Computational model to address lens-based acoustic field aperture in the in vitro ultrasonic cell stimulation

Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger me...

Full description

Saved in:
Bibliographic Details
Published inUltrasonics Vol. 138; p. 107226
Main Authors Doveri, Elise, Majnooni, Meysam, Guivier-Curien, Carine, Baron, Cécile, Lasaygues, Philippe
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0041-624X
1874-9968
1874-9968
DOI10.1016/j.ultras.2023.107226

Cover

Abstract Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria. •Improvement of LIPUS in vitro tests.•Finite-Element model to develop an acoustic lens.•Acoustic lens to broaden and homogenize the acoustic field inside a Petri dish.•Acoustic lens attenuates the ultrasonic field.
AbstractList Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria. •Improvement of LIPUS in vitro tests.•Finite-Element model to develop an acoustic lens.•Acoustic lens to broaden and homogenize the acoustic field inside a Petri dish.•Acoustic lens attenuates the ultrasonic field.
Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject.In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss.All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.
Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still debated, as the underlying physical phenomena remain poorly understood. The interaction between ultrasonic waves and cells, likely to trigger mechanotransduction inducing bone regeneration, is at the center of scientific concerns on the subject. In order to get new insights into these phenomena, the development of in vitro experiments is a key step but special attentions should be paid concerning to the actual acoustic area covered that has to be sufficiently large and homogeneous. To address this issue, an acoustic lens can be placed on the transducer to improve the homogeneity of the acoustic field over the entire cell culture area. A computational model is developed to test several shapes and heights of acoustic lenses and compare their effectiveness in order to find a compromise between the surface covered, the homogeneity of the intensity distribution and the acoustic pressure loss. All the lenses studied improve the enlargement of the field and its homogeneity but they all generate pressure acoustic loss. The best performing lens in terms of field homogeneity is the one that minimizes pressure acoustic loss but covers only 22% of the target surface. The best enlargement (68% of the surface covered) is obtained for a lens that produces a field that is 4 times less homogeneous and 3 times less efficient in terms of pressure acoustic loss. As no one lens is ideal, the choice of the lens should be the result of a compromise taking into account the prioritization of criteria.
ArticleNumber 107226
Author Majnooni, Meysam
Guivier-Curien, Carine
Baron, Cécile
Lasaygues, Philippe
Doveri, Elise
Author_xml – sequence: 1
  givenname: Elise
  orcidid: 0000-0002-9277-8172
  surname: Doveri
  fullname: Doveri, Elise
  email: doveri@lma.cnrs-mrs.fr
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, 4 impasse Nikola Tesla, 13453, Marseille, France
– sequence: 2
  givenname: Meysam
  surname: Majnooni
  fullname: Majnooni, Meysam
  email: meysam.majnooni@univ-amu.fr
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 49 rue Frédéric Joliot-Curie, 13384, Marseille, France
– sequence: 3
  givenname: Carine
  orcidid: 0009-0006-6114-6590
  surname: Guivier-Curien
  fullname: Guivier-Curien, Carine
  email: carine.guivier@univ-amu.fr
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 49 rue Frédéric Joliot-Curie, 13384, Marseille, France
– sequence: 4
  givenname: Cécile
  orcidid: 0000-0002-4281-0066
  surname: Baron
  fullname: Baron, Cécile
  email: cecile.baron@univ-amu.fr
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE UMR 7342, 49 rue Frédéric Joliot-Curie, 13384, Marseille, France
– sequence: 5
  givenname: Philippe
  surname: Lasaygues
  fullname: Lasaygues, Philippe
  email: lasaygues@lma.cnrs-mrs.fr
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR 7031, 4 impasse Nikola Tesla, 13453, Marseille, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38103352$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04391169$$DView record in HAL
BookMark eNqNkUFv1DAQhS1URLeFf4CQj3DIYjuOE3NAqla0RVqJC0jcLMeeqF45cbCdRf33eJsCEgfgNPLoe-M3by7Q2RQmQOglJVtKqHh72C4-R522jLC6tFrGxBO0oV3LKylFd4Y2hHBaCca_nqOLlA6EUN7R-hk6rztK6rphGzTuwjgvWWcXJu3xGCx4nAPW1kZICXuYUtXrBBZrE5aUncGDA1-eM8S8RMBuwvnuoRxdjgGvtsJUSAPe46IZF__ww3P0dNA-wYvHeom-XH_4vLut9p9uPu6u9pXhnOVKtBwYsbxtmZB6YMBkN_Cha4zgWvZccuBCWlrbQdRMNKS3DbddL4QU3JY4LlGzzl2mWd9_196rObpRx3tFiTrFpw5q9alO8ak1vqJ7s-ru9G9F0E7dXu3VqUd4LSkV8kgL-3pl5xi-LZCyGl06LawnKEEpJkvETLQdL-irR3TpR7C_Jv88QwHerYCJIaUIgzJuvUmx6Py_TPM_xP-56_tVBuUQRwdRJeNgMmBdBJOVDe7vA34AolDGvg
CitedBy_id crossref_primary_10_1016_j_apacoust_2024_110410
Cites_doi 10.1121/1.412074
10.1053/j.jfas.2019.03.010
10.1016/j.ultras.2014.01.004
10.1016/S0041-624X(02)00218-4
10.1016/j.ultrasmedbio.2008.09.029
10.1364/BOE.8.002756
10.1016/j.ultras.2020.106167
10.1016/j.ultrasmedbio.2007.12.019
10.1109/TUFFC.2003.1176526
10.1016/j.injury.2016.09.023
10.1002/1097-4636(20011205)57:3<449::AID-JBM1188>3.0.CO;2-0
10.3390/traumacare2020014
10.1016/j.ultras.2017.02.008
10.1016/j.foot.2018.01.004
10.1136/bmj.b351
10.1016/j.ultras.2021.106495
10.1103/PhysRevApplied.13.054069
10.1088/2057-1976/ab8b26
10.1016/j.injury.2017.05.016
10.1016/j.injury.2015.05.042
10.1016/j.ultras.2018.02.001
10.1051/aacus/2022007
10.1016/j.ultras.2022.106714
10.1016/j.physleta.2016.01.050
10.1007/s10544-022-00635-x
10.1016/j.ultrasmedbio.2011.09.007
10.1109/TUFFC.2009.1337
10.1093/bmb/ldr006
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.ultras.2023.107226
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1874-9968
ExternalDocumentID oai:HAL:hal-04391169v1
oai_HAL_hal_04391169v1
38103352
10_1016_j_ultras_2023_107226
S0041624X23003025
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABEFU
ABFNM
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
C45
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SPG
SSH
SSQ
SSZ
T5K
TAE
TEORI
UHS
WH7
WUQ
XPP
ZGI
ZMT
ZXP
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
AGCQF
AGRNS
NPM
7X8
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c442t-674e20d477269af2e298f4f85c64a9b494e469d13df632650bd54d8b66964d023
IEDL.DBID UNPAY
ISSN 0041-624X
1874-9968
IngestDate Sun Sep 07 10:51:37 EDT 2025
Fri Sep 12 12:53:57 EDT 2025
Wed Oct 01 14:28:09 EDT 2025
Mon Jul 21 06:07:05 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Wed Oct 01 05:20:03 EDT 2025
Sat Apr 06 16:25:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Acoustic lens
LIPUS stimulation
Computational model
Acoustic field aperture
Acoustic intensity
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-674e20d477269af2e298f4f85c64a9b494e469d13df632650bd54d8b66964d023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0006-6114-6590
0000-0002-4281-0066
0000-0002-9277-8172
0000-0003-2700-7774
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-04391169
PMID 38103352
PQID 2903326784
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_ultras_2023_107226
hal_primary_oai_HAL_hal_04391169v1
proquest_miscellaneous_2903326784
pubmed_primary_38103352
crossref_citationtrail_10_1016_j_ultras_2023_107226
crossref_primary_10_1016_j_ultras_2023_107226
elsevier_sciencedirect_doi_10_1016_j_ultras_2023_107226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-Mar
20240301
2024-03
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ultrasonics
PublicationTitleAlternate Ultrasonics
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Teoh, Whitham, Wong, Hariharan (b8) 2018; 35
Engholm, Beers, Bouzari, Jensen, Thomsen (b30) 2018; 88
Acevedo, Das-Gupta (b36) 2002; 40
Majnooni, Doveri, Baldisser, Long, Houles, Scimeca, Momier, Guivier-Curien, Lasaygues, Baron (b20) 2022; 6
Romanò, Kirienko, Sandrone, Toro, Toro, Valente, Caporale, Imbimbo, Falzarano, Setti, Meani (b6) 2022; 2
Padilla, Puts, Vico, Raum (b17) 2014; 54
Xu, Ni, Chen, Tu, Guo, Bruus, Zhang (b26) 2020; 13
Buchtala (b3) 1952; 15
Nolte, Anderson, Strauss, Wang, Hu, Xu, Steen (b7) 2016; 47
Tamboia, Campanini, Vighetto, Racca, Spigarelli, Canavese, Cauda (b32) 2022; 24
Jordan, Keiffer (b28) 2016; 380
Ainslie (b33) 1995; 97
(b1) 2022; vol. 1364
FDA (b34) 1985
Royer, Dieulesaint (b35) 1999
Martinez de Albornoz, Khanna, Longo, Forriol, Maffulli (b12) 2011; 100
Yang, Qin, Guo, Jin, Huang, He, Xi (b24) 2017; 8
Secomski, Bilmin, Kujawska, Nowicki, Grieb, Lewin (b18) 2017; 77
Sun, Hong, Chang, Chen, Lin, Liu (b14) 2001; 57
Fontana, Iberite, Cafarelli, Aliperta, Baldi, Gabusi, Dolzani, Cristino, Lisignoli, Pratellesi, Dumont, Ricotti (b13) 2021; 116
Snehota, Vachutka, ter Haar, Dolezal, Kolarova (b19) 2020; 107
Wang, Challis, Phang, Unwin (b25) 2009; 56
Tien, Lin, Chen, Lu, Su, Chih (b16) 2008; 34
Leighton, Watson, Giannoudis, Papakostidis, Harrison, Steen (b5) 2017; 48
Anderson, Parekh, Braid-Forbes, Steen (b9) 2019; 58
Romano, Romano, Logoluso (b2) 2009; 35
Schandelmaier, Kaushal, Lytvyn, Heels-Ansdell, Siemieniuk, Agoritsas, Guyatt, Vandvik, Couban, Mollon, Busse (b11) 2017; 356
Busse, Kaur, Mollon, Bhandari, Tornetta, Schunemann, Guyatt (b10) 2009; 338
Landau, Lifshitz (b29) 1987
Majnooni, Lasaygues, Long, Scimeca, Momier, Rico, Buzhinsky, Guivier-Curien, Baron (b21) 2022; 124
Waters, Hughes, Mobley, Miller (b23) 2003; 50
Zura, Della Rocca, Mehta, Harrison, Brodie, Jones, Steen (b4) 2015; 46
Horne, Jones, Adams, Lotz, Diederich (b15) 2020; 6
(b27) 2021
Hensel, Mienkina, Schmitz (b31) 2011; 37
(b22) 1991
Tamboia (10.1016/j.ultras.2023.107226_b32) 2022; 24
Buchtala (10.1016/j.ultras.2023.107226_b3) 1952; 15
Engholm (10.1016/j.ultras.2023.107226_b30) 2018; 88
Schandelmaier (10.1016/j.ultras.2023.107226_b11) 2017; 356
Jordan (10.1016/j.ultras.2023.107226_b28) 2016; 380
Teoh (10.1016/j.ultras.2023.107226_b8) 2018; 35
Romanò (10.1016/j.ultras.2023.107226_b6) 2022; 2
Secomski (10.1016/j.ultras.2023.107226_b18) 2017; 77
Martinez de Albornoz (10.1016/j.ultras.2023.107226_b12) 2011; 100
Majnooni (10.1016/j.ultras.2023.107226_b21) 2022; 124
Tien (10.1016/j.ultras.2023.107226_b16) 2008; 34
(10.1016/j.ultras.2023.107226_b22) 1991
(10.1016/j.ultras.2023.107226_b27) 2021
(10.1016/j.ultras.2023.107226_b1) 2022; vol. 1364
Yang (10.1016/j.ultras.2023.107226_b24) 2017; 8
FDA (10.1016/j.ultras.2023.107226_b34) 1985
Landau (10.1016/j.ultras.2023.107226_b29) 1987
Hensel (10.1016/j.ultras.2023.107226_b31) 2011; 37
Wang (10.1016/j.ultras.2023.107226_b25) 2009; 56
Fontana (10.1016/j.ultras.2023.107226_b13) 2021; 116
Royer (10.1016/j.ultras.2023.107226_b35) 1999
Xu (10.1016/j.ultras.2023.107226_b26) 2020; 13
Sun (10.1016/j.ultras.2023.107226_b14) 2001; 57
Waters (10.1016/j.ultras.2023.107226_b23) 2003; 50
Zura (10.1016/j.ultras.2023.107226_b4) 2015; 46
Anderson (10.1016/j.ultras.2023.107226_b9) 2019; 58
Busse (10.1016/j.ultras.2023.107226_b10) 2009; 338
Padilla (10.1016/j.ultras.2023.107226_b17) 2014; 54
Romano (10.1016/j.ultras.2023.107226_b2) 2009; 35
Majnooni (10.1016/j.ultras.2023.107226_b20) 2022; 6
Acevedo (10.1016/j.ultras.2023.107226_b36) 2002; 40
Horne (10.1016/j.ultras.2023.107226_b15) 2020; 6
Leighton (10.1016/j.ultras.2023.107226_b5) 2017; 48
Snehota (10.1016/j.ultras.2023.107226_b19) 2020; 107
Nolte (10.1016/j.ultras.2023.107226_b7) 2016; 47
Ainslie (10.1016/j.ultras.2023.107226_b33) 1995; 97
References_xml – volume: 48
  start-page: 1339
  year: 2017
  end-page: 1347
  ident: b5
  article-title: Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis
  publication-title: Injury
– volume: 2
  start-page: 174
  year: 2022
  end-page: 184
  ident: b6
  article-title: Low-intensity pulsed ultrasound in the treatment of nonunions and fresh fractures: A case series
  publication-title: Trauma Care
– volume: 100
  start-page: 39
  year: 2011
  end-page: 57
  ident: b12
  article-title: The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing
  publication-title: Br. Med. Bull.
– year: 1991
  ident: b22
  publication-title: Output Measurements for Medical Ultrasound
– volume: 50
  start-page: 68
  year: 2003
  end-page: 76
  ident: b23
  article-title: Differential forms of the kramers-kronig dispersion relations
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
– volume: 13
  year: 2020
  ident: b26
  article-title: Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics
  publication-title: Phys. Rev. Appl.
– volume: 97
  start-page: 954
  year: 1995
  end-page: 961
  ident: b33
  article-title: Plane-wave reflection and transmission coefficients for a three-layered elastic medium
  publication-title: J. Acoust. Soc. Am.
– volume: 47
  start-page: 2584
  year: 2016
  end-page: 2590
  ident: b7
  article-title: Heal rate of metatarsal fractures: A propensity-matching study of patients treated with low-intensity pulsed ultrasound (LIPUS) vs. surgical and other treatments
  publication-title: Injury
– volume: 77
  start-page: 203
  year: 2017
  end-page: 213
  ident: b18
  article-title: In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome
  publication-title: Ultrasonics
– volume: 124
  year: 2022
  ident: b21
  article-title: Monitoring of in-vitro ultrasonic stimulation of cells by numerical modeling
  publication-title: Ultrasonics
– volume: 338
  start-page: b351
  year: 2009
  ident: b10
  article-title: Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials
  publication-title: BMJ
– volume: 35
  start-page: 52
  year: 2018
  end-page: 55
  ident: b8
  article-title: The use of low-intensity pulsed ultrasound in treating delayed union of fifth metatarsal fractures
  publication-title: Foot
– year: 1999
  ident: b35
  publication-title: Elastic Waves in Solids I: Free and Guided Propagation
– volume: 35
  start-page: 529
  year: 2009
  end-page: 536
  ident: b2
  article-title: Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: A review
  publication-title: Ultrasound Med. Biol.
– volume: 6
  year: 2020
  ident: b15
  article-title: LIPUS far-field exposimetry system for uniform stimulation of tissues
  publication-title: Biomed. Phys. Eng. Express
– volume: 46
  start-page: 2036
  year: 2015
  end-page: 2041
  ident: b4
  article-title: Treatment of chronic (>1 year) fracture nonunion: Heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS)
  publication-title: Injury
– volume: 56
  start-page: 2504
  year: 2009
  end-page: 2513
  ident: b25
  article-title: Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
– volume: 15
  start-page: 3
  year: 1952
  end-page: 6
  ident: b3
  article-title: The present state of ultrasonic therapy
  publication-title: Br. J. Phys. Med.
– volume: 58
  start-page: 1145
  year: 2019
  end-page: 1151
  ident: b9
  article-title: Delayed healing in metatarsal fractures: Role of low-intensity pulsed ultrasound treatment
  publication-title: J. Foot Ankle Surg.
– volume: 107
  year: 2020
  ident: b19
  article-title: Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility
  publication-title: Ultrasonics
– volume: 54
  start-page: 1125
  year: 2014
  end-page: 1145
  ident: b17
  article-title: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects
  publication-title: Ultrasonics
– volume: 57
  start-page: 449
  year: 2001
  end-page: 456
  ident: b14
  article-title: In vitro effects of low-intensity ultrasound stimulation on the bone cells
  publication-title: J. Biomed. Mater. Res.
– year: 1985
  ident: b34
  article-title: 501(k) Guide for Measuring and Reporting Acoustic Output of Diagnostic Ultrasound Medical Devices
– year: 1987
  ident: b29
  article-title: Fluid Mechanics, Vol. 6
– volume: 88
  start-page: 97
  year: 2018
  end-page: 105
  ident: b30
  article-title: Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lens
  publication-title: Ultrasonics
– volume: 380
  start-page: 1392
  year: 2016
  end-page: 1393
  ident: b28
  article-title: Comments on: “On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation” [Phys. Lett. A 379 (2015) 1799–1801]
  publication-title: Phys. Lett. A
– year: 2021
  ident: b27
  article-title: Nonlinear acoustics - Modeling of the 1D westervelt equation
– volume: vol. 1364
  year: 2022
  ident: b1
  article-title: Bone quantitative ultrasound: New horizons
  publication-title: Advances in Experimental Medicine and Biology
– volume: 37
  start-page: 2105
  year: 2011
  end-page: 2115
  ident: b31
  article-title: Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments
  publication-title: Ultrasound Med. Biol.
– volume: 6
  start-page: 11
  year: 2022
  ident: b20
  article-title: Anti-reflection cover to control acoustic intensity in
  publication-title: Acta Acust.
– volume: 34
  start-page: 1174
  year: 2008
  end-page: 1181
  ident: b16
  article-title: Effects of pulsed low-intensity ultrasound on human child chondrocytes
  publication-title: Ultrasound Med. Biol.
– volume: 8
  start-page: 2756
  year: 2017
  ident: b24
  article-title: Design and evaluation of a compound acoustic lens for photoacoustic computed tomography
  publication-title: Biomed. Opt. Express
– volume: 356
  year: 2017
  ident: b11
  article-title: Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials
  publication-title: BMJ
– volume: 24
  start-page: 35
  year: 2022
  ident: b32
  article-title: A comparative analysis of low intensity ultrasound effects on living cells: from simulation to experiments
  publication-title: Biomed. Microdevices
– volume: 116
  year: 2021
  ident: b13
  article-title: Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation
  publication-title: Ultrasonics
– volume: 40
  start-page: 819
  year: 2002
  end-page: 821
  ident: b36
  article-title: The measurement of the spatial average temporal average intensity Isata and ultrasonic power W in composite ultrasonic transducers for medical application
  publication-title: Ultrasonics
– year: 1991
  ident: 10.1016/j.ultras.2023.107226_b22
– volume: 97
  start-page: 954
  issue: 2
  year: 1995
  ident: 10.1016/j.ultras.2023.107226_b33
  article-title: Plane-wave reflection and transmission coefficients for a three-layered elastic medium
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.412074
– volume: 58
  start-page: 1145
  year: 2019
  ident: 10.1016/j.ultras.2023.107226_b9
  article-title: Delayed healing in metatarsal fractures: Role of low-intensity pulsed ultrasound treatment
  publication-title: J. Foot Ankle Surg.
  doi: 10.1053/j.jfas.2019.03.010
– volume: 54
  start-page: 1125
  issue: 5
  year: 2014
  ident: 10.1016/j.ultras.2023.107226_b17
  article-title: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2014.01.004
– volume: 40
  start-page: 819
  issue: 1–8
  year: 2002
  ident: 10.1016/j.ultras.2023.107226_b36
  article-title: The measurement of the spatial average temporal average intensity Isata and ultrasonic power W in composite ultrasonic transducers for medical application
  publication-title: Ultrasonics
  doi: 10.1016/S0041-624X(02)00218-4
– volume: 35
  start-page: 529
  issue: 4
  year: 2009
  ident: 10.1016/j.ultras.2023.107226_b2
  article-title: Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: A review
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2008.09.029
– year: 2021
  ident: 10.1016/j.ultras.2023.107226_b27
– volume: 8
  start-page: 2756
  issue: 5
  year: 2017
  ident: 10.1016/j.ultras.2023.107226_b24
  article-title: Design and evaluation of a compound acoustic lens for photoacoustic computed tomography
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.002756
– volume: 107
  year: 2020
  ident: 10.1016/j.ultras.2023.107226_b19
  article-title: Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2020.106167
– volume: 34
  start-page: 1174
  issue: 7
  year: 2008
  ident: 10.1016/j.ultras.2023.107226_b16
  article-title: Effects of pulsed low-intensity ultrasound on human child chondrocytes
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.12.019
– volume: 50
  start-page: 68
  issue: 1
  year: 2003
  ident: 10.1016/j.ultras.2023.107226_b23
  article-title: Differential forms of the kramers-kronig dispersion relations
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
  doi: 10.1109/TUFFC.2003.1176526
– volume: 356
  year: 2017
  ident: 10.1016/j.ultras.2023.107226_b11
  article-title: Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials
  publication-title: BMJ
– year: 1999
  ident: 10.1016/j.ultras.2023.107226_b35
– volume: 47
  start-page: 2584
  issue: 11
  year: 2016
  ident: 10.1016/j.ultras.2023.107226_b7
  article-title: Heal rate of metatarsal fractures: A propensity-matching study of patients treated with low-intensity pulsed ultrasound (LIPUS) vs. surgical and other treatments
  publication-title: Injury
  doi: 10.1016/j.injury.2016.09.023
– volume: vol. 1364
  year: 2022
  ident: 10.1016/j.ultras.2023.107226_b1
  article-title: Bone quantitative ultrasound: New horizons
– volume: 57
  start-page: 449
  issue: 3
  year: 2001
  ident: 10.1016/j.ultras.2023.107226_b14
  article-title: In vitro effects of low-intensity ultrasound stimulation on the bone cells
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(20011205)57:3<449::AID-JBM1188>3.0.CO;2-0
– year: 1987
  ident: 10.1016/j.ultras.2023.107226_b29
– volume: 2
  start-page: 174
  issue: 2
  year: 2022
  ident: 10.1016/j.ultras.2023.107226_b6
  article-title: Low-intensity pulsed ultrasound in the treatment of nonunions and fresh fractures: A case series
  publication-title: Trauma Care
  doi: 10.3390/traumacare2020014
– volume: 77
  start-page: 203
  year: 2017
  ident: 10.1016/j.ultras.2023.107226_b18
  article-title: In vitro ultrasound experiments: Standing wave and multiple reflections influence on the outcome
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2017.02.008
– volume: 35
  start-page: 52
  year: 2018
  ident: 10.1016/j.ultras.2023.107226_b8
  article-title: The use of low-intensity pulsed ultrasound in treating delayed union of fifth metatarsal fractures
  publication-title: Foot
  doi: 10.1016/j.foot.2018.01.004
– volume: 338
  start-page: b351
  issue: feb27 1
  year: 2009
  ident: 10.1016/j.ultras.2023.107226_b10
  article-title: Low intensity pulsed ultrasonography for fractures: systematic review of randomised controlled trials
  publication-title: BMJ
  doi: 10.1136/bmj.b351
– volume: 116
  year: 2021
  ident: 10.1016/j.ultras.2023.107226_b13
  article-title: Development and validation of low-intensity pulsed ultrasound systems for highly controlled in vitro cell stimulation
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2021.106495
– volume: 13
  issue: 5
  year: 2020
  ident: 10.1016/j.ultras.2023.107226_b26
  article-title: Acoustic characterization of polydimethylsiloxane for microscale acoustofluidics
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.054069
– volume: 6
  issue: 3
  year: 2020
  ident: 10.1016/j.ultras.2023.107226_b15
  article-title: LIPUS far-field exposimetry system for uniform stimulation of tissues in-vitro : development and validation with bovine intervertebral disc cells
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ab8b26
– volume: 48
  start-page: 1339
  issue: 7
  year: 2017
  ident: 10.1016/j.ultras.2023.107226_b5
  article-title: Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): A systematic review and meta-analysis
  publication-title: Injury
  doi: 10.1016/j.injury.2017.05.016
– volume: 46
  start-page: 2036
  issue: 10
  year: 2015
  ident: 10.1016/j.ultras.2023.107226_b4
  article-title: Treatment of chronic (>1 year) fracture nonunion: Heal rate in a cohort of 767 patients treated with low-intensity pulsed ultrasound (LIPUS)
  publication-title: Injury
  doi: 10.1016/j.injury.2015.05.042
– volume: 88
  start-page: 97
  year: 2018
  ident: 10.1016/j.ultras.2023.107226_b30
  article-title: Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lens
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2018.02.001
– volume: 6
  start-page: 11
  year: 2022
  ident: 10.1016/j.ultras.2023.107226_b20
  article-title: Anti-reflection cover to control acoustic intensity in in vitro low-intensity ultrasound stimulation of cells
  publication-title: Acta Acust.
  doi: 10.1051/aacus/2022007
– volume: 124
  year: 2022
  ident: 10.1016/j.ultras.2023.107226_b21
  article-title: Monitoring of in-vitro ultrasonic stimulation of cells by numerical modeling
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2022.106714
– volume: 380
  start-page: 1392
  issue: 14–15
  year: 2016
  ident: 10.1016/j.ultras.2023.107226_b28
  article-title: Comments on: “On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation” [Phys. Lett. A 379 (2015) 1799–1801]
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2016.01.050
– volume: 24
  start-page: 35
  issue: 4
  year: 2022
  ident: 10.1016/j.ultras.2023.107226_b32
  article-title: A comparative analysis of low intensity ultrasound effects on living cells: from simulation to experiments
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-022-00635-x
– volume: 37
  start-page: 2105
  issue: 12
  year: 2011
  ident: 10.1016/j.ultras.2023.107226_b31
  article-title: Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2011.09.007
– volume: 15
  start-page: 3
  issue: 1
  year: 1952
  ident: 10.1016/j.ultras.2023.107226_b3
  article-title: The present state of ultrasonic therapy
  publication-title: Br. J. Phys. Med.
– year: 1985
  ident: 10.1016/j.ultras.2023.107226_b34
– volume: 56
  start-page: 2504
  issue: 11
  year: 2009
  ident: 10.1016/j.ultras.2023.107226_b25
  article-title: Bulk shear wave propagation in an epoxy: attenuation and phase velocity over five decades of frequency
  publication-title: IEEE Trans. Ultrason., Ferroelect., Freq. Contr.
  doi: 10.1109/TUFFC.2009.1337
– volume: 100
  start-page: 39
  issue: 1
  year: 2011
  ident: 10.1016/j.ultras.2023.107226_b12
  article-title: The evidence of low-intensity pulsed ultrasound for in vitro, animal and human fracture healing
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/ldr006
SSID ssj0014813
Score 2.3951669
Snippet Low-Intensity Pulsed Ultrasound Stimulation (LIPUS) is a therapeutic modality used for bone tissue regeneration and healing. Its clinical efficacy is still...
SourceID unpaywall
hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107226
SubjectTerms Acoustic field aperture
Acoustic intensity
Acoustic lens
Computational model
LIPUS stimulation
Physics
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSgh6QFCgpDxkENe0seM48bGqWq0QcKLS3izHTsSibXa1zRZx4bd3JnaiViAVcYpixUk8M5lHPPMNwEdpuSsoLMlUXaZSe5tq4TUyhCsleVtXjgLFL1_V7EJ-mhfzHTgda2EorTLq_qDTB20dR44jNY_XiwXV-KIzIeQcnWiUVEGF5oT-hTJ99HtK80Bvn8ddZp7S1WP53JDjtV32G0ug3SLHoVIQxMLfzdOD75Qn-acTugePtt3a_vppl8tbhun8KTyJHiU7CS_9DHaabh_2buEM7sPDIc_TXT2Hy9DFIf4BZEMfHNavGOofirsZ2qCrlCybZ6gqh05fbEhyY3bdbGi3gS06hk4jHa4X_WbFwuoIYZfRLgDDOZexJ9gLuDg_-3Y6S2PHhdRJKfpUlbIRmZfocittW9EIXbWyrQqnpNW11LLBcNrz3LcK_b4iq30hfVUrpZX0SMWXsNutuuYVMIvMz3InWioVULm1ViELnCs9hmRCNwnkI6GNi3Dk1BVjaca8sx8mLMAQe0xgTwLpNGsd4Djuub4ceWjuiJVBi3HPzA_I8ukhhMI9O_lsaIyqiTlX-pon8H6UCIOfJVHZdg1yxwid5UihspIJHARRme5FoGpU6pbA0SQ7_7Saw_9ezWt4jGcyJM-9gd1-s23eojfV1--Gz-UGZxsa7w
  priority: 102
  providerName: Elsevier
Title Computational model to address lens-based acoustic field aperture in the in vitro ultrasonic cell stimulation
URI https://dx.doi.org/10.1016/j.ultras.2023.107226
https://www.ncbi.nlm.nih.gov/pubmed/38103352
https://www.proquest.com/docview/2903326784
https://hal.science/hal-04391169
UnpaywallVersion submittedVersion
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1874-9968
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014813
  issn: 0041-624X
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5tWyG0Bx7LKwgqg7i6ShzHiY8VYlVeFQcqlZPlxIl2oZtWbboIDvx2ZuKkWgFi4dQoqlPZ38TzTT3zDcALaaMiobAkVHnKpXaWa-E0AhIpJaMqzwoKFN_P1Wwh3yyT5RGwvhbmDBlnt_fTNafKzShSegAjRUdIQxgt5h-mn_zBccSVkEuKqbJUcqTuWV8d16Zw7VfN1pImt4jxVipIQeHP3mdwRmmQv3PMY7i5rzf221e7Wl3xO6e3ff7jrpUrpHSTL5N9k0-K77-IOf5tSnfgVkc62dRbyV04KusTOL4iRXgCN9pU0GJ3Dy58o4fuT0LWtsphzZrhFkWhOUM3tePk_BzD3bRtBsbaPDhmN-WWDiTYec2QV9LH5XmzXTO_QiTCy-iggOGYi65t2H1YnL76-HLGu6YMvJBSNFylshShk8jKlbaVKIXOKlllSaGk1bnUssSI20WxqxRSwyTMXSJdliullXSIxAMY1uu6fATMon2EcSEqqiZQsbVWIaRFkTqM2oQuA4h7sEzRKZZT44yV6VPTPhs_AUMQGw9xAPwwauMVO675ftrbgelg8mzCoFO5ZuRzxPPwIyTUPZu-M3Svx_gyCuBZb1UG31xaZVuXiI4ROoxxhdJMBvDQm9vhWaS7RtVwAUwO9vdPs3n8vwOewLDZ7sunSK2afAyDyY9oDKPp67ez-bh7134CZbEjJQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT5xA9EXXNOrBtLYqtR_TplcqDMPAHDemBuu6J032NhkYSLdZ2c3K2vTf9z0YiE2b2PREMjDA--B98L4APgkTFjG5JYHME18oa3zFrUKChFKKsMrTghzF66nMbsXXWTzbgvO-FobSKp3s72R6K63dypnD5tlqPqcaXzQmuJihEY2cyuNt2BExyuQR7Iwvr7LpEEwQaegCzaFPG_oKujbNa7No1ob6dvMIlxJOXRb-rqG2v1Gq5J926D7sbuqV-fnDLBaPdNPFczhwRiUbd-_9ArbK-hD2H7UaPIRnbapncf8S7rpBDu4nIGtH4bBmyVAEkevNUA3d-6TcLENp2Q77Ym2eGzOrck0BBzavGdqNdHiYN-sl66CjJruMAgEM99y5sWCv4Pbiy8155ruhC34hBG98mYiSB1ag1S2VqXjJVVqJKo0LKYzKhRIletQ2jGwl0fSLg9zGwqa5lEoKi1g8glG9rMsTYAbpH0QFr6haQEbGGIkkKIrEolfGVelB1CNaF64jOQ3GWOg-9ey77gDQRB7dkccDf9i16jpyPHF90tNQ_8ZZGpXGEzs_IsmHh1Aj7mw80bRGBcVhKNVD6MGHniM0fpmEZVOXSB3NVRAhhpJUeHDcscpwL-qrRtVuHnweeOefoHn939C8h93s5nqiJ5fTq1PYwzOiy6V7A6NmvSnfonHV5O_cx_ML4O8fKA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5tnRDaAz_Gr6ANGcSrq8RxnPixQkzVBBMPVCpPlmMn2qBLqzYdgr-euzippoEYPDWK6lT2d_F9V999B_BW2sRlFJbEqsy51N5yLbxGQBKlZFKXhaNA8eO5ms7k2Tyb7wEbamEukHH2ez9dc6rcTBKl9-FA0RHSCA5m558mX8LBccKVkHOKqYpccqTuxVAd16VwbRft2pImt0jxVi5IQeHP3mf_gtIgf-eYh3B_26zsj-92sbjhd04fhvzHTSdXSOkm38bbthy7n7fEHP82pUfwoCedbBKs5DHsVc0RHN6QIjyCe10qqNs8gavQ6KH_k5B1rXJYu2S4RVFoztBNbTg5P89wN-2agbEuD47ZVbWmAwl22TDklfRxfdmulyysEInwMjooYDjmqm8b9hRmp-8_v5vyvikDd1KKlqtcViL2Elm50rYWldBFLesic0paXUotK4y4fZL6WiE1zOLSZ9IXpVJaSY9IPINRs2yqF8As2kecOlFTNYFKrbUKIXUu9xi1CV1FkA5gGdcrllPjjIUZUtO-mjABQxCbAHEEfDdqFRQ77vh-PtiB6WEKbMKgU7lj5BvEc_cjJNQ9nXwwdG_A-DqJ4PVgVQbfXFpl21SIjhE6TnGF8kJG8DyY2-5ZpLtG1XARjHf290-zefm_A45h1K631QlSq7Z81b9dvwCQ2CCZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+model+to+address+lens-based+acoustic+field+aperture+in+the+in+vitro+ultrasonic+cell+stimulation&rft.jtitle=Ultrasonics&rft.au=Doveri%2C+Elise&rft.au=Majnooni%2C+Meysam&rft.au=Guivier-Curien%2C+Carine&rft.au=Baron%2C+C%C3%A9cile&rft.date=2024-03-01&rft.issn=0041-624X&rft.volume=138&rft.spage=107226&rft_id=info:doi/10.1016%2Fj.ultras.2023.107226&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ultras_2023_107226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon