MI_DenseNetCAM: A Novel Pan-Cancer Classification and Prediction Method Based on Mutual Information and Deep Learning Model
The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could t...
Saved in:
| Published in | Frontiers in genetics Vol. 12; p. 670232 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
03.06.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-8021 1664-8021 |
| DOI | 10.3389/fgene.2021.670232 |
Cover
| Abstract | The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types. |
|---|---|
| AbstractList | The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types. The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types.The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and differences between diverse cancers. The analysis for the pan-cancer dataset could help researchers to identify the key factors that could trigger cancer. In this paper, we present a novel pan-cancer classification method, referred to MI_DenseNetCAM, to identify a set of genes that can differentiate all tumor types accurately. First, the Mutual Information (MI) was utilized to eliminate noise and redundancy from the pan-cancer datasets. Then, the gene data was further converted to 2D images. Next, the DenseNet model was adopted as a classifier and the Guided Grad-CAM algorithm was applied to identify the key genes. Extensive experimental results on the public RNA-seq data sets with 33 different tumor types show that our method outperforms the other state-of-the-art classification methods. Moreover, gene analysis further demonstrated that the genes selected by our method were related to the corresponding tumor types. |
| Author | Dai, Xuebing Yan, Chaokun Luo, Junwei Wang, Jianlin Zhang, Ge Luo, Huimin |
| AuthorAffiliation | 1 School of Computer and Information Engineering, Henan University , Kaifeng , China 2 College of Computer Science and Technology, Henan Polytechnic University , Jiaozuo , China |
| AuthorAffiliation_xml | – name: 1 School of Computer and Information Engineering, Henan University , Kaifeng , China – name: 2 College of Computer Science and Technology, Henan Polytechnic University , Jiaozuo , China |
| Author_xml | – sequence: 1 givenname: Jianlin surname: Wang fullname: Wang, Jianlin – sequence: 2 givenname: Xuebing surname: Dai fullname: Dai, Xuebing – sequence: 3 givenname: Huimin surname: Luo fullname: Luo, Huimin – sequence: 4 givenname: Chaokun surname: Yan fullname: Yan, Chaokun – sequence: 5 givenname: Ge surname: Zhang fullname: Zhang, Ge – sequence: 6 givenname: Junwei surname: Luo fullname: Luo, Junwei |
| BookMark | eNqNkUtvEzEUhUeoiJbSH8BulmwS_JqHWSCFKY9ISekC1tYd-zp15djBnimq-PNMkgooC4Q39r2-59O5Os-LkxADFsVLSuact_K13WDAOSOMzuuGMM6eFGe0rsWsnVonf7xPi4ucb8l0hOSci2fFKRdUyJbSs-LHeqkuMWS8wqFbrN-Ui_Iq3qEvryHMOggaU9l5yNlZp2FwMZQQTHmd0Dh9KNc43ERTvoOMptzX4zCCL5fBxrT9rbhE3JUrhBRc2JTraNC_KJ5a8BkvHu7z4uuH91-6T7PV54_LbrGaaSHYMJOM17wivTVVLxmxLRhEQ0xFNa8M4RVvrJ0moaG9aWsBldYCjBG9NFIC4efF8sg1EW7VLrktpHsVwalDI6aNgjQ47VFxSlCwSlCmrdAopLZ9L6wGVktWNzCx2JE1hh3cfwfvfwEpUftg1CEYtQ9GHYOZRG-Pot3Yb9FoDEMC_8jJ45_gbtQm3qmWEVlROgFePQBS_DZiHtTWZY3eQ8A4ZjU55g1pK7lflh5HdYo5J7T_5a_5S6PdcIhucuP8P5Q_AestyWg |
| CitedBy_id | crossref_primary_10_3390_app132312801 crossref_primary_10_1007_s10489_022_04398_z crossref_primary_10_1002_cac2_70008 |
| Cites_doi | 10.1016/j.jbi.2018.07.014 10.1089/thy.2009.0400 10.1126/science.286.5439.531 10.1016/j.ipm.2007.09.014 10.1142/9789813207813_0022 10.1038/nbt.4233 10.1038/srep13413 10.1038/35000501 10.1016/j.jtbi.2018.12.010 10.1016/j.patcog.2019.02.016 10.15252/embr.201439246 10.1186/s12935-017-0426-6 10.1007/s13402-013-0124-x 10.1038/sj.bjp.0706013 10.1186/s12864-017-3906-0 10.1093/bioinformatics/btm344 10.3322/caac.21590 10.1145/3233547.3233588 10.1089/cmb.2019.0237 10.1109/ACCESS.2018.2843443 10.1109/ACCESS.2020.2970210 10.1103/PhysRevE.69.066138 10.1093/carcin/bgt166 10.1586/14737140.6.8.1261 10.1038/ng.2764 10.1109/CVPR.2009.5206848 10.1038/415530a 10.1038/s41467-019-10493-6 10.1016/j.patrec.2007.05.011 10.1007/s11060-015-1978-8 10.1016/j.csbj.2014.11.005 10.1109/EMBC.2018.8513521 10.1038/nature12213 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo. Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo. 2021 Wang, Dai, Luo, Yan, Zhang and Luo |
| Copyright_xml | – notice: Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo. – notice: Copyright © 2021 Wang, Dai, Luo, Yan, Zhang and Luo. 2021 Wang, Dai, Luo, Yan, Zhang and Luo |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fgene.2021.670232 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1664-8021 |
| ExternalDocumentID | oai_doaj_org_article_310e425412cf4ce49cfbb4fca269267a 10.3389/fgene.2021.670232 PMC8209511 10_3389_fgene_2021_670232 |
| GrantInformation_xml | – fundername: Science and Technology Development Plan Project of Henan Province grantid: 202102210173; 212102210091 – fundername: Henan Province Postdoctoral Research Project Founding – fundername: National Natural Science Foundation of China grantid: 61802113; 61802114; 61972134 – fundername: China Postdoctoral Science Foundation grantid: 2020M672212 |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c442t-9236350bfd5b920f8adeed0d51c35d03537ff442a71bd864a5cc4add4b9d99a03 |
| IEDL.DBID | DOA |
| ISSN | 1664-8021 |
| IngestDate | Fri Oct 03 12:26:15 EDT 2025 Sun Oct 26 04:10:15 EDT 2025 Thu Aug 21 18:25:51 EDT 2025 Wed Oct 01 14:15:59 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Oct 01 02:29:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-9236350bfd5b920f8adeed0d51c35d03537ff442a71bd864a5cc4add4b9d99a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Wei Lan, Guangxi University, China This article was submitted to Computational Genomics, a section of the journal Frontiers in Genetics Reviewed by: Xiaoqing Peng, Central South University, China; Juan Wang, Inner Mongolia University, China |
| OpenAccessLink | https://doaj.org/article/310e425412cf4ce49cfbb4fca269267a |
| PMID | 34149811 |
| PQID | 2543708590 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_310e425412cf4ce49cfbb4fca269267a unpaywall_primary_10_3389_fgene_2021_670232 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8209511 proquest_miscellaneous_2543708590 crossref_primary_10_3389_fgene_2021_670232 crossref_citationtrail_10_3389_fgene_2021_670232 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-03 |
| PublicationDateYYYYMMDD | 2021-06-03 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in genetics |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | He (B6) Kang (B14) 2019; 463 Jurasz (B13) 2004; 143 Weinstein (B38) 2013; 45 Sekido (B28) 2013; 34 Li (B20) 2017; 18 Wainberg (B37) 2018; 36 Hsu (B9) 2018 Martín-Valdivia (B23) 2008; 44 Alizadeh (B1) 2000; 403 Heiland (B8) 2019; 10 Shen (B30) 2017; 17 Tichy (B34) 2016; 126 Kraskov (B18) 2004; 69 Lawrence (B19) 2013; 499 Goutte (B5) 2005 Sharmin (B29) 2019; 91 Golub (B4) 1999; 286 Hu (B10) 2006; 6 Saeys (B26) 2007; 23 Sakri (B27) 2018; 6 Khalifa (B15) 2020; 8 Liu (B21) 2020; 27 Lyu (B22) 2018 Deng (B3) 2009 Sofiadis (B32) 2010; 20 Kourou (B17) 2015; 13 Peng (B24) 2015; 5 Huang (B11) 2017 Siegel (B31) 2020; 70 Van't Veer (B36) 2002; 415 Pickup (B25) 2014; 15 Urbanowicz (B35) 2018; 85 Kim (B16) 2013; 36 Huang (B12) 2007; 28 Szegedy (B33) 2015 Danaee (B2) 2017 He (B7) |
| References_xml | – volume: 85 start-page: 189 year: 2018 ident: B35 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – start-page: 1 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2015 ident: B33 article-title: Going deeper with convolutions, – volume: 20 start-page: 1067 year: 2010 ident: B32 article-title: Proteomic study of thyroid tumors reveals frequent up-regulation of the ca2+-binding protein s100a6 in papillary thyroid carcinoma publication-title: Thyroid doi: 10.1089/thy.2009.0400 – volume: 286 start-page: 531 year: 1999 ident: B4 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: science doi: 10.1126/science.286.5439.531 – volume: 44 start-page: 1146 year: 2008 ident: B23 article-title: Using information gain to improve multi-modal information retrieval systems publication-title: Inform. Proc. Manag. doi: 10.1016/j.ipm.2007.09.014 – start-page: 219 volume-title: Pacific Symposium on Biocomputing 2017 year: 2017 ident: B2 article-title: A deep learning approach for cancer detection and relevant gene identification, doi: 10.1142/9789813207813_0022 – start-page: 345 volume-title: European Conference on Information Retrieval year: 2005 ident: B5 article-title: A probabilistic interpretation of precision, recall and f-score, with implication for evaluation, – volume: 36 start-page: 829 year: 2018 ident: B37 article-title: Deep learning in biomedicine publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4233 – volume: 5 start-page: 13413 year: 2015 ident: B24 article-title: Large-scale rna-seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 tcga cancer types publication-title: Sci. Rep. doi: 10.1038/srep13413 – volume: 403 start-page: 503 year: 2000 ident: B1 article-title: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling publication-title: Nature doi: 10.1038/35000501 – volume: 463 start-page: 77 year: 2019 ident: B14 article-title: Feature selection and tumor classification for microarray data using relaxed lasso and generalized multi-class support vector machine publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2018.12.010 – volume: 91 start-page: 162 year: 2019 ident: B29 article-title: Simultaneous feature selection and discretization based on mutual information publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2019.02.016 – start-page: 4700 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition year: 2017 ident: B11 article-title: Densely connected convolutional networks, – volume: 15 start-page: 1243 year: 2014 ident: B25 article-title: The extracellular matrix modulates the hallmarks of cancer publication-title: EMBO Rep. doi: 10.15252/embr.201439246 – volume: 17 start-page: 57 year: 2017 ident: B30 article-title: Pepsinogen c expression, regulation and its relationship with cancer publication-title: Cancer Cell Int. doi: 10.1186/s12935-017-0426-6 – volume: 36 start-page: 169 year: 2013 ident: B16 article-title: Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer publication-title: Cell. Oncol. doi: 10.1007/s13402-013-0124-x – volume: 143 start-page: 819 year: 2004 ident: B13 article-title: Platelet–cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation publication-title: Br. J. Pharmacol. doi: 10.1038/sj.bjp.0706013 – volume: 18 start-page: 508 year: 2017 ident: B20 article-title: A comprehensive genomic pan-cancer classification using the cancer genome atlas gene expression data publication-title: BMC Genomics doi: 10.1186/s12864-017-3906-0 – volume: 23 start-page: 2507 year: 2007 ident: B26 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 70 start-page: 7 year: 2020 ident: B31 article-title: Cancer statistics, 2020 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21590 – start-page: 89 volume-title: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics year: 2018 ident: B22 article-title: Deep learning based tumor type classification using gene expression data, doi: 10.1145/3233547.3233588 – volume: 27 start-page: 987 year: 2020 ident: B21 article-title: Analysis of gene expression in bladder cancer: possible involvement of mitosis and complement and coagulation cascades signaling pathway publication-title: J. Comput. Biol. doi: 10.1089/cmb.2019.0237 – volume: 6 start-page: 29637 year: 2018 ident: B27 article-title: Particle swarm optimization feature selection for breast cancer recurrence prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2843443 – volume: 8 start-page: 22874 year: 2020 ident: B15 article-title: Artificial intelligence technique for gene expression by tumor rna-seq data: a novel optimized deep learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2970210 – start-page: 630 ident: B7 article-title: Identity mappings in deep residual networks, – volume: 69 start-page: 066138 year: 2004 ident: B18 article-title: Estimating mutual information publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.066138 – volume: 34 start-page: 1413 year: 2013 ident: B28 article-title: Molecular pathogenesis of malignant mesothelioma publication-title: Carcinogenesis doi: 10.1093/carcin/bgt166 – volume: 6 start-page: 1261 year: 2006 ident: B10 article-title: Muc1 cytoplasmic tail: a potential therapeutic target for ovarian carcinoma publication-title: Exp. Rev. Anticancer Therapy doi: 10.1586/14737140.6.8.1261 – volume: 45 start-page: 1113 year: 2013 ident: B38 article-title: The cancer genome atlas pan-cancer analysis project publication-title: Nat. Genet. doi: 10.1038/ng.2764 – start-page: 248 volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition year: 2009 ident: B3 article-title: Imagenet: a large-scale hierarchical image database, doi: 10.1109/CVPR.2009.5206848 – volume: 415 start-page: 530 year: 2002 ident: B36 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a – volume: 10 start-page: 1 year: 2019 ident: B8 article-title: Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma publication-title: Nat. Commun. doi: 10.1038/s41467-019-10493-6 – volume: 28 start-page: 1825 year: 2007 ident: B12 article-title: A hybrid genetic algorithm for feature selection wrapper based on mutual information publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2007.05.011 – volume: 126 start-page: 361 year: 2016 ident: B34 article-title: Prospective evaluation of serum glial fibrillary acidic protein (gfap) as a diagnostic marker for glioblastoma publication-title: J. Neurooncol. doi: 10.1007/s11060-015-1978-8 – volume: 13 start-page: 8 year: 2015 ident: B17 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – start-page: 5374 volume-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2018 ident: B9 article-title: Cancer type prediction and classification based on rna-sequencing data, doi: 10.1109/EMBC.2018.8513521 – volume: 499 start-page: 214 year: 2013 ident: B19 article-title: Mutational heterogeneity in cancer and the search for new cancer-associated genes publication-title: Nature doi: 10.1038/nature12213 – start-page: 770 volume-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ident: B6 article-title: Deep residual learning for image recognition, |
| SSID | ssj0000493334 |
| Score | 2.2880588 |
| Snippet | The Pan-Cancer Atlas consists of original sequencing data from various sources, provides the opportunity to perform systematic studies on the commonalities and... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 670232 |
| SubjectTerms | cancer classification DenseNet Genetics guided grad-CAM algorithm pan-cancer RNA-seq data |
| SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA3LiuiL-In1iwg-KV3bJk0bQWR21mUVOuyDA_sW0nzsKqUzdmfUwT_vvWlnsLLoi49pk5bmJLnnkvQcQl7o0pVcG0hyIL7H3JcmlqKWMTBtkTDtC6cxUaxm4mTOP57lZ3tka281dODllakd-knNu-bgx9fNO5jwbzHjhHj72kNXo-Jllh6IAmIQrMjXIFBJdHKoBrb_pSfDjDHe721e3XIUnYKI_4h5_nlu8sa6XerNd900vwWl49vk1sAm6aSH_w7Zc-1dcr33l9zcIz-rD-oI8lQ3c6vppHpDJ3S2-OYaeqrbeIp4dzS4YuJ5oQAR1a2lpx3u3oRiFQym6SHEOkuxvMb_TejwE9OuxZFzSzpItZ5T9Fdr7pP58ftP05N4cFuIDefZKgamB-Qjqb3Na5klvtQW4mdi89Sw3CYsZ4X3UFMXaW1LwXVuDIfVkdfSSqkT9oDst4vWPSRUiBIWQo9K-AxwEKUVknFmnRFeOCsikmx7WZlBihwdMRoFKQkCowIwCoFRPTAReblrsux1OP5W-RCh21VECe1wYdGdq2FGKuC1DhYsnmbGc-O4NL6uuTc6EzIThY7I8y3wCqYc7qPo1i3Wlwr1AwoUhksiUoxGxOiN4zvt54sg3g2MC0htGpFXu7Hz7w969D8-6DG5iY8M59zYE7K_6tbuKTCqVf0szJNfLaogQw priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegE2IvfCPCl4zEEyhdEjtOzFvXMQ2kVn2g0niyHH-MiSitugQ0-Oe5S9JqmRAI8ejkLMvns-938vl3hLzWucu5NhDkgH8Puc9NKEUhQ0DaImLaZ05joDibi5Ml_3ianl55C4NplR6f7mMh6POqYwruU8Rwh0NEJQ886BYpLpN4LDJwOsnB2vqbZE_gACOyt5wvJp8x0hKCwxGcxN115u_7DhxSy9s_AJvXUyVvN9VaX37XZXnFDx3fJWY7gy795Ou4qYux-XGN3PH_pniP3OlhKp10He6TG656QG51hSsvH5Kfsw_qCAJgN3f1dDJ7Ryd0vvrmSrrQVThFQ9rQttwmJiK1a091Zelig9dCbXPWVq6mh-BELcV2gw9ZaP86atfjyLk17TlgzygWbisfkeXx-0_Tk7Av4xAazpM6BAgJqCYqvE0LmUQ-1xYcc2TT2LDURixlmfcgqbO4sLngOjWGw7HLC2ml1BF7TEbVqnJPCBUihxPWI8U-g8BU5FZIxpl1RnjhrAhItF1LZXqOcyy1USqIdVCvqtWrQr2qTq8BebPrsu4IPv4kfIgGshNEbu72A6yh6tdQAWB2cBLyODGeG8el8UXBvdGJkInIdEBebc1LwV7GCxpduVVzoZCYIEPGuSgg2cDuBiMO_1TnX1pWcIBygJbjgLzdWejfJ_T0n6SfkX1stZly7DkZ1ZvGvQBMVhcv-033C-dzNa8 priority: 102 providerName: Unpaywall |
| Title | MI_DenseNetCAM: A Novel Pan-Cancer Classification and Prediction Method Based on Mutual Information and Deep Learning Model |
| URI | https://www.proquest.com/docview/2543708590 https://pubmed.ncbi.nlm.nih.gov/PMC8209511 https://www.frontiersin.org/articles/10.3389/fgene.2021.670232/pdf https://doaj.org/article/310e425412cf4ce49cfbb4fca269267a |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1664-8021 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-8021 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000493334 issn: 1664-8021 databaseCode: M48 dateStart: 20101201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQEYJLxVMESmUkTqDQJHacmNt221KQstoDKy0ny_GjgKLsartLVfHnmXHS1YZDe-ESyYnz_Maeb-TJN4S806UruTYQ5IB_j7kvTSxFLWNg2iJh2hdOY6BYTcT5jH-d5_OdUl-YE9bJA3cf7gjohwO74mlmPDeOS-PrmnujMyEzUQRqlJRyJ5j61fFexhjvljEhCpNHHvBAWcws_SgKcFTZwBEFvf4Byfw3RfLhpl3q6yvdNDv-5-wx2e-JIx11D_yE3HPtU_KgKyV5_Yz8qb6oEwhJ3cStx6PqEx3RyeK3a-hUt_EYoV3RUAATU4MCGlS3lk5XuFATmlWoJU2Pwa1Ziu0N_lpC-_-VtmecOLekvSrrBcVSas1zMjs7_TY-j_vCCrHhPFvHQOqAZyS1t3kts8SX2oKrTGyeGpbbhOWs8B566iKtbSm4zo3hMBHyWlopdcJekL120bqXhApRwpznUfSeQagoSisk48w6I7xwVkQkufnKyvSq41j8olEQfSAwKgCjEBjVAROR99tTlp3kxm2djxG6bUdUyw47wIZUb0PqLhuKyNsb4BWMLlwy0a1bbC4VSgUUqAGXRKQYWMTgjsMj7c8fQacbyBXw1zQiH7a2c_cLvfofL_SaPMJLhpQ2dkD21quNewPkaV0fhnEC28_zFLYVLw_J_dlkOvr-F7IRG7M |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegE2IvfCPCl4zEEyhdEjtOzFvXMQ2kVn2g0niyHH-MiSitugQ0-Oe5S9JqmRAI8ejkLMvns-938vl3hLzWucu5NhDkgH8Puc9NKEUhQ0DaImLaZ05joDibi5Ml_3ianl55C4NplR6f7mMh6POqYwruU8Rwh0NEJQ886BYpLpN4LDJwOsnB2vqbZE_gACOyt5wvJp8x0hKCwxGcxN115u_7DhxSy9s_AJvXUyVvN9VaX37XZXnFDx3fJWY7gy795Ou4qYux-XGN3PH_pniP3OlhKp10He6TG656QG51hSsvH5Kfsw_qCAJgN3f1dDJ7Ryd0vvrmSrrQVThFQ9rQttwmJiK1a091Zelig9dCbXPWVq6mh-BELcV2gw9ZaP86atfjyLk17TlgzygWbisfkeXx-0_Tk7Av4xAazpM6BAgJqCYqvE0LmUQ-1xYcc2TT2LDURixlmfcgqbO4sLngOjWGw7HLC2ml1BF7TEbVqnJPCBUihxPWI8U-g8BU5FZIxpl1RnjhrAhItF1LZXqOcyy1USqIdVCvqtWrQr2qTq8BebPrsu4IPv4kfIgGshNEbu72A6yh6tdQAWB2cBLyODGeG8el8UXBvdGJkInIdEBebc1LwV7GCxpduVVzoZCYIEPGuSgg2cDuBiMO_1TnX1pWcIBygJbjgLzdWejfJ_T0n6SfkX1stZly7DkZ1ZvGvQBMVhcv-033C-dzNa8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MI_DenseNetCAM%3A+A+Novel+Pan-Cancer+Classification+and+Prediction+Method+Based+on+Mutual+Information+and+Deep+Learning+Model&rft.jtitle=Frontiers+in+genetics&rft.au=Jianlin+Wang&rft.au=Xuebing+Dai&rft.au=Huimin+Luo&rft.au=Chaokun+Yan&rft.date=2021-06-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-8021&rft.volume=12&rft_id=info:doi/10.3389%2Ffgene.2021.670232&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_310e425412cf4ce49cfbb4fca269267a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |