Status, challenges, and promises of data‐driven battery lifetime prediction under cyber‐physical system context

Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, suc...

Full description

Saved in:
Bibliographic Details
Published inIET cyber-physical systems Vol. 9; no. 3; pp. 207 - 217
Main Authors Liu, Yang, Chen, Sihui, Li, Peiyi, Wan, Jiayu, Li, Xin
Format Journal Article
LanguageEnglish
Published Southampton John Wiley & Sons, Inc 01.09.2024
Wiley
Subjects
Online AccessGet full text
ISSN2398-3396
2398-3396
DOI10.1049/cps2.12086

Cover

Abstract Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. The authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In particular, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners.
AbstractList Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners.
Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners. The authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In particular, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners.
Abstract Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable battery is gaining significant popularity as it has been adopted to serve as the power supplier in a broad range of application scenarios, such as cyber‐physical system (CPS), due to multiple advantages. On the other hand, battery inspection and management solutions have been constructed based on the CPS architecture in order to guarantee the quality, reliability and safety of rechargeable batteries. In specific, lifetime prediction is extensively studied in recent research as it can help assess the quality and health status to facilitate the manufacturing and maintenance. Due to the aforementioned importance, the authors aim to conduct a comprehensive survey on the data‐driven techniques for battery lifetime prediction, including their current status, challenges and promises. In contrast to existing literature, the battery lifetime prediction methods are studied under CPS context in this survey. Hence, the authors focus on the algorithms for lifetime prediction as well as the engineering frameworks that enable the data acquisition and deployment of prediction models in CPS systems. Through this survey, the authors intend to investigate both academic and practical values in the domain of battery lifetime prediction to benefit both researchers and practitioners.
Author Wan, Jiayu
Liu, Yang
Li, Peiyi
Chen, Sihui
Li, Xin
Author_xml – sequence: 1
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  email: yang.liu2@dukekunshan.edu.cn
  organization: Duke Kunshan University
– sequence: 2
  givenname: Sihui
  surname: Chen
  fullname: Chen, Sihui
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Peiyi
  surname: Li
  fullname: Li, Peiyi
  organization: Shanghai Jiao Tong University
– sequence: 4
  givenname: Jiayu
  surname: Wan
  fullname: Wan, Jiayu
  email: wanjy@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Xin
  orcidid: 0000-0002-4510-2436
  surname: Li
  fullname: Li, Xin
  email: xinli.ece@duke.edu
  organization: Duke Kunshan University
BookMark eNp9kc1qFTEYhgepYK3deAUBd9pT8zOTmVnKwZ9CQaG6Dl-Sb9oc5iRjkrHOrpfgNXol5nRERKSrfITnfZM8eVod-eCxqp4zes5o3b82U-LnjNNOPqqOuei7jRC9PPprflKdprSjlPKurRtBj6t0lSHP6YyYGxhH9NdYZvCWTDHsXcJEwkAsZPh598NG9w090ZAzxoWMbsDs9lhQtM5kFzyZvcVIzKIxlsB0syRnYCRpSRn3xASf8Xt-Vj0eYEx4-ns9qb68e_t5-2Fz-fH9xfbN5cbUNZcbbYzgdccpCtmannEroEEmLOoWaG1rbDtqLbTSdtAZOljgUvaGGa2xN404qS7WXhtgp6bo9hAXFcCp-40QrxXE7MyIimrEjnHNAHUtD6fy3lImoeEt1xRK16u1a_YTLLfF1Z9CRtVBvzroV_f6C_1ipYvFrzOmrHZhjr48VgnW87rnsmkLRVfKxJBSxEEZV36jeMwR3Pj_4pf_RB68BVvhWzfi8gCptp-u-Jr5BXP0t7U
CitedBy_id crossref_primary_10_1021_acs_energyfuels_4c02209
crossref_primary_10_1007_s44258_024_00048_w
crossref_primary_10_1016_j_mtener_2025_101818
crossref_primary_10_1016_j_jpowsour_2024_235794
Cites_doi 10.1016/j.est.2019.100817
10.1109/tie.2018.2808918
10.1016/j.apenergy.2023.120808
10.1109/tsmc.2015.2389757
10.1016/j.jpowsour.2018.11.072
10.1016/j.joule.2023.03.008
10.1109/tsmc.2013.2296276
10.1109/tie.2017.2782224
10.1016/j.jpowsour.2021.230823
10.1016/j.ress.2022.109046
10.1109/tte.2020.3017090
10.1016/j.ress.2022.108758
10.1109/jestpe.2020.2968490
10.1016/j.est.2019.100761
10.1016/j.est.2020.101741
10.1016/j.est.2020.102064
10.1109/tvt.2021.3055811
10.1016/j.joule.2021.10.010
10.1016/j.egyai.2021.100081
10.1016/j.jclepro.2018.09.065
10.1109/ICDM.2008.17
10.1109/tmech.2018.2832019
10.1016/j.ress.2021.107556
10.1016/j.joule.2021.09.015
10.1109/tmech.2020.3040010
10.1016/j.ensm.2022.06.053
10.1016/j.est.2019.03.022
10.1016/j.apenergy.2020.115646
10.1002/cphc.202100829
10.1109/ISSE51541.2021.9582469
10.1002/ente.202000984
10.1016/j.est.2018.12.011
10.1016/j.jpowsour.2016.12.083
10.1016/j.eng.2020.10.022
10.1016/j.neucom.2019.09.074
10.1016/j.apenergy.2019.113626
10.1109/access.2022.3178987
10.1016/j.apenergy.2019.114296
10.1109/tpel.2020.2987383
10.1109/tvt.2020.3014932
10.1109/tvt.2018.2805189
10.1016/j.ensm.2023.02.034
10.1016/j.egyr.2022.03.016
10.1038/s41467‐020‐15235‐7
10.1016/j.jpowsour.2022.232432
10.1038/s41560‐019‐0356‐8
10.1016/j.jpowsour.2009.11.048
10.1016/j.apenergy.2021.117922
10.1109/ETFA.2018.8502480
10.1016/j.ymssp.2019.106602
10.1145/3534678.3539024
10.1038/s42256‐021‐00312‐3
10.1109/tie.2020.2973876
10.1016/j.ress.2015.07.013
10.1016/j.apenergy.2021.118317
10.1016/j.apenergy.2014.03.086
10.1016/j.energy.2021.120890
10.1016/j.apenergy.2021.118134
10.1109/access.2019.2907612
10.1145/335191.335388
10.1038/s42256‐020‐0156‐7
10.1038/s41467‐022‐29837‐w
10.1016/j.est.2019.100951
10.1109/tii.2020.3008223
10.1039/c9ee01919g
10.1016/j.jpowsour.2020.228654
10.1016/j.jpowsour.2022.231027
10.1016/j.joule.2019.11.018
10.1038/s41586‐020‐1994‐5
10.1021/acs.chemrev.1c00876
10.1109/tim.2022.3198466
10.1109/tie.2019.2946551
10.1016/j.patter.2021.100302
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1049/cps2.12086
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2398-3396
EndPage 217
ExternalDocumentID oai_doaj_org_article_0bee812b1aeb46248229d016a5272b0a
10.1049/cps2.12086
10_1049_cps2_12086
CPS212086
Genre reviewArticle
GroupedDBID 0R~
1OC
24P
6IK
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADBBV
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IFIPE
IPLJI
ITC
JAVBF
K7-
M7S
M~E
O9-
OCL
OK1
PIMPY
PTHSS
RIE
RUI
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IGS
PHGZM
PHGZT
PQGLB
WIN
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c4426-bcc324820e367c912d3a5e13deb7a04d4e780dda76d8a8c0fda2669c1cbbe9c53
IEDL.DBID 24P
ISSN 2398-3396
IngestDate Fri Oct 03 12:50:23 EDT 2025
Tue Aug 19 14:53:55 EDT 2025
Wed Aug 13 04:27:38 EDT 2025
Wed Oct 29 21:07:46 EDT 2025
Thu Apr 24 22:53:21 EDT 2025
Wed Jan 22 17:13:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4426-bcc324820e367c912d3a5e13deb7a04d4e780dda76d8a8c0fda2669c1cbbe9c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4510-2436
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12086
PQID 3192492657
PQPubID 6853487
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0bee812b1aeb46248229d016a5272b0a
unpaywall_primary_10_1049_cps2_12086
proquest_journals_3192492657
crossref_citationtrail_10_1049_cps2_12086
crossref_primary_10_1049_cps2_12086
wiley_primary_10_1049_cps2_12086_CPS212086
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Southampton
PublicationPlace_xml – name: Southampton
PublicationTitle IET cyber-physical systems
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 68
2021; 26
2018; 205
2022; 71
2015; 144
2022; 23
2020; 13
2020; 11
2021; 70
2022; 122
2015; 45
2020; 4
2020; 2
2021; 33
2019; 66
2019; 21
2019; 24
2019; 23
2019; 67
2019; 26
2019; 25
2020; 578
2023; 336
2020; 139
2021; 230
2020; 376
2010; 195
2022; 525
2014; 126
2022; 520
2021; 9
2019; 7
2021; 7
2019; 4
2000; 29
2023; 57
2021; 5
2021; 3
2021; 2
2022; 51
2020; 260
2008
2020; 35
2020; 32
2018; 23
2018; 67
2018; 65
2014; 44
2023
2021; 211
2022
2021
2020
2022; 8
2021; 17
2017; 54
2023; 232
2019; 412
2023; 556
2019
2022; 13
2016; 63
2018
2020; 69
2022; 10
2014
2022; 308
2020; 476
2020; 278
2017; 342
2022; 306
2022; 305
2022; 228
2019; 253
e_1_2_9_75_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Hu X. (e_1_2_9_21_1) 2016; 63
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Li L. (e_1_2_9_31_1) 2020
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Rossi M. (e_1_2_9_15_1) 2014
e_1_2_9_70_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Chetoui S. (e_1_2_9_14_1) 2021
e_1_2_9_42_1
e_1_2_9_63_1
Azis N.A. (e_1_2_9_19_1) 2019
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
McMahan H.B. (e_1_2_9_77_1) 2017
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 126
  start-page: 182
  year: 2014
  end-page: 189
  article-title: Method for estimating capacity and predicting remaining useful life of lithium‐ion battery
  publication-title: Appl. Energy
– volume: 336
  year: 2023
  article-title: Capacity estimation of lithium‐ion batteries based on data aggregation and feature fusion via graph neural network
  publication-title: Appl. Energy
– start-page: 2108
  year: 2020
  end-page: 2114
– volume: 10
  start-page: 59675
  year: 2022
  end-page: 59722
  article-title: Cyberphysical security of grid battery energy storage systems
  publication-title: IEEE Access
– start-page: 1
  year: 2021
  end-page: 8
– volume: 66
  start-page: 1585
  issue: 2
  year: 2019
  end-page: 1597
  article-title: Lithium‐ion battery remaining useful life prediction with box–cox transformation and Monte Carlo Simulation
  publication-title: IEEE Trans. Ind. Electron.
– volume: 253
  year: 2019
  article-title: Remaining useful life prediction of lithium‐ion batteries based on false nearest neighbors and a hybrid neural network
  publication-title: Appl. Energy
– volume: 578
  start-page: 397
  issue: 7795
  year: 2020
  end-page: 402
  article-title: Closed‐loop optimization of fast‐charging protocols for batteries with machine learning
  publication-title: Nature
– volume: 44
  start-page: 851
  issue: 7
  year: 2014
  end-page: 862
  article-title: Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 525
  year: 2022
  article-title: Battery health estimation with degradation pattern recognition and transfer learning
  publication-title: J. Power Sources
– volume: 71
  start-page: 1
  year: 2022
  end-page: 9
  article-title: Measurement uncertainty in battery electrochemical impedance spectroscopy
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 4
  start-page: 383
  issue: 5
  year: 2019
  end-page: 391
  article-title: Data‐driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
– volume: 67
  start-page: 5695
  issue: 7
  year: 2018
  end-page: 5705
  article-title: Long short‐term memory recurrent neural network for remaining useful life prediction of lithium‐ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 33
  year: 2021
  article-title: Big data driven vehicle battery management method: a novel cyber‐physical system perspective
  publication-title: J. Energy Storage
– volume: 21
  start-page: 510
  year: 2019
  end-page: 518
  article-title: Remaining useful life prediction for lithium‐ion batteries based on a hybrid model combining the long short‐term memory and Elman neural networks
  publication-title: J. Energy Storage
– volume: 26
  start-page: 1295
  issue: 3
  year: 2021
  end-page: 1306
  article-title: General discharge voltage information enabled health evaluation for lithium‐ion batteries
  publication-title: IEEE ASME Trans. Mechatron.
– start-page: 1
  year: 2014
  end-page: 6
– volume: 305
  year: 2022
  article-title: Accurate residual capacity estimation of retired LiFePO4 batteries based on mechanism and data‐driven model
  publication-title: Appl. Energy
– start-page: 2987
  year: 2022
  end-page: 2996
– volume: 63
  start-page: 2645
  issue: 4
  year: 2016
  end-page: 2656
  article-title: Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling
  publication-title: IEEE Trans. Ind. Electron.
– volume: 10
  start-page: 1270
  issue: 1
  year: 2022
  end-page: 1281
  article-title: An overview of cyber‐physical security of battery management systems and adoption of blockchain technology
  publication-title: IEEE J. Emerg. Sel. Top. Power Electron.
– volume: 51
  start-page: 372
  year: 2022
  end-page: 381
  article-title: Flexible battery state of health and state of charge estimation using partial charging data and deep learning
  publication-title: Energy Storage Mater.
– volume: 376
  start-page: 95
  year: 2020
  end-page: 102
  article-title: Remaining useful life prediction of lithium‐ion batteries with adaptive unscented kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– volume: 5
  year: 2021
  article-title: Lithium‐ion battery data and where to find it
  publication-title: Energy AI
– volume: 278
  year: 2020
  article-title: Towards the swift prediction of the remaining useful life of lithium‐ion batteries with end‐to‐end deep learning
  publication-title: Appl. Energy
– start-page: 88
  year: 2019
  end-page: 93
– volume: 2
  start-page: 161
  issue: 3
  year: 2020
  end-page: 170
  article-title: Predicting the state of charge and health of batteries using data‐driven machine learning
  publication-title: Nat. Mach. Intell.
– volume: 32
  year: 2020
  article-title: A novel deep learning framework for state of health estimation of lithium‐ion battery
  publication-title: J. Energy Storage
– volume: 476
  year: 2020
  article-title: Lifespan prediction of lithium‐ion batteries based on various extracted features and gradient boosting regression tree model
  publication-title: J. Power Sources
– volume: 412
  start-page: 442
  year: 2019
  end-page: 450
  article-title: A data‐driven remaining capacity estimation approach for lithium‐ion batteries based on charging health feature extraction
  publication-title: J. Power Sources
– start-page: 1679
  year: 2021
  end-page: 1684
– volume: 23
  issue: 7
  year: 2022
  article-title: Improved battery cycle life prediction using a hybrid data‐driven model incorporating linear support vector regression and Gaussian process regression
  publication-title: ChemPhysChem
– volume: 17
  start-page: 3478
  issue: 5
  year: 2021
  end-page: 3487
  article-title: A data‐driven auto‐CNN‐LSTM prediction model for lithium‐ion battery remaining useful life
  publication-title: IEEE Trans. Ind. Inf.
– volume: 13
  start-page: 744
  issue: 3
  year: 2020
  end-page: 771
  article-title: The impact of intelligent cyber‐physical systems on the decarbonization of energy
  publication-title: Energy Environ. Sci.
– volume: 556
  year: 2023
  article-title: Adaptive evolution enhanced physics‐informed neural networks for time‐variant health prognosis of lithium‐ion batteries
  publication-title: J. Power Sources
– volume: 35
  start-page: 11855
  issue: 11
  year: 2020
  end-page: 11864
  article-title: Multiobjective optimization of data‐driven model for lithium‐ion battery SOH estimation with short‐term feature
  publication-title: IEEE Trans. Power Electron.
– volume: 228
  year: 2022
  article-title: Bayesian deep‐learning for RUL prediction: an active learning perspective
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 308
  year: 2022
  article-title: Impedance‐based capacity estimation for lithium‐ion batteries using generative adversarial network
  publication-title: Appl. Energy
– volume: 195
  start-page: 2419
  issue: 9
  year: 2010
  end-page: 2430
  article-title: Lithium batteries: status, prospects and future
  publication-title: J. Power Sources
– volume: 260
  year: 2020
  article-title: Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium‐ion batteries
  publication-title: Appl. Energy
– volume: 68
  start-page: 3170
  issue: 4
  year: 2021
  end-page: 3180
  article-title: A data‐driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium‐ion battery
  publication-title: IEEE Trans. Ind. Electron.
– volume: 8
  start-page: 4058
  year: 2022
  end-page: 4084
  article-title: Overview of batteries and battery management for electric vehicles
  publication-title: Energy Rep.
– volume: 306
  year: 2022
  article-title: Deep neural network battery life and voltage prediction by using data of one cycle only
  publication-title: Appl. Energy
– volume: 65
  start-page: 5634
  issue: 7
  year: 2018
  end-page: 5643
  article-title: Remaining useful life prediction and state of health diagnosis for Lithium‐Ion batteries using particle filter and support vector regression
  publication-title: IEEE Trans. Ind. Electron.
– volume: 23
  start-page: 320
  year: 2019
  end-page: 328
  article-title: Battery health prediction under generalized conditions using a Gaussian process transition model
  publication-title: J. Energy Storage
– volume: 11
  issue: 1
  year: 2020
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
– volume: 144
  start-page: 74
  year: 2015
  end-page: 82
  article-title: An integrated unscented kalman filter and relevance vector regression approach for lithium‐ion battery remaining useful life and short‐term capacity prediction
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 25
  year: 2019
  article-title: A deep learning method for online capacity estimation of lithium‐ion batteries
  publication-title: J. Energy Storage
– start-page: 845
  year: 2018
  end-page: 852
– volume: 26
  year: 2019
  article-title: Synchronous estimation of state of health and remaining useful lifetime for lithium‐ion battery using the incremental capacity and artificial neural networks
  publication-title: J. Energy Storage
– volume: 122
  start-page: 11131
  issue: 12
  year: 2022
  end-page: 11168
  article-title: Impedance analysis of electrochemical systems
  publication-title: Chem. Rev.
– volume: 3
  start-page: 447
  issue: 5
  year: 2021
  end-page: 456
  article-title: Machine learning pipeline for battery state‐of‐health estimation
  publication-title: Nat. Mach. Intell.
– volume: 9
  issue: 8
  year: 2021
  article-title: Recent advancements in battery management system for Li‐ion batteries of electric vehicles: future role of digital twin, cyber‐physical systems, battery swapping technology, and nondestructive testing
  publication-title: Energy Technol.
– volume: 2
  issue: 8
  year: 2021
  article-title: Recovering large‐scale battery aging dataset with machine learning
  publication-title: Patterns
– volume: 13
  issue: 1
  year: 2022
  article-title: Data‐driven capacity estimation of commercial lithium‐ion batteries from voltage relaxation
  publication-title: Nat. Commun.
– volume: 520
  year: 2022
  article-title: End‐to‐end capacity estimation of Lithium‐ion batteries with an enhanced long short‐term memory network considering domain adaptation
  publication-title: J. Power Sources
– volume: 67
  start-page: 8723
  issue: 10
  year: 2019
  end-page: 8731
  article-title: Transfer learning with long short‐term memory network for state‐of‐health prediction of lithium‐ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– volume: 29
  start-page: 93
  issue: 2
  year: 2000
  end-page: 104
  article-title: Identifying density‐based local outliers
  publication-title: ACM Sigmod Record
– volume: 45
  start-page: 915
  issue: 6
  year: 2015
  end-page: 928
  article-title: A health indicator extraction and optimization framework for lithium‐ion battery degradation modeling and prognostics
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 205
  start-page: 115
  year: 2018
  end-page: 133
  article-title: Afida Ayob, “A review of state of health and remaining useful life estimation methods for lithium‐ion battery in electric vehicles: challenges and recommendations”
  publication-title: J. Clean. Prod.
– volume: 23
  start-page: 2609
  issue: 6
  year: 2018
  end-page: 2618
  article-title: Cyber‐physical control for energy management of off‐road vehicles with hybrid energy storage systems
  publication-title: IEEE ASME Trans. Mechatron.
– volume: 57
  start-page: 460
  year: 2023
  end-page: 470
  article-title: A data‐driven method for extracting aging features to accurately predict the battery health
  publication-title: Energy Storage Mater.
– volume: 211
  year: 2021
  article-title: Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 7
  start-page: 1469
  issue: 10
  year: 2021
  end-page: 1482
  article-title: Co‐estimation of state of charge and capacity for lithium‐ion batteries with multi‐stage model fusion method
  publication-title: Engineering
– volume: 7
  start-page: 47259
  year: 2019
  end-page: 47272
  article-title: Design and implementation of a fully controllable cyber‐physical system for testing energy storage systems
  publication-title: IEEE Access
– start-page: 413
  year: 2008
  end-page: 422
– volume: 54
  start-page: 1273
  year: 2017
  end-page: 1282
– volume: 24
  year: 2019
  article-title: An insight into the errors and uncertainty of the lithium‐ion battery characterization experiments
  publication-title: J. Energy Storage
– year: 2023
– volume: 4
  start-page: 310
  issue: 2
  year: 2020
  end-page: 346
  article-title: Battery lifetime prognostics
  publication-title: Joule
– volume: 139
  year: 2020
  article-title: A new data‐driven transferable remaining useful life prediction approach for bearing under different working conditions
  publication-title: Mech. Syst. Signal Process.
– volume: 230
  year: 2021
  article-title: Energy management for hybrid energy storage system in electric vehicle: a cyber‐physical system perspective
  publication-title: Energy
– volume: 70
  start-page: 1269
  issue: 2
  year: 2021
  end-page: 1277
  article-title: Predictive battery health management with transfer learning and online model correction
  publication-title: IEEE Trans. Veh. Technol.
– volume: 69
  start-page: 10854
  issue: 10
  year: 2020
  end-page: 10867
  article-title: State‐of‐Health estimation and remaining‐useful‐life prediction for lithium‐ion battery using a hybrid data‐driven method
  publication-title: IEEE Trans. Veh. Technol.
– volume: 342
  start-page: 589
  year: 2017
  end-page: 597
  article-title: Failure statistics for commercial lithium ion batteries: a study of 24 pouch cells
  publication-title: J. Power Sources
– volume: 7
  start-page: 382
  issue: 2
  year: 2021
  end-page: 398
  article-title: Battery health prediction using fusion‐based feature selection and machine learning
  publication-title: IEEE Trans. Transp. Electrif.
– volume: 232
  year: 2023
  article-title: Explainability‐driven model improvement for SOH estimation of lithium‐ion battery
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 5
  start-page: 3187
  issue: 12
  year: 2021
  end-page: 3203
  article-title: Bayesian learning for rapid prediction of lithium‐ion battery‐cycling protocols
  publication-title: Joule
– volume: 5
  start-page: 2971
  issue: 11
  year: 2021
  end-page: 2992
  article-title: Predicting the impact of formation protocols on battery lifetime immediately after manufacturing
  publication-title: Joule
– ident: e_1_2_9_60_1
  doi: 10.1016/j.est.2019.100817
– ident: e_1_2_9_22_1
  doi: 10.1109/tie.2018.2808918
– ident: e_1_2_9_49_1
  doi: 10.1016/j.apenergy.2023.120808
– ident: e_1_2_9_43_1
  doi: 10.1109/tsmc.2015.2389757
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jpowsour.2018.11.072
– ident: e_1_2_9_80_1
  doi: 10.1016/j.joule.2023.03.008
– ident: e_1_2_9_62_1
  doi: 10.1109/tsmc.2013.2296276
– ident: e_1_2_9_51_1
  doi: 10.1109/tie.2017.2782224
– ident: e_1_2_9_47_1
  doi: 10.1016/j.jpowsour.2021.230823
– ident: e_1_2_9_58_1
  doi: 10.1016/j.ress.2022.109046
– ident: e_1_2_9_61_1
  doi: 10.1109/tte.2020.3017090
– ident: e_1_2_9_55_1
  doi: 10.1016/j.ress.2022.108758
– ident: e_1_2_9_4_1
  doi: 10.1109/jestpe.2020.2968490
– ident: e_1_2_9_32_1
  doi: 10.1016/j.est.2019.100761
– ident: e_1_2_9_56_1
  doi: 10.1016/j.est.2020.101741
– ident: e_1_2_9_2_1
  doi: 10.1016/j.est.2020.102064
– ident: e_1_2_9_65_1
  doi: 10.1109/tvt.2021.3055811
– ident: e_1_2_9_71_1
  doi: 10.1016/j.joule.2021.10.010
– ident: e_1_2_9_76_1
  doi: 10.1016/j.egyai.2021.100081
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jclepro.2018.09.065
– ident: e_1_2_9_35_1
  doi: 10.1109/ICDM.2008.17
– ident: e_1_2_9_12_1
  doi: 10.1109/tmech.2018.2832019
– ident: e_1_2_9_68_1
  doi: 10.1016/j.ress.2021.107556
– ident: e_1_2_9_72_1
  doi: 10.1016/j.joule.2021.09.015
– ident: e_1_2_9_41_1
  doi: 10.1109/tmech.2020.3040010
– ident: e_1_2_9_59_1
  doi: 10.1016/j.ensm.2022.06.053
– ident: e_1_2_9_50_1
  doi: 10.1016/j.est.2019.03.022
– ident: e_1_2_9_69_1
  doi: 10.1016/j.apenergy.2020.115646
– ident: e_1_2_9_33_1
  doi: 10.1002/cphc.202100829
– ident: e_1_2_9_39_1
  doi: 10.1109/ISSE51541.2021.9582469
– ident: e_1_2_9_8_1
  doi: 10.1002/ente.202000984
– ident: e_1_2_9_57_1
  doi: 10.1016/j.est.2018.12.011
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jpowsour.2016.12.083
– ident: e_1_2_9_73_1
  doi: 10.1016/j.eng.2020.10.022
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neucom.2019.09.074
– ident: e_1_2_9_70_1
  doi: 10.1016/j.apenergy.2019.113626
– ident: e_1_2_9_7_1
  doi: 10.1109/access.2022.3178987
– ident: e_1_2_9_64_1
  doi: 10.1016/j.apenergy.2019.114296
– ident: e_1_2_9_75_1
  doi: 10.1109/tpel.2020.2987383
– ident: e_1_2_9_74_1
  doi: 10.1109/tvt.2020.3014932
– ident: e_1_2_9_23_1
  doi: 10.1109/tvt.2018.2805189
– ident: e_1_2_9_53_1
  doi: 10.1016/j.ensm.2023.02.034
– ident: e_1_2_9_3_1
  doi: 10.1016/j.egyr.2022.03.016
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467‐020‐15235‐7
– start-page: 1273
  volume-title: Proceedings of International Conference on Artificial Intelligence and Statistics
  year: 2017
  ident: e_1_2_9_77_1
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jpowsour.2022.232432
– ident: e_1_2_9_9_1
  doi: 10.1038/s41560‐019‐0356‐8
– start-page: 1
  volume-title: Proceedings of Design, Automation & Test in Europe Conference & Exhibition
  year: 2014
  ident: e_1_2_9_15_1
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jpowsour.2009.11.048
– ident: e_1_2_9_52_1
  doi: 10.1016/j.apenergy.2021.117922
– ident: e_1_2_9_78_1
  doi: 10.1109/ETFA.2018.8502480
– ident: e_1_2_9_54_1
  doi: 10.1016/j.ymssp.2019.106602
– ident: e_1_2_9_79_1
  doi: 10.1145/3534678.3539024
– ident: e_1_2_9_38_1
  doi: 10.1038/s42256‐021‐00312‐3
– start-page: 88
  volume-title: Proceedings of International Conference on Instrumentation, Control, and Automation
  year: 2019
  ident: e_1_2_9_19_1
– ident: e_1_2_9_48_1
  doi: 10.1109/tie.2020.2973876
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ress.2015.07.013
– ident: e_1_2_9_45_1
  doi: 10.1016/j.apenergy.2021.118317
– ident: e_1_2_9_20_1
  doi: 10.1016/j.apenergy.2014.03.086
– start-page: 2108
  volume-title: Proceedings of Annual Conference of the IEEE Industrial Electronics Society
  year: 2020
  ident: e_1_2_9_31_1
– ident: e_1_2_9_6_1
  doi: 10.1016/j.energy.2021.120890
– ident: e_1_2_9_36_1
  doi: 10.1016/j.apenergy.2021.118134
– ident: e_1_2_9_30_1
  doi: 10.1109/access.2019.2907612
– ident: e_1_2_9_34_1
  doi: 10.1145/335191.335388
– ident: e_1_2_9_26_1
  doi: 10.1038/s42256‐020‐0156‐7
– start-page: 1679
  volume-title: Proceedings of Design, Automation & Test in Europe Conference & Exhibition
  year: 2021
  ident: e_1_2_9_14_1
– ident: e_1_2_9_67_1
  doi: 10.1038/s41467‐022‐29837‐w
– ident: e_1_2_9_42_1
  doi: 10.1016/j.est.2019.100951
– ident: e_1_2_9_46_1
  doi: 10.1109/tii.2020.3008223
– ident: e_1_2_9_5_1
  doi: 10.1039/c9ee01919g
– volume: 63
  start-page: 2645
  issue: 4
  year: 2016
  ident: e_1_2_9_21_1
  article-title: Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling
  publication-title: IEEE Trans. Ind. Electron.
– ident: e_1_2_9_40_1
  doi: 10.1016/j.jpowsour.2020.228654
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jpowsour.2022.231027
– ident: e_1_2_9_25_1
  doi: 10.1016/j.joule.2019.11.018
– ident: e_1_2_9_13_1
  doi: 10.1038/s41586‐020‐1994‐5
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.chemrev.1c00876
– ident: e_1_2_9_29_1
  doi: 10.1109/tim.2022.3198466
– ident: e_1_2_9_66_1
  doi: 10.1109/tie.2019.2946551
– ident: e_1_2_9_37_1
  doi: 10.1016/j.patter.2021.100302
SSID ssj0002874530
Score 2.3431373
SecondaryResourceType review_article
Snippet Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain, rechargeable...
Abstract Energy storage is playing an increasingly important role in the modern world as sustainability is becoming a critical issue. Within this domain,...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 207
SubjectTerms Accuracy
Algorithms
Batteries
battery management systems
Context
cyber‐physical systems
Data acquisition
Data collection
Decision making
Electric vehicles
Energy consumption
Energy storage
Kalman filters
learning (artificial intelligence)
Lifetime
Machine learning
Prediction models
Rechargeable batteries
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NixQxEA2yF_UgfuLoKgH3othuks5H91EXl0VQBF3YW0gl1aAMvcP0DjI3f4K_0V9iJd0zzICsF2-hqaZDXnXqpav6FWNHTTK2CY2pAFpbaZS2AtmJSunUNbFTzpWM7sdP9uxcf7gwFzutvnJN2CgPPC7csQBECkIgA4K2SmeB8kQ8JRjlFIhCjUTT7hymvpdPRk6bWmz0SHV7HBeDeiPJ1O5FoCLUv8cub676RVj_CPP5Pl8tAef0LrszMUX-dpzhPXYD-_vs9o5-4AM2ZKq4Gl7zuGmJQuPQJ07PIfxw4JcdzzWgv3_-Ssu8r3EoepprPv_WYe4rT6Y5VZPh4fl_siWPa8Al3bCYEOSj2DPPRe20kz9k56fvv56cVVMXhSpqCr8VxFjnZRNYWxdbqVIdDMo6IbggdNLoGpFScDYRaFF0KVDQbqOMANhGUz9iB_1lj48Zl6ClTmiwM0AnJeI6jWuiaQGynKEzM_Zys7I-ThLjudPF3JdUt259RsEXFGbsxdZ2MQpr_NXqXQZoa5HFsMsFchE_uYj_l4vM2OEGXj-9oYOvy8lTWeNm7GgL-bVTeVW84RoTf_L5iyqjJ_9j3k_ZLUUUaqxoO2QHV8sVPiMKdAXPi7f_Aau5Bco
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central - New (Subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7QE4ID7FQkGW6AVEaOLYcXJAiFatKiRWFVCpN8tjOxXSKhuSrtDe-An8Rn4JHm-ytBLamxVN5CTPHr94xm8A9ksni9KUMkGsikT4rEgwq9OEC1eXtuZKxYju51lxei4-XciLHZiNZ2EorXL0idFRu4WlPfKDPP4p8EKqD-2PhKpGUXR1LKFhhtIK7n2UGLsFu5yUsSawe3g8O_uy2XWJ6u55OuqUiurAtj1_l_GUDlNfW5migP8N1nl72bRm9dPM5zd5bFyITu7DvYFBso9ryB_Ajm8ewt1ruoKPoCcKuezfMjuWSglt0zgW-gm4-p4taka5oX9-_XYd-TuGUWdzxebfa0_15oMphXAINkbnzDpmV-i7cEM7IMvWItCMkt2Dh38M5yfH345Ok6G6QmJFWJYTtDaQqUAAfF4oW2Xc5Ub6LHcelUmFE16VqXNGFS6AadPambCYVzaziL6yMn8Ck2bR-KfAMhSZcF76WmL4gwocqFSllRUiyRwqOYXX45fVdpAepwoYcx1D4KLShIKOKEzh1ca2XQtu_NfqkADaWJBIdryw6C71MOd0it4H_oKZ8SgKeldeuUBxjeSKY2qmsDfCq4eZ2-t_42wK-xvItz7Kmzgatpjoo7OvPLaebe_yOdzhgTStc9j2YHLVLf2LQHqu8OUwkv8Crj8EVw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA06-yA--C3OskrAfVHs2KT5aB7XxWURXBZ0YH0KuUkqi0OntDPI7JM_wd_oLzFJ22FHZBF8C-WmJOm5NydNci5Ch6XjojQlzwCUyJgnIgNS5RllriptRaVMO7ofz8TpnH244BfXbvH3-hDbH27RM1K8jg7euKqP8_2qk6m3tunojNBAy2-jPcEDG5-gvfnZ-dGXlFNOlVlRKDGqku5U2JmHklz_Dse8s64bs_luFotd1pqmnZP7yIwN7k-bfJutVzCzV39oOf5Pjx6gewMnxUc9iB6iW75-hO5eUyp8jLpIStfdG2zH5CuhbGqHQ8MCUnyHlxWOp01__fjp2hhBMSTlzg1eXFY-ZrAPpnFTKAIBx5trLbYb8G2o0AxYwb2sNI7H58Oc8QTNT95_Pj7NhnwNmWVhos_A2kDPAqXwhZBWEeoKwz0pnAdpcuaYl2XunJHCBXjYvHIm0ANliQXwyvLiKZrUy9o_Q5gAI8x57isOYU0WWFUpS8sVQBROlHyKXo1fT9tBzDzm1FjotKnOlI4DqdNATtHLrW3TS3j81epdBMHWIspupwfL9qsevFjn4H1gRECMByZiX6lygTQbTiWF3EzRwQghPcSCThdpjUsFl1N0uIXVjU15nWByg4k-Pv9EU2n_3955gCardu2fBwa1gheDk_wGwwcgeA
  priority: 102
  providerName: Unpaywall
Title Status, challenges, and promises of data‐driven battery lifetime prediction under cyber‐physical system context
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcps2.12086
https://www.proquest.com/docview/3192492657
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/cps2.12086
https://doaj.org/article/0bee812b1aeb46248229d016a5272b0a
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: IDLOA
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: AVUZU
  dateStart: 20161231
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2398-3396
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002874530
  issn: 2398-3396
  databaseCode: 24P
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LatwwFBVpsmizKH3SSdNB0Gxa6taSJcuGbpKQaSh0GNoOpCujK8klMHgGO0OYXT-h35gvyZX8aAdKoBsjm2v8OLq6R69zCTnKrEwznckIIE8j4VgaASvjiAtbZqbkSoUZ3S_T9HwuPl_Iix3ysd8L0-pDDANu3jNCe-0dXEObhQRJLYJoVg1_zzhS8ntkjyGR8fWbi9kwwhKU3EOyEa9xFyVo0euTivzDn9u3IlIQ7t9im_fX1UpvrvVisc1fQwCaPCIPO-ZIj1uoH5MdVz0h-3_pCT4ljaeO6-YdNX2KFCzrylJ8DuLpGrosqV8TevPrt619O0ch6Gtu6OKydD7PPJr6qRsPF_X7y2pqNuBqvGHVIUpb8WfqF7ljy_6MzCdn30_Poy6rQmQEhuMIjEEShYHfJakyOeM20dKxxDpQOhZWOJXF1mqVWgTRxKXVGMRzwwyAy41MnpPdalm5F4QyEExYJ10pAXtOyH0ylRmZA3h5QyVH5E3_ZwvTSY77zBeLIkx9i7zwKBQBhRF5PdiuWqGNf1qdeIAGCy-OHS4s659F52tFDM4hbwGmHYjUfyvPLVJbLbniEOsROezhLTqPbYok9ER5KtWIHA2Q3_kqb0NtuMOkOJ1946F08D_GL8kDjtSpXcl2SHav6rV7hdTnCsahhuMxm3wak72Ts-ns6zgMI-DZfDo7_nEL9I8Fng
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWqdlFYIJ5ioIAlygJEaOLYcbKoEC2tprQdVdBK3Rm_gpBGmZB0VM2OT-CL-Bi-hHs9ydBKaHbdRdGNHPte-x6_ziFkM3ciy3UuImOKLOI-ySKTlHHEuCtzWzIpw47u8SgbnvFP5-J8hfzu78Lgscp-TAwDtZtYXCPfSsNMgWVCvq9_RKgahburvYSG7qQV3HagGOsudhz62SVM4drtg4_g71eM7e-d7g6jTmUgshzSU2SsBVABidCnmbRFwlyqhU9S543UMXfcyzx2TsvMQaVsXDoNSa2wiTXGFxZVIyAFrPGUFzD5W9vZG518XqzyBDb5NO55UXmxZeuWvUtYjJe3r2TCIBhwDeWuT6tazy71eHwdN4fEt3-X3OkQK_0wD7F7ZMVX98ntKzyGD0iLkHXavqW2l2aBZ105CuVAHPmWTkqKZ1H__PzlGhxfqQm8njM6_l561LcHU9wywjCheK-toXZmfAMf1F0k0TnpNMXD9ZBRHpKzG2nnR2S1mlT-MaGJ4Ql3XvhSGJixAebKZW5FYQzSKkoxIK_7llW2ozpHxY2xClvuvFDoBRW8MCAvF7b1nODjv1Y76KCFBZJyhxeT5pvq-riKjfeAl0yiveEZ1pUVDiC1FkwyE-sB2ejdq7qRolX_4npANhcuX_orb0I0LDFRuydfWHh6srzIF2R9eHp8pI4ORodPyS0GgG1-fm6DrF40U_8MANeFed5FNSVfb7oj_QUzmEJd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA46C14exCvOumrAfVGsNmnStI_r6rDelgUdWXwJuVUWhk5pd5B58yf4G_0lnpN2qgOy4Fspp9cvJ-dLcvIdQvYLL_PCFDKxtswTEVieWFalCRe-KlzFlYoruh-P86O5eHcqT4fcHNwL0-tDjBNu6Bmxv0YHD42v-gGnQJFM13T8BePAyS-THQjkqZiQnYMv86_zcZIlirnHeiMoc5dkWZlvJEpF-fLPDbaCUtTu3yKcV1d1Y9bfzWKxTWFjDJrdJDcG8kgPerRvkUuhvk2u_yUpeId0yB5X3XPqNlVS4NjUnsJzANLQ0WVFMS3014-fvsWujtoosbmmi7MqYKl5MMXVG0SM4hazlrq1DS1c0Ayg0l7_mWKeO3Tud8l89ubz4VEyFFZInICInFjngEdB7A9ZrlzJuM-MDCzzwSqTCi-CKlLvjco94OjSyhuI46VjztpQOpndI5N6WYf7hDIrmPBBhkpaGDwB_SlU4WRpLSocKjklTzd_VrtBdRyLXyx0XP0WpUYUdERhSp6Mtk2vtfFPq1cI0GiB-tjxxLL9pgd306kNAaiLZSZYkeO38tIDuzWSK25TMyV7G3j14LSdzuJglOdSTcn-CPmFr_IstoYLTPThyScej3b_x_gxuXLyeqY_vD1-_4Bc40Ck-ry2PTI5b1fhIRChc_toaO6_AQmZBTk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1di9QwFA06-yA--C3OskrAfVHs2KT5aB7XxWURXBZ0YH0KuUkqi0OntDPI7JM_wd_oLzFJ22FHZBF8C-WmJOm5NydNci5Ch6XjojQlzwCUyJgnIgNS5RllriptRaVMO7ofz8TpnH244BfXbvH3-hDbH27RM1K8jg7euKqP8_2qk6m3tunojNBAy2-jPcEDG5-gvfnZ-dGXlFNOlVlRKDGqku5U2JmHklz_Dse8s64bs_luFotd1pqmnZP7yIwN7k-bfJutVzCzV39oOf5Pjx6gewMnxUc9iB6iW75-hO5eUyp8jLpIStfdG2zH5CuhbGqHQ8MCUnyHlxWOp01__fjp2hhBMSTlzg1eXFY-ZrAPpnFTKAIBx5trLbYb8G2o0AxYwb2sNI7H58Oc8QTNT95_Pj7NhnwNmWVhos_A2kDPAqXwhZBWEeoKwz0pnAdpcuaYl2XunJHCBXjYvHIm0ANliQXwyvLiKZrUy9o_Q5gAI8x57isOYU0WWFUpS8sVQBROlHyKXo1fT9tBzDzm1FjotKnOlI4DqdNATtHLrW3TS3j81epdBMHWIspupwfL9qsevFjn4H1gRECMByZiX6lygTQbTiWF3EzRwQghPcSCThdpjUsFl1N0uIXVjU15nWByg4k-Pv9EU2n_3955gCardu2fBwa1gheDk_wGwwcgeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Status%2C+challenges%2C+and+promises+of+data%E2%80%90driven+battery+lifetime+prediction+under+cyber%E2%80%90physical+system+context&rft.jtitle=IET+cyber-physical+systems&rft.au=Liu%2C+Yang&rft.au=Chen%2C+Sihui&rft.au=Li%2C+Peiyi&rft.au=Wan%2C+Jiayu&rft.date=2024-09-01&rft.issn=2398-3396&rft.eissn=2398-3396&rft.volume=9&rft.issue=3&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1049%2Fcps2.12086&rft.externalDBID=10.1049%252Fcps2.12086&rft.externalDocID=CPS212086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-3396&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-3396&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-3396&client=summon