A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed

•Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based STFT.•Damage location, damage severity and vehicle position related at low vehicle speeds.•Novel damage detection method based on kNN algori...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 154; p. 107599
Main Authors Feng, Kun, González, Arturo, Casero, Miguel
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.06.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
1096-1216
DOI10.1016/j.ymssp.2020.107599

Cover

Abstract •Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based STFT.•Damage location, damage severity and vehicle position related at low vehicle speeds.•Novel damage detection method based on kNN algorithm locates and quantifies damage. This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time–frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis.
AbstractList This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time–frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis.
•Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based STFT.•Damage location, damage severity and vehicle position related at low vehicle speeds.•Novel damage detection method based on kNN algorithm locates and quantifies damage. This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time–frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis.
ArticleNumber 107599
Author Casero, Miguel
Feng, Kun
González, Arturo
Author_xml – sequence: 1
  givenname: Kun
  surname: Feng
  fullname: Feng, Kun
  email: kun.feng@ucdconnect.ie
– sequence: 2
  givenname: Arturo
  surname: González
  fullname: González, Arturo
– sequence: 3
  givenname: Miguel
  surname: Casero
  fullname: Casero, Miguel
BookMark eNqNkLtu2zAUhokgAepcniALgc5ySYqSxSGDYfQGBO6SzARFHdp0ZFIhqQR-gT53KatTh7YLb_i_D4f_Nbp03gFC95QsKaH1p8PydIxxWDLCppdVJcQFWlAi6oIyWl-iBWmapijZinxA1zEeCCGCk3qBfq7xy3aLVb_zwab9ERsfcO-1StbtsHIdfh2VS9acpnvMB-MgxhzJi3VY4TbYbgfYBH_EaQ-TQEOH32wbssQ73I2Ak8_JFEb9gnXI6FmesuUdxwGgu0VXRvUR7n7vN-j5y-enzbfi8cfX75v1Y6E5Z6kQTdVyXouWKWJq1uiGMm5MqUvWCmEYXbGaGuCihDxDC6pi2nDVUqUa2la8vEF89o5uUKd31fdyCPaowklSIqcu5UGeu5RTl3LuMmMfZ2wI_nWEmOTBj8HlSSWrCOWClasmp8o5df5iAPOfbvEHpW06N5eCsv0_2IeZhdzZm4Ugo7bg8t9tAJ1k5-1f-V8irrLN
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_109150
crossref_primary_10_3390_app132011411
crossref_primary_10_1016_j_energy_2024_132551
crossref_primary_10_1016_j_istruc_2025_108598
crossref_primary_10_1016_j_engstruct_2023_117414
crossref_primary_10_1061_JBENF2_BEENG_5979
crossref_primary_10_1016_j_autcon_2024_105587
crossref_primary_10_3390_infrastructures9020018
crossref_primary_10_1016_j_istruc_2023_105753
crossref_primary_10_1016_j_apm_2023_04_025
crossref_primary_10_3390_ma16072624
crossref_primary_10_1016_j_eng_2021_12_014
crossref_primary_10_1016_j_ymssp_2023_110123
crossref_primary_10_3390_buildings12122135
crossref_primary_10_1016_j_istruc_2022_11_094
crossref_primary_10_1016_j_oceaneng_2023_116327
crossref_primary_10_1177_1475472X231206495
crossref_primary_10_1088_1361_6501_ad2ad4
crossref_primary_10_1177_13694332241242984
crossref_primary_10_1016_j_istruc_2023_05_103
crossref_primary_10_1007_s41062_023_01353_w
crossref_primary_10_1016_j_ymssp_2023_110738
crossref_primary_10_1061_JENMDT_EMENG_7991
crossref_primary_10_1016_j_measurement_2024_114735
crossref_primary_10_1016_j_aei_2024_102886
crossref_primary_10_1016_j_jmrt_2022_10_153
crossref_primary_10_1061_JENMDT_EMENG_7437
crossref_primary_10_1016_j_engappai_2024_108580
crossref_primary_10_1177_14759217241264922
crossref_primary_10_1016_j_ymssp_2023_110899
crossref_primary_10_3390_buildings14072169
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_3390_electronics12173613
crossref_primary_10_1016_j_ymssp_2024_112017
crossref_primary_10_1080_15732479_2023_2165118
crossref_primary_10_1016_j_istruc_2022_12_027
crossref_primary_10_1061_JBENF2_BEENG_6243
crossref_primary_10_3390_rs17061047
crossref_primary_10_1016_j_inffus_2023_102136
crossref_primary_10_1016_j_istruc_2022_10_019
crossref_primary_10_1155_2024_3970794
crossref_primary_10_1016_j_dibe_2024_100562
crossref_primary_10_1016_j_conbuildmat_2023_133148
crossref_primary_10_1142_S0219455423400035
crossref_primary_10_3390_app12104972
crossref_primary_10_1088_1742_6596_1966_1_012021
crossref_primary_10_1080_15732479_2022_2033276
crossref_primary_10_1016_j_autcon_2021_103976
crossref_primary_10_1109_ACCESS_2022_3199443
crossref_primary_10_1680_jbren_22_00030
crossref_primary_10_1016_j_ymssp_2024_111677
crossref_primary_10_1088_1361_6501_ad7a16
crossref_primary_10_1016_j_ymssp_2024_112003
crossref_primary_10_1061__ASCE_BE_1943_5592_0001838
crossref_primary_10_3390_ma16051872
crossref_primary_10_1016_j_measurement_2022_111206
crossref_primary_10_1016_j_ymssp_2023_110315
crossref_primary_10_3390_app122211380
crossref_primary_10_3390_s23094230
crossref_primary_10_1016_j_dibe_2023_100162
crossref_primary_10_1016_j_mtcomm_2024_110511
crossref_primary_10_1155_2022_7963603
Cites_doi 10.1177/1475921717704385
10.1016/j.compstruc.2006.09.005
10.1109/CIVEMSA.2017.7995313
10.1142/S0219455413500193
10.1016/j.renene.2018.08.050
10.1111/j.1467-8667.2005.00415.x
10.5772/10235
10.1007/s11831-014-9135-7
10.1177/1475921710365419
10.1201/b17063-93
10.1061/(ASCE)0733-9445(2002)128:10(1354)
10.1006/jsvi.2001.3978
10.1177/1475921704047500
10.1007/978-981-13-8331-1_24
10.1016/j.compstruc.2004.12.004
10.1016/j.engstruct.2017.09.039
10.1109/ICCCE.2008.4580606
10.1016/j.ymssp.2015.04.017
10.12989/sss.2014.13.5.755
10.1007/s13349-016-0160-0
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier BV Jun 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier BV Jun 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.ymssp.2020.107599
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10.1016/j.ymssp.2020.107599
10_1016_j_ymssp_2020_107599
S0888327020309857
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c442t-985b4469b2a0f628c8124ff3c32b99f217261fe493ecedbea52cf4ab1aa81b543
IEDL.DBID UNPAY
ISSN 0888-3270
1096-1216
IngestDate Tue Aug 19 09:10:42 EDT 2025
Fri Jul 25 08:10:09 EDT 2025
Thu Apr 24 22:57:40 EDT 2025
Thu Oct 16 04:24:52 EDT 2025
Fri Feb 23 02:48:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords k-Nearest Neighbours
Structural Health Monitoring
Frequency
Short-time Fourier Transform
Damage Detection
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-985b4469b2a0f628c8124ff3c32b99f217261fe493ecedbea52cf4ab1aa81b543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ymssp.2020.107599
PQID 2501492378
PQPubID 2045429
ParticipantIDs unpaywall_primary_10_1016_j_ymssp_2020_107599
proquest_journals_2501492378
crossref_primary_10_1016_j_ymssp_2020_107599
crossref_citationtrail_10_1016_j_ymssp_2020_107599
elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107599
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References A. González, Vehicle-bridge dynamic interaction using finite element modelling, Finite Elem. Anal. (2010), IntechOpen.
Sun, Chang (b0025) 2002; 128
H. Guan, V.M. Karbhari, C.S. Sikorsky, Web‐based structural health monitoring of an FRP composite bridge, Comput.-Aided Civil Infrastruct. Eng. 21(1) (2006) 39–56.
R. Oiwa, T. Ito, T. Kawahara, Timber health monitoring using piezoelectric sensor and machine learning, in: Proc. of the 2017 IEEE Int. Conf. on Comput. Intell. and Virtual Environ. for Meas. Syst. and Appl. (CIVEMSA) 2017, pp. 123–128. IEEE.
Carden, Fanning (b0015) 2004; 3
Jiménez, García Márquez, Moraleda, Gómez Muñoz (b0070) 2019; 132
Amezquita-Sanchez, Adeli (b0110) 2016; 23
Fan, Qiao (b0010) 2011; 10
G. Lederman, Z. Wang, J. Bielak, H. Noh, J.H. Garrett, S. Chen, J. Kovacevic, F. Cerda, P. Rizzo, Damage quantification and localization algorithms for indirect SHM of bridges, in: Proc. of the 7th Int. Conf. of Bridge Maint., Safety and Manag., Shanghai, China 2014 Jul.
Koh, Dyke (b0035) 2007; 85
Kong, Cai, Kong (b0105) 2016; 142
Grave (b0085) 2001
Yang, Cheng, Chang (b0095) 2013; 13
A. González, M. Casero, K. Feng, Sensitivity to damage of the forced frequencies of a simply supported beam subjected to a moving quarter-car. In: Proc. of the 13th Int. Conf. on Damage Assess. of Struct. 2020, pp. 350-362. Springer, Singapore.
ISO I. 8608: 2016, Mechanical Vibration–Road Surface Profiles–Reporting of Measured Data, International Organization for Standardization, Geneva, Switzerland, 2016.
K. Gkoumas, F.L. Marques Dos Santos, M. van Balen, A. Tsakalidis, A. Ortega Hortelano, M. Grosso, G. Haq, F. Pekár, Research and innovation in bridge maintenance, inspection and monitoring – A European perspective based on the Transport Research and Innovation Monitoring and Information System (TRIMIS), EUR 29650 EN, Publications Office of the European Union, Luxembourg, 2019, JRC115319.
.
Sinha, Friswell, Edwards (b0090) 2002; 251
T.S. Gunawan, On the optimal window shape for genomic signal processing, in: 2008 Int. Conf. on Comput. and Commun. Eng. 2008, pp. 252–255. IEEE.
Cantero, Hester, Brownjohn (b0055) 2017; 152
Diez, Khoa, Alamdari, Wang, Chen, Runcie (b0075) 2016; 6
Cantero, O’Brien (b0045) 2013; 41
Chang, Kim, Borjigin (b0050) 2014; 13
Y.Y. Li, Factors affecting the dynamic interaction of bridges and vehicle loads [dissertation], Univ. Coll. Dublin, Dublin, 2006.
Montechiesi, Cocconcelli, Rubini (b0120) 2016; 76
Kim, Kawatani, Kim (b0080) 2005; 83
Yang, Dorn, Mancini, Talken, Theiler, Kenyon, Farrar, Mascarenas (b0020) 2018; 17
Cantero (10.1016/j.ymssp.2020.107599_b0055) 2017; 152
10.1016/j.ymssp.2020.107599_b0065
10.1016/j.ymssp.2020.107599_b0040
10.1016/j.ymssp.2020.107599_b0060
Kim (10.1016/j.ymssp.2020.107599_b0080) 2005; 83
Montechiesi (10.1016/j.ymssp.2020.107599_b0120) 2016; 76
Jiménez (10.1016/j.ymssp.2020.107599_b0070) 2019; 132
Chang (10.1016/j.ymssp.2020.107599_b0050) 2014; 13
Diez (10.1016/j.ymssp.2020.107599_b0075) 2016; 6
Koh (10.1016/j.ymssp.2020.107599_b0035) 2007; 85
10.1016/j.ymssp.2020.107599_b0115
Fan (10.1016/j.ymssp.2020.107599_b0010) 2011; 10
10.1016/j.ymssp.2020.107599_b0130
10.1016/j.ymssp.2020.107599_b0030
Grave (10.1016/j.ymssp.2020.107599_b0085) 2001
Amezquita-Sanchez (10.1016/j.ymssp.2020.107599_b0110) 2016; 23
Sinha (10.1016/j.ymssp.2020.107599_b0090) 2002; 251
Yang (10.1016/j.ymssp.2020.107599_b0020) 2018; 17
Sun (10.1016/j.ymssp.2020.107599_b0025) 2002; 128
Yang (10.1016/j.ymssp.2020.107599_b0095) 2013; 13
Carden (10.1016/j.ymssp.2020.107599_b0015) 2004; 3
10.1016/j.ymssp.2020.107599_b0125
10.1016/j.ymssp.2020.107599_b0005
Cantero (10.1016/j.ymssp.2020.107599_b0045) 2013; 41
Kong (10.1016/j.ymssp.2020.107599_b0105) 2016; 142
10.1016/j.ymssp.2020.107599_b0100
References_xml – reference: G. Lederman, Z. Wang, J. Bielak, H. Noh, J.H. Garrett, S. Chen, J. Kovacevic, F. Cerda, P. Rizzo, Damage quantification and localization algorithms for indirect SHM of bridges, in: Proc. of the 7th Int. Conf. of Bridge Maint., Safety and Manag., Shanghai, China 2014 Jul.
– volume: 6
  start-page: 429
  year: 2016
  end-page: 445
  ident: b0075
  article-title: A clustering approach for structural health monitoring on bridges
  publication-title: J. Civ. Struct. Health Monit.
– reference: Y.Y. Li, Factors affecting the dynamic interaction of bridges and vehicle loads [dissertation], Univ. Coll. Dublin, Dublin, 2006.
– volume: 17
  start-page: 514
  year: 2018
  end-page: 531
  ident: b0020
  article-title: Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures
  publication-title: Struct. Health Monit.
– volume: 13
  start-page: 755
  year: 2014
  ident: b0050
  article-title: Variability in bridge frequency induced by a parked vehicle
  publication-title: Smart Struct. Syst.
– volume: 3
  start-page: 355
  year: 2004
  end-page: 377
  ident: b0015
  article-title: Vibration based condition monitoring: a review
  publication-title: Struct. Health Monit.
– volume: 10
  start-page: 83
  year: 2011
  end-page: 111
  ident: b0010
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Struct. Health Monit.
– volume: 142
  start-page: 04016025
  year: 2016
  ident: b0105
  article-title: Numerically extracting bridge modal properties from dynamic responses of moving vehicles
  publication-title: J. Eng. Mech.
– reference: ISO I. 8608: 2016, Mechanical Vibration–Road Surface Profiles–Reporting of Measured Data, International Organization for Standardization, Geneva, Switzerland, 2016.
– volume: 251
  start-page: 13
  year: 2002
  end-page: 38
  ident: b0090
  article-title: Simplified models for the location of cracks in beam structures using measured vibration data
  publication-title: J. Sound Vibr.
– volume: 132
  start-page: 1034
  year: 2019
  end-page: 1048
  ident: b0070
  article-title: Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis
  publication-title: Renew. Energy.
– volume: 128
  start-page: 1354
  year: 2002
  end-page: 1361
  ident: b0025
  article-title: Structural damage assessment based on wavelet packet transform
  publication-title: J. Struct. Eng.
– volume: 83
  start-page: 1627
  year: 2005
  end-page: 1645
  ident: b0080
  article-title: Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness
  publication-title: Comput. Struct.
– reference: R. Oiwa, T. Ito, T. Kawahara, Timber health monitoring using piezoelectric sensor and machine learning, in: Proc. of the 2017 IEEE Int. Conf. on Comput. Intell. and Virtual Environ. for Meas. Syst. and Appl. (CIVEMSA) 2017, pp. 123–128. IEEE.
– reference: K. Gkoumas, F.L. Marques Dos Santos, M. van Balen, A. Tsakalidis, A. Ortega Hortelano, M. Grosso, G. Haq, F. Pekár, Research and innovation in bridge maintenance, inspection and monitoring – A European perspective based on the Transport Research and Innovation Monitoring and Information System (TRIMIS), EUR 29650 EN, Publications Office of the European Union, Luxembourg, 2019, JRC115319.
– volume: 41
  start-page: 279
  year: 2013
  end-page: 284
  ident: b0045
  article-title: The non-stationarity of apparent bridge natural frequencies during vehicle crossing events
  publication-title: FME Trans.
– reference: A. González, Vehicle-bridge dynamic interaction using finite element modelling, Finite Elem. Anal. (2010), IntechOpen.
– reference: T.S. Gunawan, On the optimal window shape for genomic signal processing, in: 2008 Int. Conf. on Comput. and Commun. Eng. 2008, pp. 252–255. IEEE.
– reference: .
– reference: H. Guan, V.M. Karbhari, C.S. Sikorsky, Web‐based structural health monitoring of an FRP composite bridge, Comput.-Aided Civil Infrastruct. Eng. 21(1) (2006) 39–56.
– volume: 85
  start-page: 117
  year: 2007
  end-page: 130
  ident: b0035
  article-title: Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data
  publication-title: Comput. Struct.
– volume: 76
  start-page: 380
  year: 2016
  end-page: 393
  ident: b0120
  article-title: Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings
  publication-title: Mech. Syst. Signal Proc.
– reference: A. González, M. Casero, K. Feng, Sensitivity to damage of the forced frequencies of a simply supported beam subjected to a moving quarter-car. In: Proc. of the 13th Int. Conf. on Damage Assess. of Struct. 2020, pp. 350-362. Springer, Singapore.
– volume: 152
  start-page: 452
  year: 2017
  end-page: 464
  ident: b0055
  article-title: Evolution of bridge frequencies and modes of vibration during truck passage
  publication-title: Eng. Struct.
– volume: 13
  start-page: 1350019
  year: 2013
  ident: b0095
  article-title: Frequency variation in vehicle-bridge interaction systems
  publication-title: Int. J. Struct. Stab. Dyn.
– year: 2001
  ident: b0085
  article-title: Modelling of site-specific traffic loading on short to medium span bridges [dissertation]
– volume: 23
  start-page: 1
  year: 2016
  end-page: 5
  ident: b0110
  article-title: Signal processing techniques for vibration-based health monitoring of smart structures
  publication-title: Arch. Comput. Method Eng.
– volume: 17
  start-page: 514
  issue: 3
  year: 2018
  ident: 10.1016/j.ymssp.2020.107599_b0020
  article-title: Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921717704385
– volume: 85
  start-page: 117
  issue: 3–4
  year: 2007
  ident: 10.1016/j.ymssp.2020.107599_b0035
  article-title: Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.09.005
– volume: 142
  start-page: 04016025
  issue: 6
  year: 2016
  ident: 10.1016/j.ymssp.2020.107599_b0105
  article-title: Numerically extracting bridge modal properties from dynamic responses of moving vehicles
  publication-title: J. Eng. Mech.
– ident: 10.1016/j.ymssp.2020.107599_b0125
– ident: 10.1016/j.ymssp.2020.107599_b0065
  doi: 10.1109/CIVEMSA.2017.7995313
– volume: 13
  start-page: 1350019
  issue: 2
  year: 2013
  ident: 10.1016/j.ymssp.2020.107599_b0095
  article-title: Frequency variation in vehicle-bridge interaction systems
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455413500193
– volume: 132
  start-page: 1034
  year: 2019
  ident: 10.1016/j.ymssp.2020.107599_b0070
  article-title: Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2018.08.050
– ident: 10.1016/j.ymssp.2020.107599_b0030
  doi: 10.1111/j.1467-8667.2005.00415.x
– ident: 10.1016/j.ymssp.2020.107599_b0100
  doi: 10.5772/10235
– volume: 23
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ymssp.2020.107599_b0110
  article-title: Signal processing techniques for vibration-based health monitoring of smart structures
  publication-title: Arch. Comput. Method Eng.
  doi: 10.1007/s11831-014-9135-7
– volume: 10
  start-page: 83
  issue: 1
  year: 2011
  ident: 10.1016/j.ymssp.2020.107599_b0010
  article-title: Vibration-based damage identification methods: a review and comparative study
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921710365419
– ident: 10.1016/j.ymssp.2020.107599_b0040
  doi: 10.1201/b17063-93
– volume: 128
  start-page: 1354
  issue: 10
  year: 2002
  ident: 10.1016/j.ymssp.2020.107599_b0025
  article-title: Structural damage assessment based on wavelet packet transform
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(2002)128:10(1354)
– ident: 10.1016/j.ymssp.2020.107599_b0130
– volume: 251
  start-page: 13
  issue: 1
  year: 2002
  ident: 10.1016/j.ymssp.2020.107599_b0090
  article-title: Simplified models for the location of cracks in beam structures using measured vibration data
  publication-title: J. Sound Vibr.
  doi: 10.1006/jsvi.2001.3978
– volume: 3
  start-page: 355
  issue: 4
  year: 2004
  ident: 10.1016/j.ymssp.2020.107599_b0015
  article-title: Vibration based condition monitoring: a review
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921704047500
– ident: 10.1016/j.ymssp.2020.107599_b0060
  doi: 10.1007/978-981-13-8331-1_24
– volume: 83
  start-page: 1627
  issue: 19–20
  year: 2005
  ident: 10.1016/j.ymssp.2020.107599_b0080
  article-title: Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.12.004
– year: 2001
  ident: 10.1016/j.ymssp.2020.107599_b0085
– volume: 152
  start-page: 452
  year: 2017
  ident: 10.1016/j.ymssp.2020.107599_b0055
  article-title: Evolution of bridge frequencies and modes of vibration during truck passage
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.09.039
– ident: 10.1016/j.ymssp.2020.107599_b0115
  doi: 10.1109/ICCCE.2008.4580606
– volume: 76
  start-page: 380
  year: 2016
  ident: 10.1016/j.ymssp.2020.107599_b0120
  article-title: Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2015.04.017
– volume: 41
  start-page: 279
  issue: 4
  year: 2013
  ident: 10.1016/j.ymssp.2020.107599_b0045
  article-title: The non-stationarity of apparent bridge natural frequencies during vehicle crossing events
  publication-title: FME Trans.
– volume: 13
  start-page: 755
  issue: 5
  year: 2014
  ident: 10.1016/j.ymssp.2020.107599_b0050
  article-title: Variability in bridge frequency induced by a parked vehicle
  publication-title: Smart Struct. Syst.
  doi: 10.12989/sss.2014.13.5.755
– ident: 10.1016/j.ymssp.2020.107599_b0005
– volume: 6
  start-page: 429
  issue: 3
  year: 2016
  ident: 10.1016/j.ymssp.2020.107599_b0075
  article-title: A clustering approach for structural health monitoring on bridges
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-016-0160-0
SSID ssj0009406
Score 2.5697083
Snippet •Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based...
This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107599
SubjectTerms Acceleration
Algorithms
Damage
Damage Detection
Eigenvalues
Equations of motion
Finite element method
Forced vibration
Frequency
K-nearest neighbors algorithm
k-Nearest Neighbours
Low speed
Resonant frequencies
Short-time Fourier Transform
Signal processing
Stiffness
Structural Health Monitoring
Test vehicles
Transient analysis
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTsMwLEJcgAPiKcZLPnCkrEvTR47TBEJI7AJI3KKkS2AwuqFtTFw48t3YaQtDQghx6SFy3NR2bKfxg7GjXFoTZ6kLhAkzfEgTGBSrwNCtV6ydzUNKTr7sJuc34uI2vl1gnToXhsIqK91f6nSvrauRZkXN5qjfb17h_kBxTAlpKLOYMsqFSKmLwcnbV5iHFL6_JgEHBF1XHvIxXq9P4zEVreQ0ksa-AOyP1mnO-1yaFiP9OtODwZwhOltjq5UHCe1yketswRYbbGWuruAme2_DY7cLenA3xLP__ROgZwpktSjGGXTRg-eppighynEC3OTOkcZDEHz0C9BQ5nEBJZ8AuoiEAEkFL3S4JlZCb2phMkRIqj_7CP5zPPIJYpnBeIRWcYvdnJ1ed86DquFCkAvBJwFS0eDxUBquQ5fwLCfr71yUR9xI6aiXVdJyVsjI4juN1THPndCmpTV6v7GIttliMSzsDoNWZGSPSsvb0AqdWJOjZxO1EmdDl7pQNxivCa3yqho5NcUYqDrs7EF57ijijiq502DHn5NGZTGO38GTmoPqm0wpNBe_T9yv-a2qLT1WnG5g0R1OswYLPmXgL-vY_e869tgypxAa_9Nnny0iR-0B-kATc-iF_APqcgaA
  priority: 102
  providerName: Elsevier
Title A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed
URI https://dx.doi.org/10.1016/j.ymssp.2020.107599
https://www.proquest.com/docview/2501492378
https://doi.org/10.1016/j.ymssp.2020.107599
UnpaywallVersion publishedVersion
Volume 154
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 1096-1216
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 1096-1216
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 1096-1216
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 1096-1216
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009406
  issn: 1096-1216
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECYSeyg6NE0fqIPEuCFjZUjUk6NRJHBbVMgQA-lEkDTZpnZkt5ITpEPH_u7c6RE4RRMkiwbheJKOJ95H8O47xg6NsDrOUudF2s_wIrSn0a08TadesXLW-FSc_CVPJtPo01l81vJsUy3MnfP7Og_r-qIsiViS0500FmKb9ZMYgXeP9af5yfhrgxMzL-Rpwz0gqLNMkHQcQ__Xcl8c2sCZz9bFSl1fqcViI-Qc7zS13GXNVEiZJvPRutIj8_sfHsdHfs1L9qKFnjBufGWXbdniFXu-QUj4mv0dwzzPQS2-LX-dV98vACEtULij5GhQxQx-rhWlF1FxFODq4BwtlSiCl_MCFDQFYEBVK4DYkhQYO4NL2pWTD8BsbaFaoiQR186htk6tvEItV1CuMJy-YdPjo9MPE6_t1OCZKOKVJ7JY475SaK58l_DMEGxwLjQh10I4aoKVBM5GIrT4TG1VzI2LlA6UQtgcR-Fb1iuWhX3HIAi1mBEnvfVtpBKrDUKiMEic9V3qfDVgvJs3aVoac-qmsZBdvtoPWRtZkpFlY-QBe387aNWweDwsnnQOIVsg0gAMiRP68MD9zn1kuxaUktPRLeLoNBsw79alHvMee0-U32c9nDt7gDCp0kO2PfoTDFl__PHzJB-2P8sNaS0TFg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThsxcEThQDlUbWnVAG3n0CNLNl7vw0eEitICuQASN8ve2G1K2AQlAXHh2O_ujHeXBqlCFZc9WONZ78zYM7OeB8CXUjmbFrmPpI0LeigbWRKryPKtV2q8K2NOTj4ZZP1z-f0ivViBgzYXhsMqm7O_PtPDad2MdBtqdqejUfeU9geJY85IY1Wk-QtYk6nI2QPbu_8b56FkaLDJ0BGDt6WHQpDX3dVsxlUrBY_kaagA-0_1tGR-ri-qqbm7NePxkiY6fA2vGhMS9-tVvoEVV72FjaXCgpvwex8vBwM04x8Tcv5_XiGZpshqi4Oc0VRDvF4YDhPiJCekXe49H3kEQo9RhQbrRC7k7BMkG5EREK3whr1r5iUOFw7nE4LkArSXGD4nIJ8TllucTUktvoPzw69nB_2o6bgQlVKKeURktOQfKitM7DNRlKz-vU_KRFilPDezynreSZU4eqd1JhWll8b2jCHzN5XJe1itJpX7ANhLrBpybXkXO2kyZ0sybZJe5l3scx-bDoiW0LpsypFzV4yxbuPOfunAHc3c0TV3OrD7MGlaV-N4GjxrOagfCZUmffH0xJ2W37rZ0zMt-AqW7OG86ED0IAP_s46t567jM6z3z06O9fG3wdE2vBQcTxP-AO3AKnHXfSSDaG4_BYH_AyccCaM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF7RcEA9lFJABIVqDhwxstfPPUZVI4RE1EMjhdNqd7PLI8EJ2CmCH9Df3Rk_UKgoSi8-WLNje3a886125hvGjo2wOs5S50Xaz_AitKfRrTxNp16xctb4VJx8MUzORtH5OB43PNtUC_Pq_L7Kw3q6KwoiluR0J42F-MA2kxiBd4dtjoY_-pc1Tsy8kKc194CgzjJB0nIMva3lX3FoBWduLfOFenpUs9lKyBls17XcRcVUSJkm09NlqU_N8188jmt-zWf2qYGe0K99ZYdt2PwL-7hCSLjLfvdhOhyCml3NH27K6ztASAsU7ig5GlQ-gfulovQiKo4CXB2co6USRfByk4OCugAMqGoFEFuSAmMn8It25eQDMFlaKOcoScS1U6isUykvUcsjFAsMp3tsNPj-89uZ13Rq8EwU8dITWaxxXyk0V75LeGYINjgXmpBrIRw1wUoCZyMRWnymtirmxkVKB0ohbI6jcJ918nluDxgEoRYT4qS3vo1UYrVBSBQGibO-S52vuoy38yZNQ2NO3TRmss1Xu5WVkSUZWdZG7rKTl0GLmsXjffGkdQjZAJEaYEic0PcH9lr3kc1aUEhOR7eIo9Osy7wXl1rnPQ7_U77HOjh39ghhUqm_Nr_HH3U1EIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+kNN+algorithm+for+locating+and+quantifying+stiffness+loss+in+a+bridge+from+the+forced+vibration+due+to+a+truck+crossing+at+low+speed&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Feng%2C+Kun&rft.au=Gonz%C3%A1lez%2C+Arturo&rft.au=Casero%2C+Miguel&rft.date=2021-06-01&rft.issn=0888-3270&rft.volume=154&rft.spage=107599&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2020_107599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon