A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification
The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EE...
Saved in:
| Published in | Frontiers in psychology Vol. 12; p. 721266 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
29.07.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-1078 1664-1078 |
| DOI | 10.3389/fpsyg.2021.721266 |
Cover
| Abstract | The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems. |
|---|---|
| AbstractList | The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems. The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems.The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct information transmission channel between the brain and the outside world. As the most common non-invasive BCI modality, electroencephalogram (EEG) plays an important role in the emotion recognition of BCI; however, due to the individual variability and non-stationary of EEG signals, the construction of EEG-based emotion classifiers for different subjects, different sessions, and different devices is an important research direction. Domain adaptation utilizes data or knowledge from more than one domain and focuses on transferring knowledge from the source domain (SD) to the target domain (TD), in which the EEG data may be collected from different subjects, sessions, or devices. In this study, a new domain adaptation sparse representation classifier (DASRC) is proposed to address the cross-domain EEG-based emotion classification. To reduce the differences in domain distribution, the local information preserved criterion is exploited to project the samples from SD and TD into a shared subspace. A common domain-invariant dictionary is learned in the projection subspace so that an inherent connection can be built between SD and TD. In addition, both principal component analysis (PCA) and Fisher criteria are exploited to promote the recognition ability of the learned dictionary. Besides, an optimization method is proposed to alternatively update the subspace and dictionary learning. The comparison of CSFDDL shows the feasibility and competitive performance for cross-subject and cross-dataset EEG-based emotion classification problems. |
| Author | Ni, Yuyao Xue, Jing Wang, Suhong Ni, Tongguang |
| AuthorAffiliation | 3 Department of Nephrology, Affiliated Wuxi People's Hospital of Nanjing Medical University , Wuxi , China 4 Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University , Changzhou , China 1 School of Computer Science and Artificial Intelligence, Changzhou University , Changzhou , China 2 School of Electrical Engineering, Xi'an Jiaotong University , Xi'an , China |
| AuthorAffiliation_xml | – name: 2 School of Electrical Engineering, Xi'an Jiaotong University , Xi'an , China – name: 1 School of Computer Science and Artificial Intelligence, Changzhou University , Changzhou , China – name: 4 Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University , Changzhou , China – name: 3 Department of Nephrology, Affiliated Wuxi People's Hospital of Nanjing Medical University , Wuxi , China |
| Author_xml | – sequence: 1 givenname: Tongguang surname: Ni fullname: Ni, Tongguang – sequence: 2 givenname: Yuyao surname: Ni fullname: Ni, Yuyao – sequence: 3 givenname: Jing surname: Xue fullname: Xue, Jing – sequence: 4 givenname: Suhong surname: Wang fullname: Wang, Suhong |
| BookMark | eNqNkU1r3DAQhk1JaNI0P6A3H3vxVt-WLoXtdtsGAoF-nIUsjzYKsuVK3oT99_Wul9LtIUQXidG8D8M8b4qzPvZQFO8wWlAq1Qc35N1mQRDBi5pgIsSr4hILwSqMann2z_uiuM75AU2HIYIQeV1cUEYVVVxeFk_L8nPsjO_LZWuG0Yw-9uWPwaQM5XcYEmToj9VVMDl75yGVLqZylWLO1TG8DmDHFKG3MNybEDfJdNUnk6Et1108idsD7W1x7kzIcH28r4pfX9Y_V9-q27uvN6vlbWUZI2NFASPLhWicIhwBErRuKFDR1sDaGklslBGucdxyDk0r2gYsNQoka2oMrqVXxc3MbaN50EPynUk7HY3Xh0JMG23S6G0ADQ0B4pxUkjLGnVCGIWoBeCNrqfCeRWbWth_M7smE8BeIkd5L0Qcpei9Fz1Km0Mc5NGybDlo7rTOZcDLJ6U_v7_UmPmpJuRRcTYD3R0CKv7eQR935bCEE00PcZk24wAozpdjUiudWu3eTwL1ovvq_jPWz8GkaH55J_gGJlMuF |
| CitedBy_id | crossref_primary_10_3389_fphys_2023_1196919 crossref_primary_10_1016_j_compbiomed_2024_109394 crossref_primary_10_3389_fnagi_2022_848511 crossref_primary_10_1063_5_0133092 crossref_primary_10_3389_fpsyg_2022_899983 crossref_primary_10_3389_fpsyg_2021_758967 crossref_primary_10_1088_2057_1976_ad31fb |
| Cites_doi | 10.1109/TAFFC.2017.2660485 10.1109/TSP.2006.881199 10.3389/fnins.2020.00837 10.1109/T-AFFC.2011.15 10.1109/TNN.2010.2091281 10.1088/1741-2552/aaf3f6 10.1109/TNSRE.2019.2908955 10.1007/BF00994018 10.1016/j.neucom.2019.02.060 10.1109/TAMD.2015.2431497 10.1109/TCYB.2016.2633306 10.3389/fncom.2019.00053 10.1109/TIP.2018.2867198 10.1016/j.neucom.2019.05.103 10.1109/TCSS.2020.3013938 10.3390/s17051014 10.1109/TAFFC.2017.2712143 10.1016/j.jneumeth.2011.01.007 10.1109/TCDS.2018.2826840 10.1214/13-AOS1140 10.1016/j.neuroimage.2015.02.015 10.1109/TAFFC.2014.2339834 10.1007/s12652-020-02620-9 10.1109/TCDS.2019.2949306 10.3390/s20072034 10.1109/TPAMI.2013.88 10.1109/TCYB.2019.2904052 10.1016/j.asoc.2020.106071 10.1007/s11063-018-9829-1 10.1186/s40537-020-00289-7 10.3389/fnins.2018.00162 10.1109/TCBB.2020.3006699 10.3390/sym8120148 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Ni, Ni, Xue and Wang. Copyright © 2021 Ni, Ni, Xue and Wang. 2021 Ni, Ni, Xue and Wang |
| Copyright_xml | – notice: Copyright © 2021 Ni, Ni, Xue and Wang. – notice: Copyright © 2021 Ni, Ni, Xue and Wang. 2021 Ni, Ni, Xue and Wang |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fpsyg.2021.721266 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1664-1078 |
| ExternalDocumentID | oai_doaj_org_article_eb2e2ff8983445f69a403cee5b87891d 10.3389/fpsyg.2021.721266 PMC8358659 10_3389_fpsyg_2021_721266 |
| GrantInformation_xml | – fundername: Project on Maternal and Child Health Talents of Jiangsu Province – fundername: National Natural Science Foundation of China-Henan Joint Fund |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ABIVO ACGFO ACGFS ACHQT ADBBV ADRAZ AEGXH AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EBS EJD EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM 7X8 5PM ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c442t-3e10c566bf9250e0637b3e36d7e4d7081a9a6fbf5c55ebd6dbec3a9e84b71efd3 |
| IEDL.DBID | M48 |
| ISSN | 1664-1078 |
| IngestDate | Fri Oct 03 12:52:41 EDT 2025 Sun Oct 26 03:59:44 EDT 2025 Thu Aug 21 18:22:55 EDT 2025 Thu Sep 04 15:57:04 EDT 2025 Wed Oct 01 01:29:59 EDT 2025 Thu Apr 24 23:02:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c442t-3e10c566bf9250e0637b3e36d7e4d7081a9a6fbf5c55ebd6dbec3a9e84b71efd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Qin Qin, Henan Institute of Engineering, China; Lijun Xu, Nanjing Institute of Technology (NJIT), China Edited by: Yaoru Sun, Tongji University, China This article was submitted to Emotion Science, a section of the journal Frontiers in Psychology |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpsyg.2021.721266 |
| PMID | 34393958 |
| PQID | 2561914994 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_eb2e2ff8983445f69a403cee5b87891d unpaywall_primary_10_3389_fpsyg_2021_721266 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8358659 proquest_miscellaneous_2561914994 crossref_primary_10_3389_fpsyg_2021_721266 crossref_citationtrail_10_3389_fpsyg_2021_721266 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-29 |
| PublicationDateYYYYMMDD | 2021-07-29 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-29 day: 29 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in psychology |
| PublicationYear | 2021 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Gong (B7) 2019; 28 Jenke (B9) 2014; 5 Yan (B29) 2018; 48 Zheng (B32) 2015; 7 Kanoga (B11) 2019; 347 Li (B14); 12 Koelstra (B12) 2011; 3 Cimtay (B3) 2020; 20 Liu (B18) 2020; 89 Sejdinovic (B27) 2013; 41 Zheng (B33) 2019; 10 Doma (B5) 2020; 7 Li (B15); 50 Chai (B2) 2017; 17 Liu (B19) 2018; 9 Yang (B30) 2019; 13 Shim (B28) 2016; 8 Peng (B26) 2020; 398 Li (B16) 2018; 12 Cortes (B4) 1995; 20 Jiang (B10) 2013; 35 Ni (B23); 14 Ma (B20) 2011; 196 Lan (B13) 2018; 11 Pan (B25) 2011; 22 Fahimi (B6) 2019; 16 Aharon (B1) 2006; 54 Zhang (B31) 2019; 27 Gu (B8) 2020 Morioka (B21) 2015; 111 Ni (B22) Li (B17) 2019; 49 Ni (B24) |
| References_xml | – volume: 9 start-page: 550 year: 2018 ident: B19 article-title: Real-time movie-induced discrete emotion recognition from EEG signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2660485 – volume: 54 start-page: 4311 year: 2006 ident: B1 article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 14 start-page: 837 ident: B23 article-title: An intelligence EEG signal recognition method via noise insensitive TSK fuzzy system based on interclass competitive learning publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00837 – volume: 3 start-page: 18 year: 2011 ident: B12 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 22 start-page: 199 year: 2011 ident: B25 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2091281 – volume: 16 start-page: 026007 year: 2019 ident: B6 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf3f6 – volume: 27 start-page: 814 year: 2019 ident: B31 article-title: On the vulnerability of CNN classifiers in EEG-based BCIs publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2908955 – volume: 20 start-page: 273 year: 1995 ident: B4 article-title: Support vector machine publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 347 start-page: 240 year: 2019 ident: B11 article-title: Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.060 – volume: 7 start-page: 162 year: 2015 ident: B32 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 48 start-page: 288 year: 2018 ident: B29 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2633306 – volume: 13 start-page: 53 year: 2019 ident: B30 article-title: Multi-method fusion of cross-subject emotion recognition based on high-dimensional EEG features publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2019.00053 – volume: 28 start-page: 265 year: 2019 ident: B7 article-title: Learning rotation-invariant and Fisher discriminative convolutional neural networks for object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2867198 – volume: 398 start-page: 505 year: 2020 ident: B26 article-title: Joint local constraint and fisher discrimination based dictionary learning for image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.103 – ident: B24 article-title: Transfer model collaborating metric learning and dictionary learning for cross-domain facial expression recognition publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2020.3013938 – volume: 17 start-page: 1014 year: 2017 ident: B2 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition publication-title: Sensors doi: 10.3390/s17051014 – volume: 10 start-page: 417 year: 2019 ident: B33 article-title: Identifying stable patterns over time for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2712143 – volume: 196 start-page: 131 year: 2011 ident: B20 article-title: High-throughput ocular artifact reduction in multichannel electroencephalography (EEG) using component subspace projection publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.01.007 – volume: 11 start-page: 85 year: 2018 ident: B13 article-title: Domain adaptation techniques for EEG-based emotion recognition: a comparative study on two public datasets publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2826840 – volume: 41 start-page: 2263 year: 2013 ident: B27 article-title: Equivalence of distance-based and RKHS-based statistics in hypothesis testing publication-title: Ann. Stat. doi: 10.1214/13-AOS1140 – volume: 111 start-page: 167 year: 2015 ident: B21 article-title: Learning a common dictionary for subject-transfer decoding with resting calibration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.015 – volume: 5 start-page: 327 year: 2014 ident: B9 article-title: Feature extraction and selection for emotion recognition from EEG publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2339834 – ident: B22 article-title: Transfer discriminative dictionary learning with label consistency for classification of EEG signals of epilepsy publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02620-9 – volume: 12 start-page: 344 ident: B14 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2949306 – volume: 20 start-page: 2034 year: 2020 ident: B3 article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition publication-title: Sensors doi: 10.3390/s20072034 – volume: 35 start-page: 2651 year: 2013 ident: B10 article-title: Label consistent K-SVD: learning a discriminative dictionary for recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.88 – volume: 50 start-page: 3281 ident: B15 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2904052 – volume: 89 start-page: 106071 year: 2020 ident: B18 article-title: Semi-supervised learning quantization algorithm with deep features for motor imagery EEG recognition in smart healthcare application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106071 – volume: 49 start-page: 555 year: 2019 ident: B17 article-title: EEG emotion recognition based on graph regularized sparse linear regression publication-title: Neural Process. Lett. doi: 10.1007/s11063-018-9829-1 – volume: 7 start-page: 18 year: 2020 ident: B5 article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals publication-title: J. Big Data doi: 10.1186/s40537-020-00289-7 – volume: 12 start-page: 162 year: 2018 ident: B16 article-title: Exploring EEG features in cross-subject emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00162 – year: 2020 ident: B8 article-title: A hierarchical discriminative sparse representation classifier for EEG signal detection publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.3006699 – volume: 8 start-page: 148 year: 2016 ident: B28 article-title: EMG pattern classification by split and merge deep belief network publication-title: Symmetry doi: 10.3390/sym8120148 |
| SSID | ssj0000402002 |
| Score | 2.3581707 |
| Snippet | The brain-computer interface (BCI) interprets the physiological information of the human brain in the process of consciousness activity. It builds a direct... |
| SourceID | doaj unpaywall pubmedcentral proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 721266 |
| SubjectTerms | cross-dataset cross-subject domain adaptation electroencephalogram emotion classification Psychology |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtQwELVQL-0FQQsiQCtX4gQyzSZ2Eh-3ZauKAwegUm-WHY9ppW02andV7d8zY6dhlwO9cE3sJPaM7ffsyRvGPjReVja0QXitciERGAkbVBDa06FcUKS_QtEW36qLS_n1Sl1tpPqimLAkD5w67gSZHxQhNJoSQqhQaSvzEmd25Zq60RNPs2_e6A0yFedgokV5kY4xkYXpk9Dfr38hHywmn5H0FFEV8c9CFPX6t0Dm3yGSu6uut-sHO59vrD_nL9jzATjyafrgl-wZdPtsb5y_1gfsYcq_LG6R6fOpt306Yuc_emSuwL_HgNfhP6OOx1SYNwGXRI6glZ_RF4qh8iwlxqER31_bKGl9K05xsfN8lnL-jNXTdt8rdnk--3l2IYa8CqKVsliKEiZ5izDOBY0ACBCk1K6EsvI1SF8jRrDaVsEF1SoFjjJOQVtaDY109QSCL1-znW7RwRvGNaK30oYAoUDjaumq0qmmdSALcEjmMpY_drJpB9Fxyn0xN0g-yC4m2sWQXUyyS8Y-jlX6pLjxr8KnZLmxIIllxwvoQmZwIfOUC2Xs-NHuBgcXnZjYDhare4N4kPTvtJYZq7ccYuuN23e6m-so043YtqmUztin0XWebtDb_9Ggd2yPHklb0IV-z3aWdys4ROy0dEdxmPwGu60crQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B98Be-EaELxmJJ1C6NrGT-LEbnSYeJgRUGk-RHftYRZdGrNVU_nru4jRaJwRCPCbxKfH5bP8ud_4dwJvCycxghbHTahRLAkaxQYWxdhyUQ8X8K5xtcZqdzOSHM3V27SwMp1UiH93nQtDzOjAFdyliPMPJo9IH2FxuvpFvl4yH5MDQFnPQOLwNe5kiPD6Avdnpx8lX9rSyTNI6kxchnPl72Z0NqeXt3wGbN1Ml76zrxmyuzGJxbR86vgfVtgch_eT7cL2yw-rnDXLH_-vifbjbwVQxCQIP4JavH8J-v1puHsHVRLxfXph5LSbONCGgLz435Cd78alNr-1ONdWiLbw5R_oQQRBZHLEe4k54Gsrw8PrSnJuWQPsiPqSt1YlpqDDUi4efi49hdjz9cnQSd1Uc4krKZBWnfjyqCDRa1AS3PEGi3KY-zVzupcsJkRhtMrSoKqW85fpWvkqN9oW0-dijS5_AoF7W_ikITVgxNYgeEzIlLW2WWlVU1svEW3IdIxhth7KsOopzrrSxKMnVYbWWrVpLVmsZ1BrB216kCfwef2p8yPbRN2Rq7vYGDWHZDWHpbeITxEJzBROFmTZylBIUUbbICz12EbzeWldJU5njM6b2y_VlSeiT2fa0lhHkO2a388bdJ_X8vCUFJyRdkP1H8K430L936Nk_tX4O-3zFf7YT_QIGqx9r_5Ig2cq-6ubcLwMyOs8 priority: 102 providerName: Unpaywall |
| Title | A Domain Adaptation Sparse Representation Classifier for Cross-Domain Electroencephalogram-Based Emotion Classification |
| URI | https://www.proquest.com/docview/2561914994 https://pubmed.ncbi.nlm.nih.gov/PMC8358659 https://www.frontiersin.org/articles/10.3389/fpsyg.2021.721266/pdf https://doaj.org/article/eb2e2ff8983445f69a403cee5b87891d |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-1078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-1078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1664-1078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Medical Journals Open Access customDbUrl: eissn: 1664-1078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-1078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1664-1078 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-1078 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000402002 issn: 1664-1078 databaseCode: M48 dateStart: 20101201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7YG9IMaHyIDKSIgHkEeb2En8gKZudJqQmBBQaTxFdmJvlbo064dG_3vunDRapgl4TezE8fnufudz7gfwNi1ErF3ueKFknwsERlw76bgqKCnnJNVfodMWZ_HpWHw5l-dbsMmeNxO4uDe0Iz6p8Xx68Pt6fYgK_4kiTvS3H121WF9gqBcODjCeQY_zrrrmxCtF-deGZOMB7KDvUkTu8LUJALytpvCpPpgYxwJtUpLWqc_7H9xxXr7GfweY3j1W-XBVVnp9o6fTWz7r5DE8asAmG9arYw-2bPkEdlubt34KN0P2eXalJyUbFrqq0_LsR4VTYtl3f0i2-TepZJ4-c-LQjTIEuuyYRsibzqOaTIesRHWpfRnsK36EDrJgo5onqO1ebxE-g_HJ6OfxKW-4GHguRLjkkR30c4R-xikETRaBTWIiG8VFYkWRIK7QSsfOOJlLaQ2xVNk80sqmwiQD64roOWyXs9K-AKYQ8UXaOetCXBBKmDgyMs2NFaE1GAAG0N9McpY3hcqJL2OaYcBCcsm8XDKSS1bLJYD3bZeqrtLxt8ZHJLm2IRXY9hdm84us0dfMmtCGzqWKeEiki5UW_QgBhTRpkqpBEcCbjdwzVEjKsujSzlaLDDEk1cxTSgSQdBZE543dO-Xk0pf2RjycxlIF8KFdOv_-oP3_GMtL2KUetCsdqlewvZyv7GuEU0vT89sQPa8XPdgZn30b_voDbdkl5Q |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B98Be-EaELxmJJ1C6NrGT-LEbnSYeJgRUGk-RHftYRZdGrNVU_nru4jRaJwRCPCbxKfH5bP8ud_4dwJvCycxghbHTahRLAkaxQYWxdhyUQ8X8K5xtcZqdzOSHM3V27SwMp1UiH93nQtDzOjAFdyliPMPJo9IH2FxuvpFvl4yH5MDQFnPQOLwNe5kiPD6Avdnpx8lX9rSyTNI6kxchnPl72Z0NqeXt3wGbN1Ml76zrxmyuzGJxbR86vgfVtgch_eT7cL2yw-rnDXLH_-vifbjbwVQxCQIP4JavH8J-v1puHsHVRLxfXph5LSbONCGgLz435Cd78alNr-1ONdWiLbw5R_oQQRBZHLEe4k54Gsrw8PrSnJuWQPsiPqSt1YlpqDDUi4efi49hdjz9cnQSd1Uc4krKZBWnfjyqCDRa1AS3PEGi3KY-zVzupcsJkRhtMrSoKqW85fpWvkqN9oW0-dijS5_AoF7W_ikITVgxNYgeEzIlLW2WWlVU1svEW3IdIxhth7KsOopzrrSxKMnVYbWWrVpLVmsZ1BrB216kCfwef2p8yPbRN2Rq7vYGDWHZDWHpbeITxEJzBROFmTZylBIUUbbICz12EbzeWldJU5njM6b2y_VlSeiT2fa0lhHkO2a388bdJ_X8vCUFJyRdkP1H8K430L936Nk_tX4O-3zFf7YT_QIGqx9r_5Ig2cq-6ubcLwMyOs8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Domain+Adaptation+Sparse+Representation+Classifier+for+Cross-Domain+Electroencephalogram-Based+Emotion+Classification&rft.jtitle=Frontiers+in+psychology&rft.au=Ni%2C+Tongguang&rft.au=Ni%2C+Yuyao&rft.au=Xue%2C+Jing&rft.au=Wang%2C+Suhong&rft.date=2021-07-29&rft.issn=1664-1078&rft.eissn=1664-1078&rft.volume=12&rft.spage=721266&rft_id=info:doi/10.3389%2Ffpsyg.2021.721266&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-1078&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-1078&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-1078&client=summon |