The conditional stability and an iterative regularization method for a fractional inverse elliptic problem of Tricomi-Gellerstedt-Keldysh type
The present paper is devoted to identifying an inaccessible boundary condition for a fractional elliptic problem of Tricomi-Gellerstedt-Keldysh-type. Using the expansion Fourier method, the considered problem can be reformulated as an operator equation of the first kind. To construct a stabilized ap...
Saved in:
| Published in | Mathematical modelling and analysis Vol. 29; no. 1; pp. 23 - 45 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Vilnius
Vilnius Gediminas Technical University
22.02.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1392-6292 1648-3510 1648-3510 |
| DOI | 10.3846/mma.2024.16783 |
Cover
| Summary: | The present paper is devoted to identifying an inaccessible boundary condition for a fractional elliptic problem of Tricomi-Gellerstedt-Keldysh-type. Using the expansion Fourier method, the considered problem can be reformulated as an operator equation of the first kind. To construct a stabilized approximate solution we employ a variant of the iterative method. We also present error estimates between the exact solution and the regularized solution by the a priori and the a posteriori parameter choice rules. Finally, some numerical verifications on the efficiency and accuracy of the proposed algorithm is presented. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1392-6292 1648-3510 1648-3510 |
| DOI: | 10.3846/mma.2024.16783 |