A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed
•Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based STFT.•Damage location, damage severity and vehicle position related at low vehicle speeds.•Novel damage detection method based on kNN algori...
        Saved in:
      
    
          | Published in | Mechanical systems and signal processing Vol. 154; p. 107599 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin
          Elsevier Ltd
    
        01.06.2021
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0888-3270 1096-1216 1096-1216  | 
| DOI | 10.1016/j.ymssp.2020.107599 | 
Cover
| Abstract | •Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based STFT.•Damage location, damage severity and vehicle position related at low vehicle speeds.•Novel damage detection method based on kNN algorithm locates and quantifies damage.
This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time–frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis. | 
    
|---|---|
| AbstractList | This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time–frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis. •Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based STFT.•Damage location, damage severity and vehicle position related at low vehicle speeds.•Novel damage detection method based on kNN algorithm locates and quantifies damage. This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a moving truck. Eigenvalue analysis of a simplified vehicle-bridge coupled system, consisting of a three-axle rigid truck model and a simply supported finite element beam model, shows how the eigenfrequencies of the coupled system vary with the locations of the vehicle and with the damage represented by a stiffness loss. The computational efficiency of eigenvalue analysis is exploited to generate a vast sample of patterns for training a kNN algorithm. In the field, acceleration due to the crossing of a test vehicle would be measured and analysed using a time–frequency signal processing tool to obtain the instantaneous frequencies. The crossing must take place at a low speed to achieve sufficiently high resolution and to minimise deviations from the eigenvalue solution. Then, the kNN algorithm searches for the patterns of forced eigenfrequencies that are closest to the on-site instantaneous frequencies to determine the location and severity of the damage. For theoretical testing purposes, field measurements are simulated here using coupled equations of motion and dynamic transient analysis.  | 
    
| ArticleNumber | 107599 | 
    
| Author | Casero, Miguel Feng, Kun González, Arturo  | 
    
| Author_xml | – sequence: 1 givenname: Kun surname: Feng fullname: Feng, Kun email: kun.feng@ucdconnect.ie – sequence: 2 givenname: Arturo surname: González fullname: González, Arturo – sequence: 3 givenname: Miguel surname: Casero fullname: Casero, Miguel  | 
    
| BookMark | eNqNkLtu2zAUhokgAepcniALgc5ySYqSxSGDYfQGBO6SzARFHdp0ZFIhqQR-gT53KatTh7YLb_i_D4f_Nbp03gFC95QsKaH1p8PydIxxWDLCppdVJcQFWlAi6oIyWl-iBWmapijZinxA1zEeCCGCk3qBfq7xy3aLVb_zwab9ERsfcO-1StbtsHIdfh2VS9acpnvMB-MgxhzJi3VY4TbYbgfYBH_EaQ-TQEOH32wbssQ73I2Ak8_JFEb9gnXI6FmesuUdxwGgu0VXRvUR7n7vN-j5y-enzbfi8cfX75v1Y6E5Z6kQTdVyXouWKWJq1uiGMm5MqUvWCmEYXbGaGuCihDxDC6pi2nDVUqUa2la8vEF89o5uUKd31fdyCPaowklSIqcu5UGeu5RTl3LuMmMfZ2wI_nWEmOTBj8HlSSWrCOWClasmp8o5df5iAPOfbvEHpW06N5eCsv0_2IeZhdzZm4Ugo7bg8t9tAJ1k5-1f-V8irrLN | 
    
| CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_109150 crossref_primary_10_3390_app132011411 crossref_primary_10_1016_j_energy_2024_132551 crossref_primary_10_1016_j_istruc_2025_108598 crossref_primary_10_1016_j_engstruct_2023_117414 crossref_primary_10_1061_JBENF2_BEENG_5979 crossref_primary_10_1016_j_autcon_2024_105587 crossref_primary_10_3390_infrastructures9020018 crossref_primary_10_1016_j_istruc_2023_105753 crossref_primary_10_1016_j_apm_2023_04_025 crossref_primary_10_3390_ma16072624 crossref_primary_10_1016_j_eng_2021_12_014 crossref_primary_10_1016_j_ymssp_2023_110123 crossref_primary_10_3390_buildings12122135 crossref_primary_10_1016_j_istruc_2022_11_094 crossref_primary_10_1016_j_oceaneng_2023_116327 crossref_primary_10_1177_1475472X231206495 crossref_primary_10_1088_1361_6501_ad2ad4 crossref_primary_10_1177_13694332241242984 crossref_primary_10_1016_j_istruc_2023_05_103 crossref_primary_10_1007_s41062_023_01353_w crossref_primary_10_1016_j_ymssp_2023_110738 crossref_primary_10_1061_JENMDT_EMENG_7991 crossref_primary_10_1016_j_measurement_2024_114735 crossref_primary_10_1016_j_aei_2024_102886 crossref_primary_10_1016_j_jmrt_2022_10_153 crossref_primary_10_1061_JENMDT_EMENG_7437 crossref_primary_10_1016_j_engappai_2024_108580 crossref_primary_10_1177_14759217241264922 crossref_primary_10_1016_j_ymssp_2023_110899 crossref_primary_10_3390_buildings14072169 crossref_primary_10_1016_j_catena_2024_107848 crossref_primary_10_3390_electronics12173613 crossref_primary_10_1016_j_ymssp_2024_112017 crossref_primary_10_1080_15732479_2023_2165118 crossref_primary_10_1016_j_istruc_2022_12_027 crossref_primary_10_1061_JBENF2_BEENG_6243 crossref_primary_10_3390_rs17061047 crossref_primary_10_1016_j_inffus_2023_102136 crossref_primary_10_1016_j_istruc_2022_10_019 crossref_primary_10_1155_2024_3970794 crossref_primary_10_1016_j_dibe_2024_100562 crossref_primary_10_1016_j_conbuildmat_2023_133148 crossref_primary_10_1142_S0219455423400035 crossref_primary_10_3390_app12104972 crossref_primary_10_1088_1742_6596_1966_1_012021 crossref_primary_10_1080_15732479_2022_2033276 crossref_primary_10_1016_j_autcon_2021_103976 crossref_primary_10_1109_ACCESS_2022_3199443 crossref_primary_10_1680_jbren_22_00030 crossref_primary_10_1016_j_ymssp_2024_111677 crossref_primary_10_1088_1361_6501_ad7a16 crossref_primary_10_1016_j_ymssp_2024_112003 crossref_primary_10_1061__ASCE_BE_1943_5592_0001838 crossref_primary_10_3390_ma16051872 crossref_primary_10_1016_j_measurement_2022_111206 crossref_primary_10_1016_j_ymssp_2023_110315 crossref_primary_10_3390_app122211380 crossref_primary_10_3390_s23094230 crossref_primary_10_1016_j_dibe_2023_100162 crossref_primary_10_1016_j_mtcomm_2024_110511 crossref_primary_10_1155_2022_7963603  | 
    
| Cites_doi | 10.1177/1475921717704385 10.1016/j.compstruc.2006.09.005 10.1109/CIVEMSA.2017.7995313 10.1142/S0219455413500193 10.1016/j.renene.2018.08.050 10.1111/j.1467-8667.2005.00415.x 10.5772/10235 10.1007/s11831-014-9135-7 10.1177/1475921710365419 10.1201/b17063-93 10.1061/(ASCE)0733-9445(2002)128:10(1354) 10.1006/jsvi.2001.3978 10.1177/1475921704047500 10.1007/978-981-13-8331-1_24 10.1016/j.compstruc.2004.12.004 10.1016/j.engstruct.2017.09.039 10.1109/ICCCE.2008.4580606 10.1016/j.ymssp.2015.04.017 10.12989/sss.2014.13.5.755 10.1007/s13349-016-0160-0  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 The Authors Copyright Elsevier BV Jun 2021  | 
    
| Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier BV Jun 2021  | 
    
| DBID | 6I. AAFTH AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY  | 
    
| DOI | 10.1016/j.ymssp.2020.107599 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1096-1216 | 
    
| ExternalDocumentID | 10.1016/j.ymssp.2020.107599 10_1016_j_ymssp_2020_107599 S0888327020309857  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c442t-985b4469b2a0f628c8124ff3c32b99f217261fe493ecedbea52cf4ab1aa81b543 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0888-3270 1096-1216  | 
    
| IngestDate | Tue Aug 19 09:10:42 EDT 2025 Fri Jul 25 08:10:09 EDT 2025 Thu Apr 24 22:57:40 EDT 2025 Thu Oct 16 04:24:52 EDT 2025 Fri Feb 23 02:48:45 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | k-Nearest Neighbours Structural Health Monitoring Frequency Short-time Fourier Transform Damage Detection  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY license. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c442t-985b4469b2a0f628c8124ff3c32b99f217261fe493ecedbea52cf4ab1aa81b543 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ymssp.2020.107599 | 
    
| PQID | 2501492378 | 
    
| PQPubID | 2045429 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_ymssp_2020_107599 proquest_journals_2501492378 crossref_primary_10_1016_j_ymssp_2020_107599 crossref_citationtrail_10_1016_j_ymssp_2020_107599 elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107599  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-06-01 2021-06-00 20210601  | 
    
| PublicationDateYYYYMMDD | 2021-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin | 
    
| PublicationPlace_xml | – name: Berlin | 
    
| PublicationTitle | Mechanical systems and signal processing | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | A. González, Vehicle-bridge dynamic interaction using finite element modelling, Finite Elem. Anal. (2010), IntechOpen. Sun, Chang (b0025) 2002; 128 H. Guan, V.M. Karbhari, C.S. Sikorsky, Web‐based structural health monitoring of an FRP composite bridge, Comput.-Aided Civil Infrastruct. Eng. 21(1) (2006) 39–56. R. Oiwa, T. Ito, T. Kawahara, Timber health monitoring using piezoelectric sensor and machine learning, in: Proc. of the 2017 IEEE Int. Conf. on Comput. Intell. and Virtual Environ. for Meas. Syst. and Appl. (CIVEMSA) 2017, pp. 123–128. IEEE. Carden, Fanning (b0015) 2004; 3 Jiménez, García Márquez, Moraleda, Gómez Muñoz (b0070) 2019; 132 Amezquita-Sanchez, Adeli (b0110) 2016; 23 Fan, Qiao (b0010) 2011; 10 G. Lederman, Z. Wang, J. Bielak, H. Noh, J.H. Garrett, S. Chen, J. Kovacevic, F. Cerda, P. Rizzo, Damage quantification and localization algorithms for indirect SHM of bridges, in: Proc. of the 7th Int. Conf. of Bridge Maint., Safety and Manag., Shanghai, China 2014 Jul. Koh, Dyke (b0035) 2007; 85 Kong, Cai, Kong (b0105) 2016; 142 Grave (b0085) 2001 Yang, Cheng, Chang (b0095) 2013; 13 A. González, M. Casero, K. Feng, Sensitivity to damage of the forced frequencies of a simply supported beam subjected to a moving quarter-car. In: Proc. of the 13th Int. Conf. on Damage Assess. of Struct. 2020, pp. 350-362. Springer, Singapore. ISO I. 8608: 2016, Mechanical Vibration–Road Surface Profiles–Reporting of Measured Data, International Organization for Standardization, Geneva, Switzerland, 2016. K. Gkoumas, F.L. Marques Dos Santos, M. van Balen, A. Tsakalidis, A. Ortega Hortelano, M. Grosso, G. Haq, F. Pekár, Research and innovation in bridge maintenance, inspection and monitoring – A European perspective based on the Transport Research and Innovation Monitoring and Information System (TRIMIS), EUR 29650 EN, Publications Office of the European Union, Luxembourg, 2019, JRC115319. . Sinha, Friswell, Edwards (b0090) 2002; 251 T.S. Gunawan, On the optimal window shape for genomic signal processing, in: 2008 Int. Conf. on Comput. and Commun. Eng. 2008, pp. 252–255. IEEE. Cantero, Hester, Brownjohn (b0055) 2017; 152 Diez, Khoa, Alamdari, Wang, Chen, Runcie (b0075) 2016; 6 Cantero, O’Brien (b0045) 2013; 41 Chang, Kim, Borjigin (b0050) 2014; 13 Y.Y. Li, Factors affecting the dynamic interaction of bridges and vehicle loads [dissertation], Univ. Coll. Dublin, Dublin, 2006. Montechiesi, Cocconcelli, Rubini (b0120) 2016; 76 Kim, Kawatani, Kim (b0080) 2005; 83 Yang, Dorn, Mancini, Talken, Theiler, Kenyon, Farrar, Mascarenas (b0020) 2018; 17 Cantero (10.1016/j.ymssp.2020.107599_b0055) 2017; 152 10.1016/j.ymssp.2020.107599_b0065 10.1016/j.ymssp.2020.107599_b0040 10.1016/j.ymssp.2020.107599_b0060 Kim (10.1016/j.ymssp.2020.107599_b0080) 2005; 83 Montechiesi (10.1016/j.ymssp.2020.107599_b0120) 2016; 76 Jiménez (10.1016/j.ymssp.2020.107599_b0070) 2019; 132 Chang (10.1016/j.ymssp.2020.107599_b0050) 2014; 13 Diez (10.1016/j.ymssp.2020.107599_b0075) 2016; 6 Koh (10.1016/j.ymssp.2020.107599_b0035) 2007; 85 10.1016/j.ymssp.2020.107599_b0115 Fan (10.1016/j.ymssp.2020.107599_b0010) 2011; 10 10.1016/j.ymssp.2020.107599_b0130 10.1016/j.ymssp.2020.107599_b0030 Grave (10.1016/j.ymssp.2020.107599_b0085) 2001 Amezquita-Sanchez (10.1016/j.ymssp.2020.107599_b0110) 2016; 23 Sinha (10.1016/j.ymssp.2020.107599_b0090) 2002; 251 Yang (10.1016/j.ymssp.2020.107599_b0020) 2018; 17 Sun (10.1016/j.ymssp.2020.107599_b0025) 2002; 128 Yang (10.1016/j.ymssp.2020.107599_b0095) 2013; 13 Carden (10.1016/j.ymssp.2020.107599_b0015) 2004; 3 10.1016/j.ymssp.2020.107599_b0125 10.1016/j.ymssp.2020.107599_b0005 Cantero (10.1016/j.ymssp.2020.107599_b0045) 2013; 41 Kong (10.1016/j.ymssp.2020.107599_b0105) 2016; 142 10.1016/j.ymssp.2020.107599_b0100  | 
    
| References_xml | – reference: G. Lederman, Z. Wang, J. Bielak, H. Noh, J.H. Garrett, S. Chen, J. Kovacevic, F. Cerda, P. Rizzo, Damage quantification and localization algorithms for indirect SHM of bridges, in: Proc. of the 7th Int. Conf. of Bridge Maint., Safety and Manag., Shanghai, China 2014 Jul. – volume: 6 start-page: 429 year: 2016 end-page: 445 ident: b0075 article-title: A clustering approach for structural health monitoring on bridges publication-title: J. Civ. Struct. Health Monit. – reference: Y.Y. Li, Factors affecting the dynamic interaction of bridges and vehicle loads [dissertation], Univ. Coll. Dublin, Dublin, 2006. – volume: 17 start-page: 514 year: 2018 end-page: 531 ident: b0020 article-title: Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures publication-title: Struct. Health Monit. – volume: 13 start-page: 755 year: 2014 ident: b0050 article-title: Variability in bridge frequency induced by a parked vehicle publication-title: Smart Struct. Syst. – volume: 3 start-page: 355 year: 2004 end-page: 377 ident: b0015 article-title: Vibration based condition monitoring: a review publication-title: Struct. Health Monit. – volume: 10 start-page: 83 year: 2011 end-page: 111 ident: b0010 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Struct. Health Monit. – volume: 142 start-page: 04016025 year: 2016 ident: b0105 article-title: Numerically extracting bridge modal properties from dynamic responses of moving vehicles publication-title: J. Eng. Mech. – reference: ISO I. 8608: 2016, Mechanical Vibration–Road Surface Profiles–Reporting of Measured Data, International Organization for Standardization, Geneva, Switzerland, 2016. – volume: 251 start-page: 13 year: 2002 end-page: 38 ident: b0090 article-title: Simplified models for the location of cracks in beam structures using measured vibration data publication-title: J. Sound Vibr. – volume: 132 start-page: 1034 year: 2019 end-page: 1048 ident: b0070 article-title: Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis publication-title: Renew. Energy. – volume: 128 start-page: 1354 year: 2002 end-page: 1361 ident: b0025 article-title: Structural damage assessment based on wavelet packet transform publication-title: J. Struct. Eng. – volume: 83 start-page: 1627 year: 2005 end-page: 1645 ident: b0080 article-title: Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness publication-title: Comput. Struct. – reference: R. Oiwa, T. Ito, T. Kawahara, Timber health monitoring using piezoelectric sensor and machine learning, in: Proc. of the 2017 IEEE Int. Conf. on Comput. Intell. and Virtual Environ. for Meas. Syst. and Appl. (CIVEMSA) 2017, pp. 123–128. IEEE. – reference: K. Gkoumas, F.L. Marques Dos Santos, M. van Balen, A. Tsakalidis, A. Ortega Hortelano, M. Grosso, G. Haq, F. Pekár, Research and innovation in bridge maintenance, inspection and monitoring – A European perspective based on the Transport Research and Innovation Monitoring and Information System (TRIMIS), EUR 29650 EN, Publications Office of the European Union, Luxembourg, 2019, JRC115319. – volume: 41 start-page: 279 year: 2013 end-page: 284 ident: b0045 article-title: The non-stationarity of apparent bridge natural frequencies during vehicle crossing events publication-title: FME Trans. – reference: A. González, Vehicle-bridge dynamic interaction using finite element modelling, Finite Elem. Anal. (2010), IntechOpen. – reference: T.S. Gunawan, On the optimal window shape for genomic signal processing, in: 2008 Int. Conf. on Comput. and Commun. Eng. 2008, pp. 252–255. IEEE. – reference: . – reference: H. Guan, V.M. Karbhari, C.S. Sikorsky, Web‐based structural health monitoring of an FRP composite bridge, Comput.-Aided Civil Infrastruct. Eng. 21(1) (2006) 39–56. – volume: 85 start-page: 117 year: 2007 end-page: 130 ident: b0035 article-title: Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data publication-title: Comput. Struct. – volume: 76 start-page: 380 year: 2016 end-page: 393 ident: b0120 article-title: Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings publication-title: Mech. Syst. Signal Proc. – reference: A. González, M. Casero, K. Feng, Sensitivity to damage of the forced frequencies of a simply supported beam subjected to a moving quarter-car. In: Proc. of the 13th Int. Conf. on Damage Assess. of Struct. 2020, pp. 350-362. Springer, Singapore. – volume: 152 start-page: 452 year: 2017 end-page: 464 ident: b0055 article-title: Evolution of bridge frequencies and modes of vibration during truck passage publication-title: Eng. Struct. – volume: 13 start-page: 1350019 year: 2013 ident: b0095 article-title: Frequency variation in vehicle-bridge interaction systems publication-title: Int. J. Struct. Stab. Dyn. – year: 2001 ident: b0085 article-title: Modelling of site-specific traffic loading on short to medium span bridges [dissertation] – volume: 23 start-page: 1 year: 2016 end-page: 5 ident: b0110 article-title: Signal processing techniques for vibration-based health monitoring of smart structures publication-title: Arch. Comput. Method Eng. – volume: 17 start-page: 514 issue: 3 year: 2018 ident: 10.1016/j.ymssp.2020.107599_b0020 article-title: Reference-free detection of minute, non-visible, damage using full-field, high-resolution mode shapes output-only identified from digital videos of structures publication-title: Struct. Health Monit. doi: 10.1177/1475921717704385 – volume: 85 start-page: 117 issue: 3–4 year: 2007 ident: 10.1016/j.ymssp.2020.107599_b0035 article-title: Structural health monitoring for flexible bridge structures using correlation and sensitivity of modal data publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.09.005 – volume: 142 start-page: 04016025 issue: 6 year: 2016 ident: 10.1016/j.ymssp.2020.107599_b0105 article-title: Numerically extracting bridge modal properties from dynamic responses of moving vehicles publication-title: J. Eng. Mech. – ident: 10.1016/j.ymssp.2020.107599_b0125 – ident: 10.1016/j.ymssp.2020.107599_b0065 doi: 10.1109/CIVEMSA.2017.7995313 – volume: 13 start-page: 1350019 issue: 2 year: 2013 ident: 10.1016/j.ymssp.2020.107599_b0095 article-title: Frequency variation in vehicle-bridge interaction systems publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455413500193 – volume: 132 start-page: 1034 year: 2019 ident: 10.1016/j.ymssp.2020.107599_b0070 article-title: Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis publication-title: Renew. Energy. doi: 10.1016/j.renene.2018.08.050 – ident: 10.1016/j.ymssp.2020.107599_b0030 doi: 10.1111/j.1467-8667.2005.00415.x – ident: 10.1016/j.ymssp.2020.107599_b0100 doi: 10.5772/10235 – volume: 23 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ymssp.2020.107599_b0110 article-title: Signal processing techniques for vibration-based health monitoring of smart structures publication-title: Arch. Comput. Method Eng. doi: 10.1007/s11831-014-9135-7 – volume: 10 start-page: 83 issue: 1 year: 2011 ident: 10.1016/j.ymssp.2020.107599_b0010 article-title: Vibration-based damage identification methods: a review and comparative study publication-title: Struct. Health Monit. doi: 10.1177/1475921710365419 – ident: 10.1016/j.ymssp.2020.107599_b0040 doi: 10.1201/b17063-93 – volume: 128 start-page: 1354 issue: 10 year: 2002 ident: 10.1016/j.ymssp.2020.107599_b0025 article-title: Structural damage assessment based on wavelet packet transform publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(2002)128:10(1354) – ident: 10.1016/j.ymssp.2020.107599_b0130 – volume: 251 start-page: 13 issue: 1 year: 2002 ident: 10.1016/j.ymssp.2020.107599_b0090 article-title: Simplified models for the location of cracks in beam structures using measured vibration data publication-title: J. Sound Vibr. doi: 10.1006/jsvi.2001.3978 – volume: 3 start-page: 355 issue: 4 year: 2004 ident: 10.1016/j.ymssp.2020.107599_b0015 article-title: Vibration based condition monitoring: a review publication-title: Struct. Health Monit. doi: 10.1177/1475921704047500 – ident: 10.1016/j.ymssp.2020.107599_b0060 doi: 10.1007/978-981-13-8331-1_24 – volume: 83 start-page: 1627 issue: 19–20 year: 2005 ident: 10.1016/j.ymssp.2020.107599_b0080 article-title: Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2004.12.004 – year: 2001 ident: 10.1016/j.ymssp.2020.107599_b0085 – volume: 152 start-page: 452 year: 2017 ident: 10.1016/j.ymssp.2020.107599_b0055 article-title: Evolution of bridge frequencies and modes of vibration during truck passage publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2017.09.039 – ident: 10.1016/j.ymssp.2020.107599_b0115 doi: 10.1109/ICCCE.2008.4580606 – volume: 76 start-page: 380 year: 2016 ident: 10.1016/j.ymssp.2020.107599_b0120 article-title: Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2015.04.017 – volume: 41 start-page: 279 issue: 4 year: 2013 ident: 10.1016/j.ymssp.2020.107599_b0045 article-title: The non-stationarity of apparent bridge natural frequencies during vehicle crossing events publication-title: FME Trans. – volume: 13 start-page: 755 issue: 5 year: 2014 ident: 10.1016/j.ymssp.2020.107599_b0050 article-title: Variability in bridge frequency induced by a parked vehicle publication-title: Smart Struct. Syst. doi: 10.12989/sss.2014.13.5.755 – ident: 10.1016/j.ymssp.2020.107599_b0005 – volume: 6 start-page: 429 issue: 3 year: 2016 ident: 10.1016/j.ymssp.2020.107599_b0075 article-title: A clustering approach for structural health monitoring on bridges publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-016-0160-0  | 
    
| SSID | ssj0009406 | 
    
| Score | 2.5697083 | 
    
| Snippet | •Structural damage characterised by difference in forced eigenfrequency curves.•Instantaneous forced frequencies extracted from bridge response by a Hann-based... This paper proposes a k-Nearest Neighbours (kNN) algorithm for locating and quantifying bridge damage based on the time-varying forced frequencies due to a...  | 
    
| SourceID | unpaywall proquest crossref elsevier  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 107599 | 
    
| SubjectTerms | Acceleration Algorithms Damage Damage Detection Eigenvalues Equations of motion Finite element method Forced vibration Frequency K-nearest neighbors algorithm k-Nearest Neighbours Low speed Resonant frequencies Short-time Fourier Transform Signal processing Stiffness Structural Health Monitoring Test vehicles Transient analysis  | 
    
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LTsMwLEJcgAPiKcZLPnCkrEvTR47TBEJI7AJI3KKkS2AwuqFtTFw48t3YaQtDQghx6SFy3NR2bKfxg7GjXFoTZ6kLhAkzfEgTGBSrwNCtV6ydzUNKTr7sJuc34uI2vl1gnToXhsIqK91f6nSvrauRZkXN5qjfb17h_kBxTAlpKLOYMsqFSKmLwcnbV5iHFL6_JgEHBF1XHvIxXq9P4zEVreQ0ksa-AOyP1mnO-1yaFiP9OtODwZwhOltjq5UHCe1yketswRYbbGWuruAme2_DY7cLenA3xLP__ROgZwpktSjGGXTRg-eppighynEC3OTOkcZDEHz0C9BQ5nEBJZ8AuoiEAEkFL3S4JlZCb2phMkRIqj_7CP5zPPIJYpnBeIRWcYvdnJ1ed86DquFCkAvBJwFS0eDxUBquQ5fwLCfr71yUR9xI6aiXVdJyVsjI4juN1THPndCmpTV6v7GIttliMSzsDoNWZGSPSsvb0AqdWJOjZxO1EmdDl7pQNxivCa3yqho5NcUYqDrs7EF57ijijiq502DHn5NGZTGO38GTmoPqm0wpNBe_T9yv-a2qLT1WnG5g0R1OswYLPmXgL-vY_e869tgypxAa_9Nnny0iR-0B-kATc-iF_APqcgaA priority: 102 providerName: Elsevier  | 
    
| Title | A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed | 
    
| URI | https://dx.doi.org/10.1016/j.ymssp.2020.107599 https://www.proquest.com/docview/2501492378 https://doi.org/10.1016/j.ymssp.2020.107599  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 154 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 1096-1216 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 1096-1216 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 1096-1216 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 1096-1216 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1096-1216 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009406 issn: 1096-1216 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECYSeyg6NE0fqIPEuCFjZUjUk6NRJHBbVMgQA-lEkDTZpnZkt5ITpEPH_u7c6RE4RRMkiwbheJKOJ95H8O47xg6NsDrOUudF2s_wIrSn0a08TadesXLW-FSc_CVPJtPo01l81vJsUy3MnfP7Og_r-qIsiViS0500FmKb9ZMYgXeP9af5yfhrgxMzL-Rpwz0gqLNMkHQcQ__Xcl8c2sCZz9bFSl1fqcViI-Qc7zS13GXNVEiZJvPRutIj8_sfHsdHfs1L9qKFnjBufGWXbdniFXu-QUj4mv0dwzzPQS2-LX-dV98vACEtULij5GhQxQx-rhWlF1FxFODq4BwtlSiCl_MCFDQFYEBVK4DYkhQYO4NL2pWTD8BsbaFaoiQR186htk6tvEItV1CuMJy-YdPjo9MPE6_t1OCZKOKVJ7JY475SaK58l_DMEGxwLjQh10I4aoKVBM5GIrT4TG1VzI2LlA6UQtgcR-Fb1iuWhX3HIAi1mBEnvfVtpBKrDUKiMEic9V3qfDVgvJs3aVoac-qmsZBdvtoPWRtZkpFlY-QBe387aNWweDwsnnQOIVsg0gAMiRP68MD9zn1kuxaUktPRLeLoNBsw79alHvMee0-U32c9nDt7gDCp0kO2PfoTDFl__PHzJB-2P8sNaS0TFg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LThsxcEThQDlUbWnVAG3n0CNLNl7vw0eEitICuQASN8ve2G1K2AQlAXHh2O_ujHeXBqlCFZc9WONZ78zYM7OeB8CXUjmbFrmPpI0LeigbWRKryPKtV2q8K2NOTj4ZZP1z-f0ivViBgzYXhsMqm7O_PtPDad2MdBtqdqejUfeU9geJY85IY1Wk-QtYk6nI2QPbu_8b56FkaLDJ0BGDt6WHQpDX3dVsxlUrBY_kaagA-0_1tGR-ri-qqbm7NePxkiY6fA2vGhMS9-tVvoEVV72FjaXCgpvwex8vBwM04x8Tcv5_XiGZpshqi4Oc0VRDvF4YDhPiJCekXe49H3kEQo9RhQbrRC7k7BMkG5EREK3whr1r5iUOFw7nE4LkArSXGD4nIJ8TllucTUktvoPzw69nB_2o6bgQlVKKeURktOQfKitM7DNRlKz-vU_KRFilPDezynreSZU4eqd1JhWll8b2jCHzN5XJe1itJpX7ANhLrBpybXkXO2kyZ0sybZJe5l3scx-bDoiW0LpsypFzV4yxbuPOfunAHc3c0TV3OrD7MGlaV-N4GjxrOagfCZUmffH0xJ2W37rZ0zMt-AqW7OG86ED0IAP_s46t567jM6z3z06O9fG3wdE2vBQcTxP-AO3AKnHXfSSDaG4_BYH_AyccCaM | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF7RcEA9lFJABIVqDhwxstfPPUZVI4RE1EMjhdNqd7PLI8EJ2CmCH9Df3Rk_UKgoSi8-WLNje3a886125hvGjo2wOs5S50Xaz_AitKfRrTxNp16xctb4VJx8MUzORtH5OB43PNtUC_Pq_L7Kw3q6KwoiluR0J42F-MA2kxiBd4dtjoY_-pc1Tsy8kKc194CgzjJB0nIMva3lX3FoBWduLfOFenpUs9lKyBls17XcRcVUSJkm09NlqU_N8188jmt-zWf2qYGe0K99ZYdt2PwL-7hCSLjLfvdhOhyCml3NH27K6ztASAsU7ig5GlQ-gfulovQiKo4CXB2co6USRfByk4OCugAMqGoFEFuSAmMn8It25eQDMFlaKOcoScS1U6isUykvUcsjFAsMp3tsNPj-89uZ13Rq8EwU8dITWaxxXyk0V75LeGYINjgXmpBrIRw1wUoCZyMRWnymtirmxkVKB0ohbI6jcJ918nluDxgEoRYT4qS3vo1UYrVBSBQGibO-S52vuoy38yZNQ2NO3TRmss1Xu5WVkSUZWdZG7rKTl0GLmsXjffGkdQjZAJEaYEic0PcH9lr3kc1aUEhOR7eIo9Osy7wXl1rnPQ7_U77HOjh39ghhUqm_Nr_HH3U1EIo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+kNN+algorithm+for+locating+and+quantifying+stiffness+loss+in+a+bridge+from+the+forced+vibration+due+to+a+truck+crossing+at+low+speed&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Feng%2C+Kun&rft.au=Gonz%C3%A1lez%2C+Arturo&rft.au=Casero%2C+Miguel&rft.date=2021-06-01&rft.issn=0888-3270&rft.volume=154&rft.spage=107599&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2020_107599 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |