Status, challenges, and promises of data‐driven battery lifetime prediction under cyber‐physical system context
Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, suc...
Saved in:
| Published in | IET cyber-physical systems Vol. 9; no. 3; pp. 207 - 217 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Southampton
John Wiley & Sons, Inc
01.09.2024
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2398-3396 2398-3396 |
| DOI | 10.1049/cps2.12086 |
Cover
| Abstract | Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners.
The authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In particular, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. |
|---|---|
| AbstractList | Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. The authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In particular, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. Abstract Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. |
| Author | Wan, Jiayu Liu, Yang Li, Peiyi Chen, Sihui Li, Xin |
| Author_xml | – sequence: 1 givenname: Yang surname: Liu fullname: Liu, Yang email: yang.liu2@dukekunshan.edu.cn organization: Duke Kunshan University – sequence: 2 givenname: Sihui surname: Chen fullname: Chen, Sihui organization: Southern University of Science and Technology – sequence: 3 givenname: Peiyi surname: Li fullname: Li, Peiyi organization: Shanghai Jiao Tong University – sequence: 4 givenname: Jiayu surname: Wan fullname: Wan, Jiayu email: wanjy@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 5 givenname: Xin orcidid: 0000-0002-4510-2436 surname: Li fullname: Li, Xin email: xinli.ece@duke.edu organization: Duke Kunshan University |
| BookMark | eNp9kc1qFTEYhgepYK3deAUBd9pT8zOTmVnKwZ9CQaG6Dl-Sb9oc5iRjkrHOrpfgNXol5nRERKSrfITnfZM8eVod-eCxqp4zes5o3b82U-LnjNNOPqqOuei7jRC9PPprflKdprSjlPKurRtBj6t0lSHP6YyYGxhH9NdYZvCWTDHsXcJEwkAsZPh598NG9w090ZAzxoWMbsDs9lhQtM5kFzyZvcVIzKIxlsB0syRnYCRpSRn3xASf8Xt-Vj0eYEx4-ns9qb68e_t5-2Fz-fH9xfbN5cbUNZcbbYzgdccpCtmannEroEEmLOoWaG1rbDtqLbTSdtAZOljgUvaGGa2xN404qS7WXhtgp6bo9hAXFcCp-40QrxXE7MyIimrEjnHNAHUtD6fy3lImoeEt1xRK16u1a_YTLLfF1Z9CRtVBvzroV_f6C_1ipYvFrzOmrHZhjr48VgnW87rnsmkLRVfKxJBSxEEZV36jeMwR3Pj_4pf_RB68BVvhWzfi8gCptp-u-Jr5BXP0t7U |
| CitedBy_id | crossref_primary_10_1021_acs_energyfuels_4c02209 crossref_primary_10_1007_s44258_024_00048_w crossref_primary_10_1016_j_mtener_2025_101818 crossref_primary_10_1016_j_jpowsour_2024_235794 |
| Cites_doi | 10.1016/j.est.2019.100817 10.1109/tie.2018.2808918 10.1016/j.apenergy.2023.120808 10.1109/tsmc.2015.2389757 10.1016/j.jpowsour.2018.11.072 10.1016/j.joule.2023.03.008 10.1109/tsmc.2013.2296276 10.1109/tie.2017.2782224 10.1016/j.jpowsour.2021.230823 10.1016/j.ress.2022.109046 10.1109/tte.2020.3017090 10.1016/j.ress.2022.108758 10.1109/jestpe.2020.2968490 10.1016/j.est.2019.100761 10.1016/j.est.2020.101741 10.1016/j.est.2020.102064 10.1109/tvt.2021.3055811 10.1016/j.joule.2021.10.010 10.1016/j.egyai.2021.100081 10.1016/j.jclepro.2018.09.065 10.1109/ICDM.2008.17 10.1109/tmech.2018.2832019 10.1016/j.ress.2021.107556 10.1016/j.joule.2021.09.015 10.1109/tmech.2020.3040010 10.1016/j.ensm.2022.06.053 10.1016/j.est.2019.03.022 10.1016/j.apenergy.2020.115646 10.1002/cphc.202100829 10.1109/ISSE51541.2021.9582469 10.1002/ente.202000984 10.1016/j.est.2018.12.011 10.1016/j.jpowsour.2016.12.083 10.1016/j.eng.2020.10.022 10.1016/j.neucom.2019.09.074 10.1016/j.apenergy.2019.113626 10.1109/access.2022.3178987 10.1016/j.apenergy.2019.114296 10.1109/tpel.2020.2987383 10.1109/tvt.2020.3014932 10.1109/tvt.2018.2805189 10.1016/j.ensm.2023.02.034 10.1016/j.egyr.2022.03.016 10.1038/s41467‐020‐15235‐7 10.1016/j.jpowsour.2022.232432 10.1038/s41560‐019‐0356‐8 10.1016/j.jpowsour.2009.11.048 10.1016/j.apenergy.2021.117922 10.1109/ETFA.2018.8502480 10.1016/j.ymssp.2019.106602 10.1145/3534678.3539024 10.1038/s42256‐021‐00312‐3 10.1109/tie.2020.2973876 10.1016/j.ress.2015.07.013 10.1016/j.apenergy.2021.118317 10.1016/j.apenergy.2014.03.086 10.1016/j.energy.2021.120890 10.1016/j.apenergy.2021.118134 10.1109/access.2019.2907612 10.1145/335191.335388 10.1038/s42256‐020‐0156‐7 10.1038/s41467‐022‐29837‐w 10.1016/j.est.2019.100951 10.1109/tii.2020.3008223 10.1039/c9ee01919g 10.1016/j.jpowsour.2020.228654 10.1016/j.jpowsour.2022.231027 10.1016/j.joule.2019.11.018 10.1038/s41586‐020‐1994‐5 10.1021/acs.chemrev.1c00876 10.1109/tim.2022.3198466 10.1109/tie.2019.2946551 10.1016/j.patter.2021.100302 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA |
| DOI | 10.1049/cps2.12086 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2398-3396 |
| EndPage | 217 |
| ExternalDocumentID | oai_doaj_org_article_0bee812b1aeb46248229d016a5272b0a 10.1049/cps2.12086 10_1049_cps2_12086 CPS212086 |
| Genre | reviewArticle |
| GroupedDBID | 0R~ 1OC 24P 6IK AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADBBV AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IFIPE IPLJI ITC JAVBF K7- M7S M~E O9- OCL OK1 PIMPY PTHSS RIE RUI AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IGS PHGZM PHGZT PQGLB WIN 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4426-bcc324820e367c912d3a5e13deb7a04d4e780dda76d8a8c0fda2669c1cbbe9c53 |
| IEDL.DBID | 24P |
| ISSN | 2398-3396 |
| IngestDate | Fri Oct 03 12:50:23 EDT 2025 Tue Aug 19 14:53:55 EDT 2025 Wed Aug 13 04:27:38 EDT 2025 Wed Oct 29 21:07:46 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Wed Jan 22 17:13:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4426-bcc324820e367c912d3a5e13deb7a04d4e780dda76d8a8c0fda2669c1cbbe9c53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4510-2436 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12086 |
| PQID | 3192492657 |
| PQPubID | 6853487 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0bee812b1aeb46248229d016a5272b0a unpaywall_primary_10_1049_cps2_12086 proquest_journals_3192492657 crossref_citationtrail_10_1049_cps2_12086 crossref_primary_10_1049_cps2_12086 wiley_primary_10_1049_cps2_12086_CPS212086 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 20240901 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Southampton |
| PublicationPlace_xml | – name: Southampton |
| PublicationTitle | IET cyber-physical systems |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2021; 68 2021; 26 2018; 205 2022; 71 2015; 144 2022; 23 2020; 13 2020; 11 2021; 70 2022; 122 2015; 45 2020; 4 2020; 2 2021; 33 2019; 66 2019; 21 2019; 24 2019; 23 2019; 67 2019; 26 2019; 25 2020; 578 2023; 336 2020; 139 2021; 230 2020; 376 2010; 195 2022; 525 2014; 126 2022; 520 2021; 9 2019; 7 2021; 7 2019; 4 2000; 29 2023; 57 2021; 5 2021; 3 2021; 2 2022; 51 2020; 260 2008 2020; 35 2020; 32 2018; 23 2018; 67 2018; 65 2014; 44 2023 2021; 211 2022 2021 2020 2022; 8 2021; 17 2017; 54 2023; 232 2019; 412 2023; 556 2019 2022; 13 2016; 63 2018 2020; 69 2022; 10 2014 2022; 308 2020; 476 2020; 278 2017; 342 2022; 306 2022; 305 2022; 228 2019; 253 e_1_2_9_75_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Hu X. (e_1_2_9_21_1) 2016; 63 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Li L. (e_1_2_9_31_1) 2020 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 Rossi M. (e_1_2_9_15_1) 2014 e_1_2_9_70_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Chetoui S. (e_1_2_9_14_1) 2021 e_1_2_9_42_1 e_1_2_9_63_1 Azis N.A. (e_1_2_9_19_1) 2019 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 McMahan H.B. (e_1_2_9_77_1) 2017 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 126 start-page: 182 year: 2014 end-page: 189 article-title: Method for estimating capacity and predicting remaining useful life of lithium‐ion battery publication-title: Appl. Energy – volume: 336 year: 2023 article-title: Capacity estimation of lithium‐ion batteries based on data aggregation and feature fusion via graph neural network publication-title: Appl. Energy – start-page: 2108 year: 2020 end-page: 2114 – volume: 10 start-page: 59675 year: 2022 end-page: 59722 article-title: Cyberphysical security of grid battery energy storage systems publication-title: IEEE Access – start-page: 1 year: 2021 end-page: 8 – volume: 66 start-page: 1585 issue: 2 year: 2019 end-page: 1597 article-title: Lithium‐ion battery remaining useful life prediction with box–cox transformation and Monte Carlo Simulation publication-title: IEEE Trans. Ind. Electron. – volume: 253 year: 2019 article-title: Remaining useful life prediction of lithium‐ion batteries based on false nearest neighbors and a hybrid neural network publication-title: Appl. Energy – volume: 578 start-page: 397 issue: 7795 year: 2020 end-page: 402 article-title: Closed‐loop optimization of fast‐charging protocols for batteries with machine learning publication-title: Nature – volume: 44 start-page: 851 issue: 7 year: 2014 end-page: 862 article-title: Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 525 year: 2022 article-title: Battery health estimation with degradation pattern recognition and transfer learning publication-title: J. Power Sources – volume: 71 start-page: 1 year: 2022 end-page: 9 article-title: Measurement uncertainty in battery electrochemical impedance spectroscopy publication-title: IEEE Trans. Instrum. Meas. – volume: 4 start-page: 383 issue: 5 year: 2019 end-page: 391 article-title: Data‐driven prediction of battery cycle life before capacity degradation publication-title: Nat. Energy – volume: 67 start-page: 5695 issue: 7 year: 2018 end-page: 5705 article-title: Long short‐term memory recurrent neural network for remaining useful life prediction of lithium‐ion batteries publication-title: IEEE Trans. Veh. Technol. – volume: 33 year: 2021 article-title: Big data driven vehicle battery management method: a novel cyber‐physical system perspective publication-title: J. Energy Storage – volume: 21 start-page: 510 year: 2019 end-page: 518 article-title: Remaining useful life prediction for lithium‐ion batteries based on a hybrid model combining the long short‐term memory and Elman neural networks publication-title: J. Energy Storage – volume: 26 start-page: 1295 issue: 3 year: 2021 end-page: 1306 article-title: General discharge voltage information enabled health evaluation for lithium‐ion batteries publication-title: IEEE ASME Trans. Mechatron. – start-page: 1 year: 2014 end-page: 6 – volume: 305 year: 2022 article-title: Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data‐driven model publication-title: Appl. Energy – start-page: 2987 year: 2022 end-page: 2996 – volume: 63 start-page: 2645 issue: 4 year: 2016 end-page: 2656 article-title: Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling publication-title: IEEE Trans. Ind. Electron. – volume: 10 start-page: 1270 issue: 1 year: 2022 end-page: 1281 article-title: An overview of cyber‐physical security of battery management systems and adoption of blockchain technology publication-title: IEEE J. Emerg. Sel. Top. Power Electron. – volume: 51 start-page: 372 year: 2022 end-page: 381 article-title: Flexible battery state of health and state of charge estimation using partial charging data and deep learning publication-title: Energy Storage Mater. – volume: 376 start-page: 95 year: 2020 end-page: 102 article-title: Remaining useful life prediction of lithium‐ion batteries with adaptive unscented kalman filter and optimized support vector regression publication-title: Neurocomputing – volume: 5 year: 2021 article-title: Lithium‐ion battery data and where to find it publication-title: Energy AI – volume: 278 year: 2020 article-title: Towards the swift prediction of the remaining useful life of lithium‐ion batteries with end‐to‐end deep learning publication-title: Appl. Energy – start-page: 88 year: 2019 end-page: 93 – volume: 2 start-page: 161 issue: 3 year: 2020 end-page: 170 article-title: Predicting the state of charge and health of batteries using data‐driven machine learning publication-title: Nat. Mach. Intell. – volume: 32 year: 2020 article-title: A novel deep learning framework for state of health estimation of lithium‐ion battery publication-title: J. Energy Storage – volume: 476 year: 2020 article-title: Lifespan prediction of lithium‐ion batteries based on various extracted features and gradient boosting regression tree model publication-title: J. Power Sources – volume: 412 start-page: 442 year: 2019 end-page: 450 article-title: A data‐driven remaining capacity estimation approach for lithium‐ion batteries based on charging health feature extraction publication-title: J. Power Sources – start-page: 1679 year: 2021 end-page: 1684 – volume: 23 issue: 7 year: 2022 article-title: Improved battery cycle life prediction using a hybrid data‐driven model incorporating linear support vector regression and Gaussian process regression publication-title: ChemPhysChem – volume: 17 start-page: 3478 issue: 5 year: 2021 end-page: 3487 article-title: A data‐driven auto‐CNN‐LSTM prediction model for lithium‐ion battery remaining useful life publication-title: IEEE Trans. Ind. Inf. – volume: 13 start-page: 744 issue: 3 year: 2020 end-page: 771 article-title: The impact of intelligent cyber‐physical systems on the decarbonization of energy publication-title: Energy Environ. Sci. – volume: 556 year: 2023 article-title: Adaptive evolution enhanced physics‐informed neural networks for time‐variant health prognosis of lithium‐ion batteries publication-title: J. Power Sources – volume: 35 start-page: 11855 issue: 11 year: 2020 end-page: 11864 article-title: Multiobjective optimization of data‐driven model for lithium‐ion battery SOH estimation with short‐term feature publication-title: IEEE Trans. Power Electron. – volume: 228 year: 2022 article-title: Bayesian deep‐learning for RUL prediction: an active learning perspective publication-title: Reliab. Eng. Syst. Saf. – volume: 308 year: 2022 article-title: Impedance‐based capacity estimation for lithium‐ion batteries using generative adversarial network publication-title: Appl. Energy – volume: 195 start-page: 2419 issue: 9 year: 2010 end-page: 2430 article-title: Lithium batteries: status, prospects and future publication-title: J. Power Sources – volume: 260 year: 2020 article-title: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium‐ion batteries publication-title: Appl. Energy – volume: 68 start-page: 3170 issue: 4 year: 2021 end-page: 3180 article-title: A data‐driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium‐ion battery publication-title: IEEE Trans. Ind. Electron. – volume: 8 start-page: 4058 year: 2022 end-page: 4084 article-title: Overview of batteries and battery management for electric vehicles publication-title: Energy Rep. – volume: 306 year: 2022 article-title: Deep neural network battery life and voltage prediction by using data of one cycle only publication-title: Appl. Energy – volume: 65 start-page: 5634 issue: 7 year: 2018 end-page: 5643 article-title: Remaining useful life prediction and state of health diagnosis for Lithium‐Ion batteries using particle filter and support vector regression publication-title: IEEE Trans. Ind. Electron. – volume: 23 start-page: 320 year: 2019 end-page: 328 article-title: Battery health prediction under generalized conditions using a Gaussian process transition model publication-title: J. Energy Storage – volume: 11 issue: 1 year: 2020 article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning publication-title: Nat. Commun. – volume: 144 start-page: 74 year: 2015 end-page: 82 article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium‐ion battery remaining useful life and short‐term capacity prediction publication-title: Reliab. Eng. Syst. Saf. – volume: 25 year: 2019 article-title: A deep learning method for online capacity estimation of lithium‐ion batteries publication-title: J. Energy Storage – start-page: 845 year: 2018 end-page: 852 – volume: 26 year: 2019 article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium‐ion battery using the incremental capacity and artificial neural networks publication-title: J. Energy Storage – volume: 122 start-page: 11131 issue: 12 year: 2022 end-page: 11168 article-title: Impedance analysis of electrochemical systems publication-title: Chem. Rev. – volume: 3 start-page: 447 issue: 5 year: 2021 end-page: 456 article-title: Machine learning pipeline for battery state‐of‐health estimation publication-title: Nat. Mach. Intell. – volume: 9 issue: 8 year: 2021 article-title: Recent advancements in battery management system for Li‐ion batteries of electric vehicles: future role of digital twin, cyber‐physical systems, battery swapping technology, and nondestructive testing publication-title: Energy Technol. – volume: 2 issue: 8 year: 2021 article-title: Recovering large‐scale battery aging dataset with machine learning publication-title: Patterns – volume: 13 issue: 1 year: 2022 article-title: Data‐driven capacity estimation of commercial lithium‐ion batteries from voltage relaxation publication-title: Nat. Commun. – volume: 520 year: 2022 article-title: End‐to‐end capacity estimation of Lithium‐ion batteries with an enhanced long short‐term memory network considering domain adaptation publication-title: J. Power Sources – volume: 67 start-page: 8723 issue: 10 year: 2019 end-page: 8731 article-title: Transfer learning with long short‐term memory network for state‐of‐health prediction of lithium‐ion batteries publication-title: IEEE Trans. Ind. Electron. – volume: 29 start-page: 93 issue: 2 year: 2000 end-page: 104 article-title: Identifying density‐based local outliers publication-title: ACM Sigmod Record – volume: 45 start-page: 915 issue: 6 year: 2015 end-page: 928 article-title: A health indicator extraction and optimization framework for lithium‐ion battery degradation modeling and prognostics publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 205 start-page: 115 year: 2018 end-page: 133 article-title: Afida Ayob, “A review of state of health and remaining useful life estimation methods for lithium‐ion battery in electric vehicles: challenges and recommendations” publication-title: J. Clean. Prod. – volume: 23 start-page: 2609 issue: 6 year: 2018 end-page: 2618 article-title: Cyber‐physical control for energy management of off‐road vehicles with hybrid energy storage systems publication-title: IEEE ASME Trans. Mechatron. – volume: 57 start-page: 460 year: 2023 end-page: 470 article-title: A data‐driven method for extracting aging features to accurately predict the battery health publication-title: Energy Storage Mater. – volume: 211 year: 2021 article-title: Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions publication-title: Reliab. Eng. Syst. Saf. – volume: 7 start-page: 1469 issue: 10 year: 2021 end-page: 1482 article-title: Co‐estimation of state of charge and capacity for lithium‐ion batteries with multi‐stage model fusion method publication-title: Engineering – volume: 7 start-page: 47259 year: 2019 end-page: 47272 article-title: Design and implementation of a fully controllable cyber‐physical system for testing energy storage systems publication-title: IEEE Access – start-page: 413 year: 2008 end-page: 422 – volume: 54 start-page: 1273 year: 2017 end-page: 1282 – volume: 24 year: 2019 article-title: An insight into the errors and uncertainty of the lithium‐ion battery characterization experiments publication-title: J. Energy Storage – year: 2023 – volume: 4 start-page: 310 issue: 2 year: 2020 end-page: 346 article-title: Battery lifetime prognostics publication-title: Joule – volume: 139 year: 2020 article-title: A new data‐driven transferable remaining useful life prediction approach for bearing under different working conditions publication-title: Mech. Syst. Signal Process. – volume: 230 year: 2021 article-title: Energy management for hybrid energy storage system in electric vehicle: a cyber‐physical system perspective publication-title: Energy – volume: 70 start-page: 1269 issue: 2 year: 2021 end-page: 1277 article-title: Predictive battery health management with transfer learning and online model correction publication-title: IEEE Trans. Veh. Technol. – volume: 69 start-page: 10854 issue: 10 year: 2020 end-page: 10867 article-title: State‐of‐Health estimation and remaining‐useful‐life prediction for lithium‐ion battery using a hybrid data‐driven method publication-title: IEEE Trans. Veh. Technol. – volume: 342 start-page: 589 year: 2017 end-page: 597 article-title: Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells publication-title: J. Power Sources – volume: 7 start-page: 382 issue: 2 year: 2021 end-page: 398 article-title: Battery health prediction using fusion‐based feature selection and machine learning publication-title: IEEE Trans. Transp. Electrif. – volume: 232 year: 2023 article-title: Explainability‐driven model improvement for SOH estimation of lithium‐ion battery publication-title: Reliab. Eng. Syst. Saf. – volume: 5 start-page: 3187 issue: 12 year: 2021 end-page: 3203 article-title: Bayesian learning for rapid prediction of lithium‐ion battery‐cycling protocols publication-title: Joule – volume: 5 start-page: 2971 issue: 11 year: 2021 end-page: 2992 article-title: Predicting the impact of formation protocols on battery lifetime immediately after manufacturing publication-title: Joule – ident: e_1_2_9_60_1 doi: 10.1016/j.est.2019.100817 – ident: e_1_2_9_22_1 doi: 10.1109/tie.2018.2808918 – ident: e_1_2_9_49_1 doi: 10.1016/j.apenergy.2023.120808 – ident: e_1_2_9_43_1 doi: 10.1109/tsmc.2015.2389757 – ident: e_1_2_9_44_1 doi: 10.1016/j.jpowsour.2018.11.072 – ident: e_1_2_9_80_1 doi: 10.1016/j.joule.2023.03.008 – ident: e_1_2_9_62_1 doi: 10.1109/tsmc.2013.2296276 – ident: e_1_2_9_51_1 doi: 10.1109/tie.2017.2782224 – ident: e_1_2_9_47_1 doi: 10.1016/j.jpowsour.2021.230823 – ident: e_1_2_9_58_1 doi: 10.1016/j.ress.2022.109046 – ident: e_1_2_9_61_1 doi: 10.1109/tte.2020.3017090 – ident: e_1_2_9_55_1 doi: 10.1016/j.ress.2022.108758 – ident: e_1_2_9_4_1 doi: 10.1109/jestpe.2020.2968490 – ident: e_1_2_9_32_1 doi: 10.1016/j.est.2019.100761 – ident: e_1_2_9_56_1 doi: 10.1016/j.est.2020.101741 – ident: e_1_2_9_2_1 doi: 10.1016/j.est.2020.102064 – ident: e_1_2_9_65_1 doi: 10.1109/tvt.2021.3055811 – ident: e_1_2_9_71_1 doi: 10.1016/j.joule.2021.10.010 – ident: e_1_2_9_76_1 doi: 10.1016/j.egyai.2021.100081 – ident: e_1_2_9_17_1 doi: 10.1016/j.jclepro.2018.09.065 – ident: e_1_2_9_35_1 doi: 10.1109/ICDM.2008.17 – ident: e_1_2_9_12_1 doi: 10.1109/tmech.2018.2832019 – ident: e_1_2_9_68_1 doi: 10.1016/j.ress.2021.107556 – ident: e_1_2_9_72_1 doi: 10.1016/j.joule.2021.09.015 – ident: e_1_2_9_41_1 doi: 10.1109/tmech.2020.3040010 – ident: e_1_2_9_59_1 doi: 10.1016/j.ensm.2022.06.053 – ident: e_1_2_9_50_1 doi: 10.1016/j.est.2019.03.022 – ident: e_1_2_9_69_1 doi: 10.1016/j.apenergy.2020.115646 – ident: e_1_2_9_33_1 doi: 10.1002/cphc.202100829 – ident: e_1_2_9_39_1 doi: 10.1109/ISSE51541.2021.9582469 – ident: e_1_2_9_8_1 doi: 10.1002/ente.202000984 – ident: e_1_2_9_57_1 doi: 10.1016/j.est.2018.12.011 – ident: e_1_2_9_24_1 doi: 10.1016/j.jpowsour.2016.12.083 – ident: e_1_2_9_73_1 doi: 10.1016/j.eng.2020.10.022 – ident: e_1_2_9_16_1 doi: 10.1016/j.neucom.2019.09.074 – ident: e_1_2_9_70_1 doi: 10.1016/j.apenergy.2019.113626 – ident: e_1_2_9_7_1 doi: 10.1109/access.2022.3178987 – ident: e_1_2_9_64_1 doi: 10.1016/j.apenergy.2019.114296 – ident: e_1_2_9_75_1 doi: 10.1109/tpel.2020.2987383 – ident: e_1_2_9_74_1 doi: 10.1109/tvt.2020.3014932 – ident: e_1_2_9_23_1 doi: 10.1109/tvt.2018.2805189 – ident: e_1_2_9_53_1 doi: 10.1016/j.ensm.2023.02.034 – ident: e_1_2_9_3_1 doi: 10.1016/j.egyr.2022.03.016 – ident: e_1_2_9_27_1 doi: 10.1038/s41467‐020‐15235‐7 – start-page: 1273 volume-title: Proceedings of International Conference on Artificial Intelligence and Statistics year: 2017 ident: e_1_2_9_77_1 – ident: e_1_2_9_11_1 doi: 10.1016/j.jpowsour.2022.232432 – ident: e_1_2_9_9_1 doi: 10.1038/s41560‐019‐0356‐8 – start-page: 1 volume-title: Proceedings of Design, Automation & Test in Europe Conference & Exhibition year: 2014 ident: e_1_2_9_15_1 – ident: e_1_2_9_10_1 doi: 10.1016/j.jpowsour.2009.11.048 – ident: e_1_2_9_52_1 doi: 10.1016/j.apenergy.2021.117922 – ident: e_1_2_9_78_1 doi: 10.1109/ETFA.2018.8502480 – ident: e_1_2_9_54_1 doi: 10.1016/j.ymssp.2019.106602 – ident: e_1_2_9_79_1 doi: 10.1145/3534678.3539024 – ident: e_1_2_9_38_1 doi: 10.1038/s42256‐021‐00312‐3 – start-page: 88 volume-title: Proceedings of International Conference on Instrumentation, Control, and Automation year: 2019 ident: e_1_2_9_19_1 – ident: e_1_2_9_48_1 doi: 10.1109/tie.2020.2973876 – ident: e_1_2_9_18_1 doi: 10.1016/j.ress.2015.07.013 – ident: e_1_2_9_45_1 doi: 10.1016/j.apenergy.2021.118317 – ident: e_1_2_9_20_1 doi: 10.1016/j.apenergy.2014.03.086 – start-page: 2108 volume-title: Proceedings of Annual Conference of the IEEE Industrial Electronics Society year: 2020 ident: e_1_2_9_31_1 – ident: e_1_2_9_6_1 doi: 10.1016/j.energy.2021.120890 – ident: e_1_2_9_36_1 doi: 10.1016/j.apenergy.2021.118134 – ident: e_1_2_9_30_1 doi: 10.1109/access.2019.2907612 – ident: e_1_2_9_34_1 doi: 10.1145/335191.335388 – ident: e_1_2_9_26_1 doi: 10.1038/s42256‐020‐0156‐7 – start-page: 1679 volume-title: Proceedings of Design, Automation & Test in Europe Conference & Exhibition year: 2021 ident: e_1_2_9_14_1 – ident: e_1_2_9_67_1 doi: 10.1038/s41467‐022‐29837‐w – ident: e_1_2_9_42_1 doi: 10.1016/j.est.2019.100951 – ident: e_1_2_9_46_1 doi: 10.1109/tii.2020.3008223 – ident: e_1_2_9_5_1 doi: 10.1039/c9ee01919g – volume: 63 start-page: 2645 issue: 4 year: 2016 ident: e_1_2_9_21_1 article-title: Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling publication-title: IEEE Trans. Ind. Electron. – ident: e_1_2_9_40_1 doi: 10.1016/j.jpowsour.2020.228654 – ident: e_1_2_9_63_1 doi: 10.1016/j.jpowsour.2022.231027 – ident: e_1_2_9_25_1 doi: 10.1016/j.joule.2019.11.018 – ident: e_1_2_9_13_1 doi: 10.1038/s41586‐020‐1994‐5 – ident: e_1_2_9_28_1 doi: 10.1021/acs.chemrev.1c00876 – ident: e_1_2_9_29_1 doi: 10.1109/tim.2022.3198466 – ident: e_1_2_9_66_1 doi: 10.1109/tie.2019.2946551 – ident: e_1_2_9_37_1 doi: 10.1016/j.patter.2021.100302 |
| SSID | ssj0002874530 |
| Score | 2.3431373 |
| SecondaryResourceType | review_article |
| Snippet | Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable... Abstract Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain,... |
| SourceID | doaj unpaywall proquest crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 207 |
| SubjectTerms | Accuracy Algorithms Batteries battery management systems Context cyber‐physical systems Data acquisition Data collection Decision making Electric vehicles Energy consumption Energy storage Kalman filters learning (artificial intelligence) Lifetime Machine learning Prediction models Rechargeable batteries |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NixQxEA2yF_UgfuLoKgH3othuks5H91EXl0VQBF3YW0gl1aAMvcP0DjI3f4K_0V9iJd0zzICsF2-hqaZDXnXqpav6FWNHTTK2CY2pAFpbaZS2AtmJSunUNbFTzpWM7sdP9uxcf7gwFzutvnJN2CgPPC7csQBECkIgA4K2SmeB8kQ8JRjlFIhCjUTT7hymvpdPRk6bWmz0SHV7HBeDeiPJ1O5FoCLUv8cub676RVj_CPP5Pl8tAef0LrszMUX-dpzhPXYD-_vs9o5-4AM2ZKq4Gl7zuGmJQuPQJ07PIfxw4JcdzzWgv3_-Ssu8r3EoepprPv_WYe4rT6Y5VZPh4fl_siWPa8Al3bCYEOSj2DPPRe20kz9k56fvv56cVVMXhSpqCr8VxFjnZRNYWxdbqVIdDMo6IbggdNLoGpFScDYRaFF0KVDQbqOMANhGUz9iB_1lj48Zl6ClTmiwM0AnJeI6jWuiaQGynKEzM_Zys7I-ThLjudPF3JdUt259RsEXFGbsxdZ2MQpr_NXqXQZoa5HFsMsFchE_uYj_l4vM2OEGXj-9oYOvy8lTWeNm7GgL-bVTeVW84RoTf_L5iyqjJ_9j3k_ZLUUUaqxoO2QHV8sVPiMKdAXPi7f_Aau5Bco priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central - New (Subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QE4ID7FQkGW6AVEaOLYcXJAiFatKiRWFVCpN8tjOxXSKhuSrtDe-An8Rn4JHm-ytBLamxVN5CTPHr94xm8A9ksni9KUMkGsikT4rEgwq9OEC1eXtuZKxYju51lxei4-XciLHZiNZ2EorXL0idFRu4WlPfKDPP4p8EKqD-2PhKpGUXR1LKFhhtIK7n2UGLsFu5yUsSawe3g8O_uy2XWJ6u55OuqUiurAtj1_l_GUDlNfW5migP8N1nl72bRm9dPM5zd5bFyITu7DvYFBso9ryB_Ajm8ewt1ruoKPoCcKuezfMjuWSglt0zgW-gm4-p4taka5oX9-_XYd-TuGUWdzxebfa0_15oMphXAINkbnzDpmV-i7cEM7IMvWItCMkt2Dh38M5yfH345Ok6G6QmJFWJYTtDaQqUAAfF4oW2Xc5Ub6LHcelUmFE16VqXNGFS6AadPambCYVzaziL6yMn8Ck2bR-KfAMhSZcF76WmL4gwocqFSllRUiyRwqOYXX45fVdpAepwoYcx1D4KLShIKOKEzh1ca2XQtu_NfqkADaWJBIdryw6C71MOd0it4H_oKZ8SgKeldeuUBxjeSKY2qmsDfCq4eZ2-t_42wK-xvItz7Kmzgatpjoo7OvPLaebe_yOdzhgTStc9j2YHLVLf2LQHqu8OUwkv8Crj8EVw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA06-yA--C3OskrAfVHs2KT5aB7XxWURXBZ0YH0KuUkqi0OntDPI7JM_wd_oLzFJ22FHZBF8C-WmJOm5NydNci5Ch6XjojQlzwCUyJgnIgNS5RllriptRaVMO7ofz8TpnH244BfXbvH3-hDbH27RM1K8jg7euKqP8_2qk6m3tunojNBAy2-jPcEDG5-gvfnZ-dGXlFNOlVlRKDGqku5U2JmHklz_Dse8s64bs_luFotd1pqmnZP7yIwN7k-bfJutVzCzV39oOf5Pjx6gewMnxUc9iB6iW75-hO5eUyp8jLpIStfdG2zH5CuhbGqHQ8MCUnyHlxWOp01__fjp2hhBMSTlzg1eXFY-ZrAPpnFTKAIBx5trLbYb8G2o0AxYwb2sNI7H58Oc8QTNT95_Pj7NhnwNmWVhos_A2kDPAqXwhZBWEeoKwz0pnAdpcuaYl2XunJHCBXjYvHIm0ANliQXwyvLiKZrUy9o_Q5gAI8x57isOYU0WWFUpS8sVQBROlHyKXo1fT9tBzDzm1FjotKnOlI4DqdNATtHLrW3TS3j81epdBMHWIspupwfL9qsevFjn4H1gRECMByZiX6lygTQbTiWF3EzRwQghPcSCThdpjUsFl1N0uIXVjU15nWByg4k-Pv9EU2n_3955gCardu2fBwa1gheDk_wGwwcgeA priority: 102 providerName: Unpaywall |
| Title | Status, challenges, and promises of data‐driven battery lifetime prediction under cyber‐physical system context |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12086 https://www.proquest.com/docview/3192492657 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cps2.12086 https://doaj.org/article/0bee812b1aeb46248229d016a5272b0a |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2398-3396 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: IDLOA dateStart: 20161201 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central - New (Subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: AVUZU dateStart: 20161231 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2398-3396 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002874530 issn: 2398-3396 databaseCode: 24P dateStart: 20160101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVpsmizKH3SSdNB0Gxa6taSJcuGbpKQaSh0GNoOpCujK8klMHgGO0OYXT-h35gvyZX8aAdKoBsjm2v8OLq6R69zCTnKrEwznckIIE8j4VgaASvjiAtbZqbkSoUZ3S_T9HwuPl_Iix3ysd8L0-pDDANu3jNCe-0dXEObhQRJLYJoVg1_zzhS8ntkjyGR8fWbi9kwwhKU3EOyEa9xFyVo0euTivzDn9u3IlIQ7t9im_fX1UpvrvVisc1fQwCaPCIPO-ZIj1uoH5MdVz0h-3_pCT4ljaeO6-YdNX2KFCzrylJ8DuLpGrosqV8TevPrt619O0ch6Gtu6OKydD7PPJr6qRsPF_X7y2pqNuBqvGHVIUpb8WfqF7ljy_6MzCdn30_Poy6rQmQEhuMIjEEShYHfJakyOeM20dKxxDpQOhZWOJXF1mqVWgTRxKXVGMRzwwyAy41MnpPdalm5F4QyEExYJ10pAXtOyH0ylRmZA3h5QyVH5E3_ZwvTSY77zBeLIkx9i7zwKBQBhRF5PdiuWqGNf1qdeIAGCy-OHS4s659F52tFDM4hbwGmHYjUfyvPLVJbLbniEOsROezhLTqPbYok9ER5KtWIHA2Q3_kqb0NtuMOkOJ1946F08D_GL8kDjtSpXcl2SHav6rV7hdTnCsahhuMxm3wak72Ts-ns6zgMI-DZfDo7_nEL9I8Fng |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqdlFYIJ5ioIAlygJEaOLYcbKoEC2tprQdVdBK3Rm_gpBGmZB0VM2OT-CL-Bi-hHs9ydBKaHbdRdGNHPte-x6_ziFkM3ciy3UuImOKLOI-ySKTlHHEuCtzWzIpw47u8SgbnvFP5-J8hfzu78Lgscp-TAwDtZtYXCPfSsNMgWVCvq9_RKgahburvYSG7qQV3HagGOsudhz62SVM4drtg4_g71eM7e-d7g6jTmUgshzSU2SsBVABidCnmbRFwlyqhU9S543UMXfcyzx2TsvMQaVsXDoNSa2wiTXGFxZVIyAFrPGUFzD5W9vZG518XqzyBDb5NO55UXmxZeuWvUtYjJe3r2TCIBhwDeWuT6tazy71eHwdN4fEt3-X3OkQK_0wD7F7ZMVX98ntKzyGD0iLkHXavqW2l2aBZ105CuVAHPmWTkqKZ1H__PzlGhxfqQm8njM6_l561LcHU9wywjCheK-toXZmfAMf1F0k0TnpNMXD9ZBRHpKzG2nnR2S1mlT-MaGJ4Ql3XvhSGJixAebKZW5FYQzSKkoxIK_7llW2ozpHxY2xClvuvFDoBRW8MCAvF7b1nODjv1Y76KCFBZJyhxeT5pvq-riKjfeAl0yiveEZ1pUVDiC1FkwyE-sB2ejdq7qRolX_4npANhcuX_orb0I0LDFRuydfWHh6srzIF2R9eHp8pI4ORodPyS0GgG1-fm6DrF40U_8MANeFed5FNSVfb7oj_QUzmEJd |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA46C14exCvOumrAfVGsNmnStI_r6rDelgUdWXwJuVUWhk5pd5B58yf4G_0lnpN2qgOy4Fspp9cvJ-dLcvIdQvYLL_PCFDKxtswTEVieWFalCRe-KlzFlYoruh-P86O5eHcqT4fcHNwL0-tDjBNu6Bmxv0YHD42v-gGnQJFM13T8BePAyS-THQjkqZiQnYMv86_zcZIlirnHeiMoc5dkWZlvJEpF-fLPDbaCUtTu3yKcV1d1Y9bfzWKxTWFjDJrdJDcG8kgPerRvkUuhvk2u_yUpeId0yB5X3XPqNlVS4NjUnsJzANLQ0WVFMS3014-fvsWujtoosbmmi7MqYKl5MMXVG0SM4hazlrq1DS1c0Ayg0l7_mWKeO3Tud8l89ubz4VEyFFZInICInFjngEdB7A9ZrlzJuM-MDCzzwSqTCi-CKlLvjco94OjSyhuI46VjztpQOpndI5N6WYf7hDIrmPBBhkpaGDwB_SlU4WRpLSocKjklTzd_VrtBdRyLXyx0XP0WpUYUdERhSp6Mtk2vtfFPq1cI0GiB-tjxxLL9pgd306kNAaiLZSZYkeO38tIDuzWSK25TMyV7G3j14LSdzuJglOdSTcn-CPmFr_IstoYLTPThyScej3b_x_gxuXLyeqY_vD1-_4Bc40Ck-ry2PTI5b1fhIRChc_toaO6_AQmZBTk |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA06-yA--C3OskrAfVHs2KT5aB7XxWURXBZ0YH0KuUkqi0OntDPI7JM_wd_oLzFJ22FHZBF8C-WmJOm5NydNci5Ch6XjojQlzwCUyJgnIgNS5RllriptRaVMO7ofz8TpnH244BfXbvH3-hDbH27RM1K8jg7euKqP8_2qk6m3tunojNBAy2-jPcEDG5-gvfnZ-dGXlFNOlVlRKDGqku5U2JmHklz_Dse8s64bs_luFotd1pqmnZP7yIwN7k-bfJutVzCzV39oOf5Pjx6gewMnxUc9iB6iW75-hO5eUyp8jLpIStfdG2zH5CuhbGqHQ8MCUnyHlxWOp01__fjp2hhBMSTlzg1eXFY-ZrAPpnFTKAIBx5trLbYb8G2o0AxYwb2sNI7H58Oc8QTNT95_Pj7NhnwNmWVhos_A2kDPAqXwhZBWEeoKwz0pnAdpcuaYl2XunJHCBXjYvHIm0ANliQXwyvLiKZrUy9o_Q5gAI8x57isOYU0WWFUpS8sVQBROlHyKXo1fT9tBzDzm1FjotKnOlI4DqdNATtHLrW3TS3j81epdBMHWIspupwfL9qsevFjn4H1gRECMByZiX6lygTQbTiWF3EzRwQghPcSCThdpjUsFl1N0uIXVjU15nWByg4k-Pv9EU2n_3955gCardu2fBwa1gheDk_wGwwcgeA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Status%2C+challenges%2C+and+promises+of+data%E2%80%90driven+battery+lifetime+prediction+under+cyber%E2%80%90physical+system+context&rft.jtitle=IET+cyber-physical+systems&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Sihui&rft.au=Li%2C+Peiyi&rft.au=Wan%2C+Jiayu&rft.date=2024-09-01&rft.issn=2398-3396&rft.eissn=2398-3396&rft.volume=9&rft.issue=3&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1049%2Fcps2.12086&rft.externalDBID=10.1049%252Fcps2.12086&rft.externalDocID=CPS212086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-3396&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-3396&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-3396&client=summon |