Structural plasticity‐based hydrogel optical Willshaw model for one‐shot on‐the‐fly edge learning

Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, an...

Full description

Saved in:
Bibliographic Details
Published inInfoMat Vol. 5; no. 4
Main Authors Wang, Dingchen, Liu, Dingyao, Lin, Yinan, Yuan, Anran, Zhang, Woyu, Zhao, Yaping, Wang, Shaocong, Chen, Xi, Chen, Hegan, Zhang, Yi, Jiang, Yang, Shi, Shuhui, Loong, Kam Chi, Chen, Jia, Wei, Songrui, Wang, Qing, Yu, Hongyu, Xu, Renjing, Shang, Dashan, Zhang, Han, Zhang, Shiming, Wang, Zhongrui
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons, Inc 01.04.2023
Wiley
Subjects
Online AccessGet full text
ISSN2567-3165
2770-5110
2567-3165
DOI10.1002/inf2.12399

Cover

Abstract Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems. Biological synapses of human brain undergo a period of overproduction after birth, which is followed by consolidating part of the synapses and pruning the rest, bearing great significance to the development of intelligence as shown in Figure A. Such structural plasticity inspires a material‐algorithm co‐design, a hydrogel‐based optical Willshaw model (HOWM) in Figure B, thanks to the underlying opto‐chemical reactions of hydrogel shown in Figure C. The HOWM empowers one‐shot on‐the‐fly learning and leads to 1000× boost of energy efficiency and 10× boost of speed, which may pave the way for the next‐generation autonomous, efficient and affordable smart edge systems.
AbstractList Autonomous one-shot on-the-fly learning copes with the high privacy, small dataset, and in-stream data at the edge. Implementing such learning on digital hardware suffers from the well-known von-Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex-situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio-inspired material-algorithm co-design to construct a hydrogel-based optical Willshaw model (HOWM), manifesting Hebbian-rule-based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto-chemical reactions. We first employed the HOWM as an all optical in-sensor AI processor for one-shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one-shot learning the Omniglot dataset. The HOWM empowered one-shot on-the-fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next-generation autonomous, efficient, and affordable smart edge systems.
Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems. image
Abstract Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems.
Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems. Biological synapses of human brain undergo a period of overproduction after birth, which is followed by consolidating part of the synapses and pruning the rest, bearing great significance to the development of intelligence as shown in Figure A. Such structural plasticity inspires a material‐algorithm co‐design, a hydrogel‐based optical Willshaw model (HOWM) in Figure B, thanks to the underlying opto‐chemical reactions of hydrogel shown in Figure C. The HOWM empowers one‐shot on‐the‐fly learning and leads to 1000× boost of energy efficiency and 10× boost of speed, which may pave the way for the next‐generation autonomous, efficient and affordable smart edge systems.
Author Chen, Xi
Yuan, Anran
Lin, Yinan
Wang, Zhongrui
Zhao, Yaping
Zhang, Han
Chen, Jia
Liu, Dingyao
Zhang, Yi
Wei, Songrui
Wang, Qing
Xu, Renjing
Shang, Dashan
Chen, Hegan
Loong, Kam Chi
Wang, Shaocong
Yu, Hongyu
Wang, Dingchen
Zhang, Woyu
Zhang, Shiming
Jiang, Yang
Shi, Shuhui
Author_xml – sequence: 1
  givenname: Dingchen
  surname: Wang
  fullname: Wang, Dingchen
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 2
  givenname: Dingyao
  surname: Liu
  fullname: Liu, Dingyao
  organization: The University of Hong Kong
– sequence: 3
  givenname: Yinan
  surname: Lin
  fullname: Lin, Yinan
  organization: The University of Hong Kong
– sequence: 4
  givenname: Anran
  surname: Yuan
  fullname: Yuan, Anran
  organization: Macau University of Science and Technology
– sequence: 5
  givenname: Woyu
  surname: Zhang
  fullname: Zhang, Woyu
  organization: Institute of Microelectronics, Chinese Academy of Sciences
– sequence: 6
  givenname: Yaping
  surname: Zhao
  fullname: Zhao, Yaping
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 7
  givenname: Shaocong
  surname: Wang
  fullname: Wang, Shaocong
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 8
  givenname: Xi
  surname: Chen
  fullname: Chen, Xi
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 9
  givenname: Hegan
  surname: Chen
  fullname: Chen, Hegan
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 10
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 11
  givenname: Yang
  surname: Jiang
  fullname: Jiang, Yang
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 12
  givenname: Shuhui
  orcidid: 0000-0002-6319-4047
  surname: Shi
  fullname: Shi, Shuhui
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 13
  givenname: Kam Chi
  surname: Loong
  fullname: Loong, Kam Chi
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 14
  givenname: Jia
  surname: Chen
  fullname: Chen, Jia
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
– sequence: 15
  givenname: Songrui
  surname: Wei
  fullname: Wei, Songrui
  organization: Institute of Microscale Optoelectronics, Shenzhen University
– sequence: 16
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
  organization: Southern University of Science and Technology
– sequence: 17
  givenname: Hongyu
  surname: Yu
  fullname: Yu, Hongyu
  organization: Southern University of Science and Technology
– sequence: 18
  givenname: Renjing
  surname: Xu
  fullname: Xu, Renjing
  email: renjingxu@ust.hk
  organization: Function Hub of the Hong Kong University of Science and Technology (Guangzhou)
– sequence: 19
  givenname: Dashan
  orcidid: 0000-0002-5975-0557
  surname: Shang
  fullname: Shang, Dashan
  email: shangdashan@ime.ac.cn
  organization: Institute of Microelectronics, Chinese Academy of Sciences
– sequence: 20
  givenname: Han
  surname: Zhang
  fullname: Zhang, Han
  email: hzhang@szu.edu.cn
  organization: Institute of Microscale Optoelectronics, Shenzhen University
– sequence: 21
  givenname: Shiming
  surname: Zhang
  fullname: Zhang, Shiming
  email: szhang@eee.hku.hk, zrwang@eee.hku.hk
  organization: The University of Hong Kong
– sequence: 22
  givenname: Zhongrui
  orcidid: 0000-0003-2264-0677
  surname: Wang
  fullname: Wang, Zhongrui
  email: zrwang@eee.hku.hk
  organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park
BookMark eNp9kMFq3DAQhkVIoGmSS5_A0FvLppJs2dKxhKZdCM0hKT2KkSztalEsV5JZfOsj9Bn7JNXGoZQSctI_o29-Zv7X6HgIg0HoDcGXBGP6wQ2WXhJaC3GETilru1VNWnb8j36FLlLa4QIz3FBGTpG7y3HSeYrgq9FDyk67PP_--UtBMn21nfsYNsZXYSw_hfnuvE9b2FcPoS9tG2JVlih82oZcZFF5e6itnyvTb0zlDcTBDZtzdGLBJ3Px9J6hb9ef7q--rG5uP6-vPt6sdNNQseKYKa15Tw1hFgyuKTeWQKdoxwTHqmOKgmgIJabnNQctMKFYMMyNtqWuz9B68e0D7OQY3QPEWQZw8rER4kZCLMd4I7FSVHQCNGlFo4gVjLcGWN03SrfWquL1fvGahhHmPXj_15BgeQhdHkKXj6EX-u1CjzH8mEzKchemOJRjJeW4bSjGXV0ovFA6hpSisbIkDtmFIUdw_nnjd_-NvLgFWeC982Z-gZTrr9d0mfkDf5S08w
CitedBy_id crossref_primary_10_1088_1361_6463_ad17a3
crossref_primary_10_1088_2634_4386_ad5fb2
Cites_doi 10.1038/385533a0
10.1073/pnas.2010281117
10.1002/adma.201802883
10.1126/science.aaf3627
10.1038/s41566-020-00754-y
10.1073/pnas.1703616114
10.1038/nrn1301
10.1038/s41467-021-22364-0
10.1371/journal.pcbi.1004347
10.1038/s41586-018-0095-1
10.1038/nphoton.2017.93
10.1016/0006-8993(79)90349-4
10.1002/adma.201700375
10.1038/s41586-020-03070-1
10.1038/s41928-019-0321-3
10.4324/9781410612403
10.1021/acs.chemrev.5b00671
10.1109/JBHI.2016.2636665
10.1109/IEDM19574.2021.9720562
10.1364/PRJ.7.000823
10.1002/adma.200304907
10.1038/222960a0
10.1371/journal.pone.0096485
10.1038/s41586-019-1157-8
10.1002/neu.480210113
10.1002/adfm.202003601
10.1364/PRJ.8.000046
10.1126/science.aat8084
10.1038/s41578-018-0018-7
10.1523/JNEUROSCI.04-05-01378.1984
10.1364/OPTICA.388205
10.1016/j.neunet.2019.09.007
10.1038/nphoton.2013.278
10.1021/am403966x
10.1126/science.aab3050
10.1038/s41551-018-0335-6
10.1038/nature14539
10.1038/s41591-018-0307-0
10.1038/s41928-019-0203-8
10.1364/PRJ.439506
10.1038/s41586-020-03063-0
10.1038/s41578-019-0159-3
10.1038/ncomms2368
10.1038/s41928-022-00719-9
10.1038/308845a0
10.1109/5.726791
10.1038/s41586-020-2973-6
10.1038/s41563-021-01099-9
10.1038/s41566-021-00796-w
10.1038/s41928-017-0011-y
10.1016/j.polymer.2007.06.020
10.3389/fncom.2016.00093
10.3389/fnana.2016.00063
10.1038/nrn3258
10.1038/s41928-021-00692-9
10.1364/FIO.2017.FTu5B.3
10.1145/3457682.3457748
10.1038/s41467-019-11260-3
10.1038/natrevmats.2016.75
10.1109/TPAMI.2015.2462338
10.1002/inf2.12122
10.1038/336468a0
10.1364/OE.23.012758
ContentType Journal Article
Copyright 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1002/inf2.12399
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2567-3165
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0bb2979ac1694b1f9586ea53d4bc6ffb
10.1002/inf2.12399
10_1002_inf2_12399
INF212399
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61771176; 61874138; 61888102; 62122004; 62171173
– fundername: National Key R&D Program of China
  funderid: 2018YFA0701500
– fundername: ACCESS – AI Chip Center for Emerging Smart Systems
– fundername: Research on high‐reliable GaN power device and the related industrial power system
  funderid: HZQB‐KCZYZ‐2021052
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB44000000
– fundername: Innovation and Technology Fund (ITF), Hong Kong SAR
– fundername: Research on the GaN Chip for 5G Applications
  funderid: JCYJ20210324120409025
– fundername: Key Project of Department of Education of Guangdong Province
  funderid: 2018KCXTD026
– fundername: Hong Kong Research Grant Council
  funderid: 17205922; 27206321
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ACCMX
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
M7S
OK1
PDBOC
PIMPY
PTHSS
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c4429-805bcc8d2e15fae0328ef1a7b275980b75b2a94121ed838ac901209508ecf38a3
IEDL.DBID BENPR
ISSN 2567-3165
2770-5110
IngestDate Fri Oct 03 12:21:18 EDT 2025
Tue Aug 19 20:53:09 EDT 2025
Wed Aug 13 04:42:22 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Wed Oct 01 02:17:13 EDT 2025
Wed Jan 22 16:23:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4429-805bcc8d2e15fae0328ef1a7b275980b75b2a94121ed838ac901209508ecf38a3
Notes Dingchen Wang and Dingyao Liu contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6319-4047
0000-0003-2264-0677
0000-0002-5975-0557
OpenAccessLink https://www.proquest.com/docview/2806420073?pq-origsite=%requestingapplication%&accountid=15518
PQID 2806420073
PQPubID 5068510
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0bb2979ac1694b1f9586ea53d4bc6ffb
unpaywall_primary_10_1002_inf2_12399
proquest_journals_2806420073
crossref_citationtrail_10_1002_inf2_12399
crossref_primary_10_1002_inf2_12399
wiley_primary_10_1002_inf2_12399_INF212399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: Beijing
PublicationTitle InfoMat
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2018; 361
2015; 38
2013; 4
2020; 121
2019; 10
2003; 15
2004; 5
2022; 21
2019; 569
2013; 7
2012; 13
2013; 5
2017; 114
2017; 356
1998; 86
2020; 7
2020; 5
2018; 3
2020; 2
2018; 1
1997; 385
2019; 25
2018; 30
2016; 116
2014; 9
1979; 163
1988; 336
2019; 8
2019; 7
2021; 4
2019; 3
2019; 2
2015; 521
2017; 21
2021; 589
2015; 11
2016; 10
2020; 588
1984; 308
2005
2017; 29
1969; 222
2015; 350
2015; 23
2021; 15
1990; 21
2021; 12
2016; 2
2018; 557
1984; 4
2020; 30
2022; 5
2017; 11
2020; 117
2017
2022; 10
2007; 48
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Zhang Q, Yu H, Barbiero M (e_1_2_7_43_1) 2019; 8
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 13
  start-page: 478
  issue: 7
  year: 2012
  end-page: 490
  article-title: Structural plasticity upon learning: regulation and functions
  publication-title: Nat Rev Neurosci
– volume: 4
  start-page: 1364
  issue: 1
  year: 2013
  article-title: Parallel photonic information processing at gigabyte per second data rates using transient states
  publication-title: Nat Commun
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient‐based learning applied to document recognition
  publication-title: Proc IEEE
– volume: 163
  start-page: 195
  issue: 2
  year: 1979
  end-page: 205
  article-title: Synaptic density in human frontal cortex‐developmental changes and effects of aging
  publication-title: Brain Res
– volume: 10
  year: 2016
  article-title: Structural plasticity denoises responses and improves learning speed
  publication-title: Front Comput Neurosci
– year: 2005
– volume: 588
  start-page: 39
  issue: 7836
  year: 2020
  end-page: 47
  article-title: Inference in artificial intelligence with deep optics and photonics
  publication-title: Nature
– volume: 557
  start-page: 534
  issue: 7706
  year: 2018
  end-page: 538
  article-title: Addressing the minimum fleet problem in on‐demand urban mobility
  publication-title: Nature
– volume: 10
  start-page: 3267
  issue: 1
  year: 2019
  article-title: Programmable responsive hydrogels inspired by classical conditioning algorithm
  publication-title: Nat Commun
– volume: 114
  start-page: 5900
  issue: 23
  year: 2017
  end-page: 5905
  article-title: Bio‐inspired self‐healing structural color hydrogel
  publication-title: Proc Natl Acad Sci
– volume: 12
  issue: 1
  year: 2021
  article-title: Robust high‐dimensional memory‐augmented neural networks
  publication-title: Nat Commun
– volume: 3
  start-page: 58
  issue: 1
  year: 2019
  end-page: 68
  article-title: Soft and elastic hydrogel‐based microelectronics for localized low‐voltage neuromodulation
  publication-title: Nat Biomed Eng
– volume: 116
  start-page: 10167
  issue: 17
  year: 2016
  end-page: 10211
  article-title: Light‐controlled radical polymerization: mechanisms, methods, and applications
  publication-title: Chem Rev
– volume: 2
  issue: 1
  year: 2016
  article-title: Bioresponsive materials
  publication-title: Nat Rev Mater
– volume: 4
  start-page: 1378
  issue: 5
  year: 1984
  end-page: 1397
  article-title: Prenatal development of functional connections in the cat's retinogeniculate pathway
  publication-title: J Neurosci
– volume: 8
  issue: 1
  year: 2019
  article-title: Neuromorphic metasurface
  publication-title: Photonics Res
– volume: 308
  start-page: 845
  issue: 5962
  year: 1984
  end-page: 848
  article-title: Prenatal development of individual retinogeniculate axons during the period of segregation
  publication-title: Nature
– volume: 38
  start-page: 518
  issue: 3
  year: 2015
  end-page: 531
  article-title: Multi‐directional multi‐level dual‐cross patterns for robust face recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 350
  start-page: 1332
  issue: 6266
  year: 2015
  end-page: 1338
  article-title: Human‐level concept learning through probabilistic program induction
  publication-title: Science
– volume: 4
  start-page: 866
  issue: 12
  year: 2021
  end-page: 867
  article-title: One‐shot learning goes 3D
  publication-title: Nat Electron
– volume: 10
  start-page: 357
  issue: 2
  year: 2022
  end-page: 363
  article-title: Intelligent all‐fiber device: storage and logic computing
  publication-title: Photon Res
– volume: 30
  issue: 49
  year: 2020
  article-title: Gelatin methacryloyl‐based tactile sensors for medical wearables
  publication-title: Adv Funct Mater
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  article-title: Take it to the edge
  publication-title: Nat Electron
– volume: 361
  start-page: 1004
  issue: 6406
  year: 2018
  end-page: 1008
  article-title: All‐optical machine learning using diffractive deep neural networks
  publication-title: Science
– volume: 5
  year: 2022
  article-title: A programmable diffractive deep neural network based on a digital‐coding metasurface array
  publication-title: Nat Electron
– volume: 336
  start-page: 468
  issue: 6198
  year: 1988
  end-page: 471
  article-title: Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin
  publication-title: Nature
– volume: 569
  start-page: 208
  issue: 7755
  year: 2019
  end-page: 214
  article-title: All‐optical spiking neurosynaptic networks with self‐learning capabilities
  publication-title: Nature
– volume: 589
  start-page: 44
  issue: 7840
  year: 2021
  end-page: 51
  article-title: 11 TOPS photonic convolutional accelerator for optical neural networks
  publication-title: Nature
– volume: 7
  issue: 8
  year: 2019
  article-title: Nanophotonic media for artificial neural inference
  publication-title: Photonics Res
– volume: 222
  start-page: 960
  issue: 5197
  year: 1969
  end-page: 962
  article-title: Non‐holographic associative memory
  publication-title: Nature
– volume: 1
  start-page: 8
  issue: 1
  year: 2018
  end-page: 9
  article-title: Multiplication on the edge
  publication-title: Nat Electron
– volume: 356
  issue: 6337
  year: 2017
  article-title: Advances in engineering hydrogels
  publication-title: Science
– volume: 48
  start-page: 4733
  issue: 16
  year: 2007
  end-page: 4741
  article-title: Photo‐initiated polymerization of acrylamide in water
  publication-title: Polymer
– volume: 15
  start-page: 102
  issue: 2
  year: 2021
  end-page: 114
  article-title: Photonics for artificial intelligence and neuromorphic computing
  publication-title: Nat Photon
– volume: 2
  start-page: 1131
  issue: 6
  year: 2020
  end-page: 1162
  article-title: Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things
  publication-title: InfoMat
– volume: 385
  start-page: 533
  issue: 6616
  year: 1997
  end-page: 536
  article-title: Synaptic tagging and long‐term potentiation
  publication-title: Nature
– volume: 11
  issue: 7
  year: 2015
  article-title: Decreasing‐rate pruning optimizes the construction of efficient and robust distributed networks
  publication-title: PLoS Comput Biol
– volume: 23
  start-page: 12758
  issue: 10
  year: 2015
  end-page: 12765
  article-title: Demonstration of WDM weighted addition for principal component analysis
  publication-title: Opt Express
– volume: 121
  start-page: 387
  year: 2020
  end-page: 395
  article-title: A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule
  publication-title: Neural Networks
– volume: 9
  issue: 5
  year: 2014
  article-title: Structural synaptic plasticity has high memory capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect
  publication-title: PLoS One
– volume: 589
  start-page: 52
  issue: 7840
  year: 2021
  end-page: 58
  article-title: Parallel convolutional processing using an integrated photonic tensor core
  publication-title: Nature
– volume: 11
  start-page: 441
  issue: 7
  year: 2017
  end-page: 446
  article-title: Deep learning with coherent nanophotonic circuits
  publication-title: Nat Photon
– volume: 7
  start-page: 640
  issue: 6
  year: 2020
  end-page: 646
  article-title: Three‐dimensional waveguide interconnects for scalable integration of photonic neural networks
  publication-title: Optica
– volume: 21
  start-page: 197
  issue: 1
  year: 1990
  end-page: 211
  article-title: Competitive interactions between retinal ganglion cells during prenatal development
  publication-title: J Neurobiol
– volume: 3
  start-page: 125
  issue: 6
  year: 2018
  end-page: 142
  article-title: Hydrogel ionotronics
  publication-title: Nat Rev Mater
– volume: 5
  start-page: 45
  issue: 1
  year: 2004
  end-page: 54
  article-title: Structural plasticity and memory
  publication-title: Nat Rev Neurosci
– volume: 2
  start-page: 521
  issue: 11
  year: 2019
  end-page: 529
  article-title: Ferroelectric ternary content‐addressable memory for one‐shot learning
  publication-title: Nat Electron
– volume: 7
  start-page: 987
  issue: 12
  year: 2013
  end-page: 994
  article-title: Light‐guiding hydrogels for cell‐based sensing and optogenetic synthesis in vivo
  publication-title: Nat Photon
– volume: 15
  start-page: 367
  issue: 5
  year: 2021
  end-page: 373
  article-title: Large‐scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit
  publication-title: Nat Photon
– volume: 5
  start-page: 173
  issue: 3
  year: 2020
  end-page: 195
  article-title: Resistive switching materials for information processing
  publication-title: Nat Rev Mater
– volume: 21
  start-page: 195
  issue: 2
  year: 2022
  end-page: 202
  article-title: In materia reservoir computing with a fully memristive architecture based on self‐organizing nanowire networks
  publication-title: Nat Mater
– volume: 15
  start-page: 1155
  issue: 14
  year: 2003
  end-page: 1158
  article-title: Double‐network hydrogels with extremely high mechanical strength
  publication-title: Adv Mater
– volume: 21
  start-page: 4
  issue: 1
  year: 2017
  end-page: 21
  article-title: Deep learning for health informatics
  publication-title: IEEE J Biomed Health Inform
– volume: 10
  year: 2016
  article-title: Structural plasticity, effectual connectivity, and memory in cortex
  publication-title: Front Neuroanat
– volume: 25
  start-page: 30
  issue: 1
  year: 2019
  end-page: 36
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat Med
– volume: 30
  issue: 38
  year: 2018
  article-title: Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing
  publication-title: Adv Mater
– volume: 8
  year: 2019
  article-title: Artificial neural networks enabled by nanophotonics
  publication-title: Light Sci Appl
– volume: 5
  start-page: 10418
  issue: 21
  year: 2013
  end-page: 10422
  article-title: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations
  publication-title: ACS Appl Mater Interfaces
– volume: 29
  issue: 33
  year: 2017
  article-title: An overview of the development of flexible sensors
  publication-title: Adv Mater
– volume: 117
  start-page: 16096
  issue: 28
  year: 2020
  end-page: 16099
  article-title: How synaptic pruning shapes neural wiring during development and, possibly, in disease
  publication-title: Proc Natl Acad Sci
– year: 2017
– ident: e_1_2_7_47_1
  doi: 10.1038/385533a0
– ident: e_1_2_7_60_1
  doi: 10.1073/pnas.2010281117
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201802883
– ident: e_1_2_7_52_1
  doi: 10.1126/science.aaf3627
– ident: e_1_2_7_22_1
  doi: 10.1038/s41566-020-00754-y
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.1703616114
– ident: e_1_2_7_30_1
  doi: 10.1038/nrn1301
– ident: e_1_2_7_35_1
  doi: 10.1038/s41467-021-22364-0
– ident: e_1_2_7_56_1
  doi: 10.1371/journal.pcbi.1004347
– ident: e_1_2_7_5_1
  doi: 10.1038/s41586-018-0095-1
– ident: e_1_2_7_15_1
  doi: 10.1038/nphoton.2017.93
– ident: e_1_2_7_59_1
  doi: 10.1016/0006-8993(79)90349-4
– ident: e_1_2_7_55_1
  doi: 10.1002/adma.201700375
– ident: e_1_2_7_20_1
  doi: 10.1038/s41586-020-03070-1
– ident: e_1_2_7_32_1
  doi: 10.1038/s41928-019-0321-3
– ident: e_1_2_7_46_1
  doi: 10.4324/9781410612403
– ident: e_1_2_7_64_1
  doi: 10.1021/acs.chemrev.5b00671
– ident: e_1_2_7_7_1
  doi: 10.1109/JBHI.2016.2636665
– ident: e_1_2_7_33_1
  doi: 10.1109/IEDM19574.2021.9720562
– ident: e_1_2_7_18_1
  doi: 10.1364/PRJ.7.000823
– ident: e_1_2_7_53_1
  doi: 10.1002/adma.200304907
– ident: e_1_2_7_2_1
– ident: e_1_2_7_48_1
  doi: 10.1038/222960a0
– ident: e_1_2_7_39_1
  doi: 10.1371/journal.pone.0096485
– ident: e_1_2_7_14_1
  doi: 10.1038/s41586-019-1157-8
– ident: e_1_2_7_61_1
  doi: 10.1002/neu.480210113
– volume: 8
  year: 2019
  ident: e_1_2_7_43_1
  article-title: Artificial neural networks enabled by nanophotonics
  publication-title: Light Sci Appl
– ident: e_1_2_7_50_1
  doi: 10.1002/adfm.202003601
– ident: e_1_2_7_19_1
  doi: 10.1364/PRJ.8.000046
– ident: e_1_2_7_13_1
  doi: 10.1126/science.aat8084
– ident: e_1_2_7_49_1
  doi: 10.1038/s41578-018-0018-7
– ident: e_1_2_7_57_1
  doi: 10.1523/JNEUROSCI.04-05-01378.1984
– ident: e_1_2_7_27_1
  doi: 10.1364/OPTICA.388205
– ident: e_1_2_7_36_1
  doi: 10.1016/j.neunet.2019.09.007
– ident: e_1_2_7_45_1
  doi: 10.1038/nphoton.2013.278
– ident: e_1_2_7_54_1
  doi: 10.1021/am403966x
– ident: e_1_2_7_67_1
  doi: 10.1126/science.aab3050
– ident: e_1_2_7_42_1
  doi: 10.1038/s41551-018-0335-6
– ident: e_1_2_7_28_1
  doi: 10.1038/nature14539
– ident: e_1_2_7_6_1
  doi: 10.1038/s41591-018-0307-0
– ident: e_1_2_7_10_1
  doi: 10.1038/s41928-019-0203-8
– ident: e_1_2_7_24_1
  doi: 10.1364/PRJ.439506
– ident: e_1_2_7_12_1
  doi: 10.1038/s41586-020-03063-0
– ident: e_1_2_7_8_1
  doi: 10.1038/s41578-019-0159-3
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms2368
– ident: e_1_2_7_63_1
– ident: e_1_2_7_26_1
  doi: 10.1038/s41928-022-00719-9
– ident: e_1_2_7_58_1
  doi: 10.1038/308845a0
– ident: e_1_2_7_66_1
  doi: 10.1109/5.726791
– ident: e_1_2_7_17_1
  doi: 10.1038/s41586-020-2973-6
– ident: e_1_2_7_29_1
  doi: 10.1038/s41563-021-01099-9
– ident: e_1_2_7_25_1
  doi: 10.1038/s41566-021-00796-w
– ident: e_1_2_7_11_1
  doi: 10.1038/s41928-017-0011-y
– ident: e_1_2_7_65_1
  doi: 10.1016/j.polymer.2007.06.020
– ident: e_1_2_7_37_1
  doi: 10.3389/fncom.2016.00093
– ident: e_1_2_7_38_1
  doi: 10.3389/fnana.2016.00063
– ident: e_1_2_7_31_1
  doi: 10.1038/nrn3258
– ident: e_1_2_7_34_1
  doi: 10.1038/s41928-021-00692-9
– ident: e_1_2_7_44_1
  doi: 10.1364/FIO.2017.FTu5B.3
– ident: e_1_2_7_4_1
  doi: 10.1145/3457682.3457748
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-019-11260-3
– ident: e_1_2_7_51_1
  doi: 10.1038/natrevmats.2016.75
– ident: e_1_2_7_3_1
  doi: 10.1109/TPAMI.2015.2462338
– ident: e_1_2_7_9_1
  doi: 10.1002/inf2.12122
– ident: e_1_2_7_62_1
  doi: 10.1038/336468a0
– ident: e_1_2_7_16_1
  doi: 10.1364/OE.23.012758
SSID ssj0002504251
Score 2.245605
Snippet Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital...
Autonomous one-shot on-the-fly learning copes with the high privacy, small dataset, and in-stream data at the edge. Implementing such learning on digital...
Abstract Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3-D printers
Algorithms
Artificial intelligence
Associative memory
Biomimetics
Chemical reactions
Co-design
Configurations
Curing
Datasets
Deep learning
Digital computers
Energy efficiency
Evolution
Hardware
hydrogel
Hydrogels
Light
Machine learning
Microprocessors
Network latency
Neural networks
one‐shot learning
Optical communication
Optical memory (data storage)
optical neural network
Optimization
Pattern classification
Plastic properties
Sensors
structural plasticity
Viscosity
Willshaw model
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSiQxEA2LF9eD6Ko4qy4BvexCayeddCdHlR1cQS-7greQpBNHaGYGZxaZm5_gN_olVqXbYQYWveylSTd1KKqqUy-V5BUhR0IUZe4qngXp80y4XGVWhTLTXvJYByd8ui52dV1e3IjLW3m70OoLz4S19MCt4U5y57iutPWs1MKxqKUqg5VFLZwvY3Q4--ZKLyymcA5GYi7I3HM-Un4C_uLHDG9yLmWgRNS_hC5X_w7HdvZom2YZr6aE098g6x1SpKethpvkUxh-IWsL_IFb5P53Yn9F5gw6BhiMJ6Sns5enZ8xNNR3M6ofRXWjoaJwq1hSLK5OBfaSp_w0FvEpHwwDyk8FoCkMYAR6EZ2xmFAtttGsqcbdNbvo__5xfZF3vhMwLSDGQeKTzXtU8MBltQNa8EJmtHK-kVuAd6bjVgnEWalUo63W6RQtwLfgI78UOWRmCCruEFixWUTBb5NELBR4PIbha4GQgYbXCe-T7mz2N74jFsb9FY1pKZG7Q9ibZvkcO57Ljlk7jn1Jn6Ja5BFJgpw8QGKYLDPNRYPTI_ptTTfdfTgzuIwsszxY9cjR39Luq_Egx8I6I-XXd52n09X_ovUc-Y0v79nTQPlmBQAoHAHym7luK8VfY3wUy
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdb-jD2sHb_WEZXBOvLBs4sWfKfx24sdIOFwRbonoQkS0mZiU2TUtKnfoR-xn2S3cmOScYog70Y2ZyNbN3pfj7pfkfIsRBJGpuMR07aOBImziOduzQqrOS-dEbYkC72ZZKeTsXnM3m2lcXf8kP0ATe0jDBfo4E3pW_n-W51n7-DQeAjhumZ98leKgGND8jedPL15AfWlJMphuBCNUmeZXEE2CLuGUq3b97xSYG6fwdvPrhcNHp9patqF8EGFzTeJ3rT-Xbnyc_R5cqM7PUfvI7_83YH5FGHT-lJq1CPyT23eEIebrEWPiXn3wLnLPJ10AbAN-7LXq1_3dyiRyzpfF1e1DNX0boJcXKKIZ3lXF_RUHWHAkqm9cKB_HJer6AJLUChcPTVmmJ4j3alLGbPyHT88fuH06ir2BBZAY4N3J001uYld0x67ZCrz3mmM8MzWeSgE9JwXQjGmSvzJNe2CLm7ABKd9XCePCeDBXThBaEJ85kXTCextyIHPXPOmVLgFCThH4kPyZvNmCnb0ZljVY1KtUTMXOHnU-HzDcnrXrZpSTz-KvUeh76XQOLtcKG-mKnOjlVsDC-yQluWFsIwX8g8dVompTA29d4MyeFGcVQ3GywVrl4LDAonQ3LcK9OdXXkblOMOEfVpMuah9fLfnnlIBqAd7hVgqJU56szkN8kdICo
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEB7S9NDmUPpLtkmLoLm04MaSJf9ALmnpkhYaAmkgNyHJ0m7ArJfslrC3PkKfMU_SGdnrdKEEejGyGYPQzGg-jzXfABxImeWpLUTilUsTadMyMaXPk8opEWpvpYvlYt9P85ML-e1SXW7B0boWpuOHGBJu5BlxvyYHN3ZxeEcaigoQHzmVZj6AhxyBDNm3kGdDhoXIuUTsv4hhnZJxuRr4ScXh3esbESkS92-gzUc_Z3OzujFNs4lfYwAaP4UnPXJkx52qn8GWnz2Hnb_4BF_A1XlkgyUmDTZHWEwnpper21-_KVbVbLqqr9uJb1g7jxlsRsmWxdTcsNgPhyF-Ze3Mo_xi2i5xiCPEh3gNzYpR4o31TSYmL-Fi_OXH55Ok76WQOIkhBwORss6VtfBcBeOJRc8HbgorClWVqC1lhakkF9zXZVYaV8WqWoRv3gW8z17B9gynsAss46EIkpssDU6WaAHee1tL2hwUfr2IEbxfr6d2PdE49btodEeRLDStvY5rP4J3g-y8o9f4p9QnUssgQZTY8UF7PdG9h-nUWlEVlXE8r6TloVJl7o3KamldHoIdwf5aqbr304Wm_8qS0rXZCA4GRd87lQ_RBu4R0V9PxyKOXv-P8B48plb23amgfdhGg_FvEPAs7dto138AcHn-RA
  priority: 102
  providerName: Wiley-Blackwell
Title Structural plasticity‐based hydrogel optical Willshaw model for one‐shot on‐the‐fly edge learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12399
https://www.proquest.com/docview/2806420073
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/inf2.12399
https://doaj.org/article/0bb2979ac1694b1f9586ea53d4bc6ffb
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2567-3165
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504251
  issn: 2567-3165
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2567-3165
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504251
  issn: 2567-3165
  databaseCode: ADMLS
  dateStart: 20190301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2567-3165
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504251
  issn: 2567-3165
  databaseCode: BENPR
  dateStart: 20210701
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2567-3165
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504251
  issn: 2567-3165
  databaseCode: AVUZU
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2567-3165
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002504251
  issn: 2567-3165
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GHbw-i-aLouCNaXDbTasuSPhzHa0qwbzIRtge7JSLKUPJjYa1JK_vvpFNttYOTFSOZA5u6k-_kk_Q7glPMoDlTCqBE6oFwFKZWpiWmmBbOlUVz762I_8vh6yr_fiJs9yLu7MHisslsT_UJd1hpz5Ge4A8gxsRZ9af5SrBqFu6tdCQ3ZllYoP3uKsX04YMiMNYCDi6t88rPPuiBhl4voPU8pO3N2ZJ9CvOG5FZk8gf8W6nxyt2jk-l5W1TaO9YFofAjPWwRJzjcmfwF7ZvESnj3iFXwF8pdnhUVGDdI4eIwnp1drihGrJPN1eVvPTEXqxuexCaZclnN5T3xVHOJQLKkXhi7n9co1qEOI1FZrgok30haZmL2G6fjq9-U1bWspUM1dyHGBSCit05KZUFhpkEXP2FAmiiUiS521hGIy405ppkyjVOrM36p18M1o6_rRGxgs3OBHQKLQJpaHMgqs5qnzAGOMKjkuDsL9vbAhfOj0WOiWaBzrXVTFhiKZFajzwut8CO972WZDr_FfqQs0Ry-BlNj-RX07K9oZVgRKsSzJpA7jjKvQZiKNjRRRyZWOrVVDOOmMWbTzdFk8eNUQTnsD7_yUj972O0SKb_mY-dbx7iHfwlMsXr85B3QCA-ca5p2DOCs1gn3GJ-6Zjr-OWh8e-XSB603zyfmff_Fa_2w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeyg9VOWlLi1giXIAyTRx7DwOVUWhq13arhC0Um-u7di7h2gTuotW-XP8NsbeJLAS2ltvSTSKE894_Hns-QahI8aiOFAJJYbrgDAVpESmJiaZ5tTmRjHt08WuRvHghn295bcb6HebC-OOVbY-0TvqvNQuRn7sdgCZC6xFp9VP4qpGud3VtoSGbEor5CeeYqxJ7Lgw9QKWcLOT4RfQ9ztK--fXnwekqTJANANnDC6aK63TnJqQW2kcv5yxoUwUTXiWwn9wRWXGQhqaPI1SqTOfbwrAxmgL9xG89xHaYhHLYPG3dXY--va9i_I4gjBAEB0vKj0Gu6EfQ5dRujIT-oIBKyh3-9e0kvVCFsUqbvYTX38P7TaIFX9amtgTtGGmT9HOPzyGz5D84VloHYMHrgCOu5Pa85q4GTLHkzq_L8emwGXl4-bYhXhmE7nAvgoPBtSMy6khs0k5hwsCiJTYosYu0Iebohbj5-jmQXr1BdqcQuP7CEehTSwLZRRYzVKwOGOMyplzRhxWS7SH3rf9KHRDbO7qaxRiSclMhetz4fu8h952stWSzuO_UmdOHZ2Eo-D2D8r7sWhGtAiUolmSSR3GGVOhzXgaG8mjnCkdW6t66LBVpmj8wkz8teIeOuoUvPZTPnjdrxERw1Gf-quX65t8g7YH11eX4nI4ujhAjynAteUZpEO0CWZiXgG8mqvXjQ1jdPfQw-YP2ZM26w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWReJxQDxFYQFLLAeQvE0c53VACFjCloUKCVbam7Eduz1UTdgWVflr_DpmnAdUQr3tLYlGceIZjz-PPd8QcihElAQ65czGJmBCBxlTmU1YbmLuSquF8eliX6bJyZn4dB6f75HffS4MHqvsfaJ31GVlMEY-xh1AgYG1aOy6YxFfj4s39U-GFaRwp7Uvp9GayKltNrB8W72eHIOuX3BefPj-_oR1FQaYEeCIwT3H2pis5DaMnbLILWddqFLN0zjP4B9izVUuQh7aMosyZXKfawqgxhoH9xG89wq5miKLO2apFx-H-A5SgwF2GBhR-Rgshh-FmEu6NQf6UgFb-Pb6r2Wtmo1aLLYRs5_yitvkVodV6dvWuO6QPbu8S27-w2B4j6hvnn8WuTtoDUAcz2ivG4ZzY0nnTXlRzeyCVrWPmFMM7qzmakN9_R0KeJlWS8tW82oNFwywKHOLhmKIj3blLGb3ydml9OkDsr-Exh8SGoUudSJUUeCMyMDWrLW6FOiGYlgn8RF52fejNB2lOVbWWMiWjJlL7HPp-3xEng-ydUvk8V-pd6iOQQLJt_2D6mImu7EsA615nubKhEkudOjyOEusiqNSaJM4p0fkoFem7DzCSv613xE5HBS881Need3vEJGTacH91aPdTT4j12CwyM-T6eljcoMDTmsPHx2QfbAS-wRw1Vo_9QZMyY_LHjF_AFZENIU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdb-jD2sHb_WEZXBOvLBs4sWfKfx24sdIOFwRbonoQkS0mZiU2TUtKnfoR-xn2S3cmOScYog70Y2ZyNbN3pfj7pfkfIsRBJGpuMR07aOBImziOduzQqrOS-dEbYkC72ZZKeTsXnM3m2lcXf8kP0ATe0jDBfo4E3pW_n-W51n7-DQeAjhumZ98leKgGND8jedPL15AfWlJMphuBCNUmeZXEE2CLuGUq3b97xSYG6fwdvPrhcNHp9patqF8EGFzTeJ3rT-Xbnyc_R5cqM7PUfvI7_83YH5FGHT-lJq1CPyT23eEIebrEWPiXn3wLnLPJ10AbAN-7LXq1_3dyiRyzpfF1e1DNX0boJcXKKIZ3lXF_RUHWHAkqm9cKB_HJer6AJLUChcPTVmmJ4j3alLGbPyHT88fuH06ir2BBZAY4N3J001uYld0x67ZCrz3mmM8MzWeSgE9JwXQjGmSvzJNe2CLm7ABKd9XCePCeDBXThBaEJ85kXTCextyIHPXPOmVLgFCThH4kPyZvNmCnb0ZljVY1KtUTMXOHnU-HzDcnrXrZpSTz-KvUeh76XQOLtcKG-mKnOjlVsDC-yQluWFsIwX8g8dVompTA29d4MyeFGcVQ3GywVrl4LDAonQ3LcK9OdXXkblOMOEfVpMuah9fLfnnlIBqAd7hVgqJU56szkN8kdICo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+plasticity-based+hydrogel+optical+Willshaw+model+for+one-shot+on-the-fly+edge+learning&rft.jtitle=InfoMat&rft.au=Wang%2C+Dingchen&rft.au=Liu%2C+Dingyao&rft.au=Lin%2C+Yinan&rft.au=Yuan%2C+Anran&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1002%2Finf2.12399&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon