A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification

The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EE...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in psychology Vol. 12; p. 721266
Main Authors Ni, Tongguang, Ni, Yuyao, Xue, Jing, Wang, Suhong
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 29.07.2021
Subjects
Online AccessGet full text
ISSN1664-1078
1664-1078
DOI10.3389/fpsyg.2021.721266

Cover

Abstract The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems.
AbstractList The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems.
The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems.The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems.
Author Ni, Yuyao
Xue, Jing
Wang, Suhong
Ni, Tongguang
AuthorAffiliation 3 Department of Nephrology, Affiliated Wuxi People's Hospital of Nanjing Medical University , Wuxi , China
4 Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University , Changzhou , China
1 School of Computer Science and Artificial Intelligence, Changzhou University , Changzhou , China
2 School of Electrical Engineering, Xi'an Jiaotong University , Xi'an , China
AuthorAffiliation_xml – name: 2 School of Electrical Engineering, Xi'an Jiaotong University , Xi'an , China
– name: 1 School of Computer Science and Artificial Intelligence, Changzhou University , Changzhou , China
– name: 4 Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University , Changzhou , China
– name: 3 Department of Nephrology, Affiliated Wuxi People's Hospital of Nanjing Medical University , Wuxi , China
Author_xml – sequence: 1
  givenname: Tongguang
  surname: Ni
  fullname: Ni, Tongguang
– sequence: 2
  givenname: Yuyao
  surname: Ni
  fullname: Ni, Yuyao
– sequence: 3
  givenname: Jing
  surname: Xue
  fullname: Xue, Jing
– sequence: 4
  givenname: Suhong
  surname: Wang
  fullname: Wang, Suhong
BookMark eNqNkU1r3DAQhk1JaNI0P6A3H3vxVt-WLoXtdtsGAoF-nIUsjzYKsuVK3oT99_Wul9LtIUQXidG8D8M8b4qzPvZQFO8wWlAq1Qc35N1mQRDBi5pgIsSr4hILwSqMann2z_uiuM75AU2HIYIQeV1cUEYVVVxeFk_L8nPsjO_LZWuG0Yw-9uWPwaQM5XcYEmToj9VVMDl75yGVLqZylWLO1TG8DmDHFKG3MNybEDfJdNUnk6Et1108idsD7W1x7kzIcH28r4pfX9Y_V9-q27uvN6vlbWUZI2NFASPLhWicIhwBErRuKFDR1sDaGklslBGucdxyDk0r2gYsNQoka2oMrqVXxc3MbaN50EPynUk7HY3Xh0JMG23S6G0ADQ0B4pxUkjLGnVCGIWoBeCNrqfCeRWbWth_M7smE8BeIkd5L0Qcpei9Fz1Km0Mc5NGybDlo7rTOZcDLJ6U_v7_UmPmpJuRRcTYD3R0CKv7eQR935bCEE00PcZk24wAozpdjUiudWu3eTwL1ovvq_jPWz8GkaH55J_gGJlMuF
CitedBy_id crossref_primary_10_3389_fphys_2023_1196919
crossref_primary_10_1016_j_compbiomed_2024_109394
crossref_primary_10_3389_fnagi_2022_848511
crossref_primary_10_1063_5_0133092
crossref_primary_10_3389_fpsyg_2022_899983
crossref_primary_10_3389_fpsyg_2021_758967
crossref_primary_10_1088_2057_1976_ad31fb
Cites_doi 10.1109/TAFFC.2017.2660485
10.1109/TSP.2006.881199
10.3389/fnins.2020.00837
10.1109/T-AFFC.2011.15
10.1109/TNN.2010.2091281
10.1088/1741-2552/aaf3f6
10.1109/TNSRE.2019.2908955
10.1007/BF00994018
10.1016/j.neucom.2019.02.060
10.1109/TAMD.2015.2431497
10.1109/TCYB.2016.2633306
10.3389/fncom.2019.00053
10.1109/TIP.2018.2867198
10.1016/j.neucom.2019.05.103
10.1109/TCSS.2020.3013938
10.3390/s17051014
10.1109/TAFFC.2017.2712143
10.1016/j.jneumeth.2011.01.007
10.1109/TCDS.2018.2826840
10.1214/13-AOS1140
10.1016/j.neuroimage.2015.02.015
10.1109/TAFFC.2014.2339834
10.1007/s12652-020-02620-9
10.1109/TCDS.2019.2949306
10.3390/s20072034
10.1109/TPAMI.2013.88
10.1109/TCYB.2019.2904052
10.1016/j.asoc.2020.106071
10.1007/s11063-018-9829-1
10.1186/s40537-020-00289-7
10.3389/fnins.2018.00162
10.1109/TCBB.2020.3006699
10.3390/sym8120148
ContentType Journal Article
Copyright Copyright © 2021 Ni, Ni, Xue and Wang.
Copyright © 2021 Ni, Ni, Xue and Wang. 2021 Ni, Ni, Xue and Wang
Copyright_xml – notice: Copyright © 2021 Ni, Ni, Xue and Wang.
– notice: Copyright © 2021 Ni, Ni, Xue and Wang. 2021 Ni, Ni, Xue and Wang
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fpsyg.2021.721266
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1664-1078
ExternalDocumentID oai_doaj_org_article_eb2e2ff8983445f69a403cee5b87891d
10.3389/fpsyg.2021.721266
PMC8358659
10_3389_fpsyg_2021_721266
GrantInformation_xml – fundername: Project on Maternal and Child Health Talents of Jiangsu Province
– fundername: National Natural Science Foundation of China-Henan Joint Fund
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ABIVO
ACGFO
ACGFS
ACHQT
ADBBV
ADRAZ
AEGXH
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
7X8
5PM
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c442t-3e10c566bf9250e0637b3e36d7e4d7081a9a6fbf5c55ebd6dbec3a9e84b71efd3
IEDL.DBID M48
ISSN 1664-1078
IngestDate Fri Oct 03 12:52:41 EDT 2025
Sun Oct 26 03:59:44 EDT 2025
Thu Aug 21 18:22:55 EDT 2025
Thu Sep 04 15:57:04 EDT 2025
Wed Oct 01 01:29:59 EDT 2025
Thu Apr 24 23:02:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-3e10c566bf9250e0637b3e36d7e4d7081a9a6fbf5c55ebd6dbec3a9e84b71efd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Qin Qin, Henan Institute of Engineering, China; Lijun Xu, Nanjing Institute of Technology (NJIT), China
Edited by: Yaoru Sun, Tongji University, China
This article was submitted to Emotion Science, a section of the journal Frontiers in Psychology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpsyg.2021.721266
PMID 34393958
PQID 2561914994
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_eb2e2ff8983445f69a403cee5b87891d
unpaywall_primary_10_3389_fpsyg_2021_721266
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8358659
proquest_miscellaneous_2561914994
crossref_primary_10_3389_fpsyg_2021_721266
crossref_citationtrail_10_3389_fpsyg_2021_721266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-29
PublicationDateYYYYMMDD 2021-07-29
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-29
  day: 29
PublicationDecade 2020
PublicationTitle Frontiers in psychology
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Gong (B7) 2019; 28
Jenke (B9) 2014; 5
Yan (B29) 2018; 48
Zheng (B32) 2015; 7
Kanoga (B11) 2019; 347
Li (B14); 12
Koelstra (B12) 2011; 3
Cimtay (B3) 2020; 20
Liu (B18) 2020; 89
Sejdinovic (B27) 2013; 41
Zheng (B33) 2019; 10
Doma (B5) 2020; 7
Li (B15); 50
Chai (B2) 2017; 17
Liu (B19) 2018; 9
Yang (B30) 2019; 13
Shim (B28) 2016; 8
Peng (B26) 2020; 398
Li (B16) 2018; 12
Cortes (B4) 1995; 20
Jiang (B10) 2013; 35
Ni (B23); 14
Ma (B20) 2011; 196
Lan (B13) 2018; 11
Pan (B25) 2011; 22
Fahimi (B6) 2019; 16
Aharon (B1) 2006; 54
Zhang (B31) 2019; 27
Gu (B8) 2020
Morioka (B21) 2015; 111
Ni (B22)
Li (B17) 2019; 49
Ni (B24)
References_xml – volume: 9
  start-page: 550
  year: 2018
  ident: B19
  article-title: Real-time movie-induced discrete emotion recognition from EEG signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2660485
– volume: 54
  start-page: 4311
  year: 2006
  ident: B1
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 14
  start-page: 837
  ident: B23
  article-title: An intelligence EEG signal recognition method via noise insensitive TSK fuzzy system based on interclass competitive learning
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00837
– volume: 3
  start-page: 18
  year: 2011
  ident: B12
  article-title: Deap: a database for emotion analysis; using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 22
  start-page: 199
  year: 2011
  ident: B25
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2091281
– volume: 16
  start-page: 026007
  year: 2019
  ident: B6
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf3f6
– volume: 27
  start-page: 814
  year: 2019
  ident: B31
  article-title: On the vulnerability of CNN classifiers in EEG-based BCIs
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2908955
– volume: 20
  start-page: 273
  year: 1995
  ident: B4
  article-title: Support vector machine
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 347
  start-page: 240
  year: 2019
  ident: B11
  article-title: Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.060
– volume: 7
  start-page: 162
  year: 2015
  ident: B32
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 48
  start-page: 288
  year: 2018
  ident: B29
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2633306
– volume: 13
  start-page: 53
  year: 2019
  ident: B30
  article-title: Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2019.00053
– volume: 28
  start-page: 265
  year: 2019
  ident: B7
  article-title: Learning rotation-invariant and Fisher discriminative convolutional neural networks for object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2867198
– volume: 398
  start-page: 505
  year: 2020
  ident: B26
  article-title: Joint local constraint and fisher discrimination based dictionary learning for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.103
– ident: B24
  article-title: Transfer model collaborating metric learning and dictionary learning for cross-domain facial expression recognition
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2020.3013938
– volume: 17
  start-page: 1014
  year: 2017
  ident: B2
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s17051014
– volume: 10
  start-page: 417
  year: 2019
  ident: B33
  article-title: Identifying stable patterns over time for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2712143
– volume: 196
  start-page: 131
  year: 2011
  ident: B20
  article-title: High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.01.007
– volume: 11
  start-page: 85
  year: 2018
  ident: B13
  article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2826840
– volume: 41
  start-page: 2263
  year: 2013
  ident: B27
  article-title: Equivalence of distance-based and RKHS-based statistics in hypothesis testing
  publication-title: Ann. Stat.
  doi: 10.1214/13-AOS1140
– volume: 111
  start-page: 167
  year: 2015
  ident: B21
  article-title: Learning a common dictionary for subject-transfer decoding with resting calibration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.015
– volume: 5
  start-page: 327
  year: 2014
  ident: B9
  article-title: Feature extraction and selection for emotion recognition from EEG
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2339834
– ident: B22
  article-title: Transfer discriminative dictionary learning with label consistency for classification of EEG signals of epilepsy
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02620-9
– volume: 12
  start-page: 344
  ident: B14
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2949306
– volume: 20
  start-page: 2034
  year: 2020
  ident: B3
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– volume: 35
  start-page: 2651
  year: 2013
  ident: B10
  article-title: Label consistent K-SVD: learning a discriminative dictionary for recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.88
– volume: 50
  start-page: 3281
  ident: B15
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2904052
– volume: 89
  start-page: 106071
  year: 2020
  ident: B18
  article-title: Semi-supervised learning quantization algorithm with deep features for motor imagery EEG recognition in smart healthcare application
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106071
– volume: 49
  start-page: 555
  year: 2019
  ident: B17
  article-title: EEG emotion recognition based on graph regularized sparse linear regression
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-018-9829-1
– volume: 7
  start-page: 18
  year: 2020
  ident: B5
  article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00289-7
– volume: 12
  start-page: 162
  year: 2018
  ident: B16
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00162
– year: 2020
  ident: B8
  article-title: A hierarchical discriminative sparse representation classifier for EEG signal detection
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2020.3006699
– volume: 8
  start-page: 148
  year: 2016
  ident: B28
  article-title: EMG pattern classification by split and merge deep belief network
  publication-title: Symmetry
  doi: 10.3390/sym8120148
SSID ssj0000402002
Score 2.3581707
Snippet The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 721266
SubjectTerms cross-dataset
cross-subject
domain adaptation
electroencephalogram
emotion classification
Psychology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQL-0FQQsiQCtX4gQyzSZ2Eh-3ZauKAwegUm-WHY9ppW02andV7d8zY6dhlwO9cE3sJPaM7ffsyRvGPjReVja0QXitciERGAkbVBDa06FcUKS_QtEW36qLS_n1Sl1tpPqimLAkD5w67gSZHxQhNJoSQqhQaSvzEmd25Zq60RNPs2_e6A0yFedgokV5kY4xkYXpk9Dfr38hHywmn5H0FFEV8c9CFPX6t0Dm3yGSu6uut-sHO59vrD_nL9jzATjyafrgl-wZdPtsb5y_1gfsYcq_LG6R6fOpt306Yuc_emSuwL_HgNfhP6OOx1SYNwGXRI6glZ_RF4qh8iwlxqER31_bKGl9K05xsfN8lnL-jNXTdt8rdnk--3l2IYa8CqKVsliKEiZ5izDOBY0ACBCk1K6EsvI1SF8jRrDaVsEF1SoFjjJOQVtaDY109QSCL1-znW7RwRvGNaK30oYAoUDjaumq0qmmdSALcEjmMpY_drJpB9Fxyn0xN0g-yC4m2sWQXUyyS8Y-jlX6pLjxr8KnZLmxIIllxwvoQmZwIfOUC2Xs-NHuBgcXnZjYDhare4N4kPTvtJYZq7ccYuuN23e6m-so043YtqmUztin0XWebtDb_9Ggd2yPHklb0IV-z3aWdys4ROy0dEdxmPwGu60crQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B98Be-EaELxmJJ1C6NrGT-LEbnSYeJgRUGk-RHftYRZdGrNVU_nru4jRaJwRCPCbxKfH5bP8ud_4dwJvCycxghbHTahRLAkaxQYWxdhyUQ8X8K5xtcZqdzOSHM3V27SwMp1UiH93nQtDzOjAFdyliPMPJo9IH2FxuvpFvl4yH5MDQFnPQOLwNe5kiPD6Avdnpx8lX9rSyTNI6kxchnPl72Z0NqeXt3wGbN1Ml76zrxmyuzGJxbR86vgfVtgch_eT7cL2yw-rnDXLH_-vifbjbwVQxCQIP4JavH8J-v1puHsHVRLxfXph5LSbONCGgLz435Cd78alNr-1ONdWiLbw5R_oQQRBZHLEe4k54Gsrw8PrSnJuWQPsiPqSt1YlpqDDUi4efi49hdjz9cnQSd1Uc4krKZBWnfjyqCDRa1AS3PEGi3KY-zVzupcsJkRhtMrSoKqW85fpWvkqN9oW0-dijS5_AoF7W_ikITVgxNYgeEzIlLW2WWlVU1svEW3IdIxhth7KsOopzrrSxKMnVYbWWrVpLVmsZ1BrB216kCfwef2p8yPbRN2Rq7vYGDWHZDWHpbeITxEJzBROFmTZylBIUUbbICz12EbzeWldJU5njM6b2y_VlSeiT2fa0lhHkO2a388bdJ_X8vCUFJyRdkP1H8K430L936Nk_tX4O-3zFf7YT_QIGqx9r_5Ig2cq-6ubcLwMyOs8
  priority: 102
  providerName: Unpaywall
Title A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification
URI https://www.proquest.com/docview/2561914994
https://pubmed.ncbi.nlm.nih.gov/PMC8358659
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.721266/pdf
https://doaj.org/article/eb2e2ff8983445f69a403cee5b87891d
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Medical Journals Open Access
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-1078
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000402002
  issn: 1664-1078
  databaseCode: M48
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7YG9IMaHyIDKSIgHkEeb2En8gKZudJqQmBBQaTxFdmJvlbo064dG_3vunDRapgl4TezE8fnufudz7gfwNi1ErF3ueKFknwsERlw76bgqKCnnJNVfodMWZ_HpWHw5l-dbsMmeNxO4uDe0Iz6p8Xx68Pt6fYgK_4kiTvS3H121WF9gqBcODjCeQY_zrrrmxCtF-deGZOMB7KDvUkTu8LUJALytpvCpPpgYxwJtUpLWqc_7H9xxXr7GfweY3j1W-XBVVnp9o6fTWz7r5DE8asAmG9arYw-2bPkEdlubt34KN0P2eXalJyUbFrqq0_LsR4VTYtl3f0i2-TepZJ4-c-LQjTIEuuyYRsibzqOaTIesRHWpfRnsK36EDrJgo5onqO1ebxE-g_HJ6OfxKW-4GHguRLjkkR30c4R-xikETRaBTWIiG8VFYkWRIK7QSsfOOJlLaQ2xVNk80sqmwiQD64roOWyXs9K-AKYQ8UXaOetCXBBKmDgyMs2NFaE1GAAG0N9McpY3hcqJL2OaYcBCcsm8XDKSS1bLJYD3bZeqrtLxt8ZHJLm2IRXY9hdm84us0dfMmtCGzqWKeEiki5UW_QgBhTRpkqpBEcCbjdwzVEjKsujSzlaLDDEk1cxTSgSQdBZE543dO-Xk0pf2RjycxlIF8KFdOv_-oP3_GMtL2KUetCsdqlewvZyv7GuEU0vT89sQPa8XPdgZn30b_voDbdkl5Q
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B98Be-EaELxmJJ1C6NrGT-LEbnSYeJgRUGk-RHftYRZdGrNVU_nru4jRaJwRCPCbxKfH5bP8ud_4dwJvCycxghbHTahRLAkaxQYWxdhyUQ8X8K5xtcZqdzOSHM3V27SwMp1UiH93nQtDzOjAFdyliPMPJo9IH2FxuvpFvl4yH5MDQFnPQOLwNe5kiPD6Avdnpx8lX9rSyTNI6kxchnPl72Z0NqeXt3wGbN1Ml76zrxmyuzGJxbR86vgfVtgch_eT7cL2yw-rnDXLH_-vifbjbwVQxCQIP4JavH8J-v1puHsHVRLxfXph5LSbONCGgLz435Cd78alNr-1ONdWiLbw5R_oQQRBZHLEe4k54Gsrw8PrSnJuWQPsiPqSt1YlpqDDUi4efi49hdjz9cnQSd1Uc4krKZBWnfjyqCDRa1AS3PEGi3KY-zVzupcsJkRhtMrSoKqW85fpWvkqN9oW0-dijS5_AoF7W_ikITVgxNYgeEzIlLW2WWlVU1svEW3IdIxhth7KsOopzrrSxKMnVYbWWrVpLVmsZ1BrB216kCfwef2p8yPbRN2Rq7vYGDWHZDWHpbeITxEJzBROFmTZylBIUUbbICz12EbzeWldJU5njM6b2y_VlSeiT2fa0lhHkO2a388bdJ_X8vCUFJyRdkP1H8K430L936Nk_tX4O-3zFf7YT_QIGqx9r_5Ig2cq-6ubcLwMyOs8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Domain+Adaptation+Sparse+Representation+Classifier+for+Cross-Domain+Electroencephalogram-Based+Emotion+Classification&rft.jtitle=Frontiers+in+psychology&rft.au=Ni%2C+Tongguang&rft.au=Ni%2C+Yuyao&rft.au=Xue%2C+Jing&rft.au=Wang%2C+Suhong&rft.date=2021-07-29&rft.issn=1664-1078&rft.eissn=1664-1078&rft.volume=12&rft.spage=721266&rft_id=info:doi/10.3389%2Ffpsyg.2021.721266&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-1078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-1078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-1078&client=summon