networks (RCAN) enable improved image denoising and resolution enhancement on volumetric time-lapse fluorescence microscopy data, allowing longitudinal super-resolution imaging of living samples.
We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.
We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance. Three-dimensional residual channel attention networks (RCAN) enable improved image denoising and resolution enhancement on volumetric time-lapse fluorescence microscopy data, allowing longitudinal super-resolution imaging of living samples.
We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence microscopy data. First we modify RCAN to handle image volumes, showing that our network enables denoising competitive with three other state-of-the-art neural networks. We use RCAN to restore noisy four-dimensional super-resolution data, enabling image capture of over tens of thousands of images (thousands of volumes) without apparent photobleaching. Second, using simulations we show that RCAN enables resolution enhancement equivalent to, or better than, other networks. Third, we exploit RCAN for denoising and resolution improvement in confocal microscopy, enabling ~2.5-fold lateral resolution enhancement using stimulated emission depletion microscopy ground truth. Fourth, we develop methods to improve spatial resolution in structured illumination microscopy using expansion microscopy data as ground truth, achieving improvements of ~1.9-fold laterally and ~3.6-fold axially. Finally, we characterize the limits of denoising and resolution enhancement, suggesting practical benchmarks for evaluation and further enhancement of network performance.
Audience Academic
Author Lai, Hoyin
Rey-Suarez, Ivan
Su, Yijun
Chen, Jiji
Zhovmer, Alexander
Combs, Christian A.
Wu, Yicong
Lee, Shih-Jong J.
Huang, Chi Chou
Chang, Hung-Yu
Guo, Min
Li, Xuesong
Nizambad, Srineil
Upadhyaya, Arpita
Shroff, Hari
Sasaki, Hideki
Lucas, Luciano A. G.
Liu, Jiamin
Author_xml – sequence: 1
  givenname: Jiji
  orcidid: 0000-0002-4426-3035
  surname: Chen
  fullname: Chen, Jiji
  email: jiji.chen@nih.gov
  organization: Advanced Imaging and Microscopy Resource, National Institutes of Health
– sequence: 2
  givenname: Hideki
  orcidid: 0000-0002-5926-3740
  surname: Sasaki
  fullname: Sasaki, Hideki
  email: hideki.sasaki@aivia-software.com
  organization: Leica Microsystems, Inc., SVision LLC
– sequence: 3
  givenname: Hoyin
  surname: Lai
  fullname: Lai, Hoyin
  organization: Leica Microsystems, Inc., SVision LLC
– sequence: 4
  givenname: Yijun
  surname: Su
  fullname: Su, Yijun
  organization: Advanced Imaging and Microscopy Resource, National Institutes of Health, Leica Microsystems, Inc., SVision LLC, Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
– sequence: 5
  givenname: Jiamin
  surname: Liu
  fullname: Liu, Jiamin
  organization: Advanced Imaging and Microscopy Resource, National Institutes of Health
– sequence: 6
  givenname: Yicong
  surname: Wu
  fullname: Wu, Yicong
  organization: Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
– sequence: 7
  givenname: Alexander
  surname: Zhovmer
  fullname: Zhovmer, Alexander
  organization: Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health
– sequence: 8
  givenname: Christian A.
  surname: Combs
  fullname: Combs, Christian A.
  organization: NHLBI Light Microscopy Facility, National Institutes of Health
– sequence: 9
  givenname: Ivan
  surname: Rey-Suarez
  fullname: Rey-Suarez, Ivan
  organization: Biophysics Program, University of Maryland, Institute for Physical Science and Technology, University of Maryland
– sequence: 10
  givenname: Hung-Yu
  orcidid: 0000-0002-7666-4511
  surname: Chang
  fullname: Chang, Hung-Yu
  organization: Leica Microsystems, Inc., SVision LLC
– sequence: 11
  givenname: Chi Chou
  surname: Huang
  fullname: Huang, Chi Chou
  organization: Leica Microsystems, Inc., SVision LLC
– sequence: 12
  givenname: Xuesong
  surname: Li
  fullname: Li, Xuesong
  organization: Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
– sequence: 13
  givenname: Min
  orcidid: 0000-0002-2093-8771
  surname: Guo
  fullname: Guo, Min
  organization: Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
– sequence: 14
  givenname: Srineil
  surname: Nizambad
  fullname: Nizambad, Srineil
  organization: Advanced Imaging and Microscopy Resource, National Institutes of Health
– sequence: 15
  givenname: Arpita
  surname: Upadhyaya
  fullname: Upadhyaya, Arpita
  organization: Biophysics Program, University of Maryland, Institute for Physical Science and Technology, University of Maryland, Department of Physics, University of Maryland
– sequence: 16
  givenname: Shih-Jong J.
  surname: Lee
  fullname: Lee, Shih-Jong J.
  organization: Leica Microsystems, Inc., SVision LLC
– sequence: 17
  givenname: Luciano A. G.
  surname: Lucas
  fullname: Lucas, Luciano A. G.
  organization: Leica Microsystems, Inc., SVision LLC
– sequence: 18
  givenname: Hari
  surname: Shroff
  fullname: Shroff, Hari
  organization: Advanced Imaging and Microscopy Resource, National Institutes of Health, Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34059829$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu3SAQhlGUqrn1BbqokLrpximYi_EyinqTInWTrBHHDOeQYjgFu0nevjgnaZSoilgwgu-fGf0zR2g_pggIvafklBKmPhdORd82pKUNoVSI5nYPHVLBVdNRIvYfY9LTA3RUyjUhjPFWvEUHjBPRq7Y_ROlykwEa60eIxadoAs5QvJ1rMGxMjBCwmSaIU_3EEaablH8VbCEmXwCbaHHZmLyFiF2YU9UOEAfAox9yKkPa3mE_mjXgPynMI5QT9MaZUODdw32Mrr5-uTz_3lz8_Pbj_OyiGThvp6a3rpOc8E6BlIL0naTSrXoqlRKOs444J61jRinnLBlWBihwCStgHVfUCnaMPu3ybnP6PUOZ9OhrayGYCGkuuhVMKMY6uqAfX6DXac7ViXuqY13fc_pErU0A7aNLUzbDklSfSVlbaglllTr9D1WPhepIHZ_z9f2Z4MND8Xk1gtXbXO3Kd_pxQhVod8DiZ8ng_iGU6GUN9G4NdF0Dfb8G-raK1AvR4CezjLC248PrUraTllonriE_ufGK6i_PfMc9
CitedBy_id crossref_primary_10_3390_ijms222111792
crossref_primary_10_1364_OPTICA_544943
crossref_primary_10_3390_jimaging11020059
crossref_primary_10_1091_mbc_E22_09_0448
crossref_primary_10_1242_jcs_258986
crossref_primary_10_1038_s41467_023_37123_6
crossref_primary_10_1038_s42003_025_07684_x
crossref_primary_10_1002_jbio_202400489
crossref_primary_10_1080_17452759_2024_2325572
crossref_primary_10_1186_s43593_024_00073_7
crossref_primary_10_1016_j_bspc_2022_104428
crossref_primary_10_1186_s43074_024_00121_y
crossref_primary_10_1364_OL_503238
crossref_primary_10_1016_j_optlaseng_2023_107913
crossref_primary_10_1002_adem_202402559
crossref_primary_10_1038_s41556_023_01154_4
crossref_primary_10_1038_s42256_023_00704_7
crossref_primary_10_1016_j_trac_2025_118227
crossref_primary_10_1002_adpr_202300308
crossref_primary_10_1038_s44172_024_00205_4
crossref_primary_10_1016_j_addr_2025_115520
crossref_primary_10_1038_s43588_023_00568_2
crossref_primary_10_1038_s41377_024_01710_z
crossref_primary_10_1039_D2LC00813K
crossref_primary_10_1038_s41377_022_00975_6
crossref_primary_10_1016_j_ceb_2023_102271
crossref_primary_10_1364_OE_537581
crossref_primary_10_1364_OPTICA_448287
crossref_primary_10_1038_s41522_022_00362_4
crossref_primary_10_1016_j_compmedimag_2025_102492
crossref_primary_10_1093_bib_bbad329
crossref_primary_10_1111_jmi_13362
crossref_primary_10_1242_jcs_261545
crossref_primary_10_1038_s44222_024_00163_8
crossref_primary_10_1038_s41592_022_01589_x
crossref_primary_10_1002_VIW_20230087
crossref_primary_10_3389_fphy_2022_965095
crossref_primary_10_1364_OE_504606
crossref_primary_10_1364_OE_546724
crossref_primary_10_1038_s41592_022_01395_5
crossref_primary_10_1038_s42003_023_05468_9
crossref_primary_10_1186_s13059_022_02824_6
crossref_primary_10_3389_fphy_2022_1083558
crossref_primary_10_1146_annurev_cellbio_111822_114733
crossref_primary_10_3390_app14146266
crossref_primary_10_1007_s12268_022_1850_2
crossref_primary_10_1038_s41587_025_02553_8
crossref_primary_10_1016_j_displa_2025_102968
crossref_primary_10_1016_j_biocel_2021_106077
crossref_primary_10_1126_sciadv_adg9245
crossref_primary_10_21769_BioProtoc_5072
crossref_primary_10_1109_JSTQE_2023_3279341
crossref_primary_10_1038_s41587_022_01450_8
crossref_primary_10_1038_s41592_022_01652_7
crossref_primary_10_1364_PRJ_469231
crossref_primary_10_1038_s43586_024_00335_1
crossref_primary_10_1186_s12859_024_05894_4
crossref_primary_10_1002_smsc_202400385
crossref_primary_10_1038_s41467_022_32886_w
crossref_primary_10_1117_1_JMI_10_6_064004
crossref_primary_10_1155_2022_7733860
crossref_primary_10_1007_s00418_022_02147_4
crossref_primary_10_1038_s41467_023_38452_2
crossref_primary_10_1038_s42003_023_05636_x
crossref_primary_10_1016_j_matchar_2025_114725
crossref_primary_10_1364_BOE_527919
crossref_primary_10_1038_s41467_025_56078_4
crossref_primary_10_1038_s41592_025_02595_5
crossref_primary_10_1038_s41592_024_02327_1
crossref_primary_10_1021_jacs_4c09831
crossref_primary_10_1038_s41587_022_01651_1
crossref_primary_10_1016_j_pacs_2022_100429
crossref_primary_10_3788_AOS221657
crossref_primary_10_1364_OE_539117
crossref_primary_10_1038_s41377_022_00768_x
crossref_primary_10_1038_s41592_024_02244_3
crossref_primary_10_1002_lpor_202200029
crossref_primary_10_7498_aps_72_20230912
crossref_primary_10_1126_sciadv_adu1153
crossref_primary_10_1109_ACCESS_2023_3287854
crossref_primary_10_3390_s24196248
crossref_primary_10_1021_acs_analchem_4c07047
crossref_primary_10_1038_s43856_024_00483_1
crossref_primary_10_1038_s41467_024_55267_x
crossref_primary_10_1038_s41598_024_68918_2
crossref_primary_10_1364_OE_512285
crossref_primary_10_1038_s42256_023_00689_3
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_1093_gigascience_giad120
crossref_primary_10_1038_s41467_024_44864_5
crossref_primary_10_1038_s41377_023_01230_2
crossref_primary_10_1109_TGRS_2024_3401843
crossref_primary_10_1117_1_JBO_28_12_126006
crossref_primary_10_1364_OL_491899
crossref_primary_10_1038_s41467_024_48575_9
crossref_primary_10_1016_j_tcb_2023_10_010
crossref_primary_10_1038_s42003_024_07080_x
crossref_primary_10_1038_s41580_024_00702_6
crossref_primary_10_1038_s41592_024_02400_9
crossref_primary_10_1063_5_0244272
crossref_primary_10_1038_s41586_021_04110_0
crossref_primary_10_1186_s43074_023_00117_0
crossref_primary_10_1109_TMI_2022_3231428
crossref_primary_10_1364_BOE_474082
crossref_primary_10_3389_fonc_2024_1435204
crossref_primary_10_1038_s42003_023_05054_z
crossref_primary_10_1364_OL_458514
crossref_primary_10_1364_BOE_537589
Cites_doi 10.1038/s41592-018-0238-1
10.1016/S1074-7613(01)00112-1
10.1083/jcb.201710087
10.1126/science.aab3500
10.1145/3422622
10.1038/nature14539
10.1038/s41592-018-0211-z
10.1038/s41592-018-0239-0
10.1126/science.1260088
10.1093/bioinformatics/bts543
10.1109/TPAMI.2019.2913372
10.1038/s41592-020-01048-5
10.1109/TCI.2016.2644865
10.1083/jcb.201301004
10.1016/j.cbpa.2014.04.008
10.1038/s41592-018-0216-7
10.1038/nmeth.4344
10.1038/nmeth.2687
10.1038/nmeth.3402
10.1038/ncomms9497
10.1038/s41592-019-0515-7
10.1038/nbt.4106
10.1038/s41592-021-01080-z
10.1038/s41467-020-15784-x
10.1529/biophysj.107.120345
10.1038/ncb1814
10.1109/CVPR.2017.243
10.1007/978-3-030-11021-5_21
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-11021-5_5
10.1007/978-1-4614-7657-3
10.1109/CVPR.2016.90
10.1007/978-3-030-01234-2_18
10.1109/CVPR.2017.19
ContentType Journal Article
Copyright This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021
COPYRIGHT 2021 Nature Publishing Group
This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.
Copyright_xml – notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
DOI 10.1038/s41592-021-01155-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


Agricultural Science Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 687
ExternalDocumentID A664372013
34059829
10_1038_s41592_021_01155_x
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: The Office of Data Science Strategy at NIH
– fundername: National Institute of General Medical Sciences
– fundername: NIH R01 GM131054 and NSF PHY 1607645 grants
– fundername: NIGMS NIH HHS
  grantid: R01 GM131054
– fundername: NIGMS NIH HHS
  grantid: U44 GM136091
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c442t-9df7640478e665097616fb916885f4370ff6df3a88ffd0cbae1e46ebe37481d53
IEDL.DBID 7X7
ISSN 1548-7091
1548-7105
IngestDate Thu Sep 04 18:18:59 EDT 2025
Fri Jul 25 09:01:44 EDT 2025
Tue Jun 17 21:44:23 EDT 2025
Tue Jun 10 20:47:30 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Thu Apr 24 22:50:48 EDT 2025
Tue Jul 01 00:44:35 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-9df7640478e665097616fb916885f4370ff6df3a88ffd0cbae1e46ebe37481d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2093-8771
0000-0002-5926-3740
0000-0002-7666-4511
0000-0002-4426-3035
PMID 34059829
PQID 2537379941
PQPubID 28015
PageCount 10
ParticipantIDs proquest_miscellaneous_2535833715
proquest_journals_2537379941
gale_infotracmisc_A664372013
gale_infotracacademiconefile_A664372013
pubmed_primary_34059829
crossref_primary_10_1038_s41592_021_01155_x
crossref_citationtrail_10_1038_s41592_021_01155_x
springer_journals_10_1038_s41592_021_01155_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Galland (CR2) 2015; 12
Descloux, Grußmayer, Radenovic (CR24) 2019; 16
Fang (CR14) 2021; 18
Fadero (CR23) 2018; 217
Pietzch, Preibisch, Tomancak, Saalfeld (CR40) 2012; 28
York (CR3) 2013; 10
LeCun, Bengio, Hinton (CR8) 2015; 521
CR17
Yi (CR29) 2013; 202
CR39
CR16
CR38
CR37
CR36
Laissue, Alghamdi, Tomancak, Reynaud (CR7) 2017; 14
CR35
CR34
CR33
CR10
CR30
Gustafsson (CR1) 2008; 94
Hu, Shen, Albanie, Sun, Wu (CR19) 2020; 42
Zhao, Gallo, Frosio, Kautz (CR32) 2017; 3
Lukinavičius (CR25) 2015; 6
Chen, Tillberg, Boyden (CR18) 2015; 347
Ouyang, Aristov, Lelek, Hao, Zimmer (CR13) 2018; 36
Li (CR6) 2015; 349
Goodfellow (CR11) 2020; 63
Gambarotto (CR26) 2019; 16
Weigert (CR9) 2018; 15
CR22
Winter, Shroff (CR5) 2014; 20
CR21
CR20
Qiao (CR31) 2021; 18
Miller, Bement (CR27) 2009; 11
Bunnell, Kapoor, Trible, Zhang, Samelson (CR28) 2001; 14
Jin (CR15) 2020; 11
Wu, Shroff (CR4) 2018; 15
Wang (CR12) 2019; 16
Y Wu (1155_CR4) 2018; 15
D Gambarotto (1155_CR26) 2019; 16
1155_CR30
1155_CR10
1155_CR33
1155_CR34
M Weigert (1155_CR9) 2018; 15
J Yi (1155_CR29) 2013; 202
J Hu (1155_CR19) 2020; 42
AG York (1155_CR3) 2013; 10
Y LeCun (1155_CR8) 2015; 521
L Jin (1155_CR15) 2020; 11
1155_CR35
1155_CR36
1155_CR37
1155_CR16
1155_CR38
1155_CR17
SC Bunnell (1155_CR28) 2001; 14
1155_CR39
R Galland (1155_CR2) 2015; 12
G Lukinavičius (1155_CR25) 2015; 6
AL Miller (1155_CR27) 2009; 11
W Ouyang (1155_CR13) 2018; 36
PP Laissue (1155_CR7) 2017; 14
1155_CR20
1155_CR21
1155_CR22
T Pietzch (1155_CR40) 2012; 28
H Wang (1155_CR12) 2019; 16
PW Winter (1155_CR5) 2014; 20
A Descloux (1155_CR24) 2019; 16
H Zhao (1155_CR32) 2017; 3
L Fang (1155_CR14) 2021; 18
I Goodfellow (1155_CR11) 2020; 63
C Qiao (1155_CR31) 2021; 18
TC Fadero (1155_CR23) 2018; 217
MGL Gustafsson (1155_CR1) 2008; 94
D Li (1155_CR6) 2015; 349
F Chen (1155_CR18) 2015; 347
References_xml – volume: 16
  start-page: 71
  year: 2019
  end-page: 74
  ident: CR26
  article-title: Imaging cellular ultrastructures using expansion microscopy (U-ExM)
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0238-1
– volume: 14
  start-page: 315
  year: 2001
  end-page: 329
  ident: CR28
  article-title: Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00112-1
– ident: CR22
– volume: 217
  start-page: 1869
  year: 2018
  end-page: 1882
  ident: CR23
  article-title: LITE microscopy: tilted light-sheet excitation of model organisms offers high resolution and low photobleaching
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201710087
– volume: 349
  start-page: aab3500
  year: 2015
  ident: CR6
  article-title: Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics
  publication-title: Science
  doi: 10.1126/science.aab3500
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: CR11
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 15
  start-page: 1011
  year: 2018
  end-page: 1019
  ident: CR4
  article-title: Faster, sharper, and deeper: structured illumination microscopy for biological imaging
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0211-z
– ident: CR39
– volume: 16
  start-page: 103
  year: 2019
  end-page: 110
  ident: CR12
  article-title: Deep learning enables cross-modality super-resolution in fluorescence microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0239-0
– ident: CR16
– volume: 347
  start-page: 543
  year: 2015
  end-page: 548
  ident: CR18
  article-title: Expansion microscopy
  publication-title: Science
  doi: 10.1126/science.1260088
– ident: CR37
– volume: 28
  start-page: 3009
  year: 2012
  end-page: 3011
  ident: CR40
  article-title: ImgLib2-generic image processing in Java
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts543
– volume: 42
  start-page: 2011
  year: 2020
  end-page: 2023
  ident: CR19
  article-title: Squeeze-and-excitation networks
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2019.2913372
– ident: CR30
– ident: CR10
– volume: 18
  start-page: 194
  year: 2021
  end-page: 202
  ident: CR31
  article-title: Evaluation and development of deep neural networks for image super-resolution in optical microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01048-5
– ident: CR33
– volume: 3
  start-page: 47
  year: 2017
  end-page: 57
  ident: CR32
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2644865
– ident: CR35
– volume: 202
  start-page: 779
  year: 2013
  end-page: 792
  ident: CR29
  article-title: Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201301004
– volume: 20
  start-page: 46
  year: 2014
  end-page: 53
  ident: CR5
  article-title: Faster fluorescence microscopy: advances in high speed biological imaging
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.04.008
– volume: 15
  start-page: 1090
  year: 2018
  end-page: 1097
  ident: CR9
  article-title: Content-aware image restoration: pushing the limits of fluorescence microscopy
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0216-7
– ident: CR21
– volume: 14
  start-page: 657
  year: 2017
  end-page: 661
  ident: CR7
  article-title: Assessing phototoxicity in live fluorescence imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4344
– volume: 10
  start-page: 1122
  year: 2013
  end-page: 1126
  ident: CR3
  article-title: Instant super-resolution imaging in live cells and embryos via analog image processing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2687
– volume: 12
  start-page: 641
  year: 2015
  end-page: 644
  ident: CR2
  article-title: 3D high- and super-resolution imaging using single-objective SPIM
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3402
– ident: CR38
– volume: 6
  year: 2015
  ident: CR25
  article-title: SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9497
– ident: CR17
– volume: 16
  start-page: 918
  year: 2019
  end-page: 924
  ident: CR24
  article-title: Parameter-free image resolution estimation based on decorrelation analysis
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0515-7
– volume: 36
  start-page: 460
  year: 2018
  end-page: 468
  ident: CR13
  article-title: Deep learning massively accelerates super-resolution localization microscopy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4106
– volume: 18
  start-page: 406
  year: 2021
  end-page: 416
  ident: CR14
  article-title: Deep learning-based point-scanning super-resolution imaging
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01080-z
– volume: 11
  year: 2020
  ident: CR15
  article-title: Deep learning enables structured illumination microscopy with low light levels and enhanced speed
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15784-x
– ident: CR34
– ident: CR36
– volume: 94
  start-page: 4957
  year: 2008
  end-page: 4970
  ident: CR1
  article-title: Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.120345
– volume: 11
  start-page: 71
  year: 2009
  end-page: 77
  ident: CR27
  article-title: Regulation of cytokinesis by Rho GTPase flux
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1814
– ident: CR20
– volume: 20
  start-page: 46
  year: 2014
  ident: 1155_CR5
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.04.008
– volume: 16
  start-page: 71
  year: 2019
  ident: 1155_CR26
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0238-1
– volume: 16
  start-page: 918
  year: 2019
  ident: 1155_CR24
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0515-7
– volume: 18
  start-page: 194
  year: 2021
  ident: 1155_CR31
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01048-5
– volume: 18
  start-page: 406
  year: 2021
  ident: 1155_CR14
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01080-z
– ident: 1155_CR36
  doi: 10.1109/CVPR.2017.243
– volume: 347
  start-page: 543
  year: 2015
  ident: 1155_CR18
  publication-title: Science
  doi: 10.1126/science.1260088
– volume: 12
  start-page: 641
  year: 2015
  ident: 1155_CR2
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3402
– volume: 11
  start-page: 71
  year: 2009
  ident: 1155_CR27
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1814
– ident: 1155_CR22
  doi: 10.1007/978-3-030-11021-5_21
– volume: 521
  start-page: 436
  year: 2015
  ident: 1155_CR8
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 349
  start-page: aab3500
  year: 2015
  ident: 1155_CR6
  publication-title: Science
  doi: 10.1126/science.aab3500
– ident: 1155_CR37
– volume: 15
  start-page: 1011
  year: 2018
  ident: 1155_CR4
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0211-z
– ident: 1155_CR10
  doi: 10.1007/978-3-319-24574-4_28
– ident: 1155_CR16
– ident: 1155_CR33
– volume: 42
  start-page: 2011
  year: 2020
  ident: 1155_CR19
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/TPAMI.2019.2913372
– volume: 6
  year: 2015
  ident: 1155_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9497
– volume: 16
  start-page: 103
  year: 2019
  ident: 1155_CR12
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0239-0
– ident: 1155_CR21
  doi: 10.1007/978-3-030-11021-5_5
– volume: 10
  start-page: 1122
  year: 2013
  ident: 1155_CR3
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2687
– volume: 14
  start-page: 315
  year: 2001
  ident: 1155_CR28
  publication-title: Immunity
  doi: 10.1016/S1074-7613(01)00112-1
– ident: 1155_CR39
  doi: 10.1007/978-1-4614-7657-3
– volume: 11
  year: 2020
  ident: 1155_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15784-x
– volume: 15
  start-page: 1090
  year: 2018
  ident: 1155_CR9
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0216-7
– ident: 1155_CR30
– volume: 202
  start-page: 779
  year: 2013
  ident: 1155_CR29
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201301004
– ident: 1155_CR35
  doi: 10.1109/CVPR.2016.90
– volume: 28
  start-page: 3009
  year: 2012
  ident: 1155_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts543
– ident: 1155_CR17
  doi: 10.1007/978-3-030-01234-2_18
– volume: 14
  start-page: 657
  year: 2017
  ident: 1155_CR7
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4344
– volume: 36
  start-page: 460
  year: 2018
  ident: 1155_CR13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4106
– ident: 1155_CR38
– volume: 217
  start-page: 1869
  year: 2018
  ident: 1155_CR23
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201710087
– ident: 1155_CR34
– volume: 94
  start-page: 4957
  year: 2008
  ident: 1155_CR1
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.120345
– ident: 1155_CR20
  doi: 10.1109/CVPR.2017.19
– volume: 3
  start-page: 47
  year: 2017
  ident: 1155_CR32
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2644865
– volume: 63
  start-page: 139
  year: 2020
  ident: 1155_CR11
  publication-title: Commun. ACM
  doi: 10.1145/3422622
SSID ssj0033425
Score 2.666282
Snippet We demonstrate residual channel attention networks (RCAN) for the restoration and enhancement of volumetric time-lapse (four-dimensional) fluorescence...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 678
SubjectTerms 631/114/1305
631/1647/245/2225
Algorithms
Benchmarks
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Confocal microscopy
Deep Learning
Depletion
Fluorescence
Fluorescence microscopy
Image enhancement
Image Processing, Computer-Assisted
Image resolution
Image restoration
Life Sciences
Methods
Microscopes
Microscopy
Microscopy, Fluorescence - methods
Neural networks
Noise reduction
Photobleaching
Proteomics
Spatial discrimination
Spatial resolution
Stimulated emission
Title Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes
URI https://link.springer.com/article/10.1038/s41592-021-01155-x
https://www.ncbi.nlm.nih.gov/pubmed/34059829
https://www.proquest.com/docview/2537379941
https://www.proquest.com/docview/2535833715
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFexrpPrx9oMNjDZmpZsiU_jaQ0K4OFMVrIm7BliRZSu6sTaP_73slO2hTWl4Rg2cj5ne5OurvfAXxBnVclVSVitH1FLG2t4kpr_FlrJ2Xivc-owPn3ND85k79m2Ww4cOuGtMqVTgyKum4tnZEfpplQQhWF5D-u_sXUNYqiq0MLjeewzdETodYNarbecAkhQ9NV8spjhYZxKJpJhD7s0HBR3mVKm2m0qfHNhmF6rJ4f2KdHAdNghyav4dXgQLJRj_gOPHPNG3jRt5S8fQvtKYLj4ppI-3vCDYYb6lBxxajIt3FzRpSaIcmRNX0SeMdQ-7QXnWNlU7PunGIyDfPzZXsd2J6sY5eUuEclLLfs4hJ1EOvVWvcOzibHp0cn8dBUIbZSpgsEwatcEiePy4k9T-U89xU6iVpnXgqF8OS1F6XW3teJrUrHncwRauKp4XUm3sNW0zbuIzAurfIeHT50IyRqjtJpr7Mk8bawvvI8Ar76R40dGMep8cXchMi30KZHwSAKJqBgbiL4tr7nqufbeHL0VwLK0GLEJ9tyqCnA-RGtlRnlIS6Jbm4EexsjcRHZzcsrqM2wiDtzL3IRfF5fpjspMa1x7TKMobo1xbMIPvQisp63QGe40GkRwfeVzNw__P8v9enpuezCyzSILZ0E7cHW4nrp9tExWlQHQfrxU09-HsD2aDIeT_F7fDz98_cOxXkM4Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-QI0ZfjPhZRVwTjQ_a0Ha37faBEFDIIXAx5kh4W9vtbiQ5WqR3kfvn_Nuc2baHRyJvPDbdNtPO7HzszPwG4B3qvCIoCu6j7ct8ocvUL6TEy1IaIQJrbUwNzsejZHgivp7Gpyvwp--FobLKXic6RV3Wms7IN6OYpzzNMhFuX_zyaWoUZVf7ERp5N1qh3HIQY11jx6GZ_8YQrtk6-IL8fh9F-3vjz0O_mzLgayGiKVJl00QQSI1JCE4O4_rEFug1SRlbwVOkNyktz6W0tgx0kZvQiAS_nYBbwpKmRqAJWBV0gDKA1d290bfvvS3gXLixrxQX-Cma5q5tJ-Bys0HTSZWfEYXzSLV_tWQabxqIfyzkjZSts4T7j-Bh58KynVbm1mDFVI_hXjvUcv4E6jGKh_FLGhvQQn4wDOldzxejNuPKTBiBeroyS1a1ZegNQ_1XnzWG5VXJmp-UFaqYnczqS4c3pQ07p9JBaqKZs7Nz1IKsVazNUzi5kx_-DAZVXZkXwEKhU2vR5URHRqDuyo20Mg4CqzNtCxt6EPZ_VOkO85xGb0yUy71zqVouKOSCclxQVx58XDxz0SJ-3Lr6AzFKkTrAN-u862pA-ghYS-0kLjOKjrYH60srcRvr5ds9q1WnRhp1LfQevF3cpiepNK4y9cytoc65NIw9eN6KyIJuju54JqPMg0-9zFy__P8f9fJ2Wt7A_eH4-EgdHYwOX8GDyIkwnUutw2B6OTOv0U2bFhvdXmDw4663318z7Uwd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8QiMYX47dV1DXR-KDNtd1tu30gBoULiF6IgYS3td3uRpKjRXpE7l_0r3Jmuz08Ennjsem2me7Mzkdn5jcAb1DnVVFV8RBtXxEKXedhJSVe1tIIEVlrU2pw_jbJdg7Fl6P0aAX-DL0wVFY56ESnqOtW0z_yUZLynOdFIeKR9WUR-1vjj6e_QpogRZnWYZxG6ccs1BsObsw3eeyZ-W8M57qN3S3k_dskGW8ffN4J_cSBUAuRzJBCm2eCAGtMRtByGONntkIPSsrUCp4j7VlteSmltXWkq9LERmS4DwTiEtc0QQLNwVqOVh8DwbVP25P974Nd4Fy4EbAUI4Q5mmnfwhNxOerQjFIVaEKhPVIdXiyZyavG4h9reSV966zi-B7c9e4s2-zl7z6smOYB3OoHXM4fQnuAomLCmkYI9PAfDMN71__FqOW4MVNGAJ-u5JI1fUl6x1AXtsedYWVTs-4nZYgaZqfn7ZnDntKGnVAZITXUzNnxCWpE1ivZ7hEc3siGP4bVpm3MU2Cx0Lm16H6iUyNQj5VGWplGkdWFtpWNA4iHHVXa45_TGI6pcnl4LlXPBYVcUI4L6iKA94tnTnv0j2tXvyNGKVIN-GZd-g4HpI9AttRm5rKk6HQHsL60Eo-0Xr49sFp5ldKpywMQwOvFbXqSyuQa0567NdRFl8dpAE96EVnQzdE1L2RSBPBhkJnLl___o55dT8sruI3HUH3dnew9hzuJk2D6RbUOq7Ozc_MCPbZZ9dIfBQY_bvr0_QUMt1Bh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+residual+channel+attention+networks+denoise+and+sharpen+fluorescence+microscopy+image+volumes&rft.jtitle=Nature+methods&rft.au=Chen%2C+Jiji&rft.au=Sasaki%2C+Hideki&rft.au=Lai%2C+Hoyin&rft.au=Su%2C+Yijun&rft.date=2021-06-01&rft.issn=1548-7091&rft.eissn=1548-7105&rft.volume=18&rft.issue=6&rft.spage=678&rft.epage=687&rft_id=info:doi/10.1038%2Fs41592-021-01155-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41592_021_01155_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon