A reproducing kernel method for solving singularly perturbed delay parabolic partial differential equations
In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution to the equations is formu...
Saved in:
Published in | Mathematical modelling and analysis Vol. 28; no. 3; pp. 469 - 486 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Vilnius
Vilnius Gediminas Technical University
04.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1392-6292 1648-3510 |
DOI | 10.3846/mma.2023.16852 |
Cover
Abstract | In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme. |
---|---|
AbstractList | In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution [??](s, t) to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the fnal time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme. Keywords: delay parabolic equation, reproducing kernel method, collocation method, numerical solution. AMS Subject Classification: 35K20; 46E23; 65L60. In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme. In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme. |
Audience | Academic |
Author | Xie, Ruifeng Zhang, Jian Li, Wen Yao, Guangming Niu, Jing |
Author_xml | – sequence: 1 givenname: Ruifeng orcidid: 0000-0002-5938-9511 surname: Xie fullname: Xie, Ruifeng organization: Harbin Normal University, 150025 Harbin, China – sequence: 2 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Harbin Normal University, 150025 Harbin, China – sequence: 3 givenname: Jing orcidid: 0000-0002-3932-5860 surname: Niu fullname: Niu, Jing organization: Harbin Normal University, 150025 Harbin, China – sequence: 4 givenname: Wen surname: Li fullname: Li, Wen organization: Department of Mathematics, Fordham University, 10458 Bronx NY, USA – sequence: 5 givenname: Guangming orcidid: 0000-0002-4819-0101 surname: Yao fullname: Yao, Guangming organization: Department of Mathematics, Clarkson University, 13699-5815 Potsdam NY, USA |
BookMark | eNp1UU1v1DAQjVCRaAtXzpEQxyzO2HHs46qCUqkSFzhbE38s3nrjrZ1U6r_HSSg9IUv2jD3v-c28q-pijKOtqo8t2VHB-JfTCXdAgO5aLjp4U122nImGdi25KDGV0HCQ8K66yvlISNeBIJfVw75O9pyimbUfD_WDTaMN9clOv6OpXUx1juFpecllmwOm8FyfbZrmNFhTGxuw5JhwiMHrJZo8htp452yy45rYxxknH8f8vnrrMGT74e95Xf369vXnzffm_sft3c3-vtGMwdRwY3omKVrjimpCBAfLHEoEw_jApJEG6MAloKC6H6jpheto30vgyKADel3dbbwm4lGdkz9helYRvVovYjqoRacOVkk-aEo4Di0F1kksTUnriCasc5yIvnB92rjKjB5nmyd1jHMai3wFglMKVMqlardVHbCQ-tHFKaEuy9iT18Um58v9vued4D2stGwD6BRzTtYp7ad1SgXog2qJWjxVxVO1eKpWT1__-Qd76e6_gM8b4MmH0c_5Vf3LBLa6PwfltDc |
CitedBy_id | crossref_primary_10_1016_j_padiff_2024_100722 |
Cites_doi | 10.1016/0025-5564(88)90064-8 10.1007/978-1-4612-4050-1 10.1016/j.amc.2022.127343 10.1007/s12190-021-01685-9 10.1007/s12591-015-0265-7 10.1016/j.aml.2021.107751 10.1016/S0096-3003(02)00286-2 10.3846/13926292.2005.9637296 10.1016/j.aml.2022.108503 10.1051/mmnp:2006003 10.1016/j.aml.2018.09.013 10.1002/num.22203 10.1007/s12190-018-1175-y 10.1016/j.aml.2022.108475 10.1007/s12346-017-0242-3 10.1016/j.aml.2021.107832 10.1007/s10598-012-9122-5 10.1007/s12591-017-0363-9 10.1016/j.aej.2022.08.033 10.1016/j.aml.2022.108451 10.1016/j.aml.2011.10.025 10.1002/num.22965 10.1007/s12591-017-0399-x 10.1016/j.cam.2013.10.053 10.1016/j.aml.2015.09.004 10.1016/j.cam.2006.05.032 10.1016/j.aml.2019.106036 10.1016/j.aml.2020.106718 10.1093/imanum/17.1.17 10.1201/9780203025741 10.1016/j.amc.2019.06.010 10.1016/j.cam.2017.09.023 10.1016/j.jmaa.2008.07.037 10.1016/j.amc.2016.08.031 10.1016/j.apnum.2020.12.015 10.1016/S0895-7177(02)00278-9 10.1016/j.aml.2022.108318 |
ContentType | Journal Article |
Copyright | Copyright (c) 2023 The Author(s). Published by Vilnius Gediminas Technical University. COPYRIGHT 2023 Vilnius Gediminas Technical University 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright (c) 2023 The Author(s). Published by Vilnius Gediminas Technical University. – notice: COPYRIGHT 2023 Vilnius Gediminas Technical University – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | ABJBJ AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M2O M7S MBDVC P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3846/mma.2023.16852 |
DatabaseName | VILNIUS TECH Press Open Access Scientific Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Engineering Database (subscription) Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic DOAJ |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1648-3510 |
EndPage | 486 |
ExternalDocumentID | oai_doaj_org_article_96bc306ab132459abed9ef0c045f6087 A765867287 10_3846_mma_2023_16852 oai:ojs2.journals.vilniustech.lt:article/16852 |
GroupedDBID | .7F .QJ 4.4 5GY 8FE 8FG 8G5 AAENE ABCCY ABDBF ABFIM ABJBJ ABJCF ABJNI ABPEM ABTAI ABUWG ACGFO ACGFS ACIWK ACUHS ADBBV ADCVX AENEX AFKRA AGMYJ AIJEM ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AVBZW AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CE4 CS3 DU5 DWQXO EN8 ESX E~A E~B GNUQQ GROUPED_DOAJ GTTXZ GUQSH H13 HCIFZ HF~ HZ~ H~P I-F IAO ITC J.P K6V K7- L6V M2O M7S NA5 O9- OK1 P2P PADUT PHGZM PHGZT PQGLB PQQKQ PTHSS PUEGO S-T TDBHL TFL TFW TR2 TUS UT5 UU3 ~8M ~S~ AAYXX CITATION PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N MBDVC P62 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c442t-6dd7493aedf13900862e4fa9a2d46b49d9d23b692a83c7b3d78f5377926a42523 |
IEDL.DBID | 8FG |
ISSN | 1392-6292 |
IngestDate | Wed Aug 27 01:16:06 EDT 2025 Fri Jul 25 12:07:33 EDT 2025 Tue Jun 10 21:18:26 EDT 2025 Tue Jul 01 04:16:28 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Sat Sep 06 06:41:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | collocation method numerical solution delay parabolic equation reproducing kernel method |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-6dd7493aedf13900862e4fa9a2d46b49d9d23b692a83c7b3d78f5377926a42523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3932-5860 0000-0002-4819-0101 0000-0002-5938-9511 |
OpenAccessLink | https://doaj.org/article/96bc306ab132459abed9ef0c045f6087 |
PQID | 2863323997 |
PQPubID | 1386354 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_96bc306ab132459abed9ef0c045f6087 proquest_journals_2863323997 gale_infotracacademiconefile_A765867287 crossref_citationtrail_10_3846_mma_2023_16852 crossref_primary_10_3846_mma_2023_16852 vilnius_journals_article_16852 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230904 |
PublicationDateYYYYMMDD | 2023-09-04 |
PublicationDate_xml | – month: 09 year: 2023 text: 20230904 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Vilnius |
PublicationPlace_xml | – name: Vilnius |
PublicationTitle | Mathematical modelling and analysis |
PublicationTitleAbbrev | MMA |
PublicationYear | 2023 |
Publisher | Vilnius Gediminas Technical University |
Publisher_xml | – name: Vilnius Gediminas Technical University |
References | 10.3846/mma.2023.16852-28 10.3846/mma.2023.16852-29 10.3846/mma.2023.16852-24 10.3846/mma.2023.16852-25 10.3846/mma.2023.16852-26 10.3846/mma.2023.16852-27 10.3846/mma.2023.16852-20 10.3846/mma.2023.16852-21 10.3846/mma.2023.16852-22 10.3846/mma.2023.16852-23 10.3846/mma.2023.16852-40 10.3846/mma.2023.16852-17 10.3846/mma.2023.16852-39 10.3846/mma.2023.16852-18 10.3846/mma.2023.16852-19 10.3846/mma.2023.16852-9 10.3846/mma.2023.16852-13 10.3846/mma.2023.16852-35 10.3846/mma.2023.16852-8 10.3846/mma.2023.16852-14 10.3846/mma.2023.16852-36 10.3846/mma.2023.16852-7 10.3846/mma.2023.16852-15 10.3846/mma.2023.16852-37 10.3846/mma.2023.16852-6 10.3846/mma.2023.16852-16 10.3846/mma.2023.16852-38 10.3846/mma.2023.16852-31 10.3846/mma.2023.16852-10 10.3846/mma.2023.16852-32 10.3846/mma.2023.16852-11 10.3846/mma.2023.16852-33 10.3846/mma.2023.16852-12 10.3846/mma.2023.16852-34 10.3846/mma.2023.16852-30 10.3846/mma.2023.16852-5 10.3846/mma.2023.16852-4 10.3846/mma.2023.16852-3 10.3846/mma.2023.16852-2 10.3846/mma.2023.16852-1 10.3846/mma.2023.16852-0 |
References_xml | – ident: 10.3846/mma.2023.16852-21 doi: 10.1016/0025-5564(88)90064-8 – ident: 10.3846/mma.2023.16852-31 doi: 10.1007/978-1-4612-4050-1 – ident: 10.3846/mma.2023.16852-34 doi: 10.1016/j.amc.2022.127343 – ident: 10.3846/mma.2023.16852-40 doi: 10.1007/s12190-021-01685-9 – ident: 10.3846/mma.2023.16852-3 doi: 10.1007/s12591-015-0265-7 – ident: 10.3846/mma.2023.16852-26 – ident: 10.3846/mma.2023.16852-38 doi: 10.1016/j.aml.2021.107751 – ident: 10.3846/mma.2023.16852-28 doi: 10.1016/S0096-3003(02)00286-2 – ident: 10.3846/mma.2023.16852-29 doi: 10.3846/13926292.2005.9637296 – ident: 10.3846/mma.2023.16852-33 doi: 10.1016/j.aml.2022.108503 – ident: 10.3846/mma.2023.16852-5 doi: 10.1051/mmnp:2006003 – ident: 10.3846/mma.2023.16852-24 doi: 10.1016/j.aml.2018.09.013 – ident: 10.3846/mma.2023.16852-13 doi: 10.1002/num.22203 – ident: 10.3846/mma.2023.16852-8 doi: 10.1007/s12190-018-1175-y – ident: 10.3846/mma.2023.16852-36 doi: 10.1016/j.aml.2022.108475 – ident: 10.3846/mma.2023.16852-11 doi: 10.1007/s12346-017-0242-3 – ident: 10.3846/mma.2023.16852-20 doi: 10.1016/j.aml.2021.107832 – ident: 10.3846/mma.2023.16852-17 doi: 10.1007/s10598-012-9122-5 – ident: 10.3846/mma.2023.16852-4 – ident: 10.3846/mma.2023.16852-25 doi: 10.1007/s12591-017-0363-9 – ident: 10.3846/mma.2023.16852-15 doi: 10.1016/j.aej.2022.08.033 – ident: 10.3846/mma.2023.16852-22 doi: 10.1016/j.aml.2022.108451 – ident: 10.3846/mma.2023.16852-10 doi: 10.1016/j.aml.2011.10.025 – ident: 10.3846/mma.2023.16852-32 doi: 10.1002/num.22965 – ident: 10.3846/mma.2023.16852-6 doi: 10.1007/s12591-017-0399-x – ident: 10.3846/mma.2023.16852-19 doi: 10.1016/j.cam.2013.10.053 – ident: 10.3846/mma.2023.16852-37 doi: 10.1016/j.aml.2015.09.004 – ident: 10.3846/mma.2023.16852-2 doi: 10.1016/j.cam.2006.05.032 – ident: 10.3846/mma.2023.16852-23 doi: 10.1016/j.aml.2019.106036 – ident: 10.3846/mma.2023.16852-16 – ident: 10.3846/mma.2023.16852-30 doi: 10.1016/j.aml.2020.106718 – ident: 10.3846/mma.2023.16852-14 doi: 10.1093/imanum/17.1.17 – ident: 10.3846/mma.2023.16852-0 doi: 10.1201/9780203025741 – ident: 10.3846/mma.2023.16852-27 doi: 10.1016/j.amc.2019.06.010 – ident: 10.3846/mma.2023.16852-7 – ident: 10.3846/mma.2023.16852-1 doi: 10.1016/j.cam.2017.09.023 – ident: 10.3846/mma.2023.16852-9 doi: 10.1016/j.jmaa.2008.07.037 – ident: 10.3846/mma.2023.16852-18 doi: 10.1016/j.amc.2016.08.031 – ident: 10.3846/mma.2023.16852-35 doi: 10.1016/j.apnum.2020.12.015 – ident: 10.3846/mma.2023.16852-39 doi: 10.1016/S0895-7177(02)00278-9 – ident: 10.3846/mma.2023.16852-12 doi: 10.1016/j.aml.2022.108318 |
SSID | ssj0055280 |
Score | 2.286071 |
Snippet | In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the... |
SourceID | doaj proquest gale crossref vilnius |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 469 |
SubjectTerms | Analysis Approximation Boundary value problems collocation method Collocation methods Convergence delay parabolic equation Differential equations Exact solutions Kernels Mathematical analysis Mathematical functions Methods numerical solution Parabolic differential equations Partial differential equations reproducing kernel method Singular perturbation |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_Fkz2Uqi21fpBDoafU3SSb3Ryfokihnip4C_mEh9utfR-C_70zya59UsRLb5tNYCe_mezMhOQ3hHxJ4LNlEjVrdZBMNqJiTgfNaivAQcSUQi739uNKXV7L7zfNzUapLzwTVuiBC3AnWjkPYa11kDbJRlsXg46p8hCKJFV1-R55paspmSr_4KbhXbkfrDlTXPNC1yjA2Z78ynRDXHyrVdfwZ-4os_b_-2-G0Ph-3g_z9XLD9Vy8J-_GmJHOiqw75E0cdsnbDSbBPXI7o0hPieyt0Ka3cTHEnpby0BTiUgomhlsHFLcG8ORp_0Dv4gL8DcyUIlMktO0CLKKfe3yChd_TqXpKbsQ_hRV8-YFcX5z_PLtkYx0F5qXkK6ZCaKUWNoYEgOQkJspkteVBKidBNaAQpzS3nfCtE6HtUoNEhFxZWNJcfCRbw-8hfiI0KWVrC5lsVTkI9WrXCh9dJx0A7jvv9wmb4DR-JBnHWhe9gWQD4TcAv0H4TYZ_n3x9Gn9X6DVeHHmK2nkahbTY-QUYixmNxbxmLPA51K3BxQtieTveQYDJIQ2WmbUQkKmW48jDSf1mXNVLwzslBF4Ghu7j0ST-9k5CZHE__w9xD8g2ApCPtMlDsrVarOMRxEArd5zN_REp_QOH priority: 102 providerName: Directory of Open Access Journals |
Title | A reproducing kernel method for solving singularly perturbed delay parabolic partial differential equations |
URI | https://journals.vilniustech.lt/index.php/MMA/article/view/16852 https://www.proquest.com/docview/2863323997 https://doaj.org/article/96bc306ab132459abed9ef0c045f6087 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RQLZeUDEifTxHac-IS2qEuFRIUQlXqz_ApaNc1us1sk_j0zjtMWIbjFiaPY8_A8Yn9DyNsWbLZsRclqHSSTlSiY00Gz0gowELFtQyr39uVUnZzJz-fVeU64bfO2ymlNTAt1WHvMkR_yRgmBBzHrD5srhlWj8O9qLqFxn-yXHGwtnhRffppW4qrizXhKWHOmuOYjaKMAk3t4mUCHuHhfqqbifxilhN3_9woNDvLPVdevrrd3DNDyMXmUPUe6GFn9hNyL_VPy8A6e4DNysaAIUokYrtCmF3HoY0fHItEUvFMKgoYJBIoJAtx_2v2imziA1XExUMSLhLYdQC66lccrUP-OTjVUUiNejdjg2-fkbHn8_eMJy9UUmJeS75gKoZZa2BhaIEgKZaJsrbY8SOUkMAjY4pTmthG-diLUTVshHCFXFhSbixdkr1_38SWhrVK2tBDPFoUDh690tfDRNdIBwX3j_YywiZzGZ6hxrHjRGQg5kPwGyG-Q_CaRf0be3fTfjCAb_-x5hNy56YXg2OnGevhhsq4ZrZyHSMg6iLRlpS2QUMe28OC9tqpoavgc8tagCsOwvM0nEWByCIZlFjW4Zarm2PNgYr_Jur01t5I4I_MsErdPp0Gk4b76__uvyQOcWtqyJg_I3m64jm_Ax9m5eRLkOdk_Oj79-m2eMgW_AWDS_Yg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAcEE8RKMUHEKelG9vrXR8qlEKrlLYRQq3Um_FrUdRlk25SUP8cv40Z725bhODWW5w4yux4PPON4_mGkNclxGxR8lGSKy8SkfE0scqrZGQ4BIhQlj62ezuaysmJ-HSana6RX30tDF6r7H1idNR-7vCMfIsVknMsxMzfL84T7BqF_672LTRM11rBb0eKsa6w4yBc_oQUbrm9_xHW-w1je7vHHyZJ12UgcUKwVSK9z4XiJvgS0FCE-EGURhnmhbQCBAdxrVTMFNzllvu8KDOk6WPSgMEj8QGEgHWBBygDsr6zO_38pY8FWcaKtk5ZsUQyxVraSA5Bf-t7pD1i_N1IFhn7IyzG7gF_xwiA6D9mVT27WN4IgXsPyP0Ou9Jxa2wPyVqoH5F7NxgNH5OzMUWaTGSRhTE9C00dKtq2qaaAjymYOh5hUDyiwBuw1SVdhAbing2eImMljE0DllnNHL4CB1TRvotLHITzlp18-YSc3Iqmn5JBPa_DM0JLKc3IQEadphYg58jm3AVbCAsKd4VzQ5L06tSuIzvHnhuVhqQH1a9B_RrVr6P6h-Tt1fxFS_Pxz5k7uDpXs5CeO74xb77pbrdrJa2DXMxYyPVFpgyoUIUydYCfS5kWOfwcrq1GJwJiOdPVQsDDIR2XHucADGXOcOZGv_y68y5Lfb0XhmSzM4nrT3shorjP___9V-TO5PjoUB_uTw9ekLv4mPECndggg1VzEV4C4lrZzc6sKfl62zvpN10fPVE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reproducing+kernel+method+for+solving+singularly+perturbed+delay+parabolic+partial+differential+equations&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Xie%2C+Ruifeng&rft.au=Zhang%2C+Jian&rft.au=Niu%2C+Jing&rft.au=Li%2C+Wen&rft.date=2023-09-04&rft.pub=Vilnius+Gediminas+Technical+University&rft.issn=1392-6292&rft.eissn=1648-3510&rft.volume=28&rft.issue=3&rft_id=info:doi/10.3846%2Fmma.2023.16852&rft.externalDBID=https%3A%2F%2Fjournals.vilniustech.lt%2Findex.php%2FMMA%2Farticle%2Fdownload%2F16852%2F11706&rft.externalDocID=oai%3Aojs2.journals.vilniustech.lt%3Aarticle%2F16852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon |