Structural plasticity‐based hydrogel optical Willshaw model for one‐shot on‐the‐fly edge learning
Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, an...
        Saved in:
      
    
          | Published in | InfoMat Vol. 5; no. 4 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Melbourne
          John Wiley & Sons, Inc
    
        01.04.2023
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2567-3165 2770-5110 2567-3165  | 
| DOI | 10.1002/inf2.12399 | 
Cover
| Abstract | Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems.
Biological synapses of human brain undergo a period of overproduction after birth, which is followed by consolidating part of the synapses and pruning the rest, bearing great significance to the development of intelligence as shown in Figure A. Such structural plasticity inspires a material‐algorithm co‐design, a hydrogel‐based optical Willshaw model (HOWM) in Figure B, thanks to the underlying opto‐chemical reactions of hydrogel shown in Figure C. The HOWM empowers one‐shot on‐the‐fly learning and leads to 1000× boost of energy efficiency and 10× boost of speed, which may pave the way for the next‐generation autonomous, efficient and affordable smart edge systems. | 
    
|---|---|
| AbstractList | Autonomous one-shot on-the-fly learning copes with the high privacy, small dataset, and in-stream data at the edge. Implementing such learning on digital hardware suffers from the well-known von-Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex-situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio-inspired material-algorithm co-design to construct a hydrogel-based optical Willshaw model (HOWM), manifesting Hebbian-rule-based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto-chemical reactions. We first employed the HOWM as an all optical in-sensor AI processor for one-shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one-shot learning the Omniglot dataset. The HOWM empowered one-shot on-the-fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next-generation autonomous, efficient, and affordable smart edge systems. Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems. image Abstract Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems. Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital hardware suffers from the well‐known von‐Neumann and scaling bottlenecks. The optical neural networks featuring large parallelism, low latency, and high efficiency offer a promising solution. However, ex‐situ training of conventional optical networks, where optical path configuration and deep learning model optimization are separated, incurs hardware, energy and time overheads, and defeats the advantages in edge learning. Here, we introduced a bio‐inspired material‐algorithm co‐design to construct a hydrogel‐based optical Willshaw model (HOWM), manifesting Hebbian‐rule‐based structural plasticity for simultaneous optical path configuration and deep learning model optimization thanks to the underlying opto‐chemical reactions. We first employed the HOWM as an all optical in‐sensor AI processor for one‐shot pattern classification, association and denoising. We then leveraged HOWM to function as a ternary content addressable memory (TCAM) of an optical memory augmented neural network (MANN) for one‐shot learning the Omniglot dataset. The HOWM empowered one‐shot on‐the‐fly edge learning leads to 1000× boost of energy efficiency and 10× boost of speed, which paves the way for the next‐generation autonomous, efficient, and affordable smart edge systems. Biological synapses of human brain undergo a period of overproduction after birth, which is followed by consolidating part of the synapses and pruning the rest, bearing great significance to the development of intelligence as shown in Figure A. Such structural plasticity inspires a material‐algorithm co‐design, a hydrogel‐based optical Willshaw model (HOWM) in Figure B, thanks to the underlying opto‐chemical reactions of hydrogel shown in Figure C. The HOWM empowers one‐shot on‐the‐fly learning and leads to 1000× boost of energy efficiency and 10× boost of speed, which may pave the way for the next‐generation autonomous, efficient and affordable smart edge systems.  | 
    
| Author | Chen, Xi Yuan, Anran Lin, Yinan Wang, Zhongrui Zhao, Yaping Zhang, Han Chen, Jia Liu, Dingyao Zhang, Yi Wei, Songrui Wang, Qing Xu, Renjing Shang, Dashan Chen, Hegan Loong, Kam Chi Wang, Shaocong Yu, Hongyu Wang, Dingchen Zhang, Woyu Zhang, Shiming Jiang, Yang Shi, Shuhui  | 
    
| Author_xml | – sequence: 1 givenname: Dingchen surname: Wang fullname: Wang, Dingchen organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 2 givenname: Dingyao surname: Liu fullname: Liu, Dingyao organization: The University of Hong Kong – sequence: 3 givenname: Yinan surname: Lin fullname: Lin, Yinan organization: The University of Hong Kong – sequence: 4 givenname: Anran surname: Yuan fullname: Yuan, Anran organization: Macau University of Science and Technology – sequence: 5 givenname: Woyu surname: Zhang fullname: Zhang, Woyu organization: Institute of Microelectronics, Chinese Academy of Sciences – sequence: 6 givenname: Yaping surname: Zhao fullname: Zhao, Yaping organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 7 givenname: Shaocong surname: Wang fullname: Wang, Shaocong organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 8 givenname: Xi surname: Chen fullname: Chen, Xi organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 9 givenname: Hegan surname: Chen fullname: Chen, Hegan organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 10 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 11 givenname: Yang surname: Jiang fullname: Jiang, Yang organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 12 givenname: Shuhui orcidid: 0000-0002-6319-4047 surname: Shi fullname: Shi, Shuhui organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 13 givenname: Kam Chi surname: Loong fullname: Loong, Kam Chi organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 14 givenname: Jia surname: Chen fullname: Chen, Jia organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park – sequence: 15 givenname: Songrui surname: Wei fullname: Wei, Songrui organization: Institute of Microscale Optoelectronics, Shenzhen University – sequence: 16 givenname: Qing surname: Wang fullname: Wang, Qing organization: Southern University of Science and Technology – sequence: 17 givenname: Hongyu surname: Yu fullname: Yu, Hongyu organization: Southern University of Science and Technology – sequence: 18 givenname: Renjing surname: Xu fullname: Xu, Renjing email: renjingxu@ust.hk organization: Function Hub of the Hong Kong University of Science and Technology (Guangzhou) – sequence: 19 givenname: Dashan orcidid: 0000-0002-5975-0557 surname: Shang fullname: Shang, Dashan email: shangdashan@ime.ac.cn organization: Institute of Microelectronics, Chinese Academy of Sciences – sequence: 20 givenname: Han surname: Zhang fullname: Zhang, Han email: hzhang@szu.edu.cn organization: Institute of Microscale Optoelectronics, Shenzhen University – sequence: 21 givenname: Shiming surname: Zhang fullname: Zhang, Shiming email: szhang@eee.hku.hk, zrwang@eee.hku.hk organization: The University of Hong Kong – sequence: 22 givenname: Zhongrui orcidid: 0000-0003-2264-0677 surname: Wang fullname: Wang, Zhongrui email: zrwang@eee.hku.hk organization: ACCESS – AI Chip Center for Emerging Smart Systems, InnoHK Centers, Hong Kong Science Park  | 
    
| BookMark | eNp9kMFq3DAQhkVIoGmSS5_A0FvLppJs2dKxhKZdCM0hKT2KkSztalEsV5JZfOsj9Bn7JNXGoZQSctI_o29-Zv7X6HgIg0HoDcGXBGP6wQ2WXhJaC3GETilru1VNWnb8j36FLlLa4QIz3FBGTpG7y3HSeYrgq9FDyk67PP_--UtBMn21nfsYNsZXYSw_hfnuvE9b2FcPoS9tG2JVlih82oZcZFF5e6itnyvTb0zlDcTBDZtzdGLBJ3Px9J6hb9ef7q--rG5uP6-vPt6sdNNQseKYKa15Tw1hFgyuKTeWQKdoxwTHqmOKgmgIJabnNQctMKFYMMyNtqWuz9B68e0D7OQY3QPEWQZw8rER4kZCLMd4I7FSVHQCNGlFo4gVjLcGWN03SrfWquL1fvGahhHmPXj_15BgeQhdHkKXj6EX-u1CjzH8mEzKchemOJRjJeW4bSjGXV0ovFA6hpSisbIkDtmFIUdw_nnjd_-NvLgFWeC982Z-gZTrr9d0mfkDf5S08w | 
    
| CitedBy_id | crossref_primary_10_1088_1361_6463_ad17a3 crossref_primary_10_1088_2634_4386_ad5fb2  | 
    
| Cites_doi | 10.1038/385533a0 10.1073/pnas.2010281117 10.1002/adma.201802883 10.1126/science.aaf3627 10.1038/s41566-020-00754-y 10.1073/pnas.1703616114 10.1038/nrn1301 10.1038/s41467-021-22364-0 10.1371/journal.pcbi.1004347 10.1038/s41586-018-0095-1 10.1038/nphoton.2017.93 10.1016/0006-8993(79)90349-4 10.1002/adma.201700375 10.1038/s41586-020-03070-1 10.1038/s41928-019-0321-3 10.4324/9781410612403 10.1021/acs.chemrev.5b00671 10.1109/JBHI.2016.2636665 10.1109/IEDM19574.2021.9720562 10.1364/PRJ.7.000823 10.1002/adma.200304907 10.1038/222960a0 10.1371/journal.pone.0096485 10.1038/s41586-019-1157-8 10.1002/neu.480210113 10.1002/adfm.202003601 10.1364/PRJ.8.000046 10.1126/science.aat8084 10.1038/s41578-018-0018-7 10.1523/JNEUROSCI.04-05-01378.1984 10.1364/OPTICA.388205 10.1016/j.neunet.2019.09.007 10.1038/nphoton.2013.278 10.1021/am403966x 10.1126/science.aab3050 10.1038/s41551-018-0335-6 10.1038/nature14539 10.1038/s41591-018-0307-0 10.1038/s41928-019-0203-8 10.1364/PRJ.439506 10.1038/s41586-020-03063-0 10.1038/s41578-019-0159-3 10.1038/ncomms2368 10.1038/s41928-022-00719-9 10.1038/308845a0 10.1109/5.726791 10.1038/s41586-020-2973-6 10.1038/s41563-021-01099-9 10.1038/s41566-021-00796-w 10.1038/s41928-017-0011-y 10.1016/j.polymer.2007.06.020 10.3389/fncom.2016.00093 10.3389/fnana.2016.00063 10.1038/nrn3258 10.1038/s41928-021-00692-9 10.1364/FIO.2017.FTu5B.3 10.1145/3457682.3457748 10.1038/s41467-019-11260-3 10.1038/natrevmats.2016.75 10.1109/TPAMI.2015.2462338 10.1002/inf2.12122 10.1038/336468a0 10.1364/OE.23.012758  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2023 The Authors. published by UESTC and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1002/inf2.12399 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2567-3165 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai_doaj_org_article_0bb2979ac1694b1f9586ea53d4bc6ffb 10.1002/inf2.12399 10_1002_inf2_12399 INF212399  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61771176; 61874138; 61888102; 62122004; 62171173 – fundername: National Key R&D Program of China funderid: 2018YFA0701500 – fundername: ACCESS – AI Chip Center for Emerging Smart Systems – fundername: Research on high‐reliable GaN power device and the related industrial power system funderid: HZQB‐KCZYZ‐2021052 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB44000000 – fundername: Innovation and Technology Fund (ITF), Hong Kong SAR – fundername: Research on the GaN Chip for 5G Applications funderid: JCYJ20210324120409025 – fundername: Key Project of Department of Education of Guangdong Province funderid: 2018KCXTD026 – fundername: Hong Kong Research Grant Council funderid: 17205922; 27206321  | 
    
| GroupedDBID | 0R~ 1OC 24P AAHHS ABJCF ACCFJ ACCMX ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC KB. M7S OK1 PDBOC PIMPY PTHSS WIN AAMMB AAYXX ADMLS AEFGJ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG ABUWG AZQEC D1I DWQXO L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4429-805bcc8d2e15fae0328ef1a7b275980b75b2a94121ed838ac901209508ecf38a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2567-3165 2770-5110  | 
    
| IngestDate | Fri Oct 03 12:21:18 EDT 2025 Tue Aug 19 20:53:09 EDT 2025 Wed Aug 13 04:42:22 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Wed Oct 01 02:17:13 EDT 2025 Wed Jan 22 16:23:21 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | Attribution cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4429-805bcc8d2e15fae0328ef1a7b275980b75b2a94121ed838ac901209508ecf38a3 | 
    
| Notes | Dingchen Wang and Dingyao Liu contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6319-4047 0000-0003-2264-0677 0000-0002-5975-0557  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2806420073?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2806420073 | 
    
| PQPubID | 5068510 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0bb2979ac1694b1f9586ea53d4bc6ffb unpaywall_primary_10_1002_inf2_12399 proquest_journals_2806420073 crossref_citationtrail_10_1002_inf2_12399 crossref_primary_10_1002_inf2_12399 wiley_primary_10_1002_inf2_12399_INF212399  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2023 2023-04-00 20230401 2023-04-01  | 
    
| PublicationDateYYYYMMDD | 2023-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Melbourne | 
    
| PublicationPlace_xml | – name: Melbourne – name: Beijing  | 
    
| PublicationTitle | InfoMat | 
    
| PublicationYear | 2023 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 2018; 361 2015; 38 2013; 4 2020; 121 2019; 10 2003; 15 2004; 5 2022; 21 2019; 569 2013; 7 2012; 13 2013; 5 2017; 114 2017; 356 1998; 86 2020; 7 2020; 5 2018; 3 2020; 2 2018; 1 1997; 385 2019; 25 2018; 30 2016; 116 2014; 9 1979; 163 1988; 336 2019; 8 2019; 7 2021; 4 2019; 3 2019; 2 2015; 521 2017; 21 2021; 589 2015; 11 2016; 10 2020; 588 1984; 308 2005 2017; 29 1969; 222 2015; 350 2015; 23 2021; 15 1990; 21 2021; 12 2016; 2 2018; 557 1984; 4 2020; 30 2022; 5 2017; 11 2020; 117 2017 2022; 10 2007; 48 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Zhang Q, Yu H, Barbiero M (e_1_2_7_43_1) 2019; 8 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1  | 
    
| References_xml | – volume: 13 start-page: 478 issue: 7 year: 2012 end-page: 490 article-title: Structural plasticity upon learning: regulation and functions publication-title: Nat Rev Neurosci – volume: 4 start-page: 1364 issue: 1 year: 2013 article-title: Parallel photonic information processing at gigabyte per second data rates using transient states publication-title: Nat Commun – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 86 start-page: 2278 issue: 11 year: 1998 end-page: 2324 article-title: Gradient‐based learning applied to document recognition publication-title: Proc IEEE – volume: 163 start-page: 195 issue: 2 year: 1979 end-page: 205 article-title: Synaptic density in human frontal cortex‐developmental changes and effects of aging publication-title: Brain Res – volume: 10 year: 2016 article-title: Structural plasticity denoises responses and improves learning speed publication-title: Front Comput Neurosci – year: 2005 – volume: 588 start-page: 39 issue: 7836 year: 2020 end-page: 47 article-title: Inference in artificial intelligence with deep optics and photonics publication-title: Nature – volume: 557 start-page: 534 issue: 7706 year: 2018 end-page: 538 article-title: Addressing the minimum fleet problem in on‐demand urban mobility publication-title: Nature – volume: 10 start-page: 3267 issue: 1 year: 2019 article-title: Programmable responsive hydrogels inspired by classical conditioning algorithm publication-title: Nat Commun – volume: 114 start-page: 5900 issue: 23 year: 2017 end-page: 5905 article-title: Bio‐inspired self‐healing structural color hydrogel publication-title: Proc Natl Acad Sci – volume: 12 issue: 1 year: 2021 article-title: Robust high‐dimensional memory‐augmented neural networks publication-title: Nat Commun – volume: 3 start-page: 58 issue: 1 year: 2019 end-page: 68 article-title: Soft and elastic hydrogel‐based microelectronics for localized low‐voltage neuromodulation publication-title: Nat Biomed Eng – volume: 116 start-page: 10167 issue: 17 year: 2016 end-page: 10211 article-title: Light‐controlled radical polymerization: mechanisms, methods, and applications publication-title: Chem Rev – volume: 2 issue: 1 year: 2016 article-title: Bioresponsive materials publication-title: Nat Rev Mater – volume: 4 start-page: 1378 issue: 5 year: 1984 end-page: 1397 article-title: Prenatal development of functional connections in the cat's retinogeniculate pathway publication-title: J Neurosci – volume: 8 issue: 1 year: 2019 article-title: Neuromorphic metasurface publication-title: Photonics Res – volume: 308 start-page: 845 issue: 5962 year: 1984 end-page: 848 article-title: Prenatal development of individual retinogeniculate axons during the period of segregation publication-title: Nature – volume: 38 start-page: 518 issue: 3 year: 2015 end-page: 531 article-title: Multi‐directional multi‐level dual‐cross patterns for robust face recognition publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 350 start-page: 1332 issue: 6266 year: 2015 end-page: 1338 article-title: Human‐level concept learning through probabilistic program induction publication-title: Science – volume: 4 start-page: 866 issue: 12 year: 2021 end-page: 867 article-title: One‐shot learning goes 3D publication-title: Nat Electron – volume: 10 start-page: 357 issue: 2 year: 2022 end-page: 363 article-title: Intelligent all‐fiber device: storage and logic computing publication-title: Photon Res – volume: 30 issue: 49 year: 2020 article-title: Gelatin methacryloyl‐based tactile sensors for medical wearables publication-title: Adv Funct Mater – volume: 2 start-page: 1 issue: 1 year: 2019 article-title: Take it to the edge publication-title: Nat Electron – volume: 361 start-page: 1004 issue: 6406 year: 2018 end-page: 1008 article-title: All‐optical machine learning using diffractive deep neural networks publication-title: Science – volume: 5 year: 2022 article-title: A programmable diffractive deep neural network based on a digital‐coding metasurface array publication-title: Nat Electron – volume: 336 start-page: 468 issue: 6198 year: 1988 end-page: 471 article-title: Modification of retinal ganglion cell axon morphology by prenatal infusion of tetrodotoxin publication-title: Nature – volume: 569 start-page: 208 issue: 7755 year: 2019 end-page: 214 article-title: All‐optical spiking neurosynaptic networks with self‐learning capabilities publication-title: Nature – volume: 589 start-page: 44 issue: 7840 year: 2021 end-page: 51 article-title: 11 TOPS photonic convolutional accelerator for optical neural networks publication-title: Nature – volume: 7 issue: 8 year: 2019 article-title: Nanophotonic media for artificial neural inference publication-title: Photonics Res – volume: 222 start-page: 960 issue: 5197 year: 1969 end-page: 962 article-title: Non‐holographic associative memory publication-title: Nature – volume: 1 start-page: 8 issue: 1 year: 2018 end-page: 9 article-title: Multiplication on the edge publication-title: Nat Electron – volume: 356 issue: 6337 year: 2017 article-title: Advances in engineering hydrogels publication-title: Science – volume: 48 start-page: 4733 issue: 16 year: 2007 end-page: 4741 article-title: Photo‐initiated polymerization of acrylamide in water publication-title: Polymer – volume: 15 start-page: 102 issue: 2 year: 2021 end-page: 114 article-title: Photonics for artificial intelligence and neuromorphic computing publication-title: Nat Photon – volume: 2 start-page: 1131 issue: 6 year: 2020 end-page: 1162 article-title: Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things publication-title: InfoMat – volume: 385 start-page: 533 issue: 6616 year: 1997 end-page: 536 article-title: Synaptic tagging and long‐term potentiation publication-title: Nature – volume: 11 issue: 7 year: 2015 article-title: Decreasing‐rate pruning optimizes the construction of efficient and robust distributed networks publication-title: PLoS Comput Biol – volume: 23 start-page: 12758 issue: 10 year: 2015 end-page: 12765 article-title: Demonstration of WDM weighted addition for principal component analysis publication-title: Opt Express – volume: 121 start-page: 387 year: 2020 end-page: 395 article-title: A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule publication-title: Neural Networks – volume: 9 issue: 5 year: 2014 article-title: Structural synaptic plasticity has high memory capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect publication-title: PLoS One – volume: 589 start-page: 52 issue: 7840 year: 2021 end-page: 58 article-title: Parallel convolutional processing using an integrated photonic tensor core publication-title: Nature – volume: 11 start-page: 441 issue: 7 year: 2017 end-page: 446 article-title: Deep learning with coherent nanophotonic circuits publication-title: Nat Photon – volume: 7 start-page: 640 issue: 6 year: 2020 end-page: 646 article-title: Three‐dimensional waveguide interconnects for scalable integration of photonic neural networks publication-title: Optica – volume: 21 start-page: 197 issue: 1 year: 1990 end-page: 211 article-title: Competitive interactions between retinal ganglion cells during prenatal development publication-title: J Neurobiol – volume: 3 start-page: 125 issue: 6 year: 2018 end-page: 142 article-title: Hydrogel ionotronics publication-title: Nat Rev Mater – volume: 5 start-page: 45 issue: 1 year: 2004 end-page: 54 article-title: Structural plasticity and memory publication-title: Nat Rev Neurosci – volume: 2 start-page: 521 issue: 11 year: 2019 end-page: 529 article-title: Ferroelectric ternary content‐addressable memory for one‐shot learning publication-title: Nat Electron – volume: 7 start-page: 987 issue: 12 year: 2013 end-page: 994 article-title: Light‐guiding hydrogels for cell‐based sensing and optogenetic synthesis in vivo publication-title: Nat Photon – volume: 15 start-page: 367 issue: 5 year: 2021 end-page: 373 article-title: Large‐scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit publication-title: Nat Photon – volume: 5 start-page: 173 issue: 3 year: 2020 end-page: 195 article-title: Resistive switching materials for information processing publication-title: Nat Rev Mater – volume: 21 start-page: 195 issue: 2 year: 2022 end-page: 202 article-title: In materia reservoir computing with a fully memristive architecture based on self‐organizing nanowire networks publication-title: Nat Mater – volume: 15 start-page: 1155 issue: 14 year: 2003 end-page: 1158 article-title: Double‐network hydrogels with extremely high mechanical strength publication-title: Adv Mater – volume: 21 start-page: 4 issue: 1 year: 2017 end-page: 21 article-title: Deep learning for health informatics publication-title: IEEE J Biomed Health Inform – volume: 10 year: 2016 article-title: Structural plasticity, effectual connectivity, and memory in cortex publication-title: Front Neuroanat – volume: 25 start-page: 30 issue: 1 year: 2019 end-page: 36 article-title: The practical implementation of artificial intelligence technologies in medicine publication-title: Nat Med – volume: 30 issue: 38 year: 2018 article-title: Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing publication-title: Adv Mater – volume: 8 year: 2019 article-title: Artificial neural networks enabled by nanophotonics publication-title: Light Sci Appl – volume: 5 start-page: 10418 issue: 21 year: 2013 end-page: 10422 article-title: Strengthening alginate/polyacrylamide hydrogels using various multivalent cations publication-title: ACS Appl Mater Interfaces – volume: 29 issue: 33 year: 2017 article-title: An overview of the development of flexible sensors publication-title: Adv Mater – volume: 117 start-page: 16096 issue: 28 year: 2020 end-page: 16099 article-title: How synaptic pruning shapes neural wiring during development and, possibly, in disease publication-title: Proc Natl Acad Sci – year: 2017 – ident: e_1_2_7_47_1 doi: 10.1038/385533a0 – ident: e_1_2_7_60_1 doi: 10.1073/pnas.2010281117 – ident: e_1_2_7_23_1 doi: 10.1002/adma.201802883 – ident: e_1_2_7_52_1 doi: 10.1126/science.aaf3627 – ident: e_1_2_7_22_1 doi: 10.1038/s41566-020-00754-y – ident: e_1_2_7_41_1 doi: 10.1073/pnas.1703616114 – ident: e_1_2_7_30_1 doi: 10.1038/nrn1301 – ident: e_1_2_7_35_1 doi: 10.1038/s41467-021-22364-0 – ident: e_1_2_7_56_1 doi: 10.1371/journal.pcbi.1004347 – ident: e_1_2_7_5_1 doi: 10.1038/s41586-018-0095-1 – ident: e_1_2_7_15_1 doi: 10.1038/nphoton.2017.93 – ident: e_1_2_7_59_1 doi: 10.1016/0006-8993(79)90349-4 – ident: e_1_2_7_55_1 doi: 10.1002/adma.201700375 – ident: e_1_2_7_20_1 doi: 10.1038/s41586-020-03070-1 – ident: e_1_2_7_32_1 doi: 10.1038/s41928-019-0321-3 – ident: e_1_2_7_46_1 doi: 10.4324/9781410612403 – ident: e_1_2_7_64_1 doi: 10.1021/acs.chemrev.5b00671 – ident: e_1_2_7_7_1 doi: 10.1109/JBHI.2016.2636665 – ident: e_1_2_7_33_1 doi: 10.1109/IEDM19574.2021.9720562 – ident: e_1_2_7_18_1 doi: 10.1364/PRJ.7.000823 – ident: e_1_2_7_53_1 doi: 10.1002/adma.200304907 – ident: e_1_2_7_2_1 – ident: e_1_2_7_48_1 doi: 10.1038/222960a0 – ident: e_1_2_7_39_1 doi: 10.1371/journal.pone.0096485 – ident: e_1_2_7_14_1 doi: 10.1038/s41586-019-1157-8 – ident: e_1_2_7_61_1 doi: 10.1002/neu.480210113 – volume: 8 year: 2019 ident: e_1_2_7_43_1 article-title: Artificial neural networks enabled by nanophotonics publication-title: Light Sci Appl – ident: e_1_2_7_50_1 doi: 10.1002/adfm.202003601 – ident: e_1_2_7_19_1 doi: 10.1364/PRJ.8.000046 – ident: e_1_2_7_13_1 doi: 10.1126/science.aat8084 – ident: e_1_2_7_49_1 doi: 10.1038/s41578-018-0018-7 – ident: e_1_2_7_57_1 doi: 10.1523/JNEUROSCI.04-05-01378.1984 – ident: e_1_2_7_27_1 doi: 10.1364/OPTICA.388205 – ident: e_1_2_7_36_1 doi: 10.1016/j.neunet.2019.09.007 – ident: e_1_2_7_45_1 doi: 10.1038/nphoton.2013.278 – ident: e_1_2_7_54_1 doi: 10.1021/am403966x – ident: e_1_2_7_67_1 doi: 10.1126/science.aab3050 – ident: e_1_2_7_42_1 doi: 10.1038/s41551-018-0335-6 – ident: e_1_2_7_28_1 doi: 10.1038/nature14539 – ident: e_1_2_7_6_1 doi: 10.1038/s41591-018-0307-0 – ident: e_1_2_7_10_1 doi: 10.1038/s41928-019-0203-8 – ident: e_1_2_7_24_1 doi: 10.1364/PRJ.439506 – ident: e_1_2_7_12_1 doi: 10.1038/s41586-020-03063-0 – ident: e_1_2_7_8_1 doi: 10.1038/s41578-019-0159-3 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms2368 – ident: e_1_2_7_63_1 – ident: e_1_2_7_26_1 doi: 10.1038/s41928-022-00719-9 – ident: e_1_2_7_58_1 doi: 10.1038/308845a0 – ident: e_1_2_7_66_1 doi: 10.1109/5.726791 – ident: e_1_2_7_17_1 doi: 10.1038/s41586-020-2973-6 – ident: e_1_2_7_29_1 doi: 10.1038/s41563-021-01099-9 – ident: e_1_2_7_25_1 doi: 10.1038/s41566-021-00796-w – ident: e_1_2_7_11_1 doi: 10.1038/s41928-017-0011-y – ident: e_1_2_7_65_1 doi: 10.1016/j.polymer.2007.06.020 – ident: e_1_2_7_37_1 doi: 10.3389/fncom.2016.00093 – ident: e_1_2_7_38_1 doi: 10.3389/fnana.2016.00063 – ident: e_1_2_7_31_1 doi: 10.1038/nrn3258 – ident: e_1_2_7_34_1 doi: 10.1038/s41928-021-00692-9 – ident: e_1_2_7_44_1 doi: 10.1364/FIO.2017.FTu5B.3 – ident: e_1_2_7_4_1 doi: 10.1145/3457682.3457748 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-019-11260-3 – ident: e_1_2_7_51_1 doi: 10.1038/natrevmats.2016.75 – ident: e_1_2_7_3_1 doi: 10.1109/TPAMI.2015.2462338 – ident: e_1_2_7_9_1 doi: 10.1002/inf2.12122 – ident: e_1_2_7_62_1 doi: 10.1038/336468a0 – ident: e_1_2_7_16_1 doi: 10.1364/OE.23.012758  | 
    
| SSID | ssj0002504251 | 
    
| Score | 2.245605 | 
    
| Snippet | Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on digital... Autonomous one-shot on-the-fly learning copes with the high privacy, small dataset, and in-stream data at the edge. Implementing such learning on digital... Abstract Autonomous one‐shot on‐the‐fly learning copes with the high privacy, small dataset, and in‐stream data at the edge. Implementing such learning on...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | 3-D printers Algorithms Artificial intelligence Associative memory Biomimetics Chemical reactions Co-design Configurations Curing Datasets Deep learning Digital computers Energy efficiency Evolution Hardware hydrogel Hydrogels Light Machine learning Microprocessors Network latency Neural networks one‐shot learning Optical communication Optical memory (data storage) optical neural network Optimization Pattern classification Plastic properties Sensors structural plasticity Viscosity Willshaw model  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BSiQxEA2LF9eD6Ko4qy4BvexCayeddCdHlR1cQS-7greQpBNHaGYGZxaZm5_gN_olVqXbYQYWveylSTd1KKqqUy-V5BUhR0IUZe4qngXp80y4XGVWhTLTXvJYByd8ui52dV1e3IjLW3m70OoLz4S19MCt4U5y57iutPWs1MKxqKUqg5VFLZwvY3Q4--ZKLyymcA5GYi7I3HM-Un4C_uLHDG9yLmWgRNS_hC5X_w7HdvZom2YZr6aE098g6x1SpKethpvkUxh-IWsL_IFb5P53Yn9F5gw6BhiMJ6Sns5enZ8xNNR3M6ofRXWjoaJwq1hSLK5OBfaSp_w0FvEpHwwDyk8FoCkMYAR6EZ2xmFAtttGsqcbdNbvo__5xfZF3vhMwLSDGQeKTzXtU8MBltQNa8EJmtHK-kVuAd6bjVgnEWalUo63W6RQtwLfgI78UOWRmCCruEFixWUTBb5NELBR4PIbha4GQgYbXCe-T7mz2N74jFsb9FY1pKZG7Q9ibZvkcO57Ljlk7jn1Jn6Ja5BFJgpw8QGKYLDPNRYPTI_ptTTfdfTgzuIwsszxY9cjR39Luq_Egx8I6I-XXd52n09X_ovUc-Y0v79nTQPlmBQAoHAHym7luK8VfY3wUy priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdb-jD2sHb_WEZXBOvLBs4sWfKfx24sdIOFwRbonoQkS0mZiU2TUtKnfoR-xn2S3cmOScYog70Y2ZyNbN3pfj7pfkfIsRBJGpuMR07aOBImziOduzQqrOS-dEbYkC72ZZKeTsXnM3m2lcXf8kP0ATe0jDBfo4E3pW_n-W51n7-DQeAjhumZ98leKgGND8jedPL15AfWlJMphuBCNUmeZXEE2CLuGUq3b97xSYG6fwdvPrhcNHp9patqF8EGFzTeJ3rT-Xbnyc_R5cqM7PUfvI7_83YH5FGHT-lJq1CPyT23eEIebrEWPiXn3wLnLPJ10AbAN-7LXq1_3dyiRyzpfF1e1DNX0boJcXKKIZ3lXF_RUHWHAkqm9cKB_HJer6AJLUChcPTVmmJ4j3alLGbPyHT88fuH06ir2BBZAY4N3J001uYld0x67ZCrz3mmM8MzWeSgE9JwXQjGmSvzJNe2CLm7ABKd9XCePCeDBXThBaEJ85kXTCextyIHPXPOmVLgFCThH4kPyZvNmCnb0ZljVY1KtUTMXOHnU-HzDcnrXrZpSTz-KvUeh76XQOLtcKG-mKnOjlVsDC-yQluWFsIwX8g8dVompTA29d4MyeFGcVQ3GywVrl4LDAonQ3LcK9OdXXkblOMOEfVpMuah9fLfnnlIBqAd7hVgqJU56szkN8kdICo priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEB7S9NDmUPpLtkmLoLm04MaSJf9ALmnpkhYaAmkgNyHJ0m7ArJfslrC3PkKfMU_SGdnrdKEEejGyGYPQzGg-jzXfABxImeWpLUTilUsTadMyMaXPk8opEWpvpYvlYt9P85ML-e1SXW7B0boWpuOHGBJu5BlxvyYHN3ZxeEcaigoQHzmVZj6AhxyBDNm3kGdDhoXIuUTsv4hhnZJxuRr4ScXh3esbESkS92-gzUc_Z3OzujFNs4lfYwAaP4UnPXJkx52qn8GWnz2Hnb_4BF_A1XlkgyUmDTZHWEwnpper21-_KVbVbLqqr9uJb1g7jxlsRsmWxdTcsNgPhyF-Ze3Mo_xi2i5xiCPEh3gNzYpR4o31TSYmL-Fi_OXH55Ok76WQOIkhBwORss6VtfBcBeOJRc8HbgorClWVqC1lhakkF9zXZVYaV8WqWoRv3gW8z17B9gynsAss46EIkpssDU6WaAHee1tL2hwUfr2IEbxfr6d2PdE49btodEeRLDStvY5rP4J3g-y8o9f4p9QnUssgQZTY8UF7PdG9h-nUWlEVlXE8r6TloVJl7o3KamldHoIdwf5aqbr304Wm_8qS0rXZCA4GRd87lQ_RBu4R0V9PxyKOXv-P8B48plb23amgfdhGg_FvEPAs7dto138AcHn-RA priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Structural plasticity‐based hydrogel optical Willshaw model for one‐shot on‐the‐fly edge learning | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Finf2.12399 https://www.proquest.com/docview/2806420073 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/inf2.12399 https://doaj.org/article/0bb2979ac1694b1f9586ea53d4bc6ffb  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: ADMLS dateStart: 20190301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2567-3165 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: BENPR dateStart: 20210701 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: AVUZU dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2567-3165 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002504251 issn: 2567-3165 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a9GHbw-i-aLouCNaXDbTasuSPhzHa0qwbzIRtge7JSLKUPJjYa1JK_vvpFNttYOTFSOZA5u6k-_kk_Q7glPMoDlTCqBE6oFwFKZWpiWmmBbOlUVz762I_8vh6yr_fiJs9yLu7MHisslsT_UJd1hpz5Ge4A8gxsRZ9af5SrBqFu6tdCQ3ZllYoP3uKsX04YMiMNYCDi6t88rPPuiBhl4voPU8pO3N2ZJ9CvOG5FZk8gf8W6nxyt2jk-l5W1TaO9YFofAjPWwRJzjcmfwF7ZvESnj3iFXwF8pdnhUVGDdI4eIwnp1drihGrJPN1eVvPTEXqxuexCaZclnN5T3xVHOJQLKkXhi7n9co1qEOI1FZrgok30haZmL2G6fjq9-U1bWspUM1dyHGBSCit05KZUFhpkEXP2FAmiiUiS521hGIy405ppkyjVOrM36p18M1o6_rRGxgs3OBHQKLQJpaHMgqs5qnzAGOMKjkuDsL9vbAhfOj0WOiWaBzrXVTFhiKZFajzwut8CO972WZDr_FfqQs0Ry-BlNj-RX07K9oZVgRKsSzJpA7jjKvQZiKNjRRRyZWOrVVDOOmMWbTzdFk8eNUQTnsD7_yUj972O0SKb_mY-dbx7iHfwlMsXr85B3QCA-ca5p2DOCs1gn3GJ-6Zjr-OWh8e-XSB603zyfmff_Fa_2w | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeyg9VOWlLi1giXIAyTRx7DwOVUWhq13arhC0Um-u7di7h2gTuotW-XP8NsbeJLAS2ltvSTSKE894_Hns-QahI8aiOFAJJYbrgDAVpESmJiaZ5tTmRjHt08WuRvHghn295bcb6HebC-OOVbY-0TvqvNQuRn7sdgCZC6xFp9VP4qpGud3VtoSGbEor5CeeYqxJ7Lgw9QKWcLOT4RfQ9ztK--fXnwekqTJANANnDC6aK63TnJqQW2kcv5yxoUwUTXiWwn9wRWXGQhqaPI1SqTOfbwrAxmgL9xG89xHaYhHLYPG3dXY--va9i_I4gjBAEB0vKj0Gu6EfQ5dRujIT-oIBKyh3-9e0kvVCFsUqbvYTX38P7TaIFX9amtgTtGGmT9HOPzyGz5D84VloHYMHrgCOu5Pa85q4GTLHkzq_L8emwGXl4-bYhXhmE7nAvgoPBtSMy6khs0k5hwsCiJTYosYu0Iebohbj5-jmQXr1BdqcQuP7CEehTSwLZRRYzVKwOGOMyplzRhxWS7SH3rf9KHRDbO7qaxRiSclMhetz4fu8h952stWSzuO_UmdOHZ2Eo-D2D8r7sWhGtAiUolmSSR3GGVOhzXgaG8mjnCkdW6t66LBVpmj8wkz8teIeOuoUvPZTPnjdrxERw1Gf-quX65t8g7YH11eX4nI4ujhAjynAteUZpEO0CWZiXgG8mqvXjQ1jdPfQw-YP2ZM26w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWReJxQDxFYQFLLAeQvE0c53VACFjCloUKCVbam7Eduz1UTdgWVflr_DpmnAdUQr3tLYlGceIZjz-PPd8QcihElAQ65czGJmBCBxlTmU1YbmLuSquF8eliX6bJyZn4dB6f75HffS4MHqvsfaJ31GVlMEY-xh1AgYG1aOy6YxFfj4s39U-GFaRwp7Uvp9GayKltNrB8W72eHIOuX3BefPj-_oR1FQaYEeCIwT3H2pis5DaMnbLILWddqFLN0zjP4B9izVUuQh7aMosyZXKfawqgxhoH9xG89wq5miKLO2apFx-H-A5SgwF2GBhR-Rgshh-FmEu6NQf6UgFb-Pb6r2Wtmo1aLLYRs5_yitvkVodV6dvWuO6QPbu8S27-w2B4j6hvnn8WuTtoDUAcz2ivG4ZzY0nnTXlRzeyCVrWPmFMM7qzmakN9_R0KeJlWS8tW82oNFwywKHOLhmKIj3blLGb3ydml9OkDsr-Exh8SGoUudSJUUeCMyMDWrLW6FOiGYlgn8RF52fejNB2lOVbWWMiWjJlL7HPp-3xEng-ydUvk8V-pd6iOQQLJt_2D6mImu7EsA615nubKhEkudOjyOEusiqNSaJM4p0fkoFem7DzCSv613xE5HBS881Need3vEJGTacH91aPdTT4j12CwyM-T6eljcoMDTmsPHx2QfbAS-wRw1Vo_9QZMyY_LHjF_AFZENIU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBdb-jD2sHb_WEZXBOvLBs4sWfKfx24sdIOFwRbonoQkS0mZiU2TUtKnfoR-xn2S3cmOScYog70Y2ZyNbN3pfj7pfkfIsRBJGpuMR07aOBImziOduzQqrOS-dEbYkC72ZZKeTsXnM3m2lcXf8kP0ATe0jDBfo4E3pW_n-W51n7-DQeAjhumZ98leKgGND8jedPL15AfWlJMphuBCNUmeZXEE2CLuGUq3b97xSYG6fwdvPrhcNHp9patqF8EGFzTeJ3rT-Xbnyc_R5cqM7PUfvI7_83YH5FGHT-lJq1CPyT23eEIebrEWPiXn3wLnLPJ10AbAN-7LXq1_3dyiRyzpfF1e1DNX0boJcXKKIZ3lXF_RUHWHAkqm9cKB_HJer6AJLUChcPTVmmJ4j3alLGbPyHT88fuH06ir2BBZAY4N3J001uYld0x67ZCrz3mmM8MzWeSgE9JwXQjGmSvzJNe2CLm7ABKd9XCePCeDBXThBaEJ85kXTCextyIHPXPOmVLgFCThH4kPyZvNmCnb0ZljVY1KtUTMXOHnU-HzDcnrXrZpSTz-KvUeh76XQOLtcKG-mKnOjlVsDC-yQluWFsIwX8g8dVompTA29d4MyeFGcVQ3GywVrl4LDAonQ3LcK9OdXXkblOMOEfVpMuah9fLfnnlIBqAd7hVgqJU56szkN8kdICo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+plasticity-based+hydrogel+optical+Willshaw+model+for+one-shot+on-the-fly+edge+learning&rft.jtitle=InfoMat&rft.au=Wang%2C+Dingchen&rft.au=Liu%2C+Dingyao&rft.au=Lin%2C+Yinan&rft.au=Yuan%2C+Anran&rft.date=2023-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2567-3165&rft.volume=5&rft.issue=4&rft_id=info:doi/10.1002%2Finf2.12399&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2567-3165&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2567-3165&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2567-3165&client=summon |