Towards the search of detection in speech-relevant features for stress

Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond trying to relate the biometrical signature of voice with a possible neural activity that might generate alterations in voice produ...

Full description

Saved in:
Bibliographic Details
Published inExpert systems Vol. 32; no. 6; pp. 710 - 718
Main Authors Rodellar-Biarge, Victoria, Palacios-Alonso, Daniel, Nieto-Lluis, Victor, Gómez-Vilda, Pedro
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.12.2015
Subjects
Online AccessGet full text
ISSN0266-4720
1468-0394
DOI10.1111/exsy.12109

Cover

Abstract Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond trying to relate the biometrical signature of voice with a possible neural activity that might generate alterations in voice production. A total of 68, acoustical, glottal and biomechanical parameters were extracted from neutral and stressed speeches. The importance of the parameters was evaluated using t‐test, entropy, Receiver Operator Characteristic (ROC) and Wilcoxon methods and support vector machines algorithms for classification. The emotion under study is the stress produced when a speaker has to defend an idea opposite to his/her thoughts or feelings, and this stress is compared to self‐consistent speech. The results show tremor in the vocal folds to be the most relevant feature.
AbstractList Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond trying to relate the biometrical signature of voice with a possible neural activity that might generate alterations in voice production. A total of 68, acoustical, glottal and biomechanical parameters were extracted from neutral and stressed speeches. The importance of the parameters was evaluated using t-test, entropy, Receiver Operator Characteristic (ROC) and Wilcoxon methods and support vector machines algorithms for classification. The emotion under study is the stress produced when a speaker has to defend an idea opposite to his/her thoughts or feelings, and this stress is compared to self-consistent speech. The results show tremor in the vocal folds to be the most relevant feature.
Author Rodellar-Biarge, Victoria
Nieto-Lluis, Victor
Gómez-Vilda, Pedro
Palacios-Alonso, Daniel
Author_xml – sequence: 1
  givenname: Victoria
  surname: Rodellar-Biarge
  fullname: Rodellar-Biarge, Victoria
  organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain
– sequence: 2
  givenname: Daniel
  surname: Palacios-Alonso
  fullname: Palacios-Alonso, Daniel
  organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain
– sequence: 3
  givenname: Victor
  surname: Nieto-Lluis
  fullname: Nieto-Lluis, Victor
  organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain
– sequence: 4
  givenname: Pedro
  surname: Gómez-Vilda
  fullname: Gómez-Vilda, Pedro
  organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain
BookMark eNp9kEtPGzEURq0KJMJjwy-wxKZCGuo79oztZYWAIkJRCwi6shzPtTIwjFPbgeTfM2naLhDCm-vFOffxbZONPvRIyD6wIxjeF1yk5RGUwPQnMgJRq4JxLTbIiJV1XQhZsi2yndIDYwykrEfk9Ca82NgkmqdIE9ropjR42mBGl9vQ07anaYbopkXEDp9tn6lHm-cRE_Uh0pSHX9olm952Cff-1h1ye3pyc_ytGF-dnR9_HRdOiFIX0PhKVc1Eec0Y1qrSJVe65n7iQEPZTKRzXFjGHVNclyAkl1qV3knQtVCO75DP676zGH7PMWXz1CaHXWd7DPNkQDEmFFcAA3rwBn0I89gP2xmQ1TBOaCUHiq0pF0NKEb1xbbary3O0bWeAmVWwZhWs-RPsoBy-UWaxfbJx-T4Ma_il7XD5AWlO7q9__XOKtdOmjIv_jo2Pph4Cqczd9zNzd6mV_nlxaX7wV3L2mQU
CitedBy_id crossref_primary_10_3989_loquens_2022_e093
crossref_primary_10_1515_msr_2017_0031
crossref_primary_10_1111_exsy_12118
crossref_primary_10_1007_s00521_019_04549_3
crossref_primary_10_2478_jee_2020_0012
crossref_primary_10_3389_fphys_2025_1486763
crossref_primary_10_3390_app13020779
crossref_primary_10_1007_s11135_024_02030_5
crossref_primary_10_1142_S0129065722500241
crossref_primary_10_1016_j_ipm_2016_07_001
Cites_doi 10.5120/431-636
10.1007/978-3-642-38847-7_1
10.1007/978-0-387-45528-0
10.1016/j.jvoice.2008.04.004
10.1037/0022-3514.86.3.486
10.1109/TBME.2007.900562
10.1037/10001-000
10.1145/2370216.2370270
10.1214/09-SS051
10.1049/el:20064068
10.5772/2391
10.1007/978-3-642-38637-4_8
10.1023/A:1009715923555
10.5220/0004190201120119
10.1016/j.specom.2013.09.012
10.1109/TASSP.1980.1163453
10.1155/2011/9066789
10.1007/978-0-387-84858-7
10.1016/S0167-6393(02)00080-8
10.1016/j.specom.2008.09.005
10.1007/978-3-540-49127-9
10.1016/j.specom.2011.05.003
10.1016/j.patcog.2010.09.020
10.1121/1.4796110
10.1016/j.specom.2011.10.005
10.1007/s10772-011-9125-1
10.1007/978-3-642-38550-6
10.1109/89.905995
10.1109/ICoBE.2012.6179008
10.1159/000091405
10.1007/978-94-009-2037-8_10
10.1162/jocn.1991.3.1.71
10.1007/978-1-4757-1904-8
ContentType Journal Article
Copyright 2015 Wiley Publishing Ltd
Copyright_xml – notice: 2015 Wiley Publishing Ltd
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12109
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage 718
ExternalDocumentID 3905395661
10_1111_exsy_12109
EXSY12109
ark_67375_WNG_WM989RKM_Q
Genre article
Feature
GrantInformation_xml – fundername: Plan Nacional de I+D+i, Ministry of Science and Technology, Spain
  funderid: TEC2009‐14123‐C04‐03; TEC2012‐38630‐C04‐04
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77I
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c4429-1df585db8f900e6859238963fbc1912db7cc34a03c0839214737982fc719648c3
IEDL.DBID DR2
ISSN 0266-4720
IngestDate Wed Oct 01 14:56:54 EDT 2025
Fri Jul 25 06:37:32 EDT 2025
Wed Oct 01 06:00:45 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Sun Sep 21 06:23:22 EDT 2025
Sun Sep 21 06:18:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4429-1df585db8f900e6859238963fbc1912db7cc34a03c0839214737982fc719648c3
Notes ark:/67375/WNG-WM989RKM-Q
ArticleID:EXSY12109
Plan Nacional de I+D+i, Ministry of Science and Technology, Spain - No. TEC2009-14123-C04-03; No. TEC2012-38630-C04-04
istex:5F0D5725F75A7E029F55619403830B61AC069DA4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1751914987
PQPubID 32130
PageCount 9
ParticipantIDs proquest_miscellaneous_1800483811
proquest_journals_1751914987
crossref_citationtrail_10_1111_exsy_12109
crossref_primary_10_1111_exsy_12109
wiley_primary_10_1111_exsy_12109_EXSY12109
istex_primary_ark_67375_WNG_WM989RKM_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationTitleAlternate Expert Systems
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Koolagudi, S. and K.S. Rao (2012) Emotion recognition from speech: a review, Int. J. Speech Tecnology, 15, 99-117. DOI:10.1007/s10772-011-9125-1.
Jollife, I. (1986) Principal Component Analysis, Springer Verlag, New York.
Waaramaa, T., A.M. Laukkanen, M. Airas and P. Alku (2010) Perception of emotional valences and activity levels from segments of continuous speech, Journal of Voice, 24, 30-38.
Gómez, P., R. Fernández, V. Rodellar, V. Nieto, A. Álvarez, L.M. Mazaira, R. Martínez and J.I. Godino (2009) Glottal source biometrical signature for voice pathology detection, Speech Communication, 51, 759-781.
Hastie, T., R. Tibshirani and J. Friedman (2009) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Second Edition, Springer-Verlag: New York, pp. 580-581.
Moore, E.I., M.A. Clements, J.W. Peifer and L. Weisser (2008) Critical analysis of the impact of glottal features in the classification of clinical depression in speech, IEEE Trans. on Biomedical al Engineering, 55, 96-107.
Fay, M.P. and M.A. Proschan (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules, Statistics Surveys, 4, 1-39.
Origlia, A., A. Cotugno and V. Galata (2014) Continuous emotion recognition with phonetic syllables, speech emotion recognition with phonetics syllables, Speech Communication, 57, 155-169.
Grichkovtsova, I., M. Morel and A. Lacheret (2012) The role of voice quality and prosodic contour in affective speech perception, Speech Communication, 54, 414-429.
Teager, H.M. (1980) Some observations on oral air flow during phonation, IEEE transactions on acoustics, Speech and Signal Processing, 28, 599-601.
El Ayadi, M., M.S. Kamel and F. Karray (2011) Survey on speech emotion recognition: features, classification schemes and databases, Pattern Recognition, 44, 572-587.
Fernandez, R. and R. Picard (2003) Modeling drivers' speech under stress, Speech Communication, 40, 145-159.
Ramirez, J., P. Yelamos, J.M. Gorriz and J.C. Segura (2006) SVM-based speech endpoint detection using contextual speech features, Electronics Letters, 42, 426-428.
Teager, H.M. and S. Teager (1990) Evidence for nonlinear production mechanisms in the vocal tract, Speech Production and Speech Modeling, 55, 241-261.
Frank, M.G. and P. Ekman (2004) Appearing truthful generalizes across different deception situations, Journal of Personality and Social Psychology, 86, 486-495.
Darwin, C. (1872) The Expression of the Emotions in Man and Animals. J. Murray: London.
Zhou, G., J.H.L. Hansen and J.F. Kaiser (2001) Nonlinear feature based classification of speech under stress, IEEE Trans. on Speech and Audio Processing, 9, 201-216.
Bishop, C. (2006) Pattern Recognition and Machine Learning, Springer, Verlag.
Gómez, P., V. Rodellar, V. Nieto, R. Martinez, A. Alvarez, B. Scola, C. Ramirez, D. Poletti and M. Fernández (2013) A system to monitor phonation quality in the clinics, The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013), 253-258.
Turk, M. and A.P. Pentland (1991) Eigen faces for recognition, Journal of Cognitive Neuroscience, 3, 71-86.
Deller, J.R., J.G. Proakis and J.H.L. Hansen (1993) Discrete-Time Processing of Speech Signals MacMillan Pub, Co., Englewood Cliffs, NJ.
Plutchick, R. (1994) The Psychology and Biology of Emotion, Harper Collins Publishers: New York.
Chavhan, Y., M. L. Dohre and P. Yesaware (2010) Speech emotion recognition using support vector machine. International Journal of Computer Applications, vol. 1, pp. 6-9 .
Fernandez, R. and R. Picard (2011) Recognizing affect from speech prosody using hierarchical graphics models, Speech Communication, 53, 1088-405.
Mittal, V. K. and B. Yegnanarayana (2013) Effect of glottal dynamics in the production of shouted speech, J. Acoust. Soc. Am, 133, pp. 3050-3061.
Platt, J.C. (1999) Advances in kernel methods - support vector learning, in. Fast Training of Support Vector Machines Using Sequential Minimal Optimization, MIT Press: Cambridge, MA (US).
Airas, M. and P. Alku (2006) Emotions in vowel segments of continuous speech: analysis of glottal flow using the normalized amplitude quotient, Phonetica, 63, 26-46.
Vapnik, V.N. (1998) Statistical Learning Theory, John Wiley and Sons Inc., New York.
Boslaugh, S. (2012) Statistics in a Nuttshel. Second edition, O'Reilly Media Inc. Editor, Sebastopol: Ca, USA.
Burges, C.J. (1998) C.: a tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167.
Hansen J. Kim H. L. and Rahurkar W, Ruzanski M. E. and Meyeshoff, J. (2011) Robust emotional stressed speech detection using weighted frequency subbands, EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation, doi: 10.1155/2011/9066789.
Benesty, J., M.M. Sondhi and Y. Huang (Eds)(2008) Handbook on Speech Processing, Springer, Berlin.
1980; 28
1991; 3
2004; 86
1990; 55
2012
2011
2009
2011; 53
1998
2008
2006
1995
2014; 491
1994
1872
1993
2008; 55
2013b
2004
2013a
2003
2012; 15
2012; 54
1977
1999
2006; 63
2009; 51
2006; 42
2010; 1
2010; 24
2001; 9
1986
2013; 133
2011; 44
2014; 57
1998; 2
2013
2012; 4
2003; 40
2010; 4
Boslaugh S. (e_1_2_9_8_1) 2012
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_33_1
Benesty J. (e_1_2_9_4_1) 2008
Vapnik V.N. (e_1_2_9_44_1) 1998
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_6_1
Platt J.C. (e_1_2_9_34_1) 1999
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Hastie T. (e_1_2_9_24_1) 2009
e_1_2_9_30_1
Gómez P. (e_1_2_9_19_1) 2013
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Plutchick R. (e_1_2_9_35_1) 1994
Deller J.R. (e_1_2_9_12_1) 1993
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Fernandez, R. and R. Picard (2011) Recognizing affect from speech prosody using hierarchical graphics models, Speech Communication, 53, 1088-405.
– reference: Plutchick, R. (1994) The Psychology and Biology of Emotion, Harper Collins Publishers: New York.
– reference: Zhou, G., J.H.L. Hansen and J.F. Kaiser (2001) Nonlinear feature based classification of speech under stress, IEEE Trans. on Speech and Audio Processing, 9, 201-216.
– reference: Bishop, C. (2006) Pattern Recognition and Machine Learning, Springer, Verlag.
– reference: Deller, J.R., J.G. Proakis and J.H.L. Hansen (1993) Discrete-Time Processing of Speech Signals MacMillan Pub, Co., Englewood Cliffs, NJ.
– reference: Jollife, I. (1986) Principal Component Analysis, Springer Verlag, New York.
– reference: Platt, J.C. (1999) Advances in kernel methods - support vector learning, in. Fast Training of Support Vector Machines Using Sequential Minimal Optimization, MIT Press: Cambridge, MA (US).
– reference: Darwin, C. (1872) The Expression of the Emotions in Man and Animals. J. Murray: London.
– reference: Origlia, A., A. Cotugno and V. Galata (2014) Continuous emotion recognition with phonetic syllables, speech emotion recognition with phonetics syllables, Speech Communication, 57, 155-169.
– reference: Ramirez, J., P. Yelamos, J.M. Gorriz and J.C. Segura (2006) SVM-based speech endpoint detection using contextual speech features, Electronics Letters, 42, 426-428.
– reference: Airas, M. and P. Alku (2006) Emotions in vowel segments of continuous speech: analysis of glottal flow using the normalized amplitude quotient, Phonetica, 63, 26-46.
– reference: Turk, M. and A.P. Pentland (1991) Eigen faces for recognition, Journal of Cognitive Neuroscience, 3, 71-86.
– reference: Burges, C.J. (1998) C.: a tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167.
– reference: Boslaugh, S. (2012) Statistics in a Nuttshel. Second edition, O'Reilly Media Inc. Editor, Sebastopol: Ca, USA.
– reference: Gómez, P., V. Rodellar, V. Nieto, R. Martinez, A. Alvarez, B. Scola, C. Ramirez, D. Poletti and M. Fernández (2013) A system to monitor phonation quality in the clinics, The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013), 253-258.
– reference: Hastie, T., R. Tibshirani and J. Friedman (2009) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Second Edition, Springer-Verlag: New York, pp. 580-581.
– reference: Fay, M.P. and M.A. Proschan (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules, Statistics Surveys, 4, 1-39.
– reference: Grichkovtsova, I., M. Morel and A. Lacheret (2012) The role of voice quality and prosodic contour in affective speech perception, Speech Communication, 54, 414-429.
– reference: Hansen J. Kim H. L. and Rahurkar W, Ruzanski M. E. and Meyeshoff, J. (2011) Robust emotional stressed speech detection using weighted frequency subbands, EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation, doi: 10.1155/2011/9066789.
– reference: Vapnik, V.N. (1998) Statistical Learning Theory, John Wiley and Sons Inc., New York.
– reference: El Ayadi, M., M.S. Kamel and F. Karray (2011) Survey on speech emotion recognition: features, classification schemes and databases, Pattern Recognition, 44, 572-587.
– reference: Fernandez, R. and R. Picard (2003) Modeling drivers' speech under stress, Speech Communication, 40, 145-159.
– reference: Frank, M.G. and P. Ekman (2004) Appearing truthful generalizes across different deception situations, Journal of Personality and Social Psychology, 86, 486-495.
– reference: Mittal, V. K. and B. Yegnanarayana (2013) Effect of glottal dynamics in the production of shouted speech, J. Acoust. Soc. Am, 133, pp. 3050-3061.
– reference: Teager, H.M. (1980) Some observations on oral air flow during phonation, IEEE transactions on acoustics, Speech and Signal Processing, 28, 599-601.
– reference: Moore, E.I., M.A. Clements, J.W. Peifer and L. Weisser (2008) Critical analysis of the impact of glottal features in the classification of clinical depression in speech, IEEE Trans. on Biomedical al Engineering, 55, 96-107.
– reference: Benesty, J., M.M. Sondhi and Y. Huang (Eds)(2008) Handbook on Speech Processing, Springer, Berlin.
– reference: Chavhan, Y., M. L. Dohre and P. Yesaware (2010) Speech emotion recognition using support vector machine. International Journal of Computer Applications, vol. 1, pp. 6-9 .
– reference: Gómez, P., R. Fernández, V. Rodellar, V. Nieto, A. Álvarez, L.M. Mazaira, R. Martínez and J.I. Godino (2009) Glottal source biometrical signature for voice pathology detection, Speech Communication, 51, 759-781.
– reference: Koolagudi, S. and K.S. Rao (2012) Emotion recognition from speech: a review, Int. J. Speech Tecnology, 15, 99-117. DOI:10.1007/s10772-011-9125-1.
– reference: Teager, H.M. and S. Teager (1990) Evidence for nonlinear production mechanisms in the vocal tract, Speech Production and Speech Modeling, 55, 241-261.
– reference: Waaramaa, T., A.M. Laukkanen, M. Airas and P. Alku (2010) Perception of emotional valences and activity levels from segments of continuous speech, Journal of Voice, 24, 30-38.
– start-page: 580
  year: 2009
  end-page: 581
– year: 2009
– volume: 53
  start-page: 1088
  year: 2011
  end-page: 405
  article-title: Recognizing affect from speech prosody using hierarchical graphics models
  publication-title: Speech Communication
– volume: 57
  start-page: 155
  year: 2014
  end-page: 169
  article-title: Continuous emotion recognition with phonetic syllables, speech emotion recognition with phonetics syllables
  publication-title: Speech Communication
– volume: 4
  start-page: 6
  year: 2012
  end-page: 10
– start-page: 1325
  year: 2008
  end-page: 1330
– year: 1872
– volume: 51
  start-page: 759
  year: 2009
  end-page: 781
  article-title: Glottal source biometrical signature for voice pathology detection
  publication-title: Speech Communication
– volume: 55
  start-page: 96
  year: 2008
  end-page: 107
  article-title: Critical analysis of the impact of glottal features in the classification of clinical depression in speech
  publication-title: IEEE Trans. on Biomedical al Engineering
– start-page: 121
  year: 2012
  end-page: 138
– start-page: 560
  year: 2003
  end-page: 574
– volume: 3
  start-page: 71
  year: 1991
  end-page: 86
  article-title: Eigen faces for recognition
  publication-title: Journal of Cognitive Neuroscience
– year: 2011
  article-title: Robust emotional stressed speech detection using weighted frequency subbands
  publication-title: EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation
– volume: 28
  start-page: 599
  year: 1980
  end-page: 601
  article-title: Some observations on oral air flow during phonation, IEEE transactions on acoustics
  publication-title: Speech and Signal Processing
– volume: 40
  start-page: 145
  year: 2003
  end-page: 159
  article-title: Modeling drivers' speech under stress
  publication-title: Speech Communication
– volume: 63
  start-page: 26
  year: 2006
  end-page: 46
  article-title: Emotions in vowel segments of continuous speech: analysis of glottal flow using the normalized amplitude quotient
  publication-title: Phonetica
– start-page: 74
  year: 2013b
  end-page: 82
– volume: 86
  start-page: 486
  year: 2004
  end-page: 495
  article-title: Appearing truthful generalizes across different deception situations
  publication-title: Journal of Personality and Social Psychology
– volume: 55
  start-page: 241
  year: 1990
  end-page: 261
  article-title: Evidence for nonlinear production mechanisms in the vocal tract
  publication-title: Speech Production and Speech Modeling
– volume: 4
  start-page: 1
  year: 2010
  end-page: 39
  article-title: Wilcoxon–Mann–Whitney or ‐test? On assumptions for hypothesis test and multiple interpretations of decision rules
  publication-title: Statistics Surveys
– year: 1977
– volume: 491
  year: 2014
– volume: 133
  start-page: 3050
  year: 2013
  end-page: 3061
  article-title: Effect of glottal dynamics in the production of shouted speech
  publication-title: J. Acoust. Soc. Am
– year: 1994
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  article-title: C.: a tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
– year: 1998
– year: 2012
– start-page: 351
  year: 2012
  end-page: 360
– year: 1986
– volume: 15
  start-page: 99
  year: 2012
  end-page: 117
  article-title: Emotion recognition from speech: a review
  publication-title: Int. J. Speech Tecnology
– start-page: 112
  year: 2013a
  end-page: 119
– volume: 42
  start-page: 426
  year: 2006
  end-page: 428
  article-title: SVM‐based speech endpoint detection using contextual speech features
  publication-title: Electronics Letters
– volume: 9
  start-page: 201
  year: 2001
  end-page: 216
  article-title: Nonlinear feature based classification of speech under stress
  publication-title: IEEE Trans. on Speech and Audio Processing
– year: 2008
– volume: 1
  year: 2010
  end-page: 9
  article-title: Speech emotion recognition using support vector machine
  publication-title: International Journal of Computer Applications
– year: 2006
– year: 2004
– year: 1995
– volume: 54
  start-page: 414
  year: 2012
  end-page: 429
  article-title: The role of voice quality and prosodic contour in affective speech perception
  publication-title: Speech Communication
– start-page: 253
  year: 2013
  end-page: 258
  article-title: A system to monitor phonation quality in the clinic
  publication-title: The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013)
– volume: 24
  start-page: 30
  year: 2010
  end-page: 38
  article-title: Perception of emotional valences and activity levels from segments of continuous speech
  publication-title: Journal of Voice
– year: 1993
– volume: 44
  start-page: 572
  year: 2011
  end-page: 587
  article-title: Survey on speech emotion recognition: features, classification schemes and databases
  publication-title: Pattern Recognition
– year: 2013
– year: 1999
– ident: e_1_2_9_10_1
  doi: 10.5120/431-636
– volume-title: Statistical Learning Theory
  year: 1998
  ident: e_1_2_9_44_1
– ident: e_1_2_9_26_1
  doi: 10.1007/978-3-642-38847-7_1
– ident: e_1_2_9_3_1
– ident: e_1_2_9_6_1
  doi: 10.1007/978-0-387-45528-0
– volume-title: Advances in kernel methods – support vector learning, in. Fast Training of Support Vector Machines Using Sequential Minimal Optimization
  year: 1999
  ident: e_1_2_9_34_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jvoice.2008.04.004
– ident: e_1_2_9_17_1
  doi: 10.1037/0022-3514.86.3.486
– volume-title: Discrete‐Time Processing of Speech Signals MacMillan Pub
  year: 1993
  ident: e_1_2_9_12_1
– ident: e_1_2_9_32_1
  doi: 10.1109/TBME.2007.900562
– ident: e_1_2_9_47_1
– ident: e_1_2_9_11_1
  doi: 10.1037/10001-000
– ident: e_1_2_9_30_1
  doi: 10.1145/2370216.2370270
– ident: e_1_2_9_14_1
  doi: 10.1214/09-SS051
– ident: e_1_2_9_36_1
  doi: 10.1049/el:20064068
– ident: e_1_2_9_37_1
  doi: 10.5772/2391
– ident: e_1_2_9_5_1
– ident: e_1_2_9_27_1
– ident: e_1_2_9_39_1
  doi: 10.1007/978-3-642-38637-4_8
– ident: e_1_2_9_46_1
– ident: e_1_2_9_9_1
  doi: 10.1023/A:1009715923555
– volume-title: Statistics in a Nuttshel
  year: 2012
  ident: e_1_2_9_8_1
– ident: e_1_2_9_38_1
  doi: 10.5220/0004190201120119
– ident: e_1_2_9_33_1
  doi: 10.1016/j.specom.2013.09.012
– ident: e_1_2_9_41_1
  doi: 10.1109/TASSP.1980.1163453
– start-page: 253
  year: 2013
  ident: e_1_2_9_19_1
  article-title: A system to monitor phonation quality in the clinics
  publication-title: The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013)
– ident: e_1_2_9_22_1
  doi: 10.1155/2011/9066789
– start-page: 580
  volume-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
  year: 2009
  ident: e_1_2_9_24_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_9_7_1
– ident: e_1_2_9_15_1
  doi: 10.1016/S0167-6393(02)00080-8
– ident: e_1_2_9_18_1
  doi: 10.1016/j.specom.2008.09.005
– volume-title: Handbook on Speech Processing
  year: 2008
  ident: e_1_2_9_4_1
  doi: 10.1007/978-3-540-49127-9
– ident: e_1_2_9_16_1
  doi: 10.1016/j.specom.2011.05.003
– ident: e_1_2_9_40_1
– ident: e_1_2_9_13_1
  doi: 10.1016/j.patcog.2010.09.020
– ident: e_1_2_9_31_1
  doi: 10.1121/1.4796110
– volume-title: The Psychology and Biology of Emotion
  year: 1994
  ident: e_1_2_9_35_1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.specom.2011.10.005
– ident: e_1_2_9_28_1
  doi: 10.1007/s10772-011-9125-1
– ident: e_1_2_9_21_1
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-642-38550-6
– ident: e_1_2_9_49_1
  doi: 10.1109/89.905995
– ident: e_1_2_9_23_1
  doi: 10.1109/ICoBE.2012.6179008
– ident: e_1_2_9_2_1
  doi: 10.1159/000091405
– ident: e_1_2_9_42_1
  doi: 10.1007/978-94-009-2037-8_10
– ident: e_1_2_9_43_1
  doi: 10.1162/jocn.1991.3.1.71
– ident: e_1_2_9_50_1
– ident: e_1_2_9_25_1
  doi: 10.1007/978-1-4757-1904-8
– ident: e_1_2_9_45_1
SSID ssj0001776
Score 2.0987847
Snippet Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 710
SubjectTerms affective computing
Algorithms
Analysis
Biometrics
emotion elicitation
emotional tremor
Emotions
Entropy
Expert systems
feature extraction and selection
glottal signature
Pattern recognition
Searching
Signatures
speaker's biometry
Speech
stress in speech
Stresses
Studies
Voice
Title Towards the search of detection in speech-relevant features for stress
URI https://api.istex.fr/ark:/67375/WNG-WM989RKM-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12109
https://www.proquest.com/docview/1751914987
https://www.proquest.com/docview/1800483811
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1468-0394
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: AKVCP
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 20241003
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0266-4720
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS91AEB1EX_pSP9rS1A9WWgotRDbJJrsBX7R6vbRcoVbx9qEs2c0uFSVXTC5on_oT_I3-ks5ukquWUmjfApmEZGdP9kx25gzAG01NTLOyCAtqk5BpTUNlOQ8jY3JKFWUqd8XJo8NseMI-jtPxHGz3tTCtPsTsh5tDhv9eO4AXqn4AcnNd3zhtBF-9FyWp36M9uteOirjvLIcxRhYyHtNOm9Sl8dxf-mg1WnADe_2Iaj4krH7FGSzCt_5Z20ST861po7b0j99kHP_3ZZbgaUdFyU47d5ZhzlQrsNi3eSAd6p_B8Nin1tYEuSJpkUEmlpSm8WlcFTmrSH1pjP5-9_PW9WBBct4Qa7xkaE2QFZO2IuU5nAz2jz8Mw64BQ6gZrlNhVFqMJkolLPrNZCJFNigQsVZpDPPiUnGtE1bQRFPHsyLGE56L2GruZL6ETl7AfDWpzEsguTUYeEYs5lnBmNKK8gzvmFint6PzLIB3vSOk7tTJXZOMC9lHKW6IpB-iAF7PbC9bTY4_Wr31_pyZFFfnLouNp_L08ECejnKRH30ayc8BrPUOlx2Aa4msyinf5YIHsDk7jdBz-ylFZSZTtBFekF9EUQDvvXf_8jhyf_zlqz969S_Gq_AEKVraJtCswXxzNTXrSIMatQELO7t7u4MNP-1_Ad0PBSA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9RAEB6kfdAXq1UxWnVFERRSNsledvMo2va0vQPrlZ5PS3azS6WSK00Oqk_9Cf2N_hJnNrlrKyLoWyCTkOzky36zO_MNwEvLXcrzqoxL7rNYWMtj46WME-cKzg0XpqDi5NE4Hx6Ij9PBtM_NoVqYTh9iueBGyAj_awI4LUhfQbk7a76TOAKV763SBh3h8v3-pXpUIkNvOYwy8ljIlPfqpJTIc3nttflolYb27BrZvEpZw5yzvdY1Vm2CVCGlmhxvzluzaX_8JuT4369zB273bJS97T6fu3DD1euwtuj0wHrg34PhJGTXNgzpIuvAwWaeVa4NmVw1-1qz5sQ5e_Tz_ILasCA_b5l3QTW0YUiMWVeUch8Otrcm74Zx34MhtgKnqjipPAYUlVEeXedyNUBCqBC03liM9NLKSGszUfLMcqJaiZCZLFTqrSSlL2WzB7BSz2r3EFjhHcaeiUhlXgphrOEyxztmniR3bJFH8HrhCW17gXLqk_FNLwIVGiIdhiiCF0vbk06W449Wr4JDlybl6TElssmBPhzv6MNRoYr93ZH-FMHGwuO6x3CjkViR-F2hZATPl6cRfbSlUtZuNkcbFTT5VZJE8Ca49y-Po7emn7-Eo0f_YvwMbg4noz2992G8-xhuIWMbdPk0G7DSns7dE2RFrXkavv1f6n4Hyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9RAEB5KC-KLtVYxWtuVloJCyibZy26gL2J7ntY7tLb0fJAlu9lFqeSOJge1T_6E_sb-Emc3ybUVEfQtkEnY7OyX_SaZ-QZgS1MT07TIw5zaJGRa01BZzsPImIxSRZnKXHHycJQOjtm7cW-8ALtdLUyjDzH_4OaQ4d_XDuDTwt4AuTmvfjhtBFe9t8RSDK8cJTq8Fo-KuG8th0FGGjIe01ac1OXxXF97aztacjN7fotr3mSsfsvpL8OXbrBNpsnpzqxWO_riNx3H_32a-3Cv5aLkVbN4VmDBlA9guevzQFrYr8LgyOfWVgTJImmgQSaWFKb2eVwl-VaSamqM_nr189I1YUF2XhNrvGZoRZAWk6Yk5SEc9_ePXg_CtgNDqBluVGFUWAwnCiUsOs6kood0UCBkrdIY58WF4lonLKeJpo5oRYwnPBOx1dzpfAmdPILFclKax0AyazDyjFjM05wxpRXlKd4xsU5wR2dpAC86R0jdypO7LhnfZRemuCmSfooC2JzbThtRjj9abXt_zk3ys1OXxsZ78mT0Rp4MM5EdHgzlxwDWOofLFsGVRFrlpO8ywQN4Pj-N2HM_VPLSTGZoI7wiv4iiAF567_5lOHJ__OmzP3ryL8YbcOfDXl--fzs6eAp3ka71mmSaNVisz2bmGVKiWq37lf8L0m4GeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+the+search+of+detection+in+speech-relevant+features+for+stress&rft.jtitle=Expert+systems&rft.au=Rodellar-Biarge%2C+Victoria&rft.au=Palacios-Alonso%2C+Daniel&rft.au=Nieto-Lluis%2C+Victor&rft.au=Gomez-Vilda%2C+Pedro&rft.date=2015-12-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=32&rft.issue=6&rft.spage=710&rft.epage=718&rft_id=info:doi/10.1111%2Fexsy.12109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon