Towards the search of detection in speech-relevant features for stress
Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond trying to relate the biometrical signature of voice with a possible neural activity that might generate alterations in voice produ...
Saved in:
Published in | Expert systems Vol. 32; no. 6; pp. 710 - 718 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0266-4720 1468-0394 |
DOI | 10.1111/exsy.12109 |
Cover
Abstract | Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond trying to relate the biometrical signature of voice with a possible neural activity that might generate alterations in voice production. A total of 68, acoustical, glottal and biomechanical parameters were extracted from neutral and stressed speeches. The importance of the parameters was evaluated using t‐test, entropy, Receiver Operator Characteristic (ROC) and Wilcoxon methods and support vector machines algorithms for classification. The emotion under study is the stress produced when a speaker has to defend an idea opposite to his/her thoughts or feelings, and this stress is compared to self‐consistent speech. The results show tremor in the vocal folds to be the most relevant feature. |
---|---|
AbstractList | Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach goes beyond trying to relate the biometrical signature of voice with a possible neural activity that might generate alterations in voice production. A total of 68, acoustical, glottal and biomechanical parameters were extracted from neutral and stressed speeches. The importance of the parameters was evaluated using t-test, entropy, Receiver Operator Characteristic (ROC) and Wilcoxon methods and support vector machines algorithms for classification. The emotion under study is the stress produced when a speaker has to defend an idea opposite to his/her thoughts or feelings, and this stress is compared to self-consistent speech. The results show tremor in the vocal folds to be the most relevant feature. |
Author | Rodellar-Biarge, Victoria Nieto-Lluis, Victor Gómez-Vilda, Pedro Palacios-Alonso, Daniel |
Author_xml | – sequence: 1 givenname: Victoria surname: Rodellar-Biarge fullname: Rodellar-Biarge, Victoria organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain – sequence: 2 givenname: Daniel surname: Palacios-Alonso fullname: Palacios-Alonso, Daniel organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain – sequence: 3 givenname: Victor surname: Nieto-Lluis fullname: Nieto-Lluis, Victor organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain – sequence: 4 givenname: Pedro surname: Gómez-Vilda fullname: Gómez-Vilda, Pedro organization: Center for Biomedical Engineering, Universidad Politécnica de Madrid Campus de Montegancedo, s/n 28223 Pozuelo de Alarcón, Madrid, Spain |
BookMark | eNp9kEtPGzEURq0KJMJjwy-wxKZCGuo79oztZYWAIkJRCwi6shzPtTIwjFPbgeTfM2naLhDCm-vFOffxbZONPvRIyD6wIxjeF1yk5RGUwPQnMgJRq4JxLTbIiJV1XQhZsi2yndIDYwykrEfk9Ca82NgkmqdIE9ropjR42mBGl9vQ07anaYbopkXEDp9tn6lHm-cRE_Uh0pSHX9olm952Cff-1h1ye3pyc_ytGF-dnR9_HRdOiFIX0PhKVc1Eec0Y1qrSJVe65n7iQEPZTKRzXFjGHVNclyAkl1qV3knQtVCO75DP676zGH7PMWXz1CaHXWd7DPNkQDEmFFcAA3rwBn0I89gP2xmQ1TBOaCUHiq0pF0NKEb1xbbary3O0bWeAmVWwZhWs-RPsoBy-UWaxfbJx-T4Ma_il7XD5AWlO7q9__XOKtdOmjIv_jo2Pph4Cqczd9zNzd6mV_nlxaX7wV3L2mQU |
CitedBy_id | crossref_primary_10_3989_loquens_2022_e093 crossref_primary_10_1515_msr_2017_0031 crossref_primary_10_1111_exsy_12118 crossref_primary_10_1007_s00521_019_04549_3 crossref_primary_10_2478_jee_2020_0012 crossref_primary_10_3389_fphys_2025_1486763 crossref_primary_10_3390_app13020779 crossref_primary_10_1007_s11135_024_02030_5 crossref_primary_10_1142_S0129065722500241 crossref_primary_10_1016_j_ipm_2016_07_001 |
Cites_doi | 10.5120/431-636 10.1007/978-3-642-38847-7_1 10.1007/978-0-387-45528-0 10.1016/j.jvoice.2008.04.004 10.1037/0022-3514.86.3.486 10.1109/TBME.2007.900562 10.1037/10001-000 10.1145/2370216.2370270 10.1214/09-SS051 10.1049/el:20064068 10.5772/2391 10.1007/978-3-642-38637-4_8 10.1023/A:1009715923555 10.5220/0004190201120119 10.1016/j.specom.2013.09.012 10.1109/TASSP.1980.1163453 10.1155/2011/9066789 10.1007/978-0-387-84858-7 10.1016/S0167-6393(02)00080-8 10.1016/j.specom.2008.09.005 10.1007/978-3-540-49127-9 10.1016/j.specom.2011.05.003 10.1016/j.patcog.2010.09.020 10.1121/1.4796110 10.1016/j.specom.2011.10.005 10.1007/s10772-011-9125-1 10.1007/978-3-642-38550-6 10.1109/89.905995 10.1109/ICoBE.2012.6179008 10.1159/000091405 10.1007/978-94-009-2037-8_10 10.1162/jocn.1991.3.1.71 10.1007/978-1-4757-1904-8 |
ContentType | Journal Article |
Copyright | 2015 Wiley Publishing Ltd |
Copyright_xml | – notice: 2015 Wiley Publishing Ltd |
DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1111/exsy.12109 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1468-0394 |
EndPage | 718 |
ExternalDocumentID | 3905395661 10_1111_exsy_12109 EXSY12109 ark_67375_WNG_WM989RKM_Q |
Genre | article Feature |
GrantInformation_xml | – fundername: Plan Nacional de I+D+i, Ministry of Science and Technology, Spain funderid: TEC2009‐14123‐C04‐03; TEC2012‐38630‐C04‐04 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6TJ 702 77I 77K 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 9M8 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHC ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AEMOZ AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHQJS AI. AIDQK AIDYY AIQQE AITYG AIURR AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TH9 TN5 TUS UB1 VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 ZL0 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c4429-1df585db8f900e6859238963fbc1912db7cc34a03c0839214737982fc719648c3 |
IEDL.DBID | DR2 |
ISSN | 0266-4720 |
IngestDate | Wed Oct 01 14:56:54 EDT 2025 Fri Jul 25 06:37:32 EDT 2025 Wed Oct 01 06:00:45 EDT 2025 Thu Apr 24 23:03:58 EDT 2025 Sun Sep 21 06:23:22 EDT 2025 Sun Sep 21 06:18:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4429-1df585db8f900e6859238963fbc1912db7cc34a03c0839214737982fc719648c3 |
Notes | ark:/67375/WNG-WM989RKM-Q ArticleID:EXSY12109 Plan Nacional de I+D+i, Ministry of Science and Technology, Spain - No. TEC2009-14123-C04-03; No. TEC2012-38630-C04-04 istex:5F0D5725F75A7E029F55619403830B61AC069DA4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1751914987 |
PQPubID | 32130 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1800483811 proquest_journals_1751914987 crossref_citationtrail_10_1111_exsy_12109 crossref_primary_10_1111_exsy_12109 wiley_primary_10_1111_exsy_12109_EXSY12109 istex_primary_ark_67375_WNG_WM989RKM_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Expert systems |
PublicationTitleAlternate | Expert Systems |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Koolagudi, S. and K.S. Rao (2012) Emotion recognition from speech: a review, Int. J. Speech Tecnology, 15, 99-117. DOI:10.1007/s10772-011-9125-1. Jollife, I. (1986) Principal Component Analysis, Springer Verlag, New York. Waaramaa, T., A.M. Laukkanen, M. Airas and P. Alku (2010) Perception of emotional valences and activity levels from segments of continuous speech, Journal of Voice, 24, 30-38. Gómez, P., R. Fernández, V. Rodellar, V. Nieto, A. Álvarez, L.M. Mazaira, R. Martínez and J.I. Godino (2009) Glottal source biometrical signature for voice pathology detection, Speech Communication, 51, 759-781. Hastie, T., R. Tibshirani and J. Friedman (2009) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Second Edition, Springer-Verlag: New York, pp. 580-581. Moore, E.I., M.A. Clements, J.W. Peifer and L. Weisser (2008) Critical analysis of the impact of glottal features in the classification of clinical depression in speech, IEEE Trans. on Biomedical al Engineering, 55, 96-107. Fay, M.P. and M.A. Proschan (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules, Statistics Surveys, 4, 1-39. Origlia, A., A. Cotugno and V. Galata (2014) Continuous emotion recognition with phonetic syllables, speech emotion recognition with phonetics syllables, Speech Communication, 57, 155-169. Grichkovtsova, I., M. Morel and A. Lacheret (2012) The role of voice quality and prosodic contour in affective speech perception, Speech Communication, 54, 414-429. Teager, H.M. (1980) Some observations on oral air flow during phonation, IEEE transactions on acoustics, Speech and Signal Processing, 28, 599-601. El Ayadi, M., M.S. Kamel and F. Karray (2011) Survey on speech emotion recognition: features, classification schemes and databases, Pattern Recognition, 44, 572-587. Fernandez, R. and R. Picard (2003) Modeling drivers' speech under stress, Speech Communication, 40, 145-159. Ramirez, J., P. Yelamos, J.M. Gorriz and J.C. Segura (2006) SVM-based speech endpoint detection using contextual speech features, Electronics Letters, 42, 426-428. Teager, H.M. and S. Teager (1990) Evidence for nonlinear production mechanisms in the vocal tract, Speech Production and Speech Modeling, 55, 241-261. Frank, M.G. and P. Ekman (2004) Appearing truthful generalizes across different deception situations, Journal of Personality and Social Psychology, 86, 486-495. Darwin, C. (1872) The Expression of the Emotions in Man and Animals. J. Murray: London. Zhou, G., J.H.L. Hansen and J.F. Kaiser (2001) Nonlinear feature based classification of speech under stress, IEEE Trans. on Speech and Audio Processing, 9, 201-216. Bishop, C. (2006) Pattern Recognition and Machine Learning, Springer, Verlag. Gómez, P., V. Rodellar, V. Nieto, R. Martinez, A. Alvarez, B. Scola, C. Ramirez, D. Poletti and M. Fernández (2013) A system to monitor phonation quality in the clinics, The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013), 253-258. Turk, M. and A.P. Pentland (1991) Eigen faces for recognition, Journal of Cognitive Neuroscience, 3, 71-86. Deller, J.R., J.G. Proakis and J.H.L. Hansen (1993) Discrete-Time Processing of Speech Signals MacMillan Pub, Co., Englewood Cliffs, NJ. Plutchick, R. (1994) The Psychology and Biology of Emotion, Harper Collins Publishers: New York. Chavhan, Y., M. L. Dohre and P. Yesaware (2010) Speech emotion recognition using support vector machine. International Journal of Computer Applications, vol. 1, pp. 6-9 . Fernandez, R. and R. Picard (2011) Recognizing affect from speech prosody using hierarchical graphics models, Speech Communication, 53, 1088-405. Mittal, V. K. and B. Yegnanarayana (2013) Effect of glottal dynamics in the production of shouted speech, J. Acoust. Soc. Am, 133, pp. 3050-3061. Platt, J.C. (1999) Advances in kernel methods - support vector learning, in. Fast Training of Support Vector Machines Using Sequential Minimal Optimization, MIT Press: Cambridge, MA (US). Airas, M. and P. Alku (2006) Emotions in vowel segments of continuous speech: analysis of glottal flow using the normalized amplitude quotient, Phonetica, 63, 26-46. Vapnik, V.N. (1998) Statistical Learning Theory, John Wiley and Sons Inc., New York. Boslaugh, S. (2012) Statistics in a Nuttshel. Second edition, O'Reilly Media Inc. Editor, Sebastopol: Ca, USA. Burges, C.J. (1998) C.: a tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167. Hansen J. Kim H. L. and Rahurkar W, Ruzanski M. E. and Meyeshoff, J. (2011) Robust emotional stressed speech detection using weighted frequency subbands, EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation, doi: 10.1155/2011/9066789. Benesty, J., M.M. Sondhi and Y. Huang (Eds)(2008) Handbook on Speech Processing, Springer, Berlin. 1980; 28 1991; 3 2004; 86 1990; 55 2012 2011 2009 2011; 53 1998 2008 2006 1995 2014; 491 1994 1872 1993 2008; 55 2013b 2004 2013a 2003 2012; 15 2012; 54 1977 1999 2006; 63 2009; 51 2006; 42 2010; 1 2010; 24 2001; 9 1986 2013; 133 2011; 44 2014; 57 1998; 2 2013 2012; 4 2003; 40 2010; 4 Boslaugh S. (e_1_2_9_8_1) 2012 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_33_1 Benesty J. (e_1_2_9_4_1) 2008 Vapnik V.N. (e_1_2_9_44_1) 1998 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_43_1 e_1_2_9_6_1 Platt J.C. (e_1_2_9_34_1) 1999 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Hastie T. (e_1_2_9_24_1) 2009 e_1_2_9_30_1 Gómez P. (e_1_2_9_19_1) 2013 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Plutchick R. (e_1_2_9_35_1) 1994 Deller J.R. (e_1_2_9_12_1) 1993 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Fernandez, R. and R. Picard (2011) Recognizing affect from speech prosody using hierarchical graphics models, Speech Communication, 53, 1088-405. – reference: Plutchick, R. (1994) The Psychology and Biology of Emotion, Harper Collins Publishers: New York. – reference: Zhou, G., J.H.L. Hansen and J.F. Kaiser (2001) Nonlinear feature based classification of speech under stress, IEEE Trans. on Speech and Audio Processing, 9, 201-216. – reference: Bishop, C. (2006) Pattern Recognition and Machine Learning, Springer, Verlag. – reference: Deller, J.R., J.G. Proakis and J.H.L. Hansen (1993) Discrete-Time Processing of Speech Signals MacMillan Pub, Co., Englewood Cliffs, NJ. – reference: Jollife, I. (1986) Principal Component Analysis, Springer Verlag, New York. – reference: Platt, J.C. (1999) Advances in kernel methods - support vector learning, in. Fast Training of Support Vector Machines Using Sequential Minimal Optimization, MIT Press: Cambridge, MA (US). – reference: Darwin, C. (1872) The Expression of the Emotions in Man and Animals. J. Murray: London. – reference: Origlia, A., A. Cotugno and V. Galata (2014) Continuous emotion recognition with phonetic syllables, speech emotion recognition with phonetics syllables, Speech Communication, 57, 155-169. – reference: Ramirez, J., P. Yelamos, J.M. Gorriz and J.C. Segura (2006) SVM-based speech endpoint detection using contextual speech features, Electronics Letters, 42, 426-428. – reference: Airas, M. and P. Alku (2006) Emotions in vowel segments of continuous speech: analysis of glottal flow using the normalized amplitude quotient, Phonetica, 63, 26-46. – reference: Turk, M. and A.P. Pentland (1991) Eigen faces for recognition, Journal of Cognitive Neuroscience, 3, 71-86. – reference: Burges, C.J. (1998) C.: a tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2, 121-167. – reference: Boslaugh, S. (2012) Statistics in a Nuttshel. Second edition, O'Reilly Media Inc. Editor, Sebastopol: Ca, USA. – reference: Gómez, P., V. Rodellar, V. Nieto, R. Martinez, A. Alvarez, B. Scola, C. Ramirez, D. Poletti and M. Fernández (2013) A system to monitor phonation quality in the clinics, The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013), 253-258. – reference: Hastie, T., R. Tibshirani and J. Friedman (2009) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Second Edition, Springer-Verlag: New York, pp. 580-581. – reference: Fay, M.P. and M.A. Proschan (2010) Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis test and multiple interpretations of decision rules, Statistics Surveys, 4, 1-39. – reference: Grichkovtsova, I., M. Morel and A. Lacheret (2012) The role of voice quality and prosodic contour in affective speech perception, Speech Communication, 54, 414-429. – reference: Hansen J. Kim H. L. and Rahurkar W, Ruzanski M. E. and Meyeshoff, J. (2011) Robust emotional stressed speech detection using weighted frequency subbands, EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation, doi: 10.1155/2011/9066789. – reference: Vapnik, V.N. (1998) Statistical Learning Theory, John Wiley and Sons Inc., New York. – reference: El Ayadi, M., M.S. Kamel and F. Karray (2011) Survey on speech emotion recognition: features, classification schemes and databases, Pattern Recognition, 44, 572-587. – reference: Fernandez, R. and R. Picard (2003) Modeling drivers' speech under stress, Speech Communication, 40, 145-159. – reference: Frank, M.G. and P. Ekman (2004) Appearing truthful generalizes across different deception situations, Journal of Personality and Social Psychology, 86, 486-495. – reference: Mittal, V. K. and B. Yegnanarayana (2013) Effect of glottal dynamics in the production of shouted speech, J. Acoust. Soc. Am, 133, pp. 3050-3061. – reference: Teager, H.M. (1980) Some observations on oral air flow during phonation, IEEE transactions on acoustics, Speech and Signal Processing, 28, 599-601. – reference: Moore, E.I., M.A. Clements, J.W. Peifer and L. Weisser (2008) Critical analysis of the impact of glottal features in the classification of clinical depression in speech, IEEE Trans. on Biomedical al Engineering, 55, 96-107. – reference: Benesty, J., M.M. Sondhi and Y. Huang (Eds)(2008) Handbook on Speech Processing, Springer, Berlin. – reference: Chavhan, Y., M. L. Dohre and P. Yesaware (2010) Speech emotion recognition using support vector machine. International Journal of Computer Applications, vol. 1, pp. 6-9 . – reference: Gómez, P., R. Fernández, V. Rodellar, V. Nieto, A. Álvarez, L.M. Mazaira, R. Martínez and J.I. Godino (2009) Glottal source biometrical signature for voice pathology detection, Speech Communication, 51, 759-781. – reference: Koolagudi, S. and K.S. Rao (2012) Emotion recognition from speech: a review, Int. J. Speech Tecnology, 15, 99-117. DOI:10.1007/s10772-011-9125-1. – reference: Teager, H.M. and S. Teager (1990) Evidence for nonlinear production mechanisms in the vocal tract, Speech Production and Speech Modeling, 55, 241-261. – reference: Waaramaa, T., A.M. Laukkanen, M. Airas and P. Alku (2010) Perception of emotional valences and activity levels from segments of continuous speech, Journal of Voice, 24, 30-38. – start-page: 580 year: 2009 end-page: 581 – year: 2009 – volume: 53 start-page: 1088 year: 2011 end-page: 405 article-title: Recognizing affect from speech prosody using hierarchical graphics models publication-title: Speech Communication – volume: 57 start-page: 155 year: 2014 end-page: 169 article-title: Continuous emotion recognition with phonetic syllables, speech emotion recognition with phonetics syllables publication-title: Speech Communication – volume: 4 start-page: 6 year: 2012 end-page: 10 – start-page: 1325 year: 2008 end-page: 1330 – year: 1872 – volume: 51 start-page: 759 year: 2009 end-page: 781 article-title: Glottal source biometrical signature for voice pathology detection publication-title: Speech Communication – volume: 55 start-page: 96 year: 2008 end-page: 107 article-title: Critical analysis of the impact of glottal features in the classification of clinical depression in speech publication-title: IEEE Trans. on Biomedical al Engineering – start-page: 121 year: 2012 end-page: 138 – start-page: 560 year: 2003 end-page: 574 – volume: 3 start-page: 71 year: 1991 end-page: 86 article-title: Eigen faces for recognition publication-title: Journal of Cognitive Neuroscience – year: 2011 article-title: Robust emotional stressed speech detection using weighted frequency subbands publication-title: EURASIP Journal on Advances in Signal Processing, Hindawi Publishing Corporation – volume: 28 start-page: 599 year: 1980 end-page: 601 article-title: Some observations on oral air flow during phonation, IEEE transactions on acoustics publication-title: Speech and Signal Processing – volume: 40 start-page: 145 year: 2003 end-page: 159 article-title: Modeling drivers' speech under stress publication-title: Speech Communication – volume: 63 start-page: 26 year: 2006 end-page: 46 article-title: Emotions in vowel segments of continuous speech: analysis of glottal flow using the normalized amplitude quotient publication-title: Phonetica – start-page: 74 year: 2013b end-page: 82 – volume: 86 start-page: 486 year: 2004 end-page: 495 article-title: Appearing truthful generalizes across different deception situations publication-title: Journal of Personality and Social Psychology – volume: 55 start-page: 241 year: 1990 end-page: 261 article-title: Evidence for nonlinear production mechanisms in the vocal tract publication-title: Speech Production and Speech Modeling – volume: 4 start-page: 1 year: 2010 end-page: 39 article-title: Wilcoxon–Mann–Whitney or ‐test? On assumptions for hypothesis test and multiple interpretations of decision rules publication-title: Statistics Surveys – year: 1977 – volume: 491 year: 2014 – volume: 133 start-page: 3050 year: 2013 end-page: 3061 article-title: Effect of glottal dynamics in the production of shouted speech publication-title: J. Acoust. Soc. Am – year: 1994 – volume: 2 start-page: 121 year: 1998 end-page: 167 article-title: C.: a tutorial on support vector machines for pattern recognition publication-title: Data Mining and Knowledge Discovery – year: 1998 – year: 2012 – start-page: 351 year: 2012 end-page: 360 – year: 1986 – volume: 15 start-page: 99 year: 2012 end-page: 117 article-title: Emotion recognition from speech: a review publication-title: Int. J. Speech Tecnology – start-page: 112 year: 2013a end-page: 119 – volume: 42 start-page: 426 year: 2006 end-page: 428 article-title: SVM‐based speech endpoint detection using contextual speech features publication-title: Electronics Letters – volume: 9 start-page: 201 year: 2001 end-page: 216 article-title: Nonlinear feature based classification of speech under stress publication-title: IEEE Trans. on Speech and Audio Processing – year: 2008 – volume: 1 year: 2010 end-page: 9 article-title: Speech emotion recognition using support vector machine publication-title: International Journal of Computer Applications – year: 2006 – year: 2004 – year: 1995 – volume: 54 start-page: 414 year: 2012 end-page: 429 article-title: The role of voice quality and prosodic contour in affective speech perception publication-title: Speech Communication – start-page: 253 year: 2013 end-page: 258 article-title: A system to monitor phonation quality in the clinic publication-title: The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013) – volume: 24 start-page: 30 year: 2010 end-page: 38 article-title: Perception of emotional valences and activity levels from segments of continuous speech publication-title: Journal of Voice – year: 1993 – volume: 44 start-page: 572 year: 2011 end-page: 587 article-title: Survey on speech emotion recognition: features, classification schemes and databases publication-title: Pattern Recognition – year: 2013 – year: 1999 – ident: e_1_2_9_10_1 doi: 10.5120/431-636 – volume-title: Statistical Learning Theory year: 1998 ident: e_1_2_9_44_1 – ident: e_1_2_9_26_1 doi: 10.1007/978-3-642-38847-7_1 – ident: e_1_2_9_3_1 – ident: e_1_2_9_6_1 doi: 10.1007/978-0-387-45528-0 – volume-title: Advances in kernel methods – support vector learning, in. Fast Training of Support Vector Machines Using Sequential Minimal Optimization year: 1999 ident: e_1_2_9_34_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.jvoice.2008.04.004 – ident: e_1_2_9_17_1 doi: 10.1037/0022-3514.86.3.486 – volume-title: Discrete‐Time Processing of Speech Signals MacMillan Pub year: 1993 ident: e_1_2_9_12_1 – ident: e_1_2_9_32_1 doi: 10.1109/TBME.2007.900562 – ident: e_1_2_9_47_1 – ident: e_1_2_9_11_1 doi: 10.1037/10001-000 – ident: e_1_2_9_30_1 doi: 10.1145/2370216.2370270 – ident: e_1_2_9_14_1 doi: 10.1214/09-SS051 – ident: e_1_2_9_36_1 doi: 10.1049/el:20064068 – ident: e_1_2_9_37_1 doi: 10.5772/2391 – ident: e_1_2_9_5_1 – ident: e_1_2_9_27_1 – ident: e_1_2_9_39_1 doi: 10.1007/978-3-642-38637-4_8 – ident: e_1_2_9_46_1 – ident: e_1_2_9_9_1 doi: 10.1023/A:1009715923555 – volume-title: Statistics in a Nuttshel year: 2012 ident: e_1_2_9_8_1 – ident: e_1_2_9_38_1 doi: 10.5220/0004190201120119 – ident: e_1_2_9_33_1 doi: 10.1016/j.specom.2013.09.012 – ident: e_1_2_9_41_1 doi: 10.1109/TASSP.1980.1163453 – start-page: 253 year: 2013 ident: e_1_2_9_19_1 article-title: A system to monitor phonation quality in the clinics publication-title: The Fifth International Conference on eHealth, Telemedicine, and Social Medicine, (eTELEMED 2013) – ident: e_1_2_9_22_1 doi: 10.1155/2011/9066789 – start-page: 580 volume-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction year: 2009 ident: e_1_2_9_24_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_2_9_7_1 – ident: e_1_2_9_15_1 doi: 10.1016/S0167-6393(02)00080-8 – ident: e_1_2_9_18_1 doi: 10.1016/j.specom.2008.09.005 – volume-title: Handbook on Speech Processing year: 2008 ident: e_1_2_9_4_1 doi: 10.1007/978-3-540-49127-9 – ident: e_1_2_9_16_1 doi: 10.1016/j.specom.2011.05.003 – ident: e_1_2_9_40_1 – ident: e_1_2_9_13_1 doi: 10.1016/j.patcog.2010.09.020 – ident: e_1_2_9_31_1 doi: 10.1121/1.4796110 – volume-title: The Psychology and Biology of Emotion year: 1994 ident: e_1_2_9_35_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.specom.2011.10.005 – ident: e_1_2_9_28_1 doi: 10.1007/s10772-011-9125-1 – ident: e_1_2_9_21_1 – ident: e_1_2_9_29_1 doi: 10.1007/978-3-642-38550-6 – ident: e_1_2_9_49_1 doi: 10.1109/89.905995 – ident: e_1_2_9_23_1 doi: 10.1109/ICoBE.2012.6179008 – ident: e_1_2_9_2_1 doi: 10.1159/000091405 – ident: e_1_2_9_42_1 doi: 10.1007/978-94-009-2037-8_10 – ident: e_1_2_9_43_1 doi: 10.1162/jocn.1991.3.1.71 – ident: e_1_2_9_50_1 – ident: e_1_2_9_25_1 doi: 10.1007/978-1-4757-1904-8 – ident: e_1_2_9_45_1 |
SSID | ssj0001776 |
Score | 2.0987847 |
Snippet | Most of the parameters proposed for the characterization of the emotion in speech concentrate their attention on phonetic and prosodic features. Our approach... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 710 |
SubjectTerms | affective computing Algorithms Analysis Biometrics emotion elicitation emotional tremor Emotions Entropy Expert systems feature extraction and selection glottal signature Pattern recognition Searching Signatures speaker's biometry Speech stress in speech Stresses Studies Voice |
Title | Towards the search of detection in speech-relevant features for stress |
URI | https://api.istex.fr/ark:/67375/WNG-WM989RKM-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12109 https://www.proquest.com/docview/1751914987 https://www.proquest.com/docview/1800483811 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1468-0394 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Business Source Ultimate customDbUrl: eissn: 1468-0394 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: AKVCP dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1468-0394 dateEnd: 20241003 omitProxy: false ssIdentifier: ssj0001776 issn: 0266-4720 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0266-4720 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-0394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001776 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS91AEB1EX_pSP9rS1A9WWgotRDbJJrsBX7R6vbRcoVbx9qEs2c0uFSVXTC5on_oT_I3-ks5ukquWUmjfApmEZGdP9kx25gzAG01NTLOyCAtqk5BpTUNlOQ8jY3JKFWUqd8XJo8NseMI-jtPxHGz3tTCtPsTsh5tDhv9eO4AXqn4AcnNd3zhtBF-9FyWp36M9uteOirjvLIcxRhYyHtNOm9Sl8dxf-mg1WnADe_2Iaj4krH7FGSzCt_5Z20ST861po7b0j99kHP_3ZZbgaUdFyU47d5ZhzlQrsNi3eSAd6p_B8Nin1tYEuSJpkUEmlpSm8WlcFTmrSH1pjP5-9_PW9WBBct4Qa7xkaE2QFZO2IuU5nAz2jz8Mw64BQ6gZrlNhVFqMJkolLPrNZCJFNigQsVZpDPPiUnGtE1bQRFPHsyLGE56L2GruZL6ETl7AfDWpzEsguTUYeEYs5lnBmNKK8gzvmFint6PzLIB3vSOk7tTJXZOMC9lHKW6IpB-iAF7PbC9bTY4_Wr31_pyZFFfnLouNp_L08ECejnKRH30ayc8BrPUOlx2Aa4msyinf5YIHsDk7jdBz-ylFZSZTtBFekF9EUQDvvXf_8jhyf_zlqz969S_Gq_AEKVraJtCswXxzNTXrSIMatQELO7t7u4MNP-1_Ad0PBSA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9RAEB6kfdAXq1UxWnVFERRSNsledvMo2va0vQPrlZ5PS3azS6WSK00Oqk_9Cf2N_hJnNrlrKyLoWyCTkOzky36zO_MNwEvLXcrzqoxL7rNYWMtj46WME-cKzg0XpqDi5NE4Hx6Ij9PBtM_NoVqYTh9iueBGyAj_awI4LUhfQbk7a76TOAKV763SBh3h8v3-pXpUIkNvOYwy8ljIlPfqpJTIc3nttflolYb27BrZvEpZw5yzvdY1Vm2CVCGlmhxvzluzaX_8JuT4369zB273bJS97T6fu3DD1euwtuj0wHrg34PhJGTXNgzpIuvAwWaeVa4NmVw1-1qz5sQ5e_Tz_ILasCA_b5l3QTW0YUiMWVeUch8Otrcm74Zx34MhtgKnqjipPAYUlVEeXedyNUBCqBC03liM9NLKSGszUfLMcqJaiZCZLFTqrSSlL2WzB7BSz2r3EFjhHcaeiUhlXgphrOEyxztmniR3bJFH8HrhCW17gXLqk_FNLwIVGiIdhiiCF0vbk06W449Wr4JDlybl6TElssmBPhzv6MNRoYr93ZH-FMHGwuO6x3CjkViR-F2hZATPl6cRfbSlUtZuNkcbFTT5VZJE8Ca49y-Po7emn7-Eo0f_YvwMbg4noz2992G8-xhuIWMbdPk0G7DSns7dE2RFrXkavv1f6n4Hyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9RAEB5KC-KLtVYxWtuVloJCyibZy26gL2J7ntY7tLb0fJAlu9lFqeSOJge1T_6E_sb-Emc3ybUVEfQtkEnY7OyX_SaZ-QZgS1MT07TIw5zaJGRa01BZzsPImIxSRZnKXHHycJQOjtm7cW-8ALtdLUyjDzH_4OaQ4d_XDuDTwt4AuTmvfjhtBFe9t8RSDK8cJTq8Fo-KuG8th0FGGjIe01ac1OXxXF97aztacjN7fotr3mSsfsvpL8OXbrBNpsnpzqxWO_riNx3H_32a-3Cv5aLkVbN4VmDBlA9guevzQFrYr8LgyOfWVgTJImmgQSaWFKb2eVwl-VaSamqM_nr189I1YUF2XhNrvGZoRZAWk6Yk5SEc9_ePXg_CtgNDqBluVGFUWAwnCiUsOs6kood0UCBkrdIY58WF4lonLKeJpo5oRYwnPBOx1dzpfAmdPILFclKax0AyazDyjFjM05wxpRXlKd4xsU5wR2dpAC86R0jdypO7LhnfZRemuCmSfooC2JzbThtRjj9abXt_zk3ys1OXxsZ78mT0Rp4MM5EdHgzlxwDWOofLFsGVRFrlpO8ywQN4Pj-N2HM_VPLSTGZoI7wiv4iiAF567_5lOHJ__OmzP3ryL8YbcOfDXl--fzs6eAp3ka71mmSaNVisz2bmGVKiWq37lf8L0m4GeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+the+search+of+detection+in+speech-relevant+features+for+stress&rft.jtitle=Expert+systems&rft.au=Rodellar-Biarge%2C+Victoria&rft.au=Palacios-Alonso%2C+Daniel&rft.au=Nieto-Lluis%2C+Victor&rft.au=Gomez-Vilda%2C+Pedro&rft.date=2015-12-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=32&rft.issue=6&rft.spage=710&rft.epage=718&rft_id=info:doi/10.1111%2Fexsy.12109&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon |