Review of distributed control and optimization in energy internet: From traditional methods to artificial intelligence‐based methods
Energy internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and has aroused the concern of many scholars. In the research of EI control systems, the access of distributed energy causes the power system to exhibit complex nonlinearity, high uncertai...
Saved in:
| Published in | IET cyber-physical systems Vol. 6; no. 2; pp. 63 - 79 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Southampton
John Wiley & Sons, Inc
01.06.2021
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2398-3396 2398-3396 |
| DOI | 10.1049/cps2.12007 |
Cover
| Abstract | Energy internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and has aroused the concern of many scholars. In the research of EI control systems, the access of distributed energy causes the power system to exhibit complex nonlinearity, high uncertainty and strong coupling. Traditional control and optimization methods often have limited effectiveness in solving these problems. With the widespread application of distributed control technology and the maturity of artificial intelligence (AI) technology, the combination of distributed control and AI has become an effective method to break through current research bottlenecks. This study reviews the research progress of EI distributed control technologies based on AI in recent years. It can be found that AI‐based distributed control methods have many advantages in maintaining EI stability and achieving optimal energy management. This combination of AI and distributed control makes EI control systems more intelligent, safe and efficient, which will be an important direction for future research. The purpose of this study is to provide a reference as well as useful research ideas for the study of EI control systems. |
|---|---|
| AbstractList | Abstract Energy internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and has aroused the concern of many scholars. In the research of EI control systems, the access of distributed energy causes the power system to exhibit complex nonlinearity, high uncertainty and strong coupling. Traditional control and optimization methods often have limited effectiveness in solving these problems. With the widespread application of distributed control technology and the maturity of artificial intelligence (AI) technology, the combination of distributed control and AI has become an effective method to break through current research bottlenecks. This study reviews the research progress of EI distributed control technologies based on AI in recent years. It can be found that AI‐based distributed control methods have many advantages in maintaining EI stability and achieving optimal energy management. This combination of AI and distributed control makes EI control systems more intelligent, safe and efficient, which will be an important direction for future research. The purpose of this study is to provide a reference as well as useful research ideas for the study of EI control systems. Energy internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and has aroused the concern of many scholars. In the research of EI control systems, the access of distributed energy causes the power system to exhibit complex nonlinearity, high uncertainty and strong coupling. Traditional control and optimization methods often have limited effectiveness in solving these problems. With the widespread application of distributed control technology and the maturity of artificial intelligence (AI) technology, the combination of distributed control and AI has become an effective method to break through current research bottlenecks. This study reviews the research progress of EI distributed control technologies based on AI in recent years. It can be found that AI‐based distributed control methods have many advantages in maintaining EI stability and achieving optimal energy management. This combination of AI and distributed control makes EI control systems more intelligent, safe and efficient, which will be an important direction for future research. The purpose of this study is to provide a reference as well as useful research ideas for the study of EI control systems. |
| Author | Wang, Tonghe Qin, Yuchao Li, Liuying Cao, Junwei Hua, Haochen Wei, Zhiqian |
| Author_xml | – sequence: 1 givenname: Haochen orcidid: 0000-0002-3341-2947 surname: Hua fullname: Hua, Haochen organization: Hohai University – sequence: 2 givenname: Zhiqian surname: Wei fullname: Wei, Zhiqian organization: Shandong University – sequence: 3 givenname: Yuchao surname: Qin fullname: Qin, Yuchao organization: University of Cambridge – sequence: 4 givenname: Tonghe orcidid: 0000-0002-8430-9755 surname: Wang fullname: Wang, Tonghe organization: Tsinghua University – sequence: 5 givenname: Liuying orcidid: 0000-0001-7826-1276 surname: Li fullname: Li, Liuying organization: University of Warwick – sequence: 6 givenname: Junwei orcidid: 0000-0003-3533-3756 surname: Cao fullname: Cao, Junwei email: jcao@tsinghua.edu.cn organization: Tsinghua University |
| BookMark | eNp9kU2LFDEQhhtZwXXdi78g4E2Z3Xx1p9ubDK4uLKz4cQ75qB4zZJIxyTiMJ0-e_Y3-EtPTi4jInqp4eeqtot7HzUmIAZrmKcEXBPPh0mwzvSAUY_GgOaVs6BeMDd3JX_2j5jznNcaY9oK3DJ82P97DVwd7FEdkXS7J6V0Bi0wMJUWPVLAobovbuG-quBiQCwgCpNWhdgVSgPISXaW4QSUp6yZEebSB8jnajEpEKhU3OuOqOg1471YQDPz6_lOrXBfdoU-ah6PyGc7v6lnz6er1x-Xbxc3tm-vlq5uF4ZyKBWspUYRZMNh0quOa6VZoIaxhjEHXt73ou7bjA7MdH7WyQChUgWpNGIGBnTXXs6-Nai23yW1UOsionDwKMa3kdLHxII0WwATXdYni0HeDFWpkwFsOA2Wmr14vZq9d2KrDXnn_x5BgOSUip0TkMZFKP5vpbYpfdpCLXMddqt_KkuFqSFgnSKXwTJkUc04wSuPK8fP1v87_3_j5PyP3XkFmeO88HO4h5fLdBzrP_AY1wr1Q |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3440885 crossref_primary_10_3390_vaccines11071154 crossref_primary_10_4018_IJWLTT_334111 crossref_primary_10_1002_nem_2269 crossref_primary_10_1016_j_epsr_2024_110562 crossref_primary_10_1007_s12667_024_00671_x crossref_primary_10_1016_j_apenergy_2024_124488 crossref_primary_10_3390_su16083200 crossref_primary_10_1049_cps2_12042 crossref_primary_10_1016_j_adhoc_2021_102757 crossref_primary_10_1109_ACCESS_2025_3533702 crossref_primary_10_3389_fenrg_2022_921411 crossref_primary_10_3390_en14216862 crossref_primary_10_1016_j_segan_2023_101193 crossref_primary_10_1016_j_engappai_2023_107009 crossref_primary_10_1016_j_rser_2024_115269 crossref_primary_10_1016_j_esr_2024_101398 crossref_primary_10_3390_electronics14061068 crossref_primary_10_1016_j_rser_2025_115540 crossref_primary_10_1016_j_aej_2024_12_033 crossref_primary_10_3390_a14060174 crossref_primary_10_1016_j_apenergy_2024_124256 crossref_primary_10_3390_en15093067 crossref_primary_10_1016_j_ijepes_2024_110334 crossref_primary_10_3390_en15093288 crossref_primary_10_3390_pr11020532 crossref_primary_10_1155_2022_8409495 crossref_primary_10_3389_fenrg_2022_1056077 crossref_primary_10_1145_3555802 crossref_primary_10_1016_j_apenergy_2021_117056 crossref_primary_10_1016_j_egyr_2024_02_047 |
| Cites_doi | 10.1109/JPROC.2011.2116752 10.1109/TII.2018.2867373 10.1109/TSG.2016.2593030 10.1109/TSG.2014.2319303 10.1016/j.cie.2019.06.003 10.1109/TSG.2013.2269481 10.1049/iet-cps.2017.0079 10.1109/TASE.2017.2664061 10.1109/TPWRS.2016.2625101 10.1109/TSG.2017.2690681 10.1109/TCST.2018.2842208 10.1016/j.ijepes.2019.05.057 10.1109/TSG.2018.2879572 10.1109/TSG.2012.2213348 10.1109/JIOT.2019.2903312 10.1109/TIE.2016.2617832 10.1109/TAC.2010.2041686 10.1109/TSG.2014.2327478 10.1109/ACCESS.2018.2853263 10.1109/TEC.2010.2082090 10.17775/CSEEJPES.2016.00037 10.1109/TSG.2020.2976771 10.1109/TSG.2012.2230197 10.1109/JSAC.2012.120705 10.1109/TAC.2014.2364096 10.1109/TSG.2016.2628785 10.1109/TSG.2016.2569604 10.1109/TSG.2013.2248399 10.1109/TNNLS.2015.2480709 10.1016/j.rser.2020.109899 10.1109/TETCI.2017.2716377 10.1109/TSG.2016.2602541 10.1016/B978-0-08-102207-8.00001-1 10.1109/TSG.2017.2701821 10.1016/j.ijepes.2019.03.059 10.1109/TSG.2019.2933191 10.1109/TPWRS.2014.2319315 10.1109/ACCESS.2019.2933020 10.1109/TSG.2018.2861221 10.3390/en12091622 10.1109/TSG.2014.2318901 10.1109/TNNLS.2013.2292704 10.1016/j.apenergy.2019.01.145 10.1109/SURV.2011.101911.00087 10.1109/TIE.2012.2188873 10.1016/j.ijepes.2018.01.016 10.1109/ISGT-Asia.2016.7796454 10.1109/ACCESS.2019.2906402 10.1109/TIE.2015.2405494 10.1109/ACCESS.2019.2938842 10.1109/TSG.2017.2756041 10.1109/TII.2017.2785317 10.1109/TPWRS.2018.2812768 10.1109/TPWRS.2018.2823641 10.1049/iet-cps.2018.5022 10.1109/ACCESS.2019.2915509 10.1109/TSG.2010.2099675 10.1109/TSG.2015.2455512 10.1109/TSG.2013.2295514 10.1109/TSG.2017.2679238 10.1109/COMST.2020.3023963 10.1109/TSG.2018.2859821 10.1109/TPWRS.2009.2016362 10.1109/TSG.2015.2432571 10.1109/TSTE.2013.2290472 10.1109/TSG.2012.2196806 10.3390/en12081556 10.1109/EI2.2018.8582437 10.1109/TSG.2017.2720471 10.1109/TSG.2014.2382684 10.1109/TIE.2014.2361485 10.1016/j.energy.2017.05.114 10.1109/TII.2014.2316639 10.1109/TSG.2015.2491923 10.1109/TSG.2015.2497691 10.1109/TSG.2018.2834219 10.1109/TPEL.2014.2314721 10.1109/TSG.2015.2421900 10.1109/TSG.2015.2396993 10.1109/TIE.2014.2356171 10.1016/j.egypro.2018.09.170 10.1109/EI2.2017.8245533 10.1109/ACCESS.2018.2875405 10.1109/TSG.2014.2346511 10.1109/ACCESS.2020.2990123 10.1016/j.rser.2017.05.134 10.1109/TSG.2017.2720761 10.1109/TII.2018.2882598 10.1109/ACCESS.2017.2658952 10.1109/TSG.2017.2686801 10.1016/j.apenergy.2018.12.061 10.1109/ISGT.2012.6175778 10.1016/j.ijepes.2014.01.012 10.1109/JSAC.2012.120711 10.1109/TGCN.2017.2671407 10.1109/TNNLS.2018.2801880 10.1109/TPWRS.2015.2389753 10.1109/TASE.2016.2517155 10.1109/JPROC.2017.2756596 10.1109/TSMCC.2012.2218596 10.1109/ISGTEurope.2014.7028914 10.1007/978-3-030-45453-1_7 10.1109/TSG.2018.2878570 10.3390/en11061593 10.1109/JSYST.2016.2639820 10.1109/TSP.2019.2926023 10.1109/TSG.2015.2495145 10.1109/TPWRS.2015.2453424 10.1109/TSG.2017.2714982 10.1109/TSG.2012.2209130 10.1109/TIE.2017.2668983 10.1109/ACCESS.2019.2921238 10.1049/iet-cps.2018.5019 10.1109/TSG.2017.2753802 10.1016/j.apenergy.2020.115733 10.1109/TSMC.2019.2898551 10.1109/TSG.2019.2930299 10.1016/j.jmaa.2018.03.002 10.1109/TCST.2016.2517574 10.1109/SURV.2014.032014.00094 10.1109/TSG.2017.2724062 10.1109/TSG.2016.2631569 10.1109/TSG.2017.2711599 10.1109/TSG.2012.2205952 10.1016/j.jobe.2020.101629 10.1109/TNNLS.2016.2514358 10.1016/j.ijepes.2015.11.057 10.1016/j.apenergy.2018.03.017 10.1109/TSG.2017.2771146 10.1109/TAC.2015.2416927 10.1109/TPWRS.2014.2357079 10.1109/TAC.2015.2471695 10.1016/j.scs.2018.11.009 10.1109/TPWRS.2016.2605012 10.1109/TSG.2017.2723023 10.1109/TPWRS.2012.2188912 10.1109/JPROC.2017.2702627 10.1109/TNNLS.2014.2376696 10.1016/j.ijepes.2019.04.011 10.1109/TSG.2016.2614388 10.1109/TPWRD.2013.2242495 10.1109/TSTE.2017.2765483 10.1145/2208828.2208847 10.1109/TSG.2014.2337838 10.1109/IYCE.2017.8003734 10.1109/ACCESS.2018.2835527 10.1016/j.asoc.2017.08.057 10.1109/TII.2017.2714199 10.1109/TII.2015.2492861 10.1109/TPWRS.2017.2780986 10.1109/TSG.2014.2386305 10.1109/TIE.2011.2112314 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1049/cps2.12007 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection (LUT) ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2398-3396 |
| EndPage | 79 |
| ExternalDocumentID | oai_doaj_org_article_cb7e374b4b3a4e869d7af3e454e923c8 10.1049/cps2.12007 10_1049_cps2_12007 CPS212007 |
| Genre | article |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities of China funderid: B200201071 – fundername: BNRist Program funderid: BNR2021TD01009 |
| GroupedDBID | 0R~ 1OC 24P 6IK AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADBBV AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IFIPE IPLJI ITC JAVBF K7- M7S M~E O9- OCL OK1 PIMPY PTHSS RIE RUI AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IGS PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4427-3521a13dec0c6a64b3b57b77dc333e685878656493d64fbade12e6562bb131e93 |
| IEDL.DBID | BENPR |
| ISSN | 2398-3396 |
| IngestDate | Fri Oct 03 12:50:26 EDT 2025 Sun Oct 26 04:02:36 EDT 2025 Wed Aug 13 11:19:20 EDT 2025 Wed Oct 29 21:06:35 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Wed Jan 22 16:30:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4427-3521a13dec0c6a64b3b57b77dc333e685878656493d64fbade12e6562bb131e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8430-9755 0000-0001-7826-1276 0000-0002-3341-2947 0000-0003-3533-3756 |
| OpenAccessLink | https://www.proquest.com/docview/3092313671?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3092313671 |
| PQPubID | 6853487 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cb7e374b4b3a4e869d7af3e454e923c8 unpaywall_primary_10_1049_cps2_12007 proquest_journals_3092313671 crossref_citationtrail_10_1049_cps2_12007 crossref_primary_10_1049_cps2_12007 wiley_primary_10_1049_cps2_12007_CPS212007 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Southampton |
| PublicationPlace_xml | – name: Southampton |
| PublicationTitle | IET cyber-physical systems |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2017; 5 2015; 35 2010; 55 2017; 8 2017; 1 2013; 4 2013; 28 2019; 10 2019; 12 2015; 30 2019; 15 2016; 31 2011; 99 2014; 25 2020; 11 2011; 58 2012; 14 2017; 9 2016; 78 2020; 8 2018; 6 2020; 6 2018; 9 2014; 5 2018; 3 2020; 130 2017; 32 2019; 67 2017; 79 2014; 16 2019; 236 2019; 27 2013; 60 2019; 113 2014; 58 2018; 219 2011; 26 2012; 27 2019; 239 2018; 33 2019; 111 2014; 10 2019; 7 2018; 463 2017; 64 2018; 29 2009; 24 2019; 4 2015; 6 2011; 2 2019; 6 2012 2011 2018; 62 2020; 32 2017; 133 2016; 12 2012; 30 2018; 152 2015; 26 2016; 7 2012; 3 2016; 2 2015; 60 2017; 14 2019; 44 2015; 62 2020 2017; 13 2014; 38 2019 2019; 49 2018 2016; 63 2019; 135 2017 2016; 61 2016 2014 2020; 22 2020; 278 2018; 12 2018; 11 2018; 99 2016; 27 2017; 105 2016; 24 2012; 42 2018; 14 e_1_2_7_108_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 Sun Q. (e_1_2_7_120_1) 2018; 33 e_1_2_7_26_1 e_1_2_7_142_1 e_1_2_7_146_1 Rifkin J. (e_1_2_7_8_1) 2011 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_124_1 e_1_2_7_101_1 Su Y. (e_1_2_7_135_1) 2020 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 Wu X. (e_1_2_7_11_1) 2017 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 Hua H. (e_1_2_7_18_1) 2020 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_29_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 Chettibi N. (e_1_2_7_51_1) 2018; 9 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 Cao J (e_1_2_7_10_1) 2018 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_28_1 Cao J. (e_1_2_7_23_1) 2020; 6 e_1_2_7_144_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 Dong Z.Y. (e_1_2_7_49_1) 2014; 38 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_130_1 e_1_2_7_38_1 e_1_2_7_153_1 e_1_2_7_134_1 Chen X. (e_1_2_7_3_1) 2020 e_1_2_7_157_1 Tian S.M. (e_1_2_7_50_1) 2015; 35 e_1_2_7_138_1 |
| References_xml | – year: 2011 – volume: 99 start-page: 1139 issue: 6 year: 2011 end-page: 1144 – volume: 13 start-page: 3081 issue: 6 year: 2017 end-page: 3097 article-title: Distributed optimal energy management for energy internet publication-title: IEEE Trans. Industr. Inform. – volume: 12 start-page: 1556 issue: 8 year: 2019 article-title: Reactive power optimization for transient voltage stability in energy internet via deep reinforcement learning approach publication-title: Energies – volume: 24 start-page: 889 issue: 2 year: 2009 end-page: 899 article-title: Reactive power and voltage control in distribution systems with limited switching operations publication-title: IEEE Trans. Power Syst. – volume: 24 start-page: 2048 issue: 6 year: 2016 end-page: 2058 article-title: Distributed extremum seeking for constrained networked optimization and its application to energy consumption control in smart grid publication-title: IEEE Trans. Control Syst. Technol. – volume: 30 start-page: 1669 issue: 4 year: 2015 end-page: 1679 article-title: Multi‐agent correlated equilibrium Q(λ) learning for coordinated smart generation control of interconnected power grids publication-title: IEEE Trans. Power Syst. – volume: 236 start-page: 937 year: 2019 end-page: 949 article-title: Incentive‐based demand response for smart grid with reinforcement learning and deep neural network publication-title: Appl. Energy – volume: 3 start-page: 1935 issue: 4 year: 2012 end-page: 1944 article-title: Intelligent frequency control in an AC microgrid: online PSO‐based fuzzy tuning approach publication-title: IEEE Trans. Smart Grid – volume: 26 start-page: 2123 issue: 9 year: 2015 end-page: 2135 article-title: Incorporating wind power forecast uncertainties into stochastic unit commitment using neural network‐based prediction intervals publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 8 start-page: 1469 issue: 3 year: 2017 end-page: 1478 article-title: Distributed computing architecture for optimal control of distribution feeders with smart loads publication-title: IEEE Trans. Smart Grid – volume: 105 start-page: 2191 issue: 11 year: 2017 end-page: 2219 article-title: Energy storage and power electronics technologies: a strong combination to empower the transformation to the smart grid publication-title: Proc. IEEE – volume: 5 start-page: 2901 issue: 6 year: 2014 end-page: 2909 article-title: Distributed control techniques in microgrids publication-title: IEEE Trans. Smart Grid – volume: 4 start-page: 2174 issue: 4 year: 2013 end-page: 2181 article-title: Coordinated multi‐microgrids optimal control algorithm for smart distribution management system publication-title: IEEE Trans. Smart Grid – volume: 60 start-page: 1688 issue: 4 year: 2013 end-page: 1699 article-title: Multiobjective intelligent energy management for a microgrid publication-title: IEEE Trans. Ind. Electron. – volume: 33 start-page: 938 issue: 5 year: 2018 end-page: 949 article-title: Smart energy applications and prospects of artificial intelligence technology in power system publication-title: Control. Decis. – volume: 111 start-page: 286 year: 2019 end-page: 299 article-title: An integrated critic‐actor neural network for reinforcement learning with application of DERs control in grid frequency regulation publication-title: Int. J. Electr. Power Energy Syst. – start-page: 1 year: 2018 end-page: 4 – volume: 5 start-page: 2314 issue: 5 year: 2014 end-page: 2325 article-title: Primary voltage control in active distribution networks via broadcast signals: the case of distributed storage publication-title: IEEE Trans. Smart Grid – volume: 30 start-page: 1061 issue: 6 year: 2012 end-page: 1074 article-title: Decentralized economic dispatch in microgrids via heterogeneous wireless networks publication-title: IEEE J. Sel. Area. Commun. – volume: 10 start-page: 841 issue: 1 year: 2019 end-page: 851 article-title: Short‐term residential load forecasting based on LSTM recurrent neural network publication-title: IEEE Trans. Smart Grid – volume: 55 start-page: 922 issue: 4 year: 2010 end-page: 938 article-title: Constrained consensus and optimization in multi‐agent networks publication-title: IEEE Trans. Automat. Contr. – volume: 105 start-page: 2262 issue: 11 year: 2017 end-page: 2273 article-title: Artificial intelligence techniques in smart grid and renewable energy systems—some example applications publication-title: Proc. IEEE – volume: 4 start-page: 108 issue: 2 year: 2019 end-page: 119 article-title: Flocking‐based adaptive granular control strategy for autonomous microgrids in emergency situations publication-title: IET Cyber‐Phys. Syst. – volume: 79 start-page: 1099 year: 2017 end-page: 1107 article-title: Big data issues in smart grid ‐ a review publication-title: Renew. Sust. Energ. Rev. – volume: 5 start-page: 2421 issue: 5 year: 2014 end-page: 2431 article-title: Distributed multiple agent system based online optimal reactive power control for smart grids publication-title: IEEE Trans. Smart Grid – volume: 9 start-page: 1081 issue: 3 year: 2018 end-page: 1089 article-title: A memory‐based genetic algorithm for optimization of power generation in a microgrid publication-title: IEEE Trans. Sustain. Energy – volume: 78 start-page: 1 year: 2016 end-page: 12 article-title: Hierarchical correlated Q‐learning for multi‐layer optimal generation command dispatch publication-title: Int. J. Electr. Power Energy Syst. – start-page: 1 year: 2020 article-title: Adaptive PV frequency control strategy based on real‐time inertia estimation publication-title: IEEE Trans. Smart Grid (Early Access) – volume: 27 start-page: 1761 issue: 4 year: 2012 end-page: 1768 article-title: Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 5291 issue: 5 year: 2018 end-page: 5300 article-title: Optimal demand response for distribution feeders with existing smart loads publication-title: IEEE Trans. Smart Grid – volume: 58 start-page: 130 year: 2014 end-page: 139 article-title: Multi‐agent‐system‐based decentralized coordinated control for large power systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 5 start-page: 372 issue: 2 year: 2014 end-page: 378 article-title: Renewable electricity futures for the United States publication-title: IEEE Trans. Sustain. Energy – volume: 11 start-page: 3068 issue: 4 year: 2020 end-page: 3082 article-title: Model‐free real‐time autonomous control for a residential multi‐energy system using deep reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 64 start-page: 5151 issue: 6 year: 2017 end-page: 5160 article-title: Distributed multi‐agent system‐based load frequency control for multi‐area power system in smart grid publication-title: IEEE Trans. Ind. Electron. – volume: 12 start-page: 844 issue: 2 year: 2016 end-page: 852 article-title: Instantaneous electromechanical dynamics monitoring in smart transmission grid publication-title: IEEE Trans. Industr. Inform. – start-page: 611 year: 2016 end-page: 616 – volume: 62 start-page: 2584 issue: 4 year: 2015 end-page: 2592 article-title: Distributed optimal resource management based on the consensus algorithm in a microgrid publication-title: IEEE Trans. Ind. Electron. – volume: 3 start-page: 24 issue: 1 year: 2018 end-page: 33 article-title: Optimising operation management for multi‐micro‐grids control publication-title: IET Cyber‐Phys. Syst. – volume: 9 start-page: 6951 issue: 6 year: 2018 end-page: 6960 article-title: Intelligent expert system for power quality improvement under distorted and unbalanced conditions in three‐phase AC microgrids publication-title: IEEE Trans. Smart Grid – volume: 8 start-page: 2941 issue: 6 year: 2017 end-page: 2962 article-title: A survey of distributed optimization and control algorithms for electric power systems publication-title: IEEE Trans. Smart Grid – start-page: 3 year: 2019 end-page: 19 – volume: 16 start-page: 1460 issue: 3 year: 2014 end-page: 1495 article-title: A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings publication-title: IEEE Commun. Surv. Tutor. – volume: 4 start-page: 1476 issue: 3 year: 2013 end-page: 1489 article-title: Distributed real‐time energy scheduling in smart grid: stochastic model and fast optimization publication-title: IEEE Trans. Smart Grid – volume: 27 start-page: 1950 issue: 5 year: 2019 end-page: 1961 article-title: Distributed energy management for smart grids with an event‐triggered communication scheme publication-title: IEEE Trans. Contr. Syst. Technol. – volume: 3 start-page: 2262 issue: 4 year: 2012 end-page: 2272 article-title: Observe, learn, and adapt (OLA)‐an algorithm for energy management in smart homes using wireless sensors and artificial intelligence publication-title: IEEE Trans. Smart Grid – volume: 10 start-page: 4435 issue: 4 year: 2019 end-page: 4445 article-title: Dynamic energy management of a microgrid using approximate dynamic programming and deep recurrent neural network learning publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 2312 issue: 5 year: 2015 end-page: 2324 article-title: Optimal demand response using device‐based reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 5 start-page: 2836 issue: 6 year: 2014 end-page: 2845 article-title: Incremental welfare consensus algorithm for cooperative distributed generation/demand response in smart grid publication-title: IEEE Trans. Smart Grid – volume: 27 start-page: 1643 issue: 8 year: 2016 end-page: 1656 article-title: Dynamic energy management system for a smart microgrid publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2012 end-page: 6 – volume: 61 start-page: 1492 issue: 6 year: 2016 end-page: 1507 article-title: Robust distributed average consensus via exchange of running sums publication-title: IEEE Trans. Automat. Contr. – volume: 6 start-page: 39564 year: 2018 end-page: 39573 article-title: Multi‐agent bargaining learning for distributed energy hub economic dispatch publication-title: IEEE Access – volume: 15 start-page: 4624 issue: 8 year: 2019 end-page: 4634 article-title: An ensemble framework for day‐ahead forecast of PV output power in smart grids publication-title: IEEE Trans. Ind. Informat. – start-page: 1 year: 2012 end-page: 10 – volume: 12 start-page: 2403 issue: 3 year: 2018 end-page: 2416 article-title: A survey on energy internet: architecture, approach, and emerging technologies publication-title: IEEE Syst. J. – volume: 9 start-page: 6815 issue: 6 year: 2018 end-page: 6828 article-title: Event‐based distributed active power sharing control for interconnected AC and DC microgrids publication-title: IEEE Trans. Smart Grid – volume: 239 start-page: 598 year: 2019 end-page: 609 article-title: Optimal energy management strategies for energy internet via deep reinforcement learning approach publication-title: Appl. Energy – volume: 30 start-page: 35 issue: 1 year: 2015 end-page: 45 article-title: Online optimal generation control based on constrained distributed gradient algorithm publication-title: IEEE Trans. Power Syst – volume: 135 start-page: 359 year: 2019 end-page: 367 article-title: Distributed genetic real‐time pricing for multiseller‐multibuyer smart grid based on bilevel programming considering random fluctuation of electricity consumption publication-title: Comput. Ind. Eng. – volume: 5 start-page: 5731 year: 2017 end-page: 5746 article-title: Game‐theoretical energy management for energy internet with big data‐based renewable power forecasting publication-title: IEEE Access – volume: 33 start-page: 4706 issue: 5 year: 2018 end-page: 4718 article-title: Dynamic event detection using a distributed feature selection based machine learning approach in a self‐healing microgrid publication-title: IEEE Trans. Power Syst. – volume: 11 start-page: 598 issue: 6 year: 2018 end-page: 609 article-title: A class of control strategies for energy Internet considering system robustness and operation cost optimization publication-title: Energies – volume: 5 start-page: 2106 issue: 4 year: 2014 end-page: 2114 article-title: Distributed MPC applied to a network of households with micro‐CHP and heat storage publication-title: IEEE Trans. Smart Grid – volume: 8 start-page: 1195 issue: 3 year: 2017 end-page: 1210 article-title: A novel energy function‐based stability evaluation and nonlinear control approach for energy internet publication-title: IEEE Trans. Smart Grid. – volume: 9 start-page: 1911 issue: 3 year: 2018 end-page: 1919 article-title: A decentralized technique for autonomous service restoration in active radial distribution networks publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 2997 issue: 6 year: 2015 end-page: 3005 article-title: Genetic optimal regression of relevance vector machines for electricity pricing signal forecasting in smart grids publication-title: IEEE Trans. Smart Grid – volume: 8 start-page: 3035 issue: 6 year: 2017 end-page: 3044 article-title: A distributed control approach for enhancing smart grid transient stability and resilience publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 63837 year: 2019 end-page: 63851 article-title: Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions publication-title: IEEE Access. – volume: 22 start-page: 2586 issue: 4 year: 2020 end-page: 2633 article-title: Distributed control and communication strategies in networked microgrids publication-title: IEEE Commun. Surv. Tutor. – volume: 9 start-page: 1667 issue: 3 year: 2018 end-page: 1679 article-title: Adaptive neural network‐based control of a hybrid AC/DC microgrid publication-title: IEEE Trans. Smart Grid – volume: 111 start-page: 58 year: 2019 end-page: 65 article-title: Distributed voltage regulation of smart distribution networks: consensus‐based information synchronization and distributed model predictive control scheme publication-title: Int J. Electr. Power Energy Syst. – volume: 9 start-page: 3406 issue: 4 year: 2018 end-page: 3418 article-title: A decentralized adaptive model‐based real‐time control for active distribution networks using battery energy storage systems publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2017 end-page: 6 – volume: 60 start-page: 601 issue: 3 year: 2015 end-page: 615 article-title: Distributed optimization over time‐varying directed graphs publication-title: IEEE Trans. Automat. Contr. – volume: 30 start-page: 3139 issue: 6 year: 2015 end-page: 3149 article-title: Self‐healing resilient distribution systems based on sectionalization into microgrids publication-title: IEEE Trans. Power Syst. – volume: 38 start-page: 1 issue: 15 year: 2014 end-page: 11 article-title: From smart grid to energy internet: basic concept and research framework publication-title: Autom. Electr. Power Syst. – volume: 42 start-page: 1742 issue: 6 year: 2012 end-page: 1751 article-title: Multiagent‐based reinforcement learning for optimal reactive power dispatch publication-title: IEEE Trans. Syst. Man Cybern. C – volume: 49 start-page: 1624 issue: 8 year: 2019 end-page: 1633 article-title: Distributed neurodynamic optimization for energy internet management publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 8 start-page: 1568 issue: 4 year: 2017 end-page: 1579 article-title: Robust real‐time distributed optimal control based energy management in a smart grid publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 980 issue: 2 year: 2015 end-page: 987 article-title: An artificial neural network approach for early fault detection of gearbox bearings publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 657 issue: 2 year: 2015 end-page: 666 article-title: Electric vehicle route optimization considering time‐of‐use electricity price by learnable partheno‐genetic algorithm publication-title: IEEE Trans. Smart Grid – volume: 99 start-page: 233 year: 2018 end-page: 245 article-title: Distributed real‐time demand response for energy management scheduling in smart grid publication-title: Int. J. Electr. Power Energy Syst. – volume: 1 start-page: 112 issue: 1 year: 2017 end-page: 120 article-title: An innovative approach for forecasting of energy requirements to improve a smart home management system based on BLE publication-title: IEEE Trans. Green Commun. Netw. – volume: 29 start-page: 2192 issue: 6 year: 2018 end-page: 2203 article-title: Distributed economic dispatch in microgrids based on cooperative reinforcement learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 193 year: 2020 end-page: 208 – volume: 15 start-page: 1788 issue: 3 year: 2019 end-page: 1797 article-title: Stochastic optimal control for energy internet: a bottom‐up energy management approach publication-title: IEEE Trans. Industr. Inform. – volume: 8 start-page: 2837 issue: 6 year: 2017 end-page: 2848 article-title: A distributed control framework for integrated photovoltaic‐battery‐based islanded microgrids publication-title: IEEE Trans. Smart Grid – volume: 63 start-page: 5109 issue: 8 year: 2016 end-page: 5119 article-title: Reinforcement learning in energy trading game among smart microgrids publication-title: IEEE Trans. Ind. Electron. – volume: 14 start-page: 944 issue: 4 year: 2012 end-page: 980 article-title: Smart grid ‐ the new and improved power grid: a survey publication-title: IEEE Commun. Surv. Tutor. – volume: 4 start-page: 771 issue: 2 year: 2013 end-page: 778 article-title: Multi‐agent based hierarchical hybrid control for smart microgrid publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 1650 issue: 3 year: 2016 end-page: 1659 article-title: Queuing‐based energy consumption management for heterogeneous residential demands in smart grid publication-title: IEEE Trans. Smart Grid – volume: 32 start-page: 2487 issue: 3 year: 2017 end-page: 2488 article-title: Turbine stability‐constrained available wind power of variable speed wind turbines for active power control publication-title: IEEE Trans. Power Syst. – volume: 25 start-page: 635 issue: 3 year: 2014 end-page: 641 article-title: Reinforcement learning output feedback NN control using deterministic learning technique publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2017 end-page: 7 – volume: 8 start-page: 3125 issue: 6 year: 2017 end-page: 3137 article-title: Distributed optimal dispatch of distributed energy resources over lossy communication networks publication-title: IEEE Trans. Smart Grid – volume: 30 start-page: 1137 issue: 6 year: 2012 end-page: 1148 article-title: Resilient networked control of distributed energy resources publication-title: IEEE J. Sel. Areas Commun. – volume: 9 start-page: 6408 issue: 6 year: 2017 end-page: 6418 article-title: Q‐Learning‐based damping control of wide‐area power systems under cyber uncertainties publication-title: IEEE Trans. Smart Grid – volume: 60 start-page: 3310 issue: 12 year: 2015 end-page: 3315 article-title: A second‐order multi‐agent network for bound‐constrained distributed optimization publication-title: IEEE Trans. Automat. Contr. – volume: 62 start-page: 768 year: 2018 end-page: 775 article-title: An advanced neural network based solution to enforce dispatch continuity in smart grids publication-title: Appl. Soft Comput. – volume: 10 start-page: 5174 issue: 5 year: 2019 end-page: 5185 article-title: Online cyber‐attack detection in smart grid: a reinforcement learning approach publication-title: IEEE Trans. Smart Grid – volume: 10 start-page: 941 issue: 1 year: 2019 end-page: 954 article-title: Consensus‐based distributed economic dispatch control method in power systems publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 62932 year: 2018 end-page: 62943 article-title: Peer‐to‐Peer energy trading with sustainable user participation: a game theoretic approach publication-title: IEEE Access – volume: 8 start-page: 77364 year: 2020 end-page: 77377 article-title: Artificial intelligence for smart renewable energy sector in Europe‐smart energy infrastructures for next generation smart cities publication-title: IEEE Access – volume: 64 start-page: 5095 issue: 6 year: 2017 end-page: 5106 article-title: A distributed algorithm for economic dispatch over time‐varying directed networks with delays publication-title: IEEE Trans. Ind. Electron. – volume: 6 start-page: 7659 issue: 5 year: 2019 end-page: 7669 article-title: Energy theft detection with energy privacy preservation in the smart grid publication-title: IEEE Internet Things J. – volume: 33 start-page: 4454 issue: 4 year: 2018 end-page: 4465 article-title: Adaptive voltage and frequency control of islanded multi‐microgrids publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 3698 issue: 4 year: 2019 end-page: 3708 article-title: On‐line building energy optimization using deep reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 32 start-page: 2767 issue: 4 year: 2017 end-page: 2778 article-title: Direct quantile regression for nonparametric probabilistic forecasting of wind power generation publication-title: IEEE Trans. Power Syst. – volume: 26 start-page: 235 issue: 1 year: 2011 end-page: 244 article-title: Flexible operation strategy for an isolated PV‐diesel microgrid without energy storage publication-title: IEEE Trans. Energy Convers. – volume: 2 start-page: 152 issue: 1 year: 2011 end-page: 161 article-title: Novel multiagent based load restoration algorithm for microgrids publication-title: IEEE Trans. Smart Grid – volume: 67 start-page: 4069 issue: 15 year: 2019 end-page: 4077 article-title: Real‐time power system state estimation and forecasting via deep unrolled neural networks publication-title: IEEE Trans. Signal Process. – volume: 9 start-page: 3247 issue: 4 year: 2018 end-page: 3258 article-title: A multi‐functional fully distributed control framework for AC microgrids publication-title: IEEE Trans. Smart Grid – volume: 113 start-page: 472 year: 2019 end-page: 480 article-title: Distribution system monitoring for smart power grids with distributed generation using artificial neural networks publication-title: Int. J. Electr. Power Energy Syst. – volume: 31 start-page: 1760 issue: 3 year: 2016 end-page: 1768 article-title: Online identification of power system dynamic signature using PMU measurements and data mining publication-title: IEEE Trans. Power Syst. – volume: 32 year: 2020 article-title: Solar power forecast for a residential smart microgrid based on numerical weather predictions using artificial intelligence methods publication-title: J. Build. Eng. – volume: 152 start-page: 1206 year: 2018 end-page: 1211 article-title: Energy internet—a new driving force for sustainable urban development publication-title: Energy Procedia – volume: 9 start-page: 5564 issue: 6 year: 2018 end-page: 5575 article-title: Optimal sizing, siting and operation of custom power devices with STATCOM and APLC functions for real‐time reactive power and network voltage quality control of smart grid publication-title: IEEE Trans. Smart Grid – volume: 3 start-page: 1997 issue: 4 year: 2012 end-page: 2006 article-title: Integration of high reliability distribution system in microgrid operation publication-title: IEEE Trans. Smart Grid – volume: 133 start-page: 348 year: 2017 end-page: 365 article-title: Deep transfer Q‐learning with virtual leader‐follower for supply‐demand Stackelberg game of smart grid publication-title: Energy – volume: 7 start-page: 2187 issue: 5 year: 2016 end-page: 2198 article-title: Dynamic pricing and energy consumption scheduling with reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 12 start-page: 1 issue: 9 year: 2019 end-page: 17 article-title: Robust control method for DC microgrids and energy routers to improve voltage stability in energy Internet publication-title: Energies – volume: 9 start-page: 6018 issue: 6 year: 2018 end-page: 6029 article-title: Hierarchical distributed robust optimization for demand response services publication-title: IEEE Trans. Smart Grid – volume: 130 year: 2020 article-title: Artificial intelligence and machine learning approaches to energy demand‐side response: a systematic review publication-title: Renew. Sust. Energ. Rev. – volume: 2 start-page: 65 issue: 3 year: 2016 end-page: 72 article-title: Hierarchically correlated equilibrium Q‐learning for multi‐area decentralized collaborative reactive power optimization publication-title: CSEE J. Power Energy Syst. – volume: 1 start-page: 305 issue: 4 year: 2017 end-page: 314 article-title: A collective neurodynamic system for distributed optimization with applications in model predictive control publication-title: IEEE Trans. Emerg. Topics Comput. Intell. – volume: 7 start-page: 65616 year: 2019 end-page: 65623 article-title: Distributed secondary voltage control of islanded microgrids based on RBF‐neural‐network sliding‐mode technique publication-title: IEEE Access – volume: 463 start-page: 93 issue: 1 year: 2018 end-page: 110 article-title: Voltage control for uncertain stochastic nonlinear system with application to energy internet: non‐fragile robust H ∞ approach publication-title: J. Math. Anal. Appl. – volume: 8 start-page: 2999 issue: 6 year: 2017 end-page: 3008 article-title: Distributed and decentralized voltage control of smart distribution networks: models, methods, and future research publication-title: IEEE Trans. Smart Grid – volume: 10 start-page: 5246 issue: 5 year: 2019 end-page: 5257 article-title: Model‐free real‐time EV charging scheduling based on deep reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 7 start-page: 125369 year: 2019 end-page: 125386 article-title: Hybrid ANN and artificial cooperative search algorithm to forecast short‐term electricity price in de‐regulated electricity market publication-title: IEEE Access – start-page: 344 year: 2018 end-page: 350 – start-page: 1 year: 2014 end-page: 5 – volume: 35 start-page: 3482 issue: 14 year: 2015 end-page: 3494 article-title: Technical forms and key technologies on energy internet publication-title: Proceedings of the CSEE – volume: 10 start-page: 4467 issue: 4 year: 2019 end-page: 4475 article-title: Stochastic optimal control scheme for battery lifetime extension in islanded microgrid via a novel modeling approach publication-title: IEEE Trans. Smart Grid – year: 2020 article-title: Energy sharing and frequency regulation in energy internet via mixed H /H control with Markovian jump publication-title: CSEE J. Power Energy Syst. (Early Access) – volume: 14 start-page: 1262 issue: 3 year: 2018 end-page: 1274 article-title: The internet of microgrids: a cloud‐based framework for wide area networked microgrids publication-title: IEEE Trans. Industr. Inform. – start-page: 1 year: 2017 end-page: 5 – volume: 7 start-page: 110835 year: 2019 end-page: 110845 article-title: Defending against data integrity attacks in smart grid: a deep reinforcement learning‐based approach publication-title: IEEE Access – volume: 62 start-page: 2509 issue: 4 year: 2015 end-page: 2518 article-title: A novel dual iterative Q‐learning method for optimal battery management in smart residential environments publication-title: IEEE Trans. Ind. Electron. – volume: 4 start-page: 101 issue: 2 year: 2019 end-page: 107 article-title: Review of the false data injection attack against the cyber‐physical power system publication-title: IET Cyber‐Phys. Syst. – volume: 58 start-page: 4495 issue: 10 year: 2011 end-page: 4503 article-title: Optimal operation of distribution feeders in smart grids publication-title: IEEE Trans. Ind. Electron. – volume: 6 start-page: 610 issue: 3 year: 2020 end-page: 618 article-title: Performance modeling for data monitoring services in smart grid: a network calculus based approach publication-title: CSEE J. Power Energy Syst. – volume: 14 start-page: 299 issue: 1 year: 2017 end-page: 313 article-title: Adaptive fault‐tolerant tracking control for mimo discrete‐time systems via reinforcement learning algorithm with less learning parameters publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 3 start-page: 1977 issue: 4 year: 2012 end-page: 1987 article-title: Centralized control for parallel operation of distributed generation inverters in microgrids publication-title: IEEE Trans. Smart Grid – volume: 27 start-page: 1672 issue: 8 year: 2016 end-page: 1685 article-title: Cooperative strategy for optimal management of smart grids by wavelet RNNs and cloud computing publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 5 start-page: 1905 issue: 4 year: 2014 end-page: 1919 article-title: Trends in microgrid control publication-title: IEEE Trans. Smart Grid – volume: 6 start-page: 2964 issue: 6 year: 2015 end-page: 2974 article-title: A micro‐grid distributed intelligent control and management system publication-title: IEEE Trans. Smart Grid – volume: 11 start-page: 1171 issue: 2 year: 2020 end-page: 1182 article-title: Adaptive power system emergency control using deep reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 28 start-page: 704 issue: 2 year: 2013 end-page: 713 article-title: Coordinated control and energy management of distributed generation inverters in a microgrid publication-title: IEEE Trans. Power Deliv. – volume: 9 start-page: 847 issue: 2 year: 2018 end-page: 856 article-title: Distributed energy management for networked microgrids using online ADMM with regret publication-title: IEEE Trans. Smart Grid – volume: 14 start-page: 494 issue: 2 year: 2017 end-page: 504 article-title: Distributed optimal control of smart electricity grids with congestion management publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 278 issue: 15 year: 2020 article-title: Artificial intelligence techniques for stability analysis and control in smart grids: methodologies, applications, challenges and future directions publication-title: Appl. Energy – volume: 11 start-page: 1066 issue: 2 year: 2020 end-page: 1076 article-title: Intelligent multi‐microgrid energy management based on deep neural network and model‐free reinforcement learning publication-title: IEEE Trans. Smart Grid. – volume: 30 start-page: 1605 issue: 3 year: 2015 end-page: 1617 article-title: Accurate reactive power sharing in an islanded microgrid using adaptive virtual impedances publication-title: IEEE Trans. Power Electron. – volume: 7 start-page: 74822 year: 2019 end-page: 74834 article-title: Multiple‐input deep convolutional neural network model for short‐term photovoltaic power forecasting publication-title: IEEE Access – volume: 9 start-page: 6780 issue: 6 year: 2018 end-page: 6792 article-title: A decentralized energy management framework for energy hubs in dynamic pricing markets publication-title: IEEE Trans. Smart Grid – start-page: 50 year: 2020 end-page: 55 – volume: 219 start-page: 53 year: 2018 end-page: 67 article-title: Fuzzy Q‐Learning for multi‐agent decentralized energy management in microgrids publication-title: Appl. Energy – volume: 44 start-page: 855 year: 2019 end-page: 870 article-title: Optimal energy management and control aspects of distributed microgrid using multi‐agent systems publication-title: Sustain. Cities Soc. – volume: 6 start-page: 27518 year: 2018 end-page: 27529 article-title: Feature selection‐based detection of covert cyber deception assaults in smart grid communications networks using machine learning publication-title: IEEE Access – volume: 33 start-page: 5749 issue: 5 year: 2018 end-page: 5758 article-title: Reinforcement learning approach for optimal distributed energy management in a microgrid publication-title: IEEE Trans. Power Syst. – volume: 10 start-page: 2385 issue: 4 year: 2014 end-page: 2393 article-title: A distributed algorithm for managing residential demand response in smart grids publication-title: IEEE Trans. Industr. Inform. – ident: e_1_2_7_19_1 doi: 10.1109/JPROC.2011.2116752 – ident: e_1_2_7_25_1 doi: 10.1109/TII.2018.2867373 – ident: e_1_2_7_61_1 doi: 10.1109/TSG.2016.2593030 – ident: e_1_2_7_60_1 doi: 10.1109/TSG.2014.2319303 – ident: e_1_2_7_113_1 doi: 10.1016/j.cie.2019.06.003 – ident: e_1_2_7_154_1 doi: 10.1109/TSG.2013.2269481 – ident: e_1_2_7_27_1 doi: 10.1049/iet-cps.2017.0079 – ident: e_1_2_7_78_1 doi: 10.1109/TASE.2017.2664061 – ident: e_1_2_7_87_1 doi: 10.1109/TPWRS.2016.2625101 – ident: e_1_2_7_132_1 doi: 10.1109/TSG.2017.2690681 – volume: 9 start-page: 1667 issue: 3 year: 2018 ident: e_1_2_7_51_1 article-title: Adaptive neural network‐based control of a hybrid AC/DC microgrid publication-title: IEEE Trans. Smart Grid – ident: e_1_2_7_70_1 doi: 10.1109/TCST.2018.2842208 – ident: e_1_2_7_95_1 doi: 10.1016/j.ijepes.2019.05.057 – ident: e_1_2_7_110_1 doi: 10.1109/TSG.2018.2879572 – ident: e_1_2_7_155_1 doi: 10.1109/TSG.2012.2213348 – ident: e_1_2_7_105_1 doi: 10.1109/JIOT.2019.2903312 – ident: e_1_2_7_74_1 doi: 10.1109/TIE.2016.2617832 – ident: e_1_2_7_58_1 doi: 10.1109/TAC.2010.2041686 – volume: 33 start-page: 938 issue: 5 year: 2018 ident: e_1_2_7_120_1 article-title: Smart energy applications and prospects of artificial intelligence technology in power system publication-title: Control. Decis. – ident: e_1_2_7_62_1 doi: 10.1109/TSG.2014.2327478 – ident: e_1_2_7_145_1 doi: 10.1109/ACCESS.2018.2853263 – volume: 35 start-page: 3482 issue: 14 year: 2015 ident: e_1_2_7_50_1 article-title: Technical forms and key technologies on energy internet publication-title: Proceedings of the CSEE – ident: e_1_2_7_133_1 doi: 10.1109/TEC.2010.2082090 – start-page: 50 volume-title: Proceedings of the 4th IEEE International Conference on Energy Internet year: 2020 ident: e_1_2_7_3_1 – ident: e_1_2_7_162_1 doi: 10.17775/CSEEJPES.2016.00037 – ident: e_1_2_7_83_1 doi: 10.1109/TSG.2020.2976771 – ident: e_1_2_7_57_1 doi: 10.1109/TSG.2012.2230197 – ident: e_1_2_7_153_1 doi: 10.1109/JSAC.2012.120705 – ident: e_1_2_7_75_1 doi: 10.1109/TAC.2014.2364096 – ident: e_1_2_7_63_1 doi: 10.1109/TSG.2016.2628785 – ident: e_1_2_7_141_1 doi: 10.1109/TSG.2016.2569604 – ident: e_1_2_7_68_1 doi: 10.1109/TSG.2013.2248399 – ident: e_1_2_7_102_1 doi: 10.1109/TNNLS.2015.2480709 – ident: e_1_2_7_121_1 doi: 10.1016/j.rser.2020.109899 – ident: e_1_2_7_151_1 doi: 10.1109/TETCI.2017.2716377 – volume-title: The Third Industrial Revolution: How Lateral Power is Transforming Energy, the Economy, and the World year: 2011 ident: e_1_2_7_8_1 – ident: e_1_2_7_119_1 doi: 10.1109/TSG.2016.2602541 – ident: e_1_2_7_48_1 doi: 10.1016/B978-0-08-102207-8.00001-1 – ident: e_1_2_7_73_1 doi: 10.1109/TSG.2017.2701821 – ident: e_1_2_7_29_1 doi: 10.1016/j.ijepes.2019.03.059 – ident: e_1_2_7_42_1 doi: 10.1109/TSG.2019.2933191 – ident: e_1_2_7_158_1 doi: 10.1109/TPWRS.2014.2319315 – ident: e_1_2_7_111_1 doi: 10.1109/ACCESS.2019.2933020 – ident: e_1_2_7_99_1 doi: 10.1109/TSG.2018.2861221 – ident: e_1_2_7_17_1 doi: 10.3390/en12091622 – ident: e_1_2_7_79_1 doi: 10.1109/TSG.2014.2318901 – ident: e_1_2_7_137_1 doi: 10.1109/TNNLS.2013.2292704 – ident: e_1_2_7_112_1 doi: 10.1016/j.apenergy.2019.01.145 – ident: e_1_2_7_47_1 doi: 10.1109/SURV.2011.101911.00087 – ident: e_1_2_7_54_1 doi: 10.1109/TIE.2012.2188873 – ident: e_1_2_7_71_1 doi: 10.1016/j.ijepes.2018.01.016 – ident: e_1_2_7_126_1 doi: 10.1109/ISGT-Asia.2016.7796454 – ident: e_1_2_7_2_1 doi: 10.1109/ACCESS.2019.2906402 – volume: 6 start-page: 610 issue: 3 year: 2020 ident: e_1_2_7_23_1 article-title: Performance modeling for data monitoring services in smart grid: a network calculus based approach publication-title: CSEE J. Power Energy Syst. – ident: e_1_2_7_107_1 doi: 10.1109/TIE.2015.2405494 – ident: e_1_2_7_85_1 doi: 10.1109/ACCESS.2019.2938842 – ident: e_1_2_7_144_1 doi: 10.1109/TSG.2017.2756041 – ident: e_1_2_7_46_1 doi: 10.1109/TII.2017.2785317 – ident: e_1_2_7_131_1 doi: 10.1109/TPWRS.2018.2812768 – ident: e_1_2_7_149_1 doi: 10.1109/TPWRS.2018.2823641 – year: 2020 ident: e_1_2_7_18_1 article-title: Energy sharing and frequency regulation in energy internet via mixed H2/H ∞ control with Markovian jump publication-title: CSEE J. Power Energy Syst. (Early Access) – ident: e_1_2_7_21_1 doi: 10.1049/iet-cps.2018.5022 – ident: e_1_2_7_127_1 doi: 10.1109/ACCESS.2019.2915509 – ident: e_1_2_7_56_1 doi: 10.1109/TSG.2010.2099675 – ident: e_1_2_7_142_1 doi: 10.1109/TSG.2015.2455512 – volume: 38 start-page: 1 issue: 15 year: 2014 ident: e_1_2_7_49_1 article-title: From smart grid to energy internet: basic concept and research framework publication-title: Autom. Electr. Power Syst. – ident: e_1_2_7_45_1 doi: 10.1109/TSG.2013.2295514 – ident: e_1_2_7_34_1 doi: 10.1109/TSG.2017.2679238 – ident: e_1_2_7_37_1 doi: 10.1109/COMST.2020.3023963 – ident: e_1_2_7_52_1 doi: 10.1109/TSG.2018.2859821 – ident: e_1_2_7_163_1 doi: 10.1109/TPWRS.2009.2016362 – ident: e_1_2_7_103_1 doi: 10.1109/TSG.2015.2432571 – ident: e_1_2_7_5_1 doi: 10.1109/TSTE.2013.2290472 – ident: e_1_2_7_44_1 doi: 10.1109/TSG.2012.2196806 – ident: e_1_2_7_125_1 doi: 10.3390/en12081556 – ident: e_1_2_7_4_1 doi: 10.1109/EI2.2018.8582437 – ident: e_1_2_7_35_1 doi: 10.1109/TSG.2017.2720471 – ident: e_1_2_7_115_1 doi: 10.1109/TSG.2014.2382684 – ident: e_1_2_7_156_1 doi: 10.1109/TIE.2014.2361485 – ident: e_1_2_7_147_1 doi: 10.1016/j.energy.2017.05.114 – ident: e_1_2_7_72_1 doi: 10.1109/TII.2014.2316639 – ident: e_1_2_7_69_1 doi: 10.1109/TSG.2015.2491923 – ident: e_1_2_7_15_1 doi: 10.1109/TSG.2015.2497691 – ident: e_1_2_7_89_1 doi: 10.1109/TSG.2018.2834219 – ident: e_1_2_7_134_1 doi: 10.1109/TPEL.2014.2314721 – ident: e_1_2_7_114_1 doi: 10.1109/TSG.2015.2421900 – ident: e_1_2_7_109_1 doi: 10.1109/TSG.2015.2396993 – ident: e_1_2_7_66_1 doi: 10.1109/TIE.2014.2356171 – ident: e_1_2_7_14_1 doi: 10.1016/j.egypro.2018.09.170 – ident: e_1_2_7_7_1 doi: 10.1109/EI2.2017.8245533 – start-page: 1 year: 2020 ident: e_1_2_7_135_1 article-title: Adaptive PV frequency control strategy based on real‐time inertia estimation publication-title: IEEE Trans. Smart Grid (Early Access) – ident: e_1_2_7_36_1 doi: 10.1109/ACCESS.2018.2875405 – ident: e_1_2_7_67_1 doi: 10.1109/TSG.2014.2346511 – ident: e_1_2_7_43_1 doi: 10.1109/ACCESS.2020.2990123 – ident: e_1_2_7_90_1 doi: 10.1016/j.rser.2017.05.134 – ident: e_1_2_7_65_1 doi: 10.1109/TSG.2017.2720761 – ident: e_1_2_7_97_1 doi: 10.1109/TII.2018.2882598 – ident: e_1_2_7_26_1 doi: 10.1109/ACCESS.2017.2658952 – ident: e_1_2_7_101_1 doi: 10.1109/TSG.2017.2686801 – ident: e_1_2_7_88_1 doi: 10.1016/j.apenergy.2018.12.061 – ident: e_1_2_7_122_1 doi: 10.1109/ISGT.2012.6175778 – ident: e_1_2_7_123_1 doi: 10.1016/j.ijepes.2014.01.012 – ident: e_1_2_7_77_1 doi: 10.1109/JSAC.2012.120711 – ident: e_1_2_7_98_1 doi: 10.1109/TGCN.2017.2671407 – ident: e_1_2_7_143_1 doi: 10.1109/TNNLS.2018.2801880 – ident: e_1_2_7_138_1 doi: 10.1109/TPWRS.2015.2389753 – ident: e_1_2_7_136_1 doi: 10.1109/TASE.2016.2517155 – ident: e_1_2_7_93_1 doi: 10.1109/JPROC.2017.2756596 – ident: e_1_2_7_160_1 doi: 10.1109/TSMCC.2012.2218596 – ident: e_1_2_7_24_1 doi: 10.1109/ISGTEurope.2014.7028914 – ident: e_1_2_7_9_1 doi: 10.1007/978-3-030-45453-1_7 – ident: e_1_2_7_106_1 doi: 10.1109/TSG.2018.2878570 – ident: e_1_2_7_12_1 doi: 10.3390/en11061593 – ident: e_1_2_7_13_1 doi: 10.1109/JSYST.2016.2639820 – ident: e_1_2_7_100_1 doi: 10.1109/TSP.2019.2926023 – ident: e_1_2_7_108_1 doi: 10.1109/TSG.2015.2495145 – ident: e_1_2_7_139_1 doi: 10.1109/TPWRS.2015.2453424 – ident: e_1_2_7_124_1 doi: 10.1109/TSG.2017.2714982 – ident: e_1_2_7_118_1 doi: 10.1109/TSG.2012.2209130 – ident: e_1_2_7_129_1 doi: 10.1109/TIE.2017.2668983 – ident: e_1_2_7_96_1 doi: 10.1109/ACCESS.2019.2921238 – ident: e_1_2_7_16_1 doi: 10.1049/iet-cps.2018.5019 – ident: e_1_2_7_39_1 doi: 10.1109/TSG.2017.2753802 – ident: e_1_2_7_81_1 doi: 10.1016/j.apenergy.2020.115733 – ident: e_1_2_7_140_1 doi: 10.1109/TSMC.2019.2898551 – ident: e_1_2_7_82_1 doi: 10.1109/TSG.2019.2930299 – ident: e_1_2_7_6_1 doi: 10.1016/j.jmaa.2018.03.002 – ident: e_1_2_7_32_1 doi: 10.1109/TCST.2016.2517574 – ident: e_1_2_7_84_1 doi: 10.1109/SURV.2014.032014.00094 – ident: e_1_2_7_64_1 doi: 10.1109/TSG.2017.2724062 – ident: e_1_2_7_59_1 doi: 10.1109/TSG.2016.2631569 – ident: e_1_2_7_92_1 doi: 10.1109/TSG.2017.2711599 – ident: e_1_2_7_31_1 doi: 10.1109/TSG.2012.2205952 – ident: e_1_2_7_86_1 doi: 10.1016/j.jobe.2020.101629 – ident: e_1_2_7_53_1 doi: 10.1109/TNNLS.2016.2514358 – ident: e_1_2_7_161_1 doi: 10.1016/j.ijepes.2015.11.057 – ident: e_1_2_7_148_1 doi: 10.1016/j.apenergy.2018.03.017 – start-page: 344 volume-title: Energy use and the internet. The SAGE Encyclopedia of the Internet year: 2018 ident: e_1_2_7_10_1 – ident: e_1_2_7_117_1 doi: 10.1109/TSG.2017.2771146 – ident: e_1_2_7_150_1 doi: 10.1109/TAC.2015.2416927 – ident: e_1_2_7_157_1 doi: 10.1109/TPWRS.2014.2357079 – ident: e_1_2_7_76_1 doi: 10.1109/TAC.2015.2471695 – ident: e_1_2_7_30_1 doi: 10.1016/j.scs.2018.11.009 – ident: e_1_2_7_22_1 doi: 10.1109/TPWRS.2016.2605012 – ident: e_1_2_7_80_1 doi: 10.1109/TSG.2017.2723023 – ident: e_1_2_7_159_1 doi: 10.1109/TPWRS.2012.2188912 – ident: e_1_2_7_20_1 doi: 10.1109/JPROC.2017.2702627 – ident: e_1_2_7_38_1 doi: 10.1109/TNNLS.2014.2376696 – ident: e_1_2_7_130_1 doi: 10.1016/j.ijepes.2019.04.011 – ident: e_1_2_7_146_1 doi: 10.1109/TSG.2016.2614388 – ident: e_1_2_7_55_1 doi: 10.1109/TPWRD.2013.2242495 – ident: e_1_2_7_116_1 doi: 10.1109/TSTE.2017.2765483 – ident: e_1_2_7_152_1 doi: 10.1145/2208828.2208847 – ident: e_1_2_7_33_1 doi: 10.1109/TSG.2014.2337838 – ident: e_1_2_7_94_1 doi: 10.1109/IYCE.2017.8003734 – ident: e_1_2_7_41_1 doi: 10.1109/ACCESS.2018.2835527 – ident: e_1_2_7_91_1 doi: 10.1016/j.asoc.2017.08.057 – start-page: 1 volume-title: Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration year: 2017 ident: e_1_2_7_11_1 – ident: e_1_2_7_28_1 doi: 10.1109/TII.2017.2714199 – ident: e_1_2_7_40_1 doi: 10.1109/TII.2015.2492861 – ident: e_1_2_7_128_1 doi: 10.1109/TPWRS.2017.2780986 – ident: e_1_2_7_104_1 doi: 10.1109/TSG.2014.2386305 – ident: e_1_2_7_164_1 doi: 10.1109/TIE.2011.2112314 |
| SSID | ssj0002874530 |
| Score | 2.3986137 |
| SecondaryResourceType | review_article |
| Snippet | Energy internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and has aroused the concern of many scholars.... Abstract Energy internet (EI) can alleviate the arduous challenges brought about by the energy crisis and global warming and has aroused the concern of many... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 63 |
| SubjectTerms | Access control Alternative energy sources Artificial intelligence Control algorithms Control methods Control stability Control systems Distributed generation Effectiveness Electricity distribution Energy Internet Energy management Energy storage Fuzzy sets Information technology Internet Machine learning Neural networks Optimization R&D Renewable resources Research & development Wind power Working conditions |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlL20Ooa-QTbdF0FxScNfyyJKdW7t0CYWWQhrITegxCxs29rLrUHrrqef8xvySSLK97EJJLr0ZMQYxGs18Hs98Q8hxrr3P06GsAgtIeDbTiQZeJKkBj25zA0yEbuRv38XZBf96mV9ujfoKNWEtPXCruLE1EkFyww1ojoUondQzQJ5z9NjExjbftCi3PqauYspI8hzSno-Ul2O7XGcfWcjM7USgSNS_gy6f3lRL_fuXXix28WoMONPnZL9DivRTu8MX5AlWL8neFn_gK_K3zezTekZdIMANs6vQ0a78nOrK0dq7hOuu15LOK4qx14_OYyIQm1M6XdXXtFlpN2-zgrSdKb2mTU2DdlqGifhCT9159-c2BD_Xi74mF9MvPydnSTdYIbGcZ96p-JitGTi0qRVaeNWaXBopnQUADIz0svA4j5fgBJ8Z7ZBl6BcyYxgwLOGADKq6wkNCnRHBaZTMGuBotGEiZ4VOmc00eskhOemVrWzHOh6GXyxU_PvNSxUORsWDGZL3G9lly7XxT6nP4cw2EoEfOy54q1Gd1ajHrGZIRv2Jq-7SrhWkAe2CkGxIjjdW8OBWPkQDeUBETX6cZ_Hp6H_s-w15loWimpgGGpFBs7rBtx4VNeZdvAD37YIMhQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG5kc1APxieuidJgLgqzbk_19Mx4i8ElCIaALsRT04-asLiZWXZnEXPKybO_0V9iP2aWrEgQvA1N9dDdU139TXXVV4QcZMrZPOXDKrCAhKeVShTwIhlrcOg208CEz0b-eCKOp_zDWXZ2LYs_8kNsHG5-ZwR77Tf4wlbRzse_Tl6-MYtVOmIxnXxHZA6ND8jO9OT08EuoKVcWCUApelbSrQ5b51Cg69_CmLfX9UJ9_6bm823UGo6dyS5R_YBjtMnX0brVI3P5B5fj_8zoPrnXYVJ6GJXoAbmF9UNy9xpT4SPyI94h0Kai1lPt-ipZaGkX6E5VbWnjjM9Fl9VJZzXFkFVIZ8HliO1bOlk2F7RdKjuL_kcaq1evaNtQr8CRyyJ06ElCf1399Mes7UUfk-nk_eej46Qr4ZAYzlNnvhw6UAwsmrERSnANOst1nlsDAOi57_PCIUpeghW80soiS9E1pFozYFjCEzKomxqfEmq18OapZEYDR600Exkr1JiZVKGTHJJX_QeVpuM392U25jLcs_NS-rWVYW2H5OVGdhFZPf4q9c7rxUbCM3GHhmZ5LruNLY3OEXKu3dQUx0KUNlcVIM84OuxsiiHZ77VKduZhJWHscTWInA3JwUbTbhzK66A5N4jIo9NPaXh69m_v3CN3Uh-gE1xK-2TQLtf43CGsVr_oNtFvsekoGw priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9RAFB9Ke1APUr9wa5UBe1GI7sybTJLiRYtLEZSCFnoL8_FWFrbJspsi3jx59m_0L-m8mSS6IAVvIfwGkryP-fEy7_cYO8pNyHmGjlVgCZmSc5MZUGU2tRDYbW5BaOpG_vhJn56rDxf5xQ57M_TCJH2IseBGkRHzNQW4sWkKSSC1wYhutZGvRGol3xOByJB_S3U2VliiknscNkIadxkExKBPqqrXf5Zv7UhRuH-Lbd66albm-zezXG7z17gBzfbZ3Z458rfJ1PfYDjb32Z2_9AQfsJ-p0s_bOfckiEuzrNDz_jg6N43nbUgRl33vJV80HGPvH1_EwiB2x3y2bi95tzZ-kaqEPM2Y3vCu5eRmSXEiLhikPH__-EWboR-gD9n57P2Xk9OsH7SQOaVkSDJhDzcCPLqp00YrCzYvbFF4BwBICvVFGXifqsBrNbfGo5AYbkhrBQis4BHbbdoGHzPuraYkUglnQaE1VuhclGYqnDQYkBP2YvjYtetVyGkYxrKOf8NVVZNh6miYCXs-YldJe-OfqHdksxFBetnxRrv-WvfhVztbIBTKhlczCktd-cLMAVWuMDBcV07Y4WDxug_iTQ1TYr-gCzFhR6MX3PgoL6OD3ACpT84-y3h18D_gJ-y2pMM0sfxzyHa79RU-DWyos8-i018DxocGCw priority: 102 providerName: Wiley-Blackwell |
| Title | Review of distributed control and optimization in energy internet: From traditional methods to artificial intelligence‐based methods |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12007 https://www.proquest.com/docview/3092313671 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cps2.12007 https://doaj.org/article/cb7e374b4b3a4e869d7af3e454e923c8 |
| UnpaywallVersion | publishedVersion |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-3396 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: IDLOA dateStart: 20161201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: AVUZU dateStart: 20161231 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: 24P dateStart: 20160101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC6SzUE9iE9cjUuDuSiMmX7MSwiShKxBcFnUhXhq-rWysJlZdyeIN0-e8xvzS9LVM7O6IHsZZpoa5lHV1cXXVV8BHCTK-zyFaRUu55FgUxUpLvIo1txHt4nmNMVq5E-j9HwiPl4kFzsw6mphMK2y84nBUdvKIEZ-yGMMRXia0feLHxF2jcLd1a6FhmpbK9ijQDG2C3sMmbF6sHdyNhp_XqMugd2dxx1PqSgOzWLF3lJE7DZWpkDgvxF13rkqF-rXTzWfb8axYSEaPoD7bQRJjhuVP4QdVz6Ce__wCj6GPw3iT6opsUiMiz2tnCVtWjpRpSWVdxWXbQ0mmZXEhRpAMgsAoavfkeGyuiT1UtlZgxaSptf0itQVQXNrmCfCDR2l583va1wUbSf6BCbDs6-n51HbcCEyQjDvbPxarii3zsQmVanQXCeZzjJrOOcOmeqz3Md_ouA2FVOtrKPM-QGmNeXUFfwp9MqqdM-AWJ2iMymo0Vw4rTRNvV5UTA1Tzkv24XX3s6Vp2cixKcZchl1xUUhUjAyK6cOrteyi4eD4r9QJ6mwtgbzZYaBafpftNJRGZ45nQvtPU8LlaWEzNeVOJMJ58zJ5H_Y7jct2Mq_kX9Prw8HaCra-yptgIFtE5On4Cwtnz7c_8gXcZZhGE4CffejVyyv30sdBtR7ALhNjf8yHHwatoQ8CpuCvJqPx8bdbHswORg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG5CcogexPjA1RgbjAeFMdOPeQlBzGPZmGQJmkBunX6tLGxm1t0JITdPnv1F_hh_iV09PRsXZG-5DU0NM9P1dVVNdddXCG0m0tk8CccqbM4iTgcykoznUayYi24TxUgK1cjH_bR3xj-fJ-dL6HdbCwPHKlub6A21qTTkyLdYDKEISzPycfw9gq5RsLvattCQobWC2fYUY6Gw49DeXLtfuOn2wZ7T9xtKu_unu70odBmINOfUrTDnwCRhxupYpzLliqkkU1lmNGPMAj17lrughxfMpHygpLGEWjdAlSKMWCBjci5ghTNeuJ-_lZ39_smXWZbHs8mzuOVF5cWWHk_pewIZwjlP6BsGzEW5q1flWN5cy9FoPm72jq_7ED0IESv-1EBsDS3Z8hG6_w-P4WP0s9lhwNUAGyDihR5a1uBwDB7L0uDKmabLUPOJhyW2vuYQD31C0tYfcHdSXeJ6Is2wyU7iprf1FNcVBng3TBf-hpZC9M-PX-CETSv6BJ3dydQ_RctlVdpnCBuVgvEqiFaMWyUVSR0OZEw0ldZJdtDbdrKFDuzn0IRjJPwuPC8EKEZ4xXTQ65nsuOH8-K_UDuhsJgE83X6gmnwTYdkLrTLLMq7cp0lu87QwmRwwyxNuHZx13kHrrcZFMB5TcQv1DtqcoWDhq7zzAFkgInZPvlJ_9XzxI1-h1d7p8ZE4OugfvkD3KBzh8UmndbRcT67sSxeD1WojAB2ji7teW38BmBFFZA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG5kFnwcxCeOrtrgXhSi6VSnk3hbV4f1tSzoyOKl6VdkYDYZZrKIN0-e_Y3-Eru6k-iALHgLTSUkqa6qL5WqrwjZy5X3eQrLKlwJCc9qlSjgZZJq8Og218AEdiO_PxKHc_7mJD_pa3OwFybyQ4wJN7SM4K_RwN3K1vGDkyNJplltsqcs9pLv-ECe8gnZ2f80_zwfkyyBzD3MG0GauwSgEgNFKa-e_bnAVlAK3P1bgPPSWbNS376q5XIbwoYYNLtGrvbgke5HbV8nF1xzg1z5i1LwJvkRk_20ralFTlwcZ-Us7SvSqWosbb2XOO3bL-mioS60_9FFyA267jmdrdtT2q2VXcREIY1jpje0aynutEg6EU4Y2Dx_ff-J8dAOorfIfPbq48Fh0s9aSAznmfczPowrBtaZ1AgluAadF7oorAEAhyT1RemhH6_ACl5rZR3LnF_ItGbAXAW3yaRpG3eHUKsF-pGKGQ3caaWZyFmpUmYy5bzklDweXrY0PRE5zsNYyvBDnFcSFSODYqbk0Si7ivQb_5R6gTobJZAyOyy06y-yt0BpdOGg4No_muKuFJUtVA2O59x5kGvKKdkdNC57O95ISBEAgyjYlOyNu-DcW3kSNsg5IvLg-EMWju7-j_BDcvH45Uy-e3309h65nGFpTUgG7ZJJtz5z9z026vSD3gJ-A4odCss |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG5kc1APxieuidJgLgqzbk_19Mx4i8ElCIaALsRT04-asLiZWXZnEXPKybO_0V9iP2aWrEgQvA1N9dDdU139TXXVV4QcZMrZPOXDKrCAhKeVShTwIhlrcOg208CEz0b-eCKOp_zDWXZ2LYs_8kNsHG5-ZwR77Tf4wlbRzse_Tl6-MYtVOmIxnXxHZA6ND8jO9OT08EuoKVcWCUApelbSrQ5b51Cg69_CmLfX9UJ9_6bm823UGo6dyS5R_YBjtMnX0brVI3P5B5fj_8zoPrnXYVJ6GJXoAbmF9UNy9xpT4SPyI94h0Kai1lPt-ipZaGkX6E5VbWnjjM9Fl9VJZzXFkFVIZ8HliO1bOlk2F7RdKjuL_kcaq1evaNtQr8CRyyJ06ElCf1399Mes7UUfk-nk_eej46Qr4ZAYzlNnvhw6UAwsmrERSnANOst1nlsDAOi57_PCIUpeghW80soiS9E1pFozYFjCEzKomxqfEmq18OapZEYDR600Exkr1JiZVKGTHJJX_QeVpuM392U25jLcs_NS-rWVYW2H5OVGdhFZPf4q9c7rxUbCM3GHhmZ5LruNLY3OEXKu3dQUx0KUNlcVIM84OuxsiiHZ77VKduZhJWHscTWInA3JwUbTbhzK66A5N4jIo9NPaXh69m_v3CN3Uh-gE1xK-2TQLtf43CGsVr_oNtFvsekoGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+distributed+control+and+optimization+in+energy+internet%3A+From+traditional+methods+to+artificial+intelligence%E2%80%90based+methods&rft.jtitle=IET+cyber-physical+systems&rft.au=Hua%2C+Haochen&rft.au=Wei%2C+Zhiqian&rft.au=Qin%2C+Yuchao&rft.au=Wang%2C+Tonghe&rft.date=2021-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2398-3396&rft.volume=6&rft.issue=2&rft.spage=63&rft.epage=79&rft_id=info:doi/10.1049%2Fcps2.12007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-3396&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-3396&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-3396&client=summon |