MI_DenseNetCAM: A Novel Pan-Cancer Classification and Prediction Method Based on Mutual Information and Deep Learning Model

The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could t...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 12; p. 670232
Main Authors Wang, Jianlin, Dai, Xuebing, Luo, Huimin, Yan, Chaokun, Zhang, Ge, Luo, Junwei
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 03.06.2021
Subjects
Online AccessGet full text
ISSN1664-8021
1664-8021
DOI10.3389/fgene.2021.670232

Cover

Abstract The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types.
AbstractList The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types.
The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types.The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types.
Author Dai, Xuebing
Yan, Chaokun
Luo, Junwei
Wang, Jianlin
Zhang, Ge
Luo, Huimin
AuthorAffiliation 1 School of Computer and Information Engineering, Henan University , Kaifeng , China
2 College of Computer Science and Technology, Henan Polytechnic University , Jiaozuo , China
AuthorAffiliation_xml – name: 1 School of Computer and Information Engineering, Henan University , Kaifeng , China
– name: 2 College of Computer Science and Technology, Henan Polytechnic University , Jiaozuo , China
Author_xml – sequence: 1
  givenname: Jianlin
  surname: Wang
  fullname: Wang, Jianlin
– sequence: 2
  givenname: Xuebing
  surname: Dai
  fullname: Dai, Xuebing
– sequence: 3
  givenname: Huimin
  surname: Luo
  fullname: Luo, Huimin
– sequence: 4
  givenname: Chaokun
  surname: Yan
  fullname: Yan, Chaokun
– sequence: 5
  givenname: Ge
  surname: Zhang
  fullname: Zhang, Ge
– sequence: 6
  givenname: Junwei
  surname: Luo
  fullname: Luo, Junwei
BookMark eNqNkUtvEzEUhUeoiJbSH8BulmwS_JqHWSCFKY9ISekC1tYd-zp15djBnimq-PNMkgooC4Q39r2-59O5Os-LkxADFsVLSuact_K13WDAOSOMzuuGMM6eFGe0rsWsnVonf7xPi4ucb8l0hOSci2fFKRdUyJbSs-LHeqkuMWS8wqFbrN-Ui_Iq3qEvryHMOggaU9l5yNlZp2FwMZQQTHmd0Dh9KNc43ERTvoOMptzX4zCCL5fBxrT9rbhE3JUrhBRc2JTraNC_KJ5a8BkvHu7z4uuH91-6T7PV54_LbrGaaSHYMJOM17wivTVVLxmxLRhEQ0xFNa8M4RVvrJ0moaG9aWsBldYCjBG9NFIC4efF8sg1EW7VLrktpHsVwalDI6aNgjQ47VFxSlCwSlCmrdAopLZ9L6wGVktWNzCx2JE1hh3cfwfvfwEpUftg1CEYtQ9GHYOZRG-Pot3Yb9FoDEMC_8jJ45_gbtQm3qmWEVlROgFePQBS_DZiHtTWZY3eQ8A4ZjU55g1pK7lflh5HdYo5J7T_5a_5S6PdcIhucuP8P5Q_AestyWg
CitedBy_id crossref_primary_10_3390_app132312801
crossref_primary_10_1007_s10489_022_04398_z
crossref_primary_10_1002_cac2_70008
Cites_doi 10.1016/j.jbi.2018.07.014
10.1089/thy.2009.0400
10.1126/science.286.5439.531
10.1016/j.ipm.2007.09.014
10.1142/9789813207813_0022
10.1038/nbt.4233
10.1038/srep13413
10.1038/35000501
10.1016/j.jtbi.2018.12.010
10.1016/j.patcog.2019.02.016
10.15252/embr.201439246
10.1186/s12935-017-0426-6
10.1007/s13402-013-0124-x
10.1038/sj.bjp.0706013
10.1186/s12864-017-3906-0
10.1093/bioinformatics/btm344
10.3322/caac.21590
10.1145/3233547.3233588
10.1089/cmb.2019.0237
10.1109/ACCESS.2018.2843443
10.1109/ACCESS.2020.2970210
10.1103/PhysRevE.69.066138
10.1093/carcin/bgt166
10.1586/14737140.6.8.1261
10.1038/ng.2764
10.1109/CVPR.2009.5206848
10.1038/415530a
10.1038/s41467-019-10493-6
10.1016/j.patrec.2007.05.011
10.1007/s11060-015-1978-8
10.1016/j.csbj.2014.11.005
10.1109/EMBC.2018.8513521
10.1038/nature12213
ContentType Journal Article
Copyright Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo.
Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo. 2021 Wang, Dai, Luo, Yan, Zhang and Luo
Copyright_xml – notice: Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo.
– notice: Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo. 2021 Wang, Dai, Luo, Yan, Zhang and Luo
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fgene.2021.670232
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_310e425412cf4ce49cfbb4fca269267a
10.3389/fgene.2021.670232
PMC8209511
10_3389_fgene_2021_670232
GrantInformation_xml – fundername: Science and Technology Development Plan Project of Henan Province
  grantid: 202102210173; 212102210091
– fundername: Henan Province Postdoctoral Research Project Founding
– fundername: National Natural Science Foundation of China
  grantid: 61802113; 61802114; 61972134
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672212
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c442t-9236350bfd5b920f8adeed0d51c35d03537ff442a71bd864a5cc4add4b9d99a03
IEDL.DBID DOA
ISSN 1664-8021
IngestDate Fri Oct 03 12:26:15 EDT 2025
Sun Oct 26 04:10:15 EDT 2025
Thu Aug 21 18:25:51 EDT 2025
Wed Oct 01 14:15:59 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Wed Oct 01 02:29:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-9236350bfd5b920f8adeed0d51c35d03537ff442a71bd864a5cc4add4b9d99a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Wei Lan, Guangxi University, China
This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics
Reviewed by: Xiaoqing Peng, Central South University, China; Juan Wang, Inner Mongolia University, China
OpenAccessLink https://doaj.org/article/310e425412cf4ce49cfbb4fca269267a
PMID 34149811
PQID 2543708590
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_310e425412cf4ce49cfbb4fca269267a
unpaywall_primary_10_3389_fgene_2021_670232
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209511
proquest_miscellaneous_2543708590
crossref_primary_10_3389_fgene_2021_670232
crossref_citationtrail_10_3389_fgene_2021_670232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-03
PublicationDateYYYYMMDD 2021-06-03
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-03
  day: 03
PublicationDecade 2020
PublicationTitle Frontiers in genetics
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References He (B6)
Kang (B14) 2019; 463
Jurasz (B13) 2004; 143
Weinstein (B38) 2013; 45
Sekido (B28) 2013; 34
Li (B20) 2017; 18
Wainberg (B37) 2018; 36
Hsu (B9) 2018
Martín-Valdivia (B23) 2008; 44
Alizadeh (B1) 2000; 403
Heiland (B8) 2019; 10
Shen (B30) 2017; 17
Tichy (B34) 2016; 126
Kraskov (B18) 2004; 69
Lawrence (B19) 2013; 499
Goutte (B5) 2005
Sharmin (B29) 2019; 91
Golub (B4) 1999; 286
Hu (B10) 2006; 6
Saeys (B26) 2007; 23
Sakri (B27) 2018; 6
Khalifa (B15) 2020; 8
Liu (B21) 2020; 27
Lyu (B22) 2018
Deng (B3) 2009
Sofiadis (B32) 2010; 20
Kourou (B17) 2015; 13
Peng (B24) 2015; 5
Huang (B11) 2017
Siegel (B31) 2020; 70
Van't Veer (B36) 2002; 415
Pickup (B25) 2014; 15
Urbanowicz (B35) 2018; 85
Kim (B16) 2013; 36
Huang (B12) 2007; 28
Szegedy (B33) 2015
Danaee (B2) 2017
He (B7)
References_xml – volume: 85
  start-page: 189
  year: 2018
  ident: B35
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– start-page: 1
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2015
  ident: B33
  article-title: Going deeper with convolutions,
– volume: 20
  start-page: 1067
  year: 2010
  ident: B32
  article-title: Proteomic study of thyroid tumors reveals frequent up-regulation of the ca2+-binding protein s100a6 in papillary thyroid carcinoma
  publication-title: Thyroid
  doi: 10.1089/thy.2009.0400
– volume: 286
  start-page: 531
  year: 1999
  ident: B4
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: science
  doi: 10.1126/science.286.5439.531
– volume: 44
  start-page: 1146
  year: 2008
  ident: B23
  article-title: Using information gain to improve multi-modal information retrieval systems
  publication-title: Inform. Proc. Manag.
  doi: 10.1016/j.ipm.2007.09.014
– start-page: 219
  volume-title: Pacific Symposium on Biocomputing 2017
  year: 2017
  ident: B2
  article-title: A deep learning approach for cancer detection and relevant gene identification,
  doi: 10.1142/9789813207813_0022
– start-page: 345
  volume-title: European Conference on Information Retrieval
  year: 2005
  ident: B5
  article-title: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation,
– volume: 36
  start-page: 829
  year: 2018
  ident: B37
  article-title: Deep learning in biomedicine
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4233
– volume: 5
  start-page: 13413
  year: 2015
  ident: B24
  article-title: Large-scale rna-seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 tcga cancer types
  publication-title: Sci. Rep.
  doi: 10.1038/srep13413
– volume: 403
  start-page: 503
  year: 2000
  ident: B1
  article-title: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– volume: 463
  start-page: 77
  year: 2019
  ident: B14
  article-title: Feature selection and tumor classification for microarray data using relaxed lasso and generalized multi-class support vector machine
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2018.12.010
– volume: 91
  start-page: 162
  year: 2019
  ident: B29
  article-title: Simultaneous feature selection and discretization based on mutual information
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2019.02.016
– start-page: 4700
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  year: 2017
  ident: B11
  article-title: Densely connected convolutional networks,
– volume: 15
  start-page: 1243
  year: 2014
  ident: B25
  article-title: The extracellular matrix modulates the hallmarks of cancer
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439246
– volume: 17
  start-page: 57
  year: 2017
  ident: B30
  article-title: Pepsinogen c expression, regulation and its relationship with cancer
  publication-title: Cancer Cell Int.
  doi: 10.1186/s12935-017-0426-6
– volume: 36
  start-page: 169
  year: 2013
  ident: B16
  article-title: Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer
  publication-title: Cell. Oncol.
  doi: 10.1007/s13402-013-0124-x
– volume: 143
  start-page: 819
  year: 2004
  ident: B13
  article-title: Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0706013
– volume: 18
  start-page: 508
  year: 2017
  ident: B20
  article-title: A comprehensive genomic pan-cancer classification using the cancer genome atlas gene expression data
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3906-0
– volume: 23
  start-page: 2507
  year: 2007
  ident: B26
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 70
  start-page: 7
  year: 2020
  ident: B31
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– start-page: 89
  volume-title: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics
  year: 2018
  ident: B22
  article-title: Deep learning based tumor type classification using gene expression data,
  doi: 10.1145/3233547.3233588
– volume: 27
  start-page: 987
  year: 2020
  ident: B21
  article-title: Analysis of gene expression in bladder cancer: possible involvement of mitosis and complement and coagulation cascades signaling pathway
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2019.0237
– volume: 6
  start-page: 29637
  year: 2018
  ident: B27
  article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2843443
– volume: 8
  start-page: 22874
  year: 2020
  ident: B15
  article-title: Artificial intelligence technique for gene expression by tumor rna-seq data: a novel optimized deep learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970210
– start-page: 630
  ident: B7
  article-title: Identity mappings in deep residual networks,
– volume: 69
  start-page: 066138
  year: 2004
  ident: B18
  article-title: Estimating mutual information
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.066138
– volume: 34
  start-page: 1413
  year: 2013
  ident: B28
  article-title: Molecular pathogenesis of malignant mesothelioma
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgt166
– volume: 6
  start-page: 1261
  year: 2006
  ident: B10
  article-title: Muc1 cytoplasmic tail: a potential therapeutic target for ovarian carcinoma
  publication-title: Exp. Rev. Anticancer Therapy
  doi: 10.1586/14737140.6.8.1261
– volume: 45
  start-page: 1113
  year: 2013
  ident: B38
  article-title: The cancer genome atlas pan-cancer analysis project
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2764
– start-page: 248
  volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
  year: 2009
  ident: B3
  article-title: Imagenet: a large-scale hierarchical image database,
  doi: 10.1109/CVPR.2009.5206848
– volume: 415
  start-page: 530
  year: 2002
  ident: B36
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 10
  start-page: 1
  year: 2019
  ident: B8
  article-title: Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10493-6
– volume: 28
  start-page: 1825
  year: 2007
  ident: B12
  article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2007.05.011
– volume: 126
  start-page: 361
  year: 2016
  ident: B34
  article-title: Prospective evaluation of serum glial fibrillary acidic protein (gfap) as a diagnostic marker for glioblastoma
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-015-1978-8
– volume: 13
  start-page: 8
  year: 2015
  ident: B17
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– start-page: 5374
  volume-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2018
  ident: B9
  article-title: Cancer type prediction and classification based on rna-sequencing data,
  doi: 10.1109/EMBC.2018.8513521
– volume: 499
  start-page: 214
  year: 2013
  ident: B19
  article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes
  publication-title: Nature
  doi: 10.1038/nature12213
– start-page: 770
  volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  ident: B6
  article-title: Deep residual learning for image recognition,
SSID ssj0000493334
Score 2.2880588
Snippet The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 670232
SubjectTerms cancer classification
DenseNet
Genetics
guided grad-CAM algorithm
pan-cancer
RNA-seq data
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA3LiuiL-In1iwg-KV3bJk0bQWR21mUVOuyDA_sW0nzsKqUzdmfUwT_vvWlnsLLoi49pk5bmJLnnkvQcQl7o0pVcG0hyIL7H3JcmlqKWMTBtkTDtC6cxUaxm4mTOP57lZ3tka281dODllakd-knNu-bgx9fNO5jwbzHjhHj72kNXo-Jllh6IAmIQrMjXIFBJdHKoBrb_pSfDjDHe721e3XIUnYKI_4h5_nlu8sa6XerNd900vwWl49vk1sAm6aSH_w7Zc-1dcr33l9zcIz-rD-oI8lQ3c6vppHpDJ3S2-OYaeqrbeIp4dzS4YuJ5oQAR1a2lpx3u3oRiFQym6SHEOkuxvMb_TejwE9OuxZFzSzpItZ5T9Fdr7pP58ftP05N4cFuIDefZKgamB-Qjqb3Na5klvtQW4mdi89Sw3CYsZ4X3UFMXaW1LwXVuDIfVkdfSSqkT9oDst4vWPSRUiBIWQo9K-AxwEKUVknFmnRFeOCsikmx7WZlBihwdMRoFKQkCowIwCoFRPTAReblrsux1OP5W-RCh21VECe1wYdGdq2FGKuC1DhYsnmbGc-O4NL6uuTc6EzIThY7I8y3wCqYc7qPo1i3Wlwr1AwoUhksiUoxGxOiN4zvt54sg3g2MC0htGpFXu7Hz7w969D8-6DG5iY8M59zYE7K_6tbuKTCqVf0szJNfLaogQw
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegE2IvfCPCl4zEEyhdEjtOzFvXMQ2kVn2g0niyHH-MiSitugQ0-Oe5S9JqmRAI8ejkLMvns-938vl3hLzWucu5NhDkgH8Puc9NKEUhQ0DaImLaZ05joDibi5Ml_3ianl55C4NplR6f7mMh6POqYwruU8Rwh0NEJQ886BYpLpN4LDJwOsnB2vqbZE_gACOyt5wvJp8x0hKCwxGcxN115u_7DhxSy9s_AJvXUyVvN9VaX37XZXnFDx3fJWY7gy795Ou4qYux-XGN3PH_pniP3OlhKp10He6TG656QG51hSsvH5Kfsw_qCAJgN3f1dDJ7Ryd0vvrmSrrQVThFQ9rQttwmJiK1a091Zelig9dCbXPWVq6mh-BELcV2gw9ZaP86atfjyLk17TlgzygWbisfkeXx-0_Tk7Av4xAazpM6BAgJqCYqvE0LmUQ-1xYcc2TT2LDURixlmfcgqbO4sLngOjWGw7HLC2ml1BF7TEbVqnJPCBUihxPWI8U-g8BU5FZIxpl1RnjhrAhItF1LZXqOcyy1USqIdVCvqtWrQr2qTq8BebPrsu4IPv4kfIgGshNEbu72A6yh6tdQAWB2cBLyODGeG8el8UXBvdGJkInIdEBebc1LwV7GCxpduVVzoZCYIEPGuSgg2cDuBiMO_1TnX1pWcIBygJbjgLzdWejfJ_T0n6SfkX1stZly7DkZ1ZvGvQBMVhcv-033C-dzNa8
  priority: 102
  providerName: Unpaywall
Title MI_DenseNetCAM: A Novel Pan-Cancer Classification and Prediction Method Based on Mutual Information and Deep Learning Model
URI https://www.proquest.com/docview/2543708590
https://pubmed.ncbi.nlm.nih.gov/PMC8209511
https://www.frontiersin.org/articles/10.3389/fgene.2021.670232/pdf
https://doaj.org/article/310e425412cf4ce49cfbb4fca269267a
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-8021
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000493334
  issn: 1664-8021
  databaseCode: M48
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQEYJLxVMESmUkTqDQJHacmNt221KQstoDKy0ny_GjgKLsartLVfHnmXHS1YZDe-ESyYnz_Maeb-TJN4S806UruTYQ5IB_j7kvTSxFLWNg2iJh2hdOY6BYTcT5jH-d5_OdUl-YE9bJA3cf7gjohwO74mlmPDeOS-PrmnujMyEzUQRqlJRyJ5j61fFexhjvljEhCpNHHvBAWcws_SgKcFTZwBEFvf4Byfw3RfLhpl3q6yvdNDv-5-wx2e-JIx11D_yE3HPtU_KgKyV5_Yz8qb6oEwhJ3cStx6PqEx3RyeK3a-hUt_EYoV3RUAATU4MCGlS3lk5XuFATmlWoJU2Pwa1Ziu0N_lpC-_-VtmecOLekvSrrBcVSas1zMjs7_TY-j_vCCrHhPFvHQOqAZyS1t3kts8SX2oKrTGyeGpbbhOWs8B566iKtbSm4zo3hMBHyWlopdcJekL120bqXhApRwpznUfSeQagoSisk48w6I7xwVkQkufnKyvSq41j8olEQfSAwKgCjEBjVAROR99tTlp3kxm2djxG6bUdUyw47wIZUb0PqLhuKyNsb4BWMLlwy0a1bbC4VSgUUqAGXRKQYWMTgjsMj7c8fQacbyBXw1zQiH7a2c_cLvfofL_SaPMJLhpQ2dkD21quNewPkaV0fhnEC28_zFLYVLw_J_dlkOvr-F7IRG7M
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegE2IvfCPCl4zEEyhdEjtOzFvXMQ2kVn2g0niyHH-MiSitugQ0-Oe5S9JqmRAI8ejkLMvns-938vl3hLzWucu5NhDkgH8Puc9NKEUhQ0DaImLaZ05joDibi5Ml_3ianl55C4NplR6f7mMh6POqYwruU8Rwh0NEJQ886BYpLpN4LDJwOsnB2vqbZE_gACOyt5wvJp8x0hKCwxGcxN115u_7DhxSy9s_AJvXUyVvN9VaX37XZXnFDx3fJWY7gy795Ou4qYux-XGN3PH_pniP3OlhKp10He6TG656QG51hSsvH5Kfsw_qCAJgN3f1dDJ7Ryd0vvrmSrrQVThFQ9rQttwmJiK1a091Zelig9dCbXPWVq6mh-BELcV2gw9ZaP86atfjyLk17TlgzygWbisfkeXx-0_Tk7Av4xAazpM6BAgJqCYqvE0LmUQ-1xYcc2TT2LDURixlmfcgqbO4sLngOjWGw7HLC2ml1BF7TEbVqnJPCBUihxPWI8U-g8BU5FZIxpl1RnjhrAhItF1LZXqOcyy1USqIdVCvqtWrQr2qTq8BebPrsu4IPv4kfIgGshNEbu72A6yh6tdQAWB2cBLyODGeG8el8UXBvdGJkInIdEBebc1LwV7GCxpduVVzoZCYIEPGuSgg2cDuBiMO_1TnX1pWcIBygJbjgLzdWejfJ_T0n6SfkX1stZly7DkZ1ZvGvQBMVhcv-033C-dzNa8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MI_DenseNetCAM%3A+A+Novel+Pan-Cancer+Classification+and+Prediction+Method+Based+on+Mutual+Information+and+Deep+Learning+Model&rft.jtitle=Frontiers+in+genetics&rft.au=Jianlin+Wang&rft.au=Xuebing+Dai&rft.au=Huimin+Luo&rft.au=Chaokun+Yan&rft.date=2021-06-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-8021&rft.volume=12&rft_id=info:doi/10.3389%2Ffgene.2021.670232&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_310e425412cf4ce49cfbb4fca269267a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon