A reproducing kernel method for solving singularly perturbed delay parabolic partial differential equations

In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution  to the equations is formu...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling and analysis Vol. 28; no. 3; pp. 469 - 486
Main Authors Xie, Ruifeng, Zhang, Jian, Niu, Jing, Li, Wen, Yao, Guangming
Format Journal Article
LanguageEnglish
Published Vilnius Vilnius Gediminas Technical University 04.09.2023
Subjects
Online AccessGet full text
ISSN1392-6292
1648-3510
DOI10.3846/mma.2023.16852

Cover

Abstract In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution  to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme.
AbstractList In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution [??](s, t) to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the fnal time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme. Keywords: delay parabolic equation, reproducing kernel method, collocation method, numerical solution. AMS Subject Classification: 35K20; 46E23; 65L60.
In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme.
In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the solution of delay parabolic partial differential equations(PDEs) with singular perturbation. The approximated solution  to the equations is formulated and proved the exact solution is uniformly convergent by the solution. Furthermore, the partial differentiation of the approximated solution is also proved the partial derivatives of the exact solution is uniformly convergent by the solution. Meanwhile, we show that the accuracy of our method is in the order of T/n where T is the final time and n is the number of spatial (and time) discretization in the domain of interests. Three numerical examples are put forward to demonstrate the effectiveness of our presented scheme.
Audience Academic
Author Xie, Ruifeng
Zhang, Jian
Li, Wen
Yao, Guangming
Niu, Jing
Author_xml – sequence: 1
  givenname: Ruifeng
  orcidid: 0000-0002-5938-9511
  surname: Xie
  fullname: Xie, Ruifeng
  organization: Harbin Normal University, 150025 Harbin, China
– sequence: 2
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Harbin Normal University, 150025 Harbin, China
– sequence: 3
  givenname: Jing
  orcidid: 0000-0002-3932-5860
  surname: Niu
  fullname: Niu, Jing
  organization: Harbin Normal University, 150025 Harbin, China
– sequence: 4
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  organization: Department of Mathematics, Fordham University, 10458 Bronx NY, USA
– sequence: 5
  givenname: Guangming
  orcidid: 0000-0002-4819-0101
  surname: Yao
  fullname: Yao, Guangming
  organization: Department of Mathematics, Clarkson University, 13699-5815 Potsdam NY, USA
BookMark eNp1UU1v1DAQjVCRaAtXzpEQxyzO2HHs46qCUqkSFzhbE38s3nrjrZ1U6r_HSSg9IUv2jD3v-c28q-pijKOtqo8t2VHB-JfTCXdAgO5aLjp4U122nImGdi25KDGV0HCQ8K66yvlISNeBIJfVw75O9pyimbUfD_WDTaMN9clOv6OpXUx1juFpecllmwOm8FyfbZrmNFhTGxuw5JhwiMHrJZo8htp452yy45rYxxknH8f8vnrrMGT74e95Xf369vXnzffm_sft3c3-vtGMwdRwY3omKVrjimpCBAfLHEoEw_jApJEG6MAloKC6H6jpheto30vgyKADel3dbbwm4lGdkz9helYRvVovYjqoRacOVkk-aEo4Di0F1kksTUnriCasc5yIvnB92rjKjB5nmyd1jHMai3wFglMKVMqlardVHbCQ-tHFKaEuy9iT18Um58v9vued4D2stGwD6BRzTtYp7ad1SgXog2qJWjxVxVO1eKpWT1__-Qd76e6_gM8b4MmH0c_5Vf3LBLa6PwfltDc
CitedBy_id crossref_primary_10_1016_j_padiff_2024_100722
Cites_doi 10.1016/0025-5564(88)90064-8
10.1007/978-1-4612-4050-1
10.1016/j.amc.2022.127343
10.1007/s12190-021-01685-9
10.1007/s12591-015-0265-7
10.1016/j.aml.2021.107751
10.1016/S0096-3003(02)00286-2
10.3846/13926292.2005.9637296
10.1016/j.aml.2022.108503
10.1051/mmnp:2006003
10.1016/j.aml.2018.09.013
10.1002/num.22203
10.1007/s12190-018-1175-y
10.1016/j.aml.2022.108475
10.1007/s12346-017-0242-3
10.1016/j.aml.2021.107832
10.1007/s10598-012-9122-5
10.1007/s12591-017-0363-9
10.1016/j.aej.2022.08.033
10.1016/j.aml.2022.108451
10.1016/j.aml.2011.10.025
10.1002/num.22965
10.1007/s12591-017-0399-x
10.1016/j.cam.2013.10.053
10.1016/j.aml.2015.09.004
10.1016/j.cam.2006.05.032
10.1016/j.aml.2019.106036
10.1016/j.aml.2020.106718
10.1093/imanum/17.1.17
10.1201/9780203025741
10.1016/j.amc.2019.06.010
10.1016/j.cam.2017.09.023
10.1016/j.jmaa.2008.07.037
10.1016/j.amc.2016.08.031
10.1016/j.apnum.2020.12.015
10.1016/S0895-7177(02)00278-9
10.1016/j.aml.2022.108318
ContentType Journal Article
Copyright Copyright (c) 2023 The Author(s). Published by Vilnius Gediminas Technical University.
COPYRIGHT 2023 Vilnius Gediminas Technical University
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright (c) 2023 The Author(s). Published by Vilnius Gediminas Technical University.
– notice: COPYRIGHT 2023 Vilnius Gediminas Technical University
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ABJBJ
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M2O
M7S
MBDVC
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3846/mma.2023.16852
DatabaseName VILNIUS TECH Press Open Access Scientific Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Engineering Database (subscription)
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
DOAJ
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1648-3510
EndPage 486
ExternalDocumentID oai_doaj_org_article_96bc306ab132459abed9ef0c045f6087
A765867287
10_3846_mma_2023_16852
oai:ojs2.journals.vilniustech.lt:article/16852
GroupedDBID .7F
.QJ
4.4
5GY
8FE
8FG
8G5
AAENE
ABCCY
ABDBF
ABFIM
ABJBJ
ABJCF
ABJNI
ABPEM
ABTAI
ABUWG
ACGFO
ACGFS
ACIWK
ACUHS
ADBBV
ADCVX
AENEX
AFKRA
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AVBZW
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CE4
CS3
DU5
DWQXO
EN8
ESX
E~A
E~B
GNUQQ
GROUPED_DOAJ
GTTXZ
GUQSH
H13
HCIFZ
HF~
HZ~
H~P
I-F
IAO
ITC
J.P
K6V
K7-
L6V
M2O
M7S
NA5
O9-
OK1
P2P
PADUT
PHGZM
PHGZT
PQGLB
PQQKQ
PTHSS
PUEGO
S-T
TDBHL
TFL
TFW
TR2
TUS
UT5
UU3
~8M
~S~
AAYXX
CITATION
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
MBDVC
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c442t-6dd7493aedf13900862e4fa9a2d46b49d9d23b692a83c7b3d78f5377926a42523
IEDL.DBID 8FG
ISSN 1392-6292
IngestDate Wed Aug 27 01:16:06 EDT 2025
Fri Jul 25 12:07:33 EDT 2025
Tue Jun 10 21:18:26 EDT 2025
Tue Jul 01 04:16:28 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Sat Sep 06 06:41:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords collocation method
numerical solution
delay parabolic equation
reproducing kernel method
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-6dd7493aedf13900862e4fa9a2d46b49d9d23b692a83c7b3d78f5377926a42523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3932-5860
0000-0002-4819-0101
0000-0002-5938-9511
OpenAccessLink https://doaj.org/article/96bc306ab132459abed9ef0c045f6087
PQID 2863323997
PQPubID 1386354
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_96bc306ab132459abed9ef0c045f6087
proquest_journals_2863323997
gale_infotracacademiconefile_A765867287
crossref_citationtrail_10_3846_mma_2023_16852
crossref_primary_10_3846_mma_2023_16852
vilnius_journals_article_16852
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230904
PublicationDateYYYYMMDD 2023-09-04
PublicationDate_xml – month: 09
  year: 2023
  text: 20230904
  day: 04
PublicationDecade 2020
PublicationPlace Vilnius
PublicationPlace_xml – name: Vilnius
PublicationTitle Mathematical modelling and analysis
PublicationTitleAbbrev MMA
PublicationYear 2023
Publisher Vilnius Gediminas Technical University
Publisher_xml – name: Vilnius Gediminas Technical University
References 10.3846/mma.2023.16852-28
10.3846/mma.2023.16852-29
10.3846/mma.2023.16852-24
10.3846/mma.2023.16852-25
10.3846/mma.2023.16852-26
10.3846/mma.2023.16852-27
10.3846/mma.2023.16852-20
10.3846/mma.2023.16852-21
10.3846/mma.2023.16852-22
10.3846/mma.2023.16852-23
10.3846/mma.2023.16852-40
10.3846/mma.2023.16852-17
10.3846/mma.2023.16852-39
10.3846/mma.2023.16852-18
10.3846/mma.2023.16852-19
10.3846/mma.2023.16852-9
10.3846/mma.2023.16852-13
10.3846/mma.2023.16852-35
10.3846/mma.2023.16852-8
10.3846/mma.2023.16852-14
10.3846/mma.2023.16852-36
10.3846/mma.2023.16852-7
10.3846/mma.2023.16852-15
10.3846/mma.2023.16852-37
10.3846/mma.2023.16852-6
10.3846/mma.2023.16852-16
10.3846/mma.2023.16852-38
10.3846/mma.2023.16852-31
10.3846/mma.2023.16852-10
10.3846/mma.2023.16852-32
10.3846/mma.2023.16852-11
10.3846/mma.2023.16852-33
10.3846/mma.2023.16852-12
10.3846/mma.2023.16852-34
10.3846/mma.2023.16852-30
10.3846/mma.2023.16852-5
10.3846/mma.2023.16852-4
10.3846/mma.2023.16852-3
10.3846/mma.2023.16852-2
10.3846/mma.2023.16852-1
10.3846/mma.2023.16852-0
References_xml – ident: 10.3846/mma.2023.16852-21
  doi: 10.1016/0025-5564(88)90064-8
– ident: 10.3846/mma.2023.16852-31
  doi: 10.1007/978-1-4612-4050-1
– ident: 10.3846/mma.2023.16852-34
  doi: 10.1016/j.amc.2022.127343
– ident: 10.3846/mma.2023.16852-40
  doi: 10.1007/s12190-021-01685-9
– ident: 10.3846/mma.2023.16852-3
  doi: 10.1007/s12591-015-0265-7
– ident: 10.3846/mma.2023.16852-26
– ident: 10.3846/mma.2023.16852-38
  doi: 10.1016/j.aml.2021.107751
– ident: 10.3846/mma.2023.16852-28
  doi: 10.1016/S0096-3003(02)00286-2
– ident: 10.3846/mma.2023.16852-29
  doi: 10.3846/13926292.2005.9637296
– ident: 10.3846/mma.2023.16852-33
  doi: 10.1016/j.aml.2022.108503
– ident: 10.3846/mma.2023.16852-5
  doi: 10.1051/mmnp:2006003
– ident: 10.3846/mma.2023.16852-24
  doi: 10.1016/j.aml.2018.09.013
– ident: 10.3846/mma.2023.16852-13
  doi: 10.1002/num.22203
– ident: 10.3846/mma.2023.16852-8
  doi: 10.1007/s12190-018-1175-y
– ident: 10.3846/mma.2023.16852-36
  doi: 10.1016/j.aml.2022.108475
– ident: 10.3846/mma.2023.16852-11
  doi: 10.1007/s12346-017-0242-3
– ident: 10.3846/mma.2023.16852-20
  doi: 10.1016/j.aml.2021.107832
– ident: 10.3846/mma.2023.16852-17
  doi: 10.1007/s10598-012-9122-5
– ident: 10.3846/mma.2023.16852-4
– ident: 10.3846/mma.2023.16852-25
  doi: 10.1007/s12591-017-0363-9
– ident: 10.3846/mma.2023.16852-15
  doi: 10.1016/j.aej.2022.08.033
– ident: 10.3846/mma.2023.16852-22
  doi: 10.1016/j.aml.2022.108451
– ident: 10.3846/mma.2023.16852-10
  doi: 10.1016/j.aml.2011.10.025
– ident: 10.3846/mma.2023.16852-32
  doi: 10.1002/num.22965
– ident: 10.3846/mma.2023.16852-6
  doi: 10.1007/s12591-017-0399-x
– ident: 10.3846/mma.2023.16852-19
  doi: 10.1016/j.cam.2013.10.053
– ident: 10.3846/mma.2023.16852-37
  doi: 10.1016/j.aml.2015.09.004
– ident: 10.3846/mma.2023.16852-2
  doi: 10.1016/j.cam.2006.05.032
– ident: 10.3846/mma.2023.16852-23
  doi: 10.1016/j.aml.2019.106036
– ident: 10.3846/mma.2023.16852-16
– ident: 10.3846/mma.2023.16852-30
  doi: 10.1016/j.aml.2020.106718
– ident: 10.3846/mma.2023.16852-14
  doi: 10.1093/imanum/17.1.17
– ident: 10.3846/mma.2023.16852-0
  doi: 10.1201/9780203025741
– ident: 10.3846/mma.2023.16852-27
  doi: 10.1016/j.amc.2019.06.010
– ident: 10.3846/mma.2023.16852-7
– ident: 10.3846/mma.2023.16852-1
  doi: 10.1016/j.cam.2017.09.023
– ident: 10.3846/mma.2023.16852-9
  doi: 10.1016/j.jmaa.2008.07.037
– ident: 10.3846/mma.2023.16852-18
  doi: 10.1016/j.amc.2016.08.031
– ident: 10.3846/mma.2023.16852-35
  doi: 10.1016/j.apnum.2020.12.015
– ident: 10.3846/mma.2023.16852-39
  doi: 10.1016/S0895-7177(02)00278-9
– ident: 10.3846/mma.2023.16852-12
  doi: 10.1016/j.aml.2022.108318
SSID ssj0055280
Score 2.286071
Snippet In this article, we put forward an efficient method on the foundation of a few reproducing kernel spaces(RK-spaces) and the collocation method to seek the...
SourceID doaj
proquest
gale
crossref
vilnius
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms Analysis
Approximation
Boundary value problems
collocation method
Collocation methods
Convergence
delay parabolic equation
Differential equations
Exact solutions
Kernels
Mathematical analysis
Mathematical functions
Methods
numerical solution
Parabolic differential equations
Partial differential equations
reproducing kernel method
Singular perturbation
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA_Fkz2Uqi21fpBDoafU3SSb3Ryfokihnip4C_mEh9utfR-C_70zya59UsRLb5tNYCe_mezMhOQ3hHxJ4LNlEjVrdZBMNqJiTgfNaivAQcSUQi739uNKXV7L7zfNzUapLzwTVuiBC3AnWjkPYa11kDbJRlsXg46p8hCKJFV1-R55paspmSr_4KbhXbkfrDlTXPNC1yjA2Z78ynRDXHyrVdfwZ-4os_b_-2-G0Ph-3g_z9XLD9Vy8J-_GmJHOiqw75E0cdsnbDSbBPXI7o0hPieyt0Ka3cTHEnpby0BTiUgomhlsHFLcG8ORp_0Dv4gL8DcyUIlMktO0CLKKfe3yChd_TqXpKbsQ_hRV8-YFcX5z_PLtkYx0F5qXkK6ZCaKUWNoYEgOQkJspkteVBKidBNaAQpzS3nfCtE6HtUoNEhFxZWNJcfCRbw-8hfiI0KWVrC5lsVTkI9WrXCh9dJx0A7jvv9wmb4DR-JBnHWhe9gWQD4TcAv0H4TYZ_n3x9Gn9X6DVeHHmK2nkahbTY-QUYixmNxbxmLPA51K3BxQtieTveQYDJIQ2WmbUQkKmW48jDSf1mXNVLwzslBF4Ghu7j0ST-9k5CZHE__w9xD8g2ApCPtMlDsrVarOMRxEArd5zN_REp_QOH
  priority: 102
  providerName: Directory of Open Access Journals
Title A reproducing kernel method for solving singularly perturbed delay parabolic partial differential equations
URI https://journals.vilniustech.lt/index.php/MMA/article/view/16852
https://www.proquest.com/docview/2863323997
https://doaj.org/article/96bc306ab132459abed9ef0c045f6087
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RQLZeUDEifTxHac-IS2qEuFRIUQlXqz_ApaNc1us1sk_j0zjtMWIbjFiaPY8_A8Yn9DyNsWbLZsRclqHSSTlSiY00Gz0gowELFtQyr39uVUnZzJz-fVeU64bfO2ymlNTAt1WHvMkR_yRgmBBzHrD5srhlWj8O9qLqFxn-yXHGwtnhRffppW4qrizXhKWHOmuOYjaKMAk3t4mUCHuHhfqqbifxilhN3_9woNDvLPVdevrrd3DNDyMXmUPUe6GFn9hNyL_VPy8A6e4DNysaAIUokYrtCmF3HoY0fHItEUvFMKgoYJBIoJAtx_2v2imziA1XExUMSLhLYdQC66lccrUP-OTjVUUiNejdjg2-fkbHn8_eMJy9UUmJeS75gKoZZa2BhaIEgKZaJsrbY8SOUkMAjY4pTmthG-diLUTVshHCFXFhSbixdkr1_38SWhrVK2tBDPFoUDh690tfDRNdIBwX3j_YywiZzGZ6hxrHjRGQg5kPwGyG-Q_CaRf0be3fTfjCAb_-x5hNy56YXg2OnGevhhsq4ZrZyHSMg6iLRlpS2QUMe28OC9tqpoavgc8tagCsOwvM0nEWByCIZlFjW4Zarm2PNgYr_Jur01t5I4I_MsErdPp0Gk4b76__uvyQOcWtqyJg_I3m64jm_Ax9m5eRLkOdk_Oj79-m2eMgW_AWDS_Yg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9AAcEE8RKMUHEKelG9vrXR8qlEKrlLYRQq3Um_FrUdRlk25SUP8cv40Z725bhODWW5w4yux4PPON4_mGkNclxGxR8lGSKy8SkfE0scqrZGQ4BIhQlj62ezuaysmJ-HSana6RX30tDF6r7H1idNR-7vCMfIsVknMsxMzfL84T7BqF_672LTRM11rBb0eKsa6w4yBc_oQUbrm9_xHW-w1je7vHHyZJ12UgcUKwVSK9z4XiJvgS0FCE-EGURhnmhbQCBAdxrVTMFNzllvu8KDOk6WPSgMEj8QGEgHWBBygDsr6zO_38pY8FWcaKtk5ZsUQyxVraSA5Bf-t7pD1i_N1IFhn7IyzG7gF_xwiA6D9mVT27WN4IgXsPyP0Ou9Jxa2wPyVqoH5F7NxgNH5OzMUWaTGSRhTE9C00dKtq2qaaAjymYOh5hUDyiwBuw1SVdhAbing2eImMljE0DllnNHL4CB1TRvotLHITzlp18-YSc3Iqmn5JBPa_DM0JLKc3IQEadphYg58jm3AVbCAsKd4VzQ5L06tSuIzvHnhuVhqQH1a9B_RrVr6P6h-Tt1fxFS_Pxz5k7uDpXs5CeO74xb77pbrdrJa2DXMxYyPVFpgyoUIUydYCfS5kWOfwcrq1GJwJiOdPVQsDDIR2XHucADGXOcOZGv_y68y5Lfb0XhmSzM4nrT3shorjP___9V-TO5PjoUB_uTw9ekLv4mPECndggg1VzEV4C4lrZzc6sKfl62zvpN10fPVE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+reproducing+kernel+method+for+solving+singularly+perturbed+delay+parabolic+partial+differential+equations&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Xie%2C+Ruifeng&rft.au=Zhang%2C+Jian&rft.au=Niu%2C+Jing&rft.au=Li%2C+Wen&rft.date=2023-09-04&rft.pub=Vilnius+Gediminas+Technical+University&rft.issn=1392-6292&rft.eissn=1648-3510&rft.volume=28&rft.issue=3&rft_id=info:doi/10.3846%2Fmma.2023.16852&rft.externalDBID=https%3A%2F%2Fjournals.vilniustech.lt%2Findex.php%2FMMA%2Farticle%2Fdownload%2F16852%2F11706&rft.externalDocID=oai%3Aojs2.journals.vilniustech.lt%3Aarticle%2F16852
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon