Computational model to address lens-based acoustic field aperture in the in vitro ultrasonic cell stimulation
Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger me...
Saved in:
Published in | Ultrasonics Vol. 138; p. 107226 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0041-624X 1874-9968 1874-9968 |
DOI | 10.1016/j.ultras.2023.107226 |
Cover
Abstract | Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.
•Improvement of LIPUS in vitro tests.•Finite-Element model to develop an acoustic lens.•Acoustic lens to broaden and homogenize the acoustic field inside a Petri dish.•Acoustic lens attenuates the ultrasonic field. |
---|---|
AbstractList | Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.
•Improvement of LIPUS in vitro tests.•Finite-Element model to develop an acoustic lens.•Acoustic lens to broaden and homogenize the acoustic field inside a Petri dish.•Acoustic lens attenuates the ultrasonic field. Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject.In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss.All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria. Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria. |
ArticleNumber | 107226 |
Author | Majnooni, Meysam Guivier-Curien, Carine Baron, Cécile Lasaygues, Philippe Doveri, Elise |
Author_xml | – sequence: 1 givenname: Elise orcidid: 0000-0002-9277-8172 surname: Doveri fullname: Doveri, Elise email: doveri@lma.cnrs-mrs.fr organization: Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, 4 impasse Nikola Tesla, 13453, Marseille, France – sequence: 2 givenname: Meysam surname: Majnooni fullname: Majnooni, Meysam email: meysam.majnooni@univ-amu.fr organization: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 49 rue Frédéric Joliot-Curie, 13384, Marseille, France – sequence: 3 givenname: Carine orcidid: 0009-0006-6114-6590 surname: Guivier-Curien fullname: Guivier-Curien, Carine email: carine.guivier@univ-amu.fr organization: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 49 rue Frédéric Joliot-Curie, 13384, Marseille, France – sequence: 4 givenname: Cécile orcidid: 0000-0002-4281-0066 surname: Baron fullname: Baron, Cécile email: cecile.baron@univ-amu.fr organization: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 49 rue Frédéric Joliot-Curie, 13384, Marseille, France – sequence: 5 givenname: Philippe surname: Lasaygues fullname: Lasaygues, Philippe email: lasaygues@lma.cnrs-mrs.fr organization: Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, 4 impasse Nikola Tesla, 13453, Marseille, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38103352$$D View this record in MEDLINE/PubMed https://hal.science/hal-04391169$$DView record in HAL |
BookMark | eNqNkUFv1DAQhS1URLeFf4CQj3DIYjuOE3NAqla0RVqJC0jcLMeeqF45cbCdRf33eJsCEgfgNPLoe-M3by7Q2RQmQOglJVtKqHh72C4-R522jLC6tFrGxBO0oV3LKylFd4Y2hHBaCca_nqOLlA6EUN7R-hk6rztK6rphGzTuwjgvWWcXJu3xGCx4nAPW1kZICXuYUtXrBBZrE5aUncGDA1-eM8S8RMBuwvnuoRxdjgGvtsJUSAPe46IZF__ww3P0dNA-wYvHeom-XH_4vLut9p9uPu6u9pXhnOVKtBwYsbxtmZB6YMBkN_Cha4zgWvZccuBCWlrbQdRMNKS3DbddL4QU3JY4LlGzzl2mWd9_196rObpRx3tFiTrFpw5q9alO8ak1vqJ7s-ru9G9F0E7dXu3VqUd4LSkV8kgL-3pl5xi-LZCyGl06LawnKEEpJkvETLQdL-irR3TpR7C_Jv88QwHerYCJIaUIgzJuvUmx6Py_TPM_xP-56_tVBuUQRwdRJeNgMmBdBJOVDe7vA34AolDGvg |
CitedBy_id | crossref_primary_10_1016_j_apacoust_2024_110410 |
Cites_doi | 10.1121/1.412074 10.1053/j.jfas.2019.03.010 10.1016/j.ultras.2014.01.004 10.1016/S0041-624X(02)00218-4 10.1016/j.ultrasmedbio.2008.09.029 10.1364/BOE.8.002756 10.1016/j.ultras.2020.106167 10.1016/j.ultrasmedbio.2007.12.019 10.1109/TUFFC.2003.1176526 10.1016/j.injury.2016.09.023 10.1002/1097-4636(20011205)57:3<449::AID-JBM1188>3.0.CO;2-0 10.3390/traumacare2020014 10.1016/j.ultras.2017.02.008 10.1016/j.foot.2018.01.004 10.1136/bmj.b351 10.1016/j.ultras.2021.106495 10.1103/PhysRevApplied.13.054069 10.1088/2057-1976/ab8b26 10.1016/j.injury.2017.05.016 10.1016/j.injury.2015.05.042 10.1016/j.ultras.2018.02.001 10.1051/aacus/2022007 10.1016/j.ultras.2022.106714 10.1016/j.physleta.2016.01.050 10.1007/s10544-022-00635-x 10.1016/j.ultrasmedbio.2011.09.007 10.1109/TUFFC.2009.1337 10.1093/bmb/ldr006 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES ADTOC UNPAY |
DOI | 10.1016/j.ultras.2023.107226 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1874-9968 |
ExternalDocumentID | oai:HAL:hal-04391169v1 oai_HAL_hal_04391169v1 38103352 10_1016_j_ultras_2023_107226 S0041624X23003025 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD AGCQF AGRNS NPM 7X8 1XC VOOES ADTOC UNPAY |
ID | FETCH-LOGICAL-c442t-674e20d477269af2e298f4f85c64a9b494e469d13df632650bd54d8b66964d023 |
IEDL.DBID | UNPAY |
ISSN | 0041-624X 1874-9968 |
IngestDate | Sun Sep 07 10:51:37 EDT 2025 Fri Sep 12 12:53:57 EDT 2025 Wed Oct 01 14:28:09 EDT 2025 Mon Jul 21 06:07:05 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Wed Oct 01 05:20:03 EDT 2025 Sat Apr 06 16:25:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acoustic lens LIPUS stimulation Computational model Acoustic field aperture Acoustic intensity |
Language | English |
License | Copyright © 2023 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-674e20d477269af2e298f4f85c64a9b494e469d13df632650bd54d8b66964d023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0006-6114-6590 0000-0002-4281-0066 0000-0002-9277-8172 0000-0003-2700-7774 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-04391169 |
PMID | 38103352 |
PQID | 2903326784 |
PQPubID | 23479 |
ParticipantIDs | unpaywall_primary_10_1016_j_ultras_2023_107226 hal_primary_oai_HAL_hal_04391169v1 proquest_miscellaneous_2903326784 pubmed_primary_38103352 crossref_citationtrail_10_1016_j_ultras_2023_107226 crossref_primary_10_1016_j_ultras_2023_107226 elsevier_sciencedirect_doi_10_1016_j_ultras_2023_107226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 2024-Mar 20240301 2024-03 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ultrasonics |
PublicationTitleAlternate | Ultrasonics |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Teoh, Whitham, Wong, Hariharan (b8) 2018; 35 Engholm, Beers, Bouzari, Jensen, Thomsen (b30) 2018; 88 Acevedo, Das-Gupta (b36) 2002; 40 Majnooni, Doveri, Baldisser, Long, Houles, Scimeca, Momier, Guivier-Curien, Lasaygues, Baron (b20) 2022; 6 Romanò, Kirienko, Sandrone, Toro, Toro, Valente, Caporale, Imbimbo, Falzarano, Setti, Meani (b6) 2022; 2 Padilla, Puts, Vico, Raum (b17) 2014; 54 Xu, Ni, Chen, Tu, Guo, Bruus, Zhang (b26) 2020; 13 Buchtala (b3) 1952; 15 Nolte, Anderson, Strauss, Wang, Hu, Xu, Steen (b7) 2016; 47 Tamboia, Campanini, Vighetto, Racca, Spigarelli, Canavese, Cauda (b32) 2022; 24 Jordan, Keiffer (b28) 2016; 380 Ainslie (b33) 1995; 97 (b1) 2022; vol. 1364 FDA (b34) 1985 Royer, Dieulesaint (b35) 1999 Martinez de Albornoz, Khanna, Longo, Forriol, Maffulli (b12) 2011; 100 Yang, Qin, Guo, Jin, Huang, He, Xi (b24) 2017; 8 Secomski, Bilmin, Kujawska, Nowicki, Grieb, Lewin (b18) 2017; 77 Sun, Hong, Chang, Chen, Lin, Liu (b14) 2001; 57 Fontana, Iberite, Cafarelli, Aliperta, Baldi, Gabusi, Dolzani, Cristino, Lisignoli, Pratellesi, Dumont, Ricotti (b13) 2021; 116 Snehota, Vachutka, ter Haar, Dolezal, Kolarova (b19) 2020; 107 Wang, Challis, Phang, Unwin (b25) 2009; 56 Tien, Lin, Chen, Lu, Su, Chih (b16) 2008; 34 Leighton, Watson, Giannoudis, Papakostidis, Harrison, Steen (b5) 2017; 48 Anderson, Parekh, Braid-Forbes, Steen (b9) 2019; 58 Romano, Romano, Logoluso (b2) 2009; 35 Schandelmaier, Kaushal, Lytvyn, Heels-Ansdell, Siemieniuk, Agoritsas, Guyatt, Vandvik, Couban, Mollon, Busse (b11) 2017; 356 Busse, Kaur, Mollon, Bhandari, Tornetta, Schunemann, Guyatt (b10) 2009; 338 Landau, Lifshitz (b29) 1987 Majnooni, Lasaygues, Long, Scimeca, Momier, Rico, Buzhinsky, Guivier-Curien, Baron (b21) 2022; 124 Waters, Hughes, Mobley, Miller (b23) 2003; 50 Zura, Della Rocca, Mehta, Harrison, Brodie, Jones, Steen (b4) 2015; 46 Horne, Jones, Adams, Lotz, Diederich (b15) 2020; 6 (b27) 2021 Hensel, Mienkina, Schmitz (b31) 2011; 37 (b22) 1991 Tamboia (10.1016/j.ultras.2023.107226_b32) 2022; 24 Buchtala (10.1016/j.ultras.2023.107226_b3) 1952; 15 Engholm (10.1016/j.ultras.2023.107226_b30) 2018; 88 Schandelmaier (10.1016/j.ultras.2023.107226_b11) 2017; 356 Jordan (10.1016/j.ultras.2023.107226_b28) 2016; 380 Teoh (10.1016/j.ultras.2023.107226_b8) 2018; 35 Romanò (10.1016/j.ultras.2023.107226_b6) 2022; 2 Secomski (10.1016/j.ultras.2023.107226_b18) 2017; 77 Martinez de Albornoz (10.1016/j.ultras.2023.107226_b12) 2011; 100 Majnooni (10.1016/j.ultras.2023.107226_b21) 2022; 124 Tien (10.1016/j.ultras.2023.107226_b16) 2008; 34 (10.1016/j.ultras.2023.107226_b22) 1991 (10.1016/j.ultras.2023.107226_b27) 2021 (10.1016/j.ultras.2023.107226_b1) 2022; vol. 1364 Yang (10.1016/j.ultras.2023.107226_b24) 2017; 8 FDA (10.1016/j.ultras.2023.107226_b34) 1985 Landau (10.1016/j.ultras.2023.107226_b29) 1987 Hensel (10.1016/j.ultras.2023.107226_b31) 2011; 37 Wang (10.1016/j.ultras.2023.107226_b25) 2009; 56 Fontana (10.1016/j.ultras.2023.107226_b13) 2021; 116 Royer (10.1016/j.ultras.2023.107226_b35) 1999 Xu (10.1016/j.ultras.2023.107226_b26) 2020; 13 Sun (10.1016/j.ultras.2023.107226_b14) 2001; 57 Waters (10.1016/j.ultras.2023.107226_b23) 2003; 50 Zura (10.1016/j.ultras.2023.107226_b4) 2015; 46 Anderson (10.1016/j.ultras.2023.107226_b9) 2019; 58 Busse (10.1016/j.ultras.2023.107226_b10) 2009; 338 Padilla (10.1016/j.ultras.2023.107226_b17) 2014; 54 Romano (10.1016/j.ultras.2023.107226_b2) 2009; 35 Majnooni (10.1016/j.ultras.2023.107226_b20) 2022; 6 Acevedo (10.1016/j.ultras.2023.107226_b36) 2002; 40 Horne (10.1016/j.ultras.2023.107226_b15) 2020; 6 Leighton (10.1016/j.ultras.2023.107226_b5) 2017; 48 Snehota (10.1016/j.ultras.2023.107226_b19) 2020; 107 Nolte (10.1016/j.ultras.2023.107226_b7) 2016; 47 Ainslie (10.1016/j.ultras.2023.107226_b33) 1995; 97 |
References_xml | – volume: 48 start-page: 1339 year: 2017 end-page: 1347 ident: b5 article-title: Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis publication-title: Injury – volume: 2 start-page: 174 year: 2022 end-page: 184 ident: b6 article-title: Low-intensity pulsed ultrasound in the treatment of nonunions and fresh fractures: A case series publication-title: Trauma Care – volume: 100 start-page: 39 year: 2011 end-page: 57 ident: b12 article-title: The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing publication-title: Br. Med. Bull. – year: 1991 ident: b22 publication-title: Output Measurements for Medical Ultrasound – volume: 50 start-page: 68 year: 2003 end-page: 76 ident: b23 article-title: Differential forms of the kramers-kronig dispersion relations publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. – volume: 13 year: 2020 ident: b26 article-title: Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics publication-title: Phys. Rev. Appl. – volume: 97 start-page: 954 year: 1995 end-page: 961 ident: b33 article-title: Plane-wave reflection and transmission coefficients for a three-layered elastic medium publication-title: J. Acoust. Soc. Am. – volume: 47 start-page: 2584 year: 2016 end-page: 2590 ident: b7 article-title: Heal rate of metatarsal fractures: A propensity-matching study of patients treated with low-intensity pulsed ultrasound (LIPUS) vs. surgical and other treatments publication-title: Injury – volume: 77 start-page: 203 year: 2017 end-page: 213 ident: b18 article-title: In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome publication-title: Ultrasonics – volume: 124 year: 2022 ident: b21 article-title: Monitoring of in-vitro ultrasonic stimulation of cells by numerical modeling publication-title: Ultrasonics – volume: 338 start-page: b351 year: 2009 ident: b10 article-title: Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials publication-title: BMJ – volume: 35 start-page: 52 year: 2018 end-page: 55 ident: b8 article-title: The use of low-intensity pulsed ultrasound in treating delayed union of fifth metatarsal fractures publication-title: Foot – year: 1999 ident: b35 publication-title: Elastic Waves in Solids I: Free and Guided Propagation – volume: 35 start-page: 529 year: 2009 end-page: 536 ident: b2 article-title: Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: A review publication-title: Ultrasound Med. Biol. – volume: 6 year: 2020 ident: b15 article-title: LIPUS far-field exposimetry system for uniform stimulation of tissues publication-title: Biomed. Phys. Eng. Express – volume: 46 start-page: 2036 year: 2015 end-page: 2041 ident: b4 article-title: Treatment of chronic (>1 year) fracture nonunion: Heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS) publication-title: Injury – volume: 56 start-page: 2504 year: 2009 end-page: 2513 ident: b25 article-title: Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. – volume: 15 start-page: 3 year: 1952 end-page: 6 ident: b3 article-title: The present state of ultrasonic therapy publication-title: Br. J. Phys. Med. – volume: 58 start-page: 1145 year: 2019 end-page: 1151 ident: b9 article-title: Delayed healing in metatarsal fractures: Role of low-intensity pulsed ultrasound treatment publication-title: J. Foot Ankle Surg. – volume: 107 year: 2020 ident: b19 article-title: Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility publication-title: Ultrasonics – volume: 54 start-page: 1125 year: 2014 end-page: 1145 ident: b17 article-title: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects publication-title: Ultrasonics – volume: 57 start-page: 449 year: 2001 end-page: 456 ident: b14 article-title: In vitro effects of low-intensity ultrasound stimulation on the bone cells publication-title: J. Biomed. Mater. Res. – year: 1985 ident: b34 article-title: 501(k) Guide for Measuring and Reporting Acoustic Output of Diagnostic Ultrasound Medical Devices – year: 1987 ident: b29 article-title: Fluid Mechanics, Vol. 6 – volume: 88 start-page: 97 year: 2018 end-page: 105 ident: b30 article-title: Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lens publication-title: Ultrasonics – volume: 380 start-page: 1392 year: 2016 end-page: 1393 ident: b28 article-title: Comments on: “On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation” [Phys. Lett. A 379 (2015) 1799–1801] publication-title: Phys. Lett. A – year: 2021 ident: b27 article-title: Nonlinear acoustics - Modeling of the 1D westervelt equation – volume: vol. 1364 year: 2022 ident: b1 article-title: Bone quantitative ultrasound: New horizons publication-title: Advances in Experimental Medicine and Biology – volume: 37 start-page: 2105 year: 2011 end-page: 2115 ident: b31 article-title: Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments publication-title: Ultrasound Med. Biol. – volume: 6 start-page: 11 year: 2022 ident: b20 article-title: Anti-reflection cover to control acoustic intensity in publication-title: Acta Acust. – volume: 34 start-page: 1174 year: 2008 end-page: 1181 ident: b16 article-title: Effects of pulsed low-intensity ultrasound on human child chondrocytes publication-title: Ultrasound Med. Biol. – volume: 8 start-page: 2756 year: 2017 ident: b24 article-title: Design and evaluation of a compound acoustic lens for photoacoustic computed tomography publication-title: Biomed. Opt. Express – volume: 356 year: 2017 ident: b11 article-title: Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials publication-title: BMJ – volume: 24 start-page: 35 year: 2022 ident: b32 article-title: A comparative analysis of low intensity ultrasound effects on living cells: from simulation to experiments publication-title: Biomed. Microdevices – volume: 116 year: 2021 ident: b13 article-title: Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation publication-title: Ultrasonics – volume: 40 start-page: 819 year: 2002 end-page: 821 ident: b36 article-title: The measurement of the spatial average temporal average intensity Isata and ultrasonic power W in composite ultrasonic transducers for medical application publication-title: Ultrasonics – year: 1991 ident: 10.1016/j.ultras.2023.107226_b22 – volume: 97 start-page: 954 issue: 2 year: 1995 ident: 10.1016/j.ultras.2023.107226_b33 article-title: Plane-wave reflection and transmission coefficients for a three-layered elastic medium publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.412074 – volume: 58 start-page: 1145 year: 2019 ident: 10.1016/j.ultras.2023.107226_b9 article-title: Delayed healing in metatarsal fractures: Role of low-intensity pulsed ultrasound treatment publication-title: J. Foot Ankle Surg. doi: 10.1053/j.jfas.2019.03.010 – volume: 54 start-page: 1125 issue: 5 year: 2014 ident: 10.1016/j.ultras.2023.107226_b17 article-title: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects publication-title: Ultrasonics doi: 10.1016/j.ultras.2014.01.004 – volume: 40 start-page: 819 issue: 1–8 year: 2002 ident: 10.1016/j.ultras.2023.107226_b36 article-title: The measurement of the spatial average temporal average intensity Isata and ultrasonic power W in composite ultrasonic transducers for medical application publication-title: Ultrasonics doi: 10.1016/S0041-624X(02)00218-4 – volume: 35 start-page: 529 issue: 4 year: 2009 ident: 10.1016/j.ultras.2023.107226_b2 article-title: Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: A review publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2008.09.029 – year: 2021 ident: 10.1016/j.ultras.2023.107226_b27 – volume: 8 start-page: 2756 issue: 5 year: 2017 ident: 10.1016/j.ultras.2023.107226_b24 article-title: Design and evaluation of a compound acoustic lens for photoacoustic computed tomography publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.002756 – volume: 107 year: 2020 ident: 10.1016/j.ultras.2023.107226_b19 article-title: Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility publication-title: Ultrasonics doi: 10.1016/j.ultras.2020.106167 – volume: 34 start-page: 1174 issue: 7 year: 2008 ident: 10.1016/j.ultras.2023.107226_b16 article-title: Effects of pulsed low-intensity ultrasound on human child chondrocytes publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2007.12.019 – volume: 50 start-page: 68 issue: 1 year: 2003 ident: 10.1016/j.ultras.2023.107226_b23 article-title: Differential forms of the kramers-kronig dispersion relations publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. doi: 10.1109/TUFFC.2003.1176526 – volume: 356 year: 2017 ident: 10.1016/j.ultras.2023.107226_b11 article-title: Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials publication-title: BMJ – year: 1999 ident: 10.1016/j.ultras.2023.107226_b35 – volume: 47 start-page: 2584 issue: 11 year: 2016 ident: 10.1016/j.ultras.2023.107226_b7 article-title: Heal rate of metatarsal fractures: A propensity-matching study of patients treated with low-intensity pulsed ultrasound (LIPUS) vs. surgical and other treatments publication-title: Injury doi: 10.1016/j.injury.2016.09.023 – volume: vol. 1364 year: 2022 ident: 10.1016/j.ultras.2023.107226_b1 article-title: Bone quantitative ultrasound: New horizons – volume: 57 start-page: 449 issue: 3 year: 2001 ident: 10.1016/j.ultras.2023.107226_b14 article-title: In vitro effects of low-intensity ultrasound stimulation on the bone cells publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(20011205)57:3<449::AID-JBM1188>3.0.CO;2-0 – year: 1987 ident: 10.1016/j.ultras.2023.107226_b29 – volume: 2 start-page: 174 issue: 2 year: 2022 ident: 10.1016/j.ultras.2023.107226_b6 article-title: Low-intensity pulsed ultrasound in the treatment of nonunions and fresh fractures: A case series publication-title: Trauma Care doi: 10.3390/traumacare2020014 – volume: 77 start-page: 203 year: 2017 ident: 10.1016/j.ultras.2023.107226_b18 article-title: In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome publication-title: Ultrasonics doi: 10.1016/j.ultras.2017.02.008 – volume: 35 start-page: 52 year: 2018 ident: 10.1016/j.ultras.2023.107226_b8 article-title: The use of low-intensity pulsed ultrasound in treating delayed union of fifth metatarsal fractures publication-title: Foot doi: 10.1016/j.foot.2018.01.004 – volume: 338 start-page: b351 issue: feb27 1 year: 2009 ident: 10.1016/j.ultras.2023.107226_b10 article-title: Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials publication-title: BMJ doi: 10.1136/bmj.b351 – volume: 116 year: 2021 ident: 10.1016/j.ultras.2023.107226_b13 article-title: Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation publication-title: Ultrasonics doi: 10.1016/j.ultras.2021.106495 – volume: 13 issue: 5 year: 2020 ident: 10.1016/j.ultras.2023.107226_b26 article-title: Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.054069 – volume: 6 issue: 3 year: 2020 ident: 10.1016/j.ultras.2023.107226_b15 article-title: LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro : development and validation with bovine intervertebral disc cells publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab8b26 – volume: 48 start-page: 1339 issue: 7 year: 2017 ident: 10.1016/j.ultras.2023.107226_b5 article-title: Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis publication-title: Injury doi: 10.1016/j.injury.2017.05.016 – volume: 46 start-page: 2036 issue: 10 year: 2015 ident: 10.1016/j.ultras.2023.107226_b4 article-title: Treatment of chronic (>1 year) fracture nonunion: Heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS) publication-title: Injury doi: 10.1016/j.injury.2015.05.042 – volume: 88 start-page: 97 year: 2018 ident: 10.1016/j.ultras.2023.107226_b30 article-title: Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lens publication-title: Ultrasonics doi: 10.1016/j.ultras.2018.02.001 – volume: 6 start-page: 11 year: 2022 ident: 10.1016/j.ultras.2023.107226_b20 article-title: Anti-reflection cover to control acoustic intensity in in vitro low-intensity ultrasound stimulation of cells publication-title: Acta Acust. doi: 10.1051/aacus/2022007 – volume: 124 year: 2022 ident: 10.1016/j.ultras.2023.107226_b21 article-title: Monitoring of in-vitro ultrasonic stimulation of cells by numerical modeling publication-title: Ultrasonics doi: 10.1016/j.ultras.2022.106714 – volume: 380 start-page: 1392 issue: 14–15 year: 2016 ident: 10.1016/j.ultras.2023.107226_b28 article-title: Comments on: “On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation” [Phys. Lett. A 379 (2015) 1799–1801] publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2016.01.050 – volume: 24 start-page: 35 issue: 4 year: 2022 ident: 10.1016/j.ultras.2023.107226_b32 article-title: A comparative analysis of low intensity ultrasound effects on living cells: from simulation to experiments publication-title: Biomed. Microdevices doi: 10.1007/s10544-022-00635-x – volume: 37 start-page: 2105 issue: 12 year: 2011 ident: 10.1016/j.ultras.2023.107226_b31 article-title: Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2011.09.007 – volume: 15 start-page: 3 issue: 1 year: 1952 ident: 10.1016/j.ultras.2023.107226_b3 article-title: The present state of ultrasonic therapy publication-title: Br. J. Phys. Med. – year: 1985 ident: 10.1016/j.ultras.2023.107226_b34 – volume: 56 start-page: 2504 issue: 11 year: 2009 ident: 10.1016/j.ultras.2023.107226_b25 article-title: Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr. doi: 10.1109/TUFFC.2009.1337 – volume: 100 start-page: 39 issue: 1 year: 2011 ident: 10.1016/j.ultras.2023.107226_b12 article-title: The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing publication-title: Br. Med. Bull. doi: 10.1093/bmb/ldr006 |
SSID | ssj0014813 |
Score | 2.3951669 |
Snippet | Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still... |
SourceID | unpaywall hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107226 |
SubjectTerms | Acoustic field aperture Acoustic intensity Acoustic lens Computational model LIPUS stimulation Physics |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSgh6QFCgpDxkENe0seM48bGqWq0QcKLS3izHTsSibXa1zRZx4bd3JnaiViAVcYpixUk8M5lHPPMNwEdpuSsoLMlUXaZSe5tq4TUyhCsleVtXjgLFL1_V7EJ-mhfzHTgda2EorTLq_qDTB20dR44jNY_XiwXV-KIzIeQcnWiUVEGF5oT-hTJ99HtK80Bvn8ddZp7S1WP53JDjtV32G0ug3SLHoVIQxMLfzdOD75Qn-acTugePtt3a_vppl8tbhun8KTyJHiU7CS_9DHaabh_2buEM7sPDIc_TXT2Hy9DFIf4BZEMfHNavGOofirsZ2qCrlCybZ6gqh05fbEhyY3bdbGi3gS06hk4jHa4X_WbFwuoIYZfRLgDDOZexJ9gLuDg_-3Y6S2PHhdRJKfpUlbIRmZfocittW9EIXbWyrQqnpNW11LLBcNrz3LcK_b4iq30hfVUrpZX0SMWXsNutuuYVMIvMz3InWioVULm1ViELnCs9hmRCNwnkI6GNi3Dk1BVjaca8sx8mLMAQe0xgTwLpNGsd4Djuub4ceWjuiJVBi3HPzA_I8ukhhMI9O_lsaIyqiTlX-pon8H6UCIOfJVHZdg1yxwid5UihspIJHARRme5FoGpU6pbA0SQ7_7Saw_9ezWt4jGcyJM-9gd1-s23eojfV1--Gz-UGZxsa7w priority: 102 providerName: Elsevier |
Title | Computational model to address lens-based acoustic field aperture in the in vitro ultrasonic cell stimulation |
URI | https://dx.doi.org/10.1016/j.ultras.2023.107226 https://www.ncbi.nlm.nih.gov/pubmed/38103352 https://www.proquest.com/docview/2903326784 https://hal.science/hal-04391169 |
UnpaywallVersion | submittedVersion |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5tWyG0Bx7LKwgqg7i6ShzHiY8VYlVeFQcqlZPlxIl2oZtWbboIDvx2ZuKkWgFi4dQoqlPZ38TzTT3zDcALaaMiobAkVHnKpXaWa-E0AhIpJaMqzwoKFN_P1Wwh3yyT5RGwvhbmDBlnt_fTNafKzShSegAjRUdIQxgt5h-mn_zBccSVkEuKqbJUcqTuWV8d16Zw7VfN1pImt4jxVipIQeHP3mdwRmmQv3PMY7i5rzf221e7Wl3xO6e3ff7jrpUrpHSTL5N9k0-K77-IOf5tSnfgVkc62dRbyV04KusTOL4iRXgCN9pU0GJ3Dy58o4fuT0LWtsphzZrhFkWhOUM3tePk_BzD3bRtBsbaPDhmN-WWDiTYec2QV9LH5XmzXTO_QiTCy-iggOGYi65t2H1YnL76-HLGu6YMvJBSNFylshShk8jKlbaVKIXOKlllSaGk1bnUssSI20WxqxRSwyTMXSJdliullXSIxAMY1uu6fATMon2EcSEqqiZQsbVWIaRFkTqM2oQuA4h7sEzRKZZT44yV6VPTPhs_AUMQGw9xAPwwauMVO675ftrbgelg8mzCoFO5ZuRzxPPwIyTUPZu-M3Svx_gyCuBZb1UG31xaZVuXiI4ROoxxhdJMBvDQm9vhWaS7RtVwAUwO9vdPs3n8vwOewLDZ7sunSK2afAyDyY9oDKPp67ez-bh7134CZbEjJQ |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT5xA9EXXNOrBtLYqtR_TplcqDMPAHDemBuu6J032NhkYSLdZ2c3K2vTf9z0YiE2b2PREMjDA--B98L4APgkTFjG5JYHME18oa3zFrUKChFKKsMrTghzF66nMbsXXWTzbgvO-FobSKp3s72R6K63dypnD5tlqPqcaXzQmuJihEY2cyuNt2BExyuQR7Iwvr7LpEEwQaegCzaFPG_oKujbNa7No1ob6dvMIlxJOXRb-rqG2v1Gq5J926D7sbuqV-fnDLBaPdNPFczhwRiUbd-_9ArbK-hD2H7UaPIRnbapncf8S7rpBDu4nIGtH4bBmyVAEkevNUA3d-6TcLENp2Q77Ym2eGzOrck0BBzavGdqNdHiYN-sl66CjJruMAgEM99y5sWCv4Pbiy8155ruhC34hBG98mYiSB1ag1S2VqXjJVVqJKo0LKYzKhRIletQ2jGwl0fSLg9zGwqa5lEoKi1g8glG9rMsTYAbpH0QFr6haQEbGGIkkKIrEolfGVelB1CNaF64jOQ3GWOg-9ey77gDQRB7dkccDf9i16jpyPHF90tNQ_8ZZGpXGEzs_IsmHh1Aj7mw80bRGBcVhKNVD6MGHniM0fpmEZVOXSB3NVRAhhpJUeHDcscpwL-qrRtVuHnweeOefoHn939C8h93s5nqiJ5fTq1PYwzOiy6V7A6NmvSnfonHV5O_cx_ML4O8fKA |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tnRDaAz_Gr6ANGcSrq8RxnPixQkzVBBMPVCpPlmMn2qBLqzYdgr-euzippoEYPDWK6lT2d_F9V999B_BW2sRlFJbEqsy51N5yLbxGQBKlZFKXhaNA8eO5ms7k2Tyb7wEbamEukHH2ez9dc6rcTBKl9-FA0RHSCA5m558mX8LBccKVkHOKqYpccqTuxVAd16VwbRft2pImt0jxVi5IQeHP3mf_gtIgf-eYh3B_26zsj-92sbjhd04fhvzHTSdXSOkm38bbthy7n7fEHP82pUfwoCedbBKs5DHsVc0RHN6QIjyCe10qqNs8gavQ6KH_k5B1rXJYu2S4RVFoztBNbTg5P89wN-2agbEuD47ZVbWmAwl22TDklfRxfdmulyysEInwMjooYDjmqm8b9hRmp-8_v5vyvikDd1KKlqtcViL2Elm50rYWldBFLesic0paXUotK4y4fZL6WiE1zOLSZ9IXpVJaSY9IPINRs2yqF8As2kecOlFTNYFKrbUKIXUu9xi1CV1FkA5gGdcrllPjjIUZUtO-mjABQxCbAHEEfDdqFRQ77vh-PtiB6WEKbMKgU7lj5BvEc_cjJNQ9nXwwdG_A-DqJ4PVgVQbfXFpl21SIjhE6TnGF8kJG8DyY2-5ZpLtG1XARjHf290-zefm_A45h1K631QlSq7Z81b9dvwCQ2CCZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+model+to+address+lens-based+acoustic+field+aperture+in+the+in+vitro+ultrasonic+cell+stimulation&rft.jtitle=Ultrasonics&rft.au=Doveri%2C+Elise&rft.au=Majnooni%2C+Meysam&rft.au=Guivier-Curien%2C+Carine&rft.au=Baron%2C+C%C3%A9cile&rft.date=2024-03-01&rft.issn=0041-624X&rft.volume=138&rft.spage=107226&rft_id=info:doi/10.1016%2Fj.ultras.2023.107226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultras_2023_107226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |