Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient

Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P...

Full description

Saved in:
Bibliographic Details
Published inBiochemical journal Vol. 397; no. 3; pp. 461 - 471
Main Authors Venkataraman, Krishnan, Thangada, Shobha, Michaud, Jason, Oo, Myat Lin, Ai, Youxi, Lee, Yong-Moon, Wu, Mingtao, Parikh, Nehal S., Khan, Faraz, Proia, Richard L., Hla, Timothy
Format Journal Article
LanguageEnglish
Published England Portland Press Ltd 01.08.2006
Subjects
Online AccessGet full text
ISSN0264-6021
1470-8728
1470-8728
DOI10.1042/BJ20060251

Cover

Abstract Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P is released from cells and concentrated in the plasma are poorly understood. We recently demonstrated [Ancellin, Colmont, Su, Li, Mittereder, Chae, Stefansson, Liau and Hla (2002) J. Biol. Chem. 277, 6667–6675] that Sphk1 activity is constitutively secreted by vascular endothelial cells. In the present study, we show that among the five Sphk isoforms expressed in endothelial cells, the Sphk-1a isoform is selectively secreted in HEK-293 cells (human embryonic kidney cells) and human umbilical-vein endothelial cells. In sharp contrast, Sphk2 is not secreted. The exported Sphk-1a isoform is enzymatically active and produced sufficient S1P to induce S1P receptor internalization. Wild-type mouse plasma contains significant Sphk activity (179 pmol·min−1·g−1). In contrast, Sphk1−/− mouse plasma has undetectable Sphk activity and approx. 65% reduction in S1P levels. Moreover, human plasma contains enzymatically active Sphk1 (46 pmol·min−1·g−1). These results suggest that export of Sphk-1a occurs under physiological conditions and may contribute to the establishment of the vascular S1P gradient.
AbstractList Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P is released from cells and concentrated in the plasma are poorly understood. We recently demonstrated [Ancellin, Colmont, Su, Li, Mittereder, Chae, Stefansson, Liau and Hla (2002) J. Biol. Chem. 277 , 6667–6675] that Sphk1 activity is constitutively secreted by vascular endothelial cells. In the present study, we show that among the five Sphk isoforms expressed in endothelial cells, the Sphk-1a isoform is selectively secreted in HEK-293 cells (human embryonic kidney cells) and human umbilical-vein endothelial cells. In sharp contrast, Sphk2 is not secreted. The exported Sphk-1a isoform is enzymatically active and produced sufficient S1P to induce S1P receptor internalization. Wild-type mouse plasma contains significant Sphk activity (179 pmol·min −1 ·g −1 ). In contrast, Sphk1 −/− mouse plasma has undetectable Sphk activity and approx. 65% reduction in S1P levels. Moreover, human plasma contains enzymatically active Sphk1 (46 pmol·min −1 ·g −1 ). These results suggest that export of Sphk-1a occurs under physiological conditions and may contribute to the establishment of the vascular S1P gradient.
Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P is released from cells and concentrated in the plasma are poorly understood. We recently demonstrated [Ancellin, Colmont, Su, Li, Mittereder, Chae, Stefansson, Liau and Hla (2002) J. Biol. Chem. 277, 6667-6675] that Sphk1 activity is constitutively secreted by vascular endothelial cells. In the present study, we show that among the five Sphk isoforms expressed in endothelial cells, the Sphk-1a isoform is selectively secreted in HEK-293 cells (human embryonic kidney cells) and human umbilical-vein endothelial cells. In sharp contrast, Sphk2 is not secreted. The exported Sphk-1a isoform is enzymatically active and produced sufficient S1P to induce S1P receptor internalization. Wild-type mouse plasma contains significant Sphk activity (179 pmol x min(-1) x g(-1)). In contrast, Sphk1-/- mouse plasma has undetectable Sphk activity and approx. 65% reduction in S1P levels. Moreover, human plasma contains enzymatically active Sphk1 (46 pmol x min(-1) x g(-1)). These results suggest that export of Sphk-1a occurs under physiological conditions and may contribute to the establishment of the vascular S1P gradient.
Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P is released from cells and concentrated in the plasma are poorly understood. We recently demonstrated [Ancellin, Colmont, Su, Li, Mittereder, Chae, Stefansson, Liau and Hla (2002) J. Biol. Chem. 277, 6667-6675] that Sphk1 activity is constitutively secreted by vascular endothelial cells. In the present study, we show that among the five Sphk isoforms expressed in endothelial cells, the Sphk-1a isoform is selectively secreted in HEK-293 cells (human embryonic kidney cells) and human umbilical-vein endothelial cells. In sharp contrast, Sphk2 is not secreted. The exported Sphk-1a isoform is enzymatically active and produced sufficient S1P to induce S1P receptor internalization. Wild-type mouse plasma contains significant Sphk activity (179 pmol x min(-1) x g(-1)). In contrast, Sphk1-/- mouse plasma has undetectable Sphk activity and approx. 65% reduction in S1P levels. Moreover, human plasma contains enzymatically active Sphk1 (46 pmol x min(-1) x g(-1)). These results suggest that export of Sphk-1a occurs under physiological conditions and may contribute to the establishment of the vascular S1P gradient.Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P is released from cells and concentrated in the plasma are poorly understood. We recently demonstrated [Ancellin, Colmont, Su, Li, Mittereder, Chae, Stefansson, Liau and Hla (2002) J. Biol. Chem. 277, 6667-6675] that Sphk1 activity is constitutively secreted by vascular endothelial cells. In the present study, we show that among the five Sphk isoforms expressed in endothelial cells, the Sphk-1a isoform is selectively secreted in HEK-293 cells (human embryonic kidney cells) and human umbilical-vein endothelial cells. In sharp contrast, Sphk2 is not secreted. The exported Sphk-1a isoform is enzymatically active and produced sufficient S1P to induce S1P receptor internalization. Wild-type mouse plasma contains significant Sphk activity (179 pmol x min(-1) x g(-1)). In contrast, Sphk1-/- mouse plasma has undetectable Sphk activity and approx. 65% reduction in S1P levels. Moreover, human plasma contains enzymatically active Sphk1 (46 pmol x min(-1) x g(-1)). These results suggest that export of Sphk-1a occurs under physiological conditions and may contribute to the establishment of the vascular S1P gradient.
Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular development. Mammals maintain a large concentration gradient of S1P between vascular and extravascular compartments. Mechanisms by which S1P is released from cells and concentrated in the plasma are poorly understood. We recently demonstrated [Ancellin, Colmont, Su, Li, Mittereder, Chae, Stefansson, Liau and Hla (2002) J. Biol. Chem. 277, 6667–6675] that Sphk1 activity is constitutively secreted by vascular endothelial cells. In the present study, we show that among the five Sphk isoforms expressed in endothelial cells, the Sphk-1a isoform is selectively secreted in HEK-293 cells (human embryonic kidney cells) and human umbilical-vein endothelial cells. In sharp contrast, Sphk2 is not secreted. The exported Sphk-1a isoform is enzymatically active and produced sufficient S1P to induce S1P receptor internalization. Wild-type mouse plasma contains significant Sphk activity (179 pmol·min−1·g−1). In contrast, Sphk1−/− mouse plasma has undetectable Sphk activity and approx. 65% reduction in S1P levels. Moreover, human plasma contains enzymatically active Sphk1 (46 pmol·min−1·g−1). These results suggest that export of Sphk-1a occurs under physiological conditions and may contribute to the establishment of the vascular S1P gradient.
Author Oo, Myat Lin
Michaud, Jason
Lee, Yong-Moon
Wu, Mingtao
Venkataraman, Krishnan
Ai, Youxi
Hla, Timothy
Khan, Faraz
Parikh, Nehal S.
Thangada, Shobha
Proia, Richard L.
Author_xml – sequence: 1
  givenname: Krishnan
  surname: Venkataraman
  fullname: Venkataraman, Krishnan
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 2
  givenname: Shobha
  surname: Thangada
  fullname: Thangada, Shobha
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 3
  givenname: Jason
  surname: Michaud
  fullname: Michaud, Jason
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 4
  givenname: Myat Lin
  surname: Oo
  fullname: Oo, Myat Lin
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 5
  givenname: Youxi
  surname: Ai
  fullname: Ai, Youxi
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 6
  givenname: Yong-Moon
  surname: Lee
  fullname: Lee, Yong-Moon
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 7
  givenname: Mingtao
  surname: Wu
  fullname: Wu, Mingtao
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 8
  givenname: Nehal S.
  surname: Parikh
  fullname: Parikh, Nehal S.
  organization: Division of Hematology and Oncology, Connecticut Children's Medical Center, Hartford, CT 06106, U.S.A
– sequence: 9
  givenname: Faraz
  surname: Khan
  fullname: Khan, Faraz
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
– sequence: 10
  givenname: Richard L.
  surname: Proia
  fullname: Proia, Richard L.
  organization: Genetics of Disease and Development Branch, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), NIH (National Institutes of Health), Bethesda, MD 20892, U.S.A
– sequence: 11
  givenname: Timothy
  surname: Hla
  fullname: Hla, Timothy
  organization: Center for Vascular Biology, Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030-3501, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16623665$$D View this record in MEDLINE/PubMed
BookMark eNplUUlLxDAYDaLoOHrxB0hOHoRqtkmai6DiiqDgcg1pms5EO8mYpKL_3o77cvm-w9vgvVWw6IO3AGxgtIMRI7sH5wQhjsgIL4ABZgIVpSDlIhggwlnRA3gFrKZ0jxBmiKFlsII5J5Tz0QDcHT3nqI1t267VEdrnWYgZhgam2cT5cUjOW_jgvE62wBqa4HN0VZdtgjnAPLHwSSfzpr3GV3Acde2sz2tgqdFtsusffwhuj49uDk-Li8uTs8P9i8IwRnJBMeXMjCQipZWYa94QKaxgsuK4QkKauq5RU9FaWiwYoQ1mRNaSCaEFoyWhQ7D37jvrqqmtTR8ddatm0U11fFFBO_Ub8W6ixuFJ4RGltD9DsPVhEMNjZ1NWU5fmdWhvQ5cULzkpS8l74ubPpK-Izyp7AnonmBhSirZRxmWd3bwx7VqFkZqvpb7X6iXbfyRfrv_Jr9ZVlCg
CitedBy_id crossref_primary_10_3389_fonc_2021_682773
crossref_primary_10_3390_cells10113201
crossref_primary_10_1182_blood_2007_11_125203
crossref_primary_10_1371_journal_pgen_1004688
crossref_primary_10_1016_j_bbalip_2008_04_003
crossref_primary_10_1038_labinvest_2010_102
crossref_primary_10_3760_cma_j_issn_0366_6999_20133344
crossref_primary_10_1158_0008_5472_CAN_07_2090
crossref_primary_10_1016_j_bbamem_2006_09_026
crossref_primary_10_1002_jnr_21586
crossref_primary_10_1152_ajprenal_00157_2012
crossref_primary_10_1016_j_plipres_2010_02_004
crossref_primary_10_1038_s41375_019_0577_7
crossref_primary_10_1161_CIRCRESAHA_123_322740
crossref_primary_10_3389_fphar_2018_01504
crossref_primary_10_4049_jimmunol_1102754
crossref_primary_10_1002_pbc_24564
crossref_primary_10_3390_ijms23074009
crossref_primary_10_1016_j_exphem_2011_02_013
crossref_primary_10_1074_jbc_M710181200
crossref_primary_10_1016_j_bbalip_2018_07_009
crossref_primary_10_1111_bjh_12302
crossref_primary_10_1038_s41580_024_00742_y
crossref_primary_10_1002_iub_1934
crossref_primary_10_1152_ajpcell_00072_2009
crossref_primary_10_1371_journal_pone_0068229
crossref_primary_10_1096_fj_09_150540
crossref_primary_10_1016_j_addr_2019_12_003
crossref_primary_10_3390_cells9020337
crossref_primary_10_1016_j_prostaglandins_2007_08_001
crossref_primary_10_1111_j_1476_5381_2010_01053_x
crossref_primary_10_1172_JCI38575
crossref_primary_10_1016_j_cca_2011_11_002
crossref_primary_10_3390_biom15020182
crossref_primary_10_3390_vetsci2030270
crossref_primary_10_1186_s12967_021_03066_z
crossref_primary_10_1016_j_ab_2007_08_002
crossref_primary_10_1016_j_bbalip_2012_06_007
crossref_primary_10_1016_j_tibs_2010_08_001
crossref_primary_10_1016_j_bbalip_2012_06_006
crossref_primary_10_3390_ph4010117
crossref_primary_10_1016_j_bbalip_2018_08_015
crossref_primary_10_1038_mp_a002220_01
crossref_primary_10_1007_s00395_012_0294_0
crossref_primary_10_1111_j_1476_5381_2010_00878_x
crossref_primary_10_1074_jbc_M701279200
crossref_primary_10_1016_j_immuni_2007_02_008
crossref_primary_10_4137_LPI_S31615
crossref_primary_10_3390_ijms21197189
crossref_primary_10_1016_j_imbio_2009_06_003
crossref_primary_10_1038_ki_2012_224
crossref_primary_10_1097_SHK_0b013e3181c02c1f
crossref_primary_10_1161_CIRCRESAHA_108_173799
crossref_primary_10_1172_JCI31123
crossref_primary_10_1507_endocrj_K08E_228
crossref_primary_10_1371_journal_pone_0157221
crossref_primary_10_3390_nu16193296
crossref_primary_10_1038_jid_2008_66
crossref_primary_10_1186_1471_2121_11_45
crossref_primary_10_1007_s11882_013_0402_8
crossref_primary_10_1074_jbc_M115_671735
crossref_primary_10_1074_jbc_M110_171819
crossref_primary_10_1164_rccm_200804_595SO
crossref_primary_10_1371_journal_pone_0063360
crossref_primary_10_1016_j_coph_2008_11_002
crossref_primary_10_1038_mp_a002219_01
crossref_primary_10_1155_2012_154174
crossref_primary_10_1177_1087057110391656
crossref_primary_10_1016_j_mvr_2008_09_005
crossref_primary_10_1007_s11882_008_0004_z
crossref_primary_10_2217_17460875_2_3_341
crossref_primary_10_1021_cr2002917
crossref_primary_10_3389_fphar_2017_00556
crossref_primary_10_1021_cr200273u
crossref_primary_10_1681_ASN_2013010114
crossref_primary_10_1155_2018_2691934
crossref_primary_10_1681_ASN_2013060656
crossref_primary_10_3390_biom13050818
crossref_primary_10_2174_1381612825666190404115424
crossref_primary_10_1158_1078_0432_CCR_12_1050
crossref_primary_10_18632_oncotarget_16370
crossref_primary_10_4331_wjbc_v1_i10_298
crossref_primary_10_1007_s40265_016_0603_2
crossref_primary_10_1111_j_1476_5381_2009_00281_x
crossref_primary_10_1016_j_pharmthera_2021_108011
crossref_primary_10_1155_2014_653543
crossref_primary_10_3390_biomedicines12010124
crossref_primary_10_3390_cancers14030535
crossref_primary_10_1016_j_bbalip_2020_158760
crossref_primary_10_4049_jimmunol_1201503
crossref_primary_10_1097_MD_0000000000029164
crossref_primary_10_2217_ijr_13_40
crossref_primary_10_1007_s11010_011_1154_1
crossref_primary_10_1152_ajprenal_00220_2012
crossref_primary_10_1002_jcp_21187
crossref_primary_10_1080_10623320802125342
crossref_primary_10_1074_jbc_M610318200
crossref_primary_10_1038_s41598_017_05709_y
crossref_primary_10_1158_1535_7163_MCT_13_0367
crossref_primary_10_3390_ijms232214065
crossref_primary_10_1002_med_21402
crossref_primary_10_1038_cddis_2017_289
crossref_primary_10_3389_fcimb_2020_00353
crossref_primary_10_1074_jbc_M109_075549
crossref_primary_10_1074_jbc_R600028200
crossref_primary_10_1161_01_RES_0000241060_26659_d3
crossref_primary_10_3390_ijms18091891
crossref_primary_10_3390_ijms19020420
crossref_primary_10_1016_j_cellsig_2021_110041
crossref_primary_10_1007_s13577_021_00513_3
crossref_primary_10_1194_jlr_R059543
crossref_primary_10_1080_1062936X_2017_1280535
crossref_primary_10_3390_ph6091145
crossref_primary_10_3892_ijmm_2017_2855
crossref_primary_10_1161_ATVBAHA_107_143735
crossref_primary_10_3389_fimmu_2024_1362459
crossref_primary_10_1093_cvr_cvn309
crossref_primary_10_1182_blood_2009_10_243444
crossref_primary_10_1007_s00281_011_0287_3
crossref_primary_10_1016_j_mvr_2011_08_012
crossref_primary_10_1161_01_RES_0000338501_84810_51
crossref_primary_10_3934_molsci_2014_4_183
crossref_primary_10_1007_s00210_007_0132_3
crossref_primary_10_1371_journal_pone_0175118
crossref_primary_10_1074_jbc_M113_544346
crossref_primary_10_1016_j_bbalip_2009_01_019
crossref_primary_10_1161_CIRCRESAHA_107_165845
crossref_primary_10_1242_dev_094805
crossref_primary_10_1016_j_bmcl_2013_06_030
crossref_primary_10_1007_s10555_011_9305_0
crossref_primary_10_1016_j_biochi_2010_02_008
crossref_primary_10_1194_jlr_R700011_JLR200
crossref_primary_10_1016_j_bbalip_2012_07_002
crossref_primary_10_2217_17460875_3_6_665
crossref_primary_10_1007_s11239_013_1032_7
crossref_primary_10_4331_wjbc_v7_i1_44
crossref_primary_10_1165_rcmb_2009_0345OC
crossref_primary_10_1002_jcb_21513
crossref_primary_10_3109_10409238_2011_580097
crossref_primary_10_1016_j_jacl_2007_11_002
crossref_primary_10_1021_acs_bioconjchem_9b00822
crossref_primary_10_3390_antiox12010143
crossref_primary_10_1038_nrd2356
crossref_primary_10_1016_j_celrep_2022_111208
crossref_primary_10_1177_1753465811406772
crossref_primary_10_1016_j_bbalip_2013_07_012
crossref_primary_10_1097_FJC_0b013e3181926706
crossref_primary_10_3390_cells9112437
crossref_primary_10_1097_FJC_0b013e31819b52d5
crossref_primary_10_1016_j_prostaglandins_2020_106436
crossref_primary_10_1038_s41598_019_44047_z
Cites_doi 10.1074/jbc.M506827200
10.1016/S1388-1981(01)00111-1
10.1074/jbc.M306896200
10.1016/j.ab.2004.12.006
10.1074/jbc.273.37.23722
10.1074/jbc.M510308200
10.1194/jlr.M500468-JLR200
10.1093/oxfordjournals.jbchem.a021681
10.1093/jb/mvi100
10.1083/jcb.147.3.545
10.1074/jbc.M301936200
10.1074/jbc.M502207200
10.1074/jbc.273.29.18250
10.1042/bj3350301
10.1074/jbc.M208560200
10.1074/jbc.M002759200
10.1126/science.1113640
10.1016/S0090-6980(01)00103-4
10.1091/mbc.10.4.1179
10.1074/jbc.R200007200
10.1006/abio.2000.4555
10.1128/MCB.25.24.11113-11121.2005
10.1016/j.semcdb.2004.05.002
10.1006/geno.2001.6607
10.1074/jbc.M406512200
10.1006/abio.1999.4157
10.1074/jbc.M102841200
10.1074/jbc.M307687200
10.1016/S0014-5793(03)01168-2
10.1074/jbc.M306577200
10.1074/jbc.M504507200
10.1016/S0021-9258(18)33750-5
10.1006/abio.2002.5579
10.1073/pnas.89.16.7384
10.1074/jbc.M506293200
10.1016/S0003-9861(03)00212-1
10.1074/jbc.M304455200
ContentType Journal Article
Copyright The Biochemical Society, London 2006
Copyright_xml – notice: The Biochemical Society, London 2006
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1042/BJ20060251
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate Secretion of sphingosine kinase-1a isoform
EISSN 1470-8728
EndPage 471
ExternalDocumentID PMC1533315
16623665
10_1042_BJ20060251
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R37 HL067330
– fundername: NHLBI NIH HHS
  grantid: HL70694
– fundername: NHLBI NIH HHS
  grantid: P01 HL070694
– fundername: NHLBI NIH HHS
  grantid: HL67330
– fundername: NHLBI NIH HHS
  grantid: R01 HL067330
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
23N
2WC
3EH
3O-
4.4
53G
5GY
5RE
5VS
6J9
79B
AAHRG
AAYXX
ABJNI
ABPPZ
ACGFO
ACGFS
ACNCT
ADBBV
ADXHL
AEGXH
AENEX
AI.
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DU5
E3Z
EBS
EJD
F5P
H13
HH6
HYE
HZ~
K-O
L7B
MV1
MVM
N9A
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RPO
TR2
TWZ
VH1
WH7
WOQ
X7M
XSW
Y6R
YNY
ZXP
ZY4
~02
~KM
AABGO
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7X8
5PM
ID FETCH-LOGICAL-c442t-31364c59028e916a6f297e749b61b079cddd0fb3d9e17423f1429d9477a743823
ISSN 0264-6021
1470-8728
IngestDate Thu Aug 21 18:26:18 EDT 2025
Thu Jul 10 17:44:43 EDT 2025
Wed Feb 19 01:46:42 EST 2025
Thu Apr 24 22:54:57 EDT 2025
Tue Jul 01 00:43:16 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-31364c59028e916a6f297e749b61b079cddd0fb3d9e17423f1429d9477a743823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://portlandpress.com/biochemj/article-pdf/397/3/461/644312/bj3970461.pdf
PMID 16623665
PQID 68628896
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1533315
proquest_miscellaneous_68628896
pubmed_primary_16623665
crossref_citationtrail_10_1042_BJ20060251
crossref_primary_10_1042_BJ20060251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biochemical journal
PublicationTitleAlternate Biochem J
PublicationYear 2006
Publisher Portland Press Ltd
Publisher_xml – name: Portland Press Ltd
References Sanchez (2021112213051886100_B19) 2003; 278
Schwab (2021112213051886100_B9) 2005; 309
Liu (2021112213051886100_B18) 2000; 275
Liu (2021112213051886100_B28) 2003; 278
Min (2021112213051886100_B8) 2002; 303
Liu (2021112213051886100_B27) 1999; 10
He (2021112213051886100_B35) 2003; 278
Yatomi (2021112213051886100_B3) 1997; 121
Ausubel (2021112213051886100_B24) 1996
Schissel (2021112213051886100_B34) 1998; 273
Romiti (2021112213051886100_B36) 2003; 417
Allende (2021112213051886100_B7) 2004; 279
Spiegel (2021112213051886100_B2) 2002; 277
Tani (2021112213051886100_B15) 2005; 280
Aoki (2021112213051886100_B38) 2005; 138
Ancellin (2021112213051886100_B12) 2002; 277
Kihara (2021112213051886100_B37) 2006; 281
Paugh (2021112213051886100_B21) 2003; 554
Imamura (2021112213051886100_B22) 2001; 76
Maceyka (2021112213051886100_B31) 2005; 280
Yatomi (2021112213051886100_B10) 2001; 64
Caligan (2021112213051886100_B4) 2000; 281
Kharel (2021112213051886100_B33) 2005; 280
Banno (2021112213051886100_B16) 1998; 335
Hla (2021112213051886100_B25) 1992; 89
Kohama (2021112213051886100_B23) 1998; 273
Mizugishi (2021112213051886100_B32) 2005; 25
Hla (2021112213051886100_B1) 2004; 15
Billich (2021112213051886100_B20) 2003; 278
Castellot (2021112213051886100_B26) 1982; 257
Berdyshev (2021112213051886100_B5) 2005; 339
Edsall (2021112213051886100_B6) 1999; 272
Waters (2021112213051886100_B14) 2003; 278
Gijsbers (2021112213051886100_B17) 2001; 1532
Olivera (2021112213051886100_B11) 1999; 147
Kobayashi (2021112213051886100_B13) 2006; 47
Igarashi (2021112213051886100_B29) 2003; 278
Okada (2021112213051886100_B30) 2005; 280
16314531 - Mol Cell Biol. 2005 Dec;25(24):11113-21
14596938 - FEBS Lett. 2003 Nov 6;554(1-2):189-93
9192741 - J Biochem. 1997 May;121(5):969-73
1380156 - Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7384-8
16103110 - J Biol Chem. 2005 Oct 28;280(43):36318-25
16118219 - J Biol Chem. 2005 Nov 4;280(44):37118-29
16151014 - Science. 2005 Sep 9;309(5741):1735-9
10751414 - J Biol Chem. 2000 Jun 30;275(26):19513-20
12921776 - Arch Biochem Biophys. 2003 Sep 1;417(1):27-33
11324700 - Prostaglandins Other Lipid Mediat. 2001 Apr;64(1-4):107-22
13129923 - J Biol Chem. 2003 Nov 28;278(48):47408-15
16046448 - J Biochem. 2005 Jul;138(1):47-55
11741921 - J Biol Chem. 2002 Feb 22;277(8):6667-75
12954646 - J Biol Chem. 2003 Nov 21;278(47):46832-9
16368679 - J Biol Chem. 2006 Feb 17;281(7):4532-9
12954648 - J Biol Chem. 2003 Nov 21;278(47):47281-90
9726979 - J Biol Chem. 1998 Sep 11;273(37):23722-8
15766719 - Anal Biochem. 2005 Apr 1;339(1):129-36
11420172 - Biochim Biophys Acta. 2001 May 31;1532(1-2):37-50
7118883 - J Biol Chem. 1982 Oct 10;257(19):11256-60
10847608 - Anal Biochem. 2000 May 15;281(1):36-44
16093248 - J Biol Chem. 2005 Nov 4;280(44):36865-72
12815059 - J Biol Chem. 2003 Aug 29;278(35):32978-86
10545499 - J Cell Biol. 1999 Nov 1;147(3):545-58
11560121 - Genomics. 2001 Aug;76(1-3):117-25
10405296 - Anal Biochem. 1999 Jul 15;272(1):80-6
11950216 - Anal Biochem. 2002 Apr 15;303(2):167-75
15459201 - J Biol Chem. 2004 Dec 10;279(50):52487-92
9660788 - J Biol Chem. 1998 Jul 17;273(29):18250-9
15271296 - Semin Cell Dev Biol. 2004 Oct;15(5):513-20
16371645 - J Lipid Res. 2006 Mar;47(3):614-21
12480944 - J Biol Chem. 2003 Feb 21;278(8):6282-90
12011102 - J Biol Chem. 2002 Jul 19;277(29):25851-4
10198065 - Mol Biol Cell. 1999 Apr;10(4):1179-90
9761727 - Biochem J. 1998 Oct 15;335 ( Pt 2):301-4
12835323 - J Biol Chem. 2003 Oct 10;278(41):40330-6
16126722 - J Biol Chem. 2005 Nov 4;280(44):36592-600
References_xml – volume: 280
  start-page: 36592
  year: 2005
  ident: 2021112213051886100_B15
  article-title: Involvement of neutral ceramidase in ceramide metabolism at the plasma membrane and in extracellular milieu
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506827200
– volume: 1532
  start-page: 37
  year: 2001
  ident: 2021112213051886100_B17
  article-title: Subcellular study of sphingoid base phosphorylation in rat tissues: evidence for multiple sphingosine kinases
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S1388-1981(01)00111-1
– volume: 278
  start-page: 47281
  year: 2003
  ident: 2021112213051886100_B19
  article-title: Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M306896200
– volume: 339
  start-page: 129
  year: 2005
  ident: 2021112213051886100_B5
  article-title: Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography-tandem mass spectrometry
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.12.006
– volume: 273
  start-page: 23722
  year: 1998
  ident: 2021112213051886100_B23
  article-title: Molecular cloning and functional characterization of murine sphingosine kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.37.23722
– volume: 281
  start-page: 4532
  year: 2006
  ident: 2021112213051886100_B37
  article-title: Mouse sphingosine kinase isoforms SPHK1a and SPHK1b differ in enzymatic traits including stability, localization, modification, and oligomerization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M510308200
– volume: 47
  start-page: 614
  year: 2006
  ident: 2021112213051886100_B13
  article-title: Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M500468-JLR200
– volume: 121
  start-page: 969
  year: 1997
  ident: 2021112213051886100_B3
  article-title: Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum
  publication-title: J. Biochem. (Tokyo)
  doi: 10.1093/oxfordjournals.jbchem.a021681
– year: 1996
  ident: 2021112213051886100_B24
  article-title: Current Protocols in Molecular Biology
– volume: 138
  start-page: 47
  year: 2005
  ident: 2021112213051886100_B38
  article-title: Sphingosine 1-phosphate-related metabolism in the blood vessel
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvi100
– volume: 147
  start-page: 545
  year: 1999
  ident: 2021112213051886100_B11
  article-title: Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.147.3.545
– volume: 278
  start-page: 32978
  year: 2003
  ident: 2021112213051886100_B35
  article-title: Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301936200
– volume: 280
  start-page: 37118
  year: 2005
  ident: 2021112213051886100_B31
  article-title: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M502207200
– volume: 273
  start-page: 18250
  year: 1998
  ident: 2021112213051886100_B34
  article-title: The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.29.18250
– volume: 335
  start-page: 301
  year: 1998
  ident: 2021112213051886100_B16
  article-title: Evidence for the presence of multiple forms of Sph kinase in human platelets
  publication-title: Biochem. J.
  doi: 10.1042/bj3350301
– volume: 278
  start-page: 6282
  year: 2003
  ident: 2021112213051886100_B14
  article-title: Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGFβ receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208560200
– volume: 275
  start-page: 19513
  year: 2000
  ident: 2021112213051886100_B18
  article-title: Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002759200
– volume: 309
  start-page: 1735
  year: 2005
  ident: 2021112213051886100_B9
  article-title: Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients
  publication-title: Science
  doi: 10.1126/science.1113640
– volume: 64
  start-page: 107
  year: 2001
  ident: 2021112213051886100_B10
  article-title: Sphingosine 1-phosphate: synthesis and release
  publication-title: Prostaglandins Other Lipid Mediat.
  doi: 10.1016/S0090-6980(01)00103-4
– volume: 10
  start-page: 1179
  year: 1999
  ident: 2021112213051886100_B27
  article-title: Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.4.1179
– volume: 277
  start-page: 25851
  year: 2002
  ident: 2021112213051886100_B2
  article-title: Sphingosine 1-phosphate, a key cell signaling molecule
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R200007200
– volume: 281
  start-page: 36
  year: 2000
  ident: 2021112213051886100_B4
  article-title: A high-performance liquid chromatographic method to measure sphingosine 1-phosphate and related compounds from sphingosine kinase assays and other biological samples
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2000.4555
– volume: 25
  start-page: 11113
  year: 2005
  ident: 2021112213051886100_B32
  article-title: Essential role for sphingosine kinases in neural and vascular development
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.24.11113-11121.2005
– volume: 15
  start-page: 513
  year: 2004
  ident: 2021112213051886100_B1
  article-title: Physiological and pathological actions of sphingosine 1-phosphate
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2004.05.002
– volume: 76
  start-page: 117
  year: 2001
  ident: 2021112213051886100_B22
  article-title: CpG island of rat sphingosine kinase-1 gene: tissue-dependent DNA methylation status and multiple alternative first exons
  publication-title: Genomics
  doi: 10.1006/geno.2001.6607
– volume: 279
  start-page: 52487
  year: 2004
  ident: 2021112213051886100_B7
  article-title: Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M406512200
– volume: 272
  start-page: 80
  year: 1999
  ident: 2021112213051886100_B6
  article-title: Enzymatic measurement of sphingosine 1-phosphate
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1999.4157
– volume: 277
  start-page: 6667
  year: 2002
  ident: 2021112213051886100_B12
  article-title: Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M102841200
– volume: 278
  start-page: 47408
  year: 2003
  ident: 2021112213051886100_B20
  article-title: Phosphorylation of the immunomodulatory drug FTY720 by sphingosine kinases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307687200
– volume: 554
  start-page: 189
  year: 2003
  ident: 2021112213051886100_B21
  article-title: The immunosuppressant FTY720 is phosphorylated by sphingosine kinase type 2
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)01168-2
– volume: 278
  start-page: 46832
  year: 2003
  ident: 2021112213051886100_B29
  article-title: Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M306577200
– volume: 280
  start-page: 36318
  year: 2005
  ident: 2021112213051886100_B30
  article-title: Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504507200
– volume: 257
  start-page: 11256
  year: 1982
  ident: 2021112213051886100_B26
  article-title: Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)33750-5
– volume: 303
  start-page: 167
  year: 2002
  ident: 2021112213051886100_B8
  article-title: Simultaneous quantitative analysis of sphingoid base 1-phosphates in biological samples by o-phthalaldehyde precolumn derivatization after dephosphorylation with alkaline phosphatase
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2002.5579
– volume: 89
  start-page: 7384
  year: 1992
  ident: 2021112213051886100_B25
  article-title: Human cyclooxygenase-2 cDNA
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.89.16.7384
– volume: 280
  start-page: 36865
  year: 2005
  ident: 2021112213051886100_B33
  article-title: Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M506293200
– volume: 417
  start-page: 27
  year: 2003
  ident: 2021112213051886100_B36
  article-title: Neutral ceramidase secreted by endothelial cells is released in part associated with caveolin-1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/S0003-9861(03)00212-1
– volume: 278
  start-page: 40330
  year: 2003
  ident: 2021112213051886100_B28
  article-title: Sphingosine kinase type 2 is a putative BH3-only protein that induces apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304455200
– reference: 11560121 - Genomics. 2001 Aug;76(1-3):117-25
– reference: 9726979 - J Biol Chem. 1998 Sep 11;273(37):23722-8
– reference: 12954646 - J Biol Chem. 2003 Nov 21;278(47):46832-9
– reference: 12835323 - J Biol Chem. 2003 Oct 10;278(41):40330-6
– reference: 16093248 - J Biol Chem. 2005 Nov 4;280(44):36865-72
– reference: 15459201 - J Biol Chem. 2004 Dec 10;279(50):52487-92
– reference: 16151014 - Science. 2005 Sep 9;309(5741):1735-9
– reference: 11420172 - Biochim Biophys Acta. 2001 May 31;1532(1-2):37-50
– reference: 12815059 - J Biol Chem. 2003 Aug 29;278(35):32978-86
– reference: 10847608 - Anal Biochem. 2000 May 15;281(1):36-44
– reference: 16118219 - J Biol Chem. 2005 Nov 4;280(44):37118-29
– reference: 9761727 - Biochem J. 1998 Oct 15;335 ( Pt 2):301-4
– reference: 10198065 - Mol Biol Cell. 1999 Apr;10(4):1179-90
– reference: 9192741 - J Biochem. 1997 May;121(5):969-73
– reference: 11324700 - Prostaglandins Other Lipid Mediat. 2001 Apr;64(1-4):107-22
– reference: 9660788 - J Biol Chem. 1998 Jul 17;273(29):18250-9
– reference: 11741921 - J Biol Chem. 2002 Feb 22;277(8):6667-75
– reference: 11950216 - Anal Biochem. 2002 Apr 15;303(2):167-75
– reference: 10545499 - J Cell Biol. 1999 Nov 1;147(3):545-58
– reference: 12954648 - J Biol Chem. 2003 Nov 21;278(47):47281-90
– reference: 16368679 - J Biol Chem. 2006 Feb 17;281(7):4532-9
– reference: 16103110 - J Biol Chem. 2005 Oct 28;280(43):36318-25
– reference: 16046448 - J Biochem. 2005 Jul;138(1):47-55
– reference: 15271296 - Semin Cell Dev Biol. 2004 Oct;15(5):513-20
– reference: 1380156 - Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7384-8
– reference: 12921776 - Arch Biochem Biophys. 2003 Sep 1;417(1):27-33
– reference: 16126722 - J Biol Chem. 2005 Nov 4;280(44):36592-600
– reference: 12480944 - J Biol Chem. 2003 Feb 21;278(8):6282-90
– reference: 12011102 - J Biol Chem. 2002 Jul 19;277(29):25851-4
– reference: 15766719 - Anal Biochem. 2005 Apr 1;339(1):129-36
– reference: 13129923 - J Biol Chem. 2003 Nov 28;278(48):47408-15
– reference: 10751414 - J Biol Chem. 2000 Jun 30;275(26):19513-20
– reference: 10405296 - Anal Biochem. 1999 Jul 15;272(1):80-6
– reference: 7118883 - J Biol Chem. 1982 Oct 10;257(19):11256-60
– reference: 16371645 - J Lipid Res. 2006 Mar;47(3):614-21
– reference: 14596938 - FEBS Lett. 2003 Nov 6;554(1-2):189-93
– reference: 16314531 - Mol Cell Biol. 2005 Dec;25(24):11113-21
SSID ssj0014040
Score 2.305501
Snippet Sphingosine 1-phosphate (S1P), produced by Sphks (sphingosine kinases), is a multifunctional lipid mediator that regulates immune cell trafficking and vascular...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 461
SubjectTerms Animals
Cells, Cultured
Culture Media, Conditioned
Endothelium, Vascular - cytology
Extracellular Space - metabolism
Humans
Intracellular Space - metabolism
Isoenzymes - blood
Isoenzymes - metabolism
Isoenzymes - secretion
Lysophospholipids - biosynthesis
Lysophospholipids - blood
Mice
Mice, Inbred C57BL
Mice, Knockout
Phosphotransferases (Alcohol Group Acceptor) - blood
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Phosphotransferases (Alcohol Group Acceptor) - secretion
Protein Transport
Receptors, Lysosphingolipid - metabolism
Sphingosine - analogs & derivatives
Sphingosine - biosynthesis
Sphingosine - blood
Title Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient
URI https://www.ncbi.nlm.nih.gov/pubmed/16623665
https://www.proquest.com/docview/68628896
https://pubmed.ncbi.nlm.nih.gov/PMC1533315
Volume 397
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoALgpZHeK4ERUKVix-TtX2MoqKqooDUFPUWrb1rEhXsKnGkljM_nJldP5seChcrctbWZufLvPbbGcbeQQAyVMpzRCpSBwJXO3GWuQ5ECA-I0UQmlNA__iIOT-HobHQ2GPzpsJbWZbKf_r7xXMn_SBXvoVzplOw_SLZ5Kd7AzyhfvKKE8XorGR9clktJqXfDJdWX5EuT97e6oLxSQZT2vfNFjobK8aRlpVN7K1vVgTzOhod64n3b-7E09K9-zaMFddSyJQW6U6IWXTo_l6VcyiqHSupinrdgm1IqWirjnJ7Mi2TeGABD1V8rS9JdtTyAryZte3wly92Jvzt2P1dVwTtJiahOSljdhX6WI1x7-HlfW90KoYvKtzoLXinfwLJzK5QFHVUKwutYZbCNWjYUPuocorEf0SQoXGrNWr2Vf83aNRxEs_sO_qx99g6764fogdU5n2ovClyoMnX2J9VFbsH_2D7bd2s2YpXrlNuODzN9yB5UwQcfWyQ9YgOdb7OdcS7L4tcVf88NHdjss2yze5O6FeAO-94DGrdA40XGO0DjDdB4B2i8LDgCjddA4wg0XgPtMTv9dDCdHDpVQw4nBfBLtNeBgNQU_NEYVkiR-XGoQ4gT4SVuGKdKKTdLAhVrjxgAmYfejoohDGVoNpyfsK28yPUzxkdSAZqP1A00QKDTCCMRpZWK8RlPxmrIPtTrOUuravXUNOXnbFNuQ_a2GXtha7TcOOpNLZYZLh-tmcx1sV7N6JBUFMViyJ5aIbVvERgdCDEasrAnvmYAFWfvf5Mv5qZIO8VRgTd6fqu5vWD323_RS7ZVLtf6FTq7ZfLaYPEvyD2pGA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+export+of+sphingosine+kinase-1a+contributes+to+the+vascular+S1P+gradient&rft.jtitle=Biochemical+journal&rft.au=Venkataraman%2C+Krishnan&rft.au=Thangada%2C+Shobha&rft.au=Michaud%2C+Jason&rft.au=Oo%2C+Myat%C2%A0Lin&rft.date=2006-08-01&rft.issn=0264-6021&rft.eissn=1470-8728&rft.volume=397&rft.issue=3&rft.spage=461&rft.epage=471&rft_id=info:doi/10.1042%2FBJ20060251&rft.externalDBID=n%2Fa&rft.externalDocID=10_1042_BJ20060251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-6021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-6021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-6021&client=summon