A finite point method for adaptive three-dimensional compressible flow calculations

The finite point method (FPM) is a meshless technique, which is based on both, a weighted least‐squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigati...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 60; no. 9; pp. 937 - 971
Main Authors Ortega, Enrique, Oñate, Eugenio, Idelsohn, Sergio
Format Journal Article Publication
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.07.2009
Wiley
Subjects
Online AccessGet full text
ISSN0271-2091
1097-0363
1097-0363
DOI10.1002/fld.1892

Cover

Abstract The finite point method (FPM) is a meshless technique, which is based on both, a weighted least‐squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigation into the capabilities of the FPM to deal with 3D applications concerning real compressible fluid flow problems. In the first part of this work, the upwind‐biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting the meshless capabilities, an h‐adaptive methodology for 2D and 3D compressible flow calculations is developed. This adaptive technique applies a solution‐based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are encouraging. Several numerical examples are provided in order to illustrate the good performance of the numerical methods presented. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList The finite point method (FPM) is a meshless technique, which is based on both, a weighted least‐squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigation into the capabilities of the FPM to deal with 3D applications concerning real compressible fluid flow problems. In the first part of this work, the upwind‐biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting the meshless capabilities, an h ‐adaptive methodology for 2D and 3D compressible flow calculations is developed. This adaptive technique applies a solution‐based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are encouraging. Several numerical examples are provided in order to illustrate the good performance of the numerical methods presented. Copyright © 2008 John Wiley & Sons, Ltd.
Electronic version of an article published as "International journal for numerical methods in fluids", vol. 60, no 9, 2009, p. 937-971. DOI:10.1002/fld.1892 <http://onlinelibrary.wiley.com/doi/10.1002/fld.1892/abstract> The finite point method (FPM) is a meshless technique, which is based on both, a weighted least-squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigation into the capabilities of the FPM to deal with 3D applications concerning real compressible fluid flow problems. In the first part of this work, the upwind-biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting the meshless capabilities, an h-adaptive methodology for 2D and 3D compressible flow calculations is developed. This adaptive technique applies a solution-based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are encouraging. Several numerical examples are provided in order to illustrate the good performance of the numerical methods presented. Peer Reviewed
The finite point method (FPM) is a meshless technique, which is based on both, a weighted least-squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigation into the capabilities of the FPM to deal with 3D applications concerning real compressible fluid flow problems. In the first part of this work, the upwind-biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting the meshless capabilities, an h-adaptive methodology for 2D and 3D compressible flow calculations is developed. This adaptive technique applies a solution-based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are encouraging. Several numerical examples are provided in order to illustrate the good performance of the numerical methods presented. Copyright 2008 John Wiley & Sons, Ltd.
The finite point method (FPM) is a meshless technique, which is based on both, a weighted least‐squares numerical approximation on local clouds of points and a collocation technique which allows obtaining the discrete system of equations. The research work we present is part of a broader investigation into the capabilities of the FPM to deal with 3D applications concerning real compressible fluid flow problems. In the first part of this work, the upwind‐biased scheme employed for solving the flow equations is described. Secondly, with the aim of exploiting the meshless capabilities, an h‐adaptive methodology for 2D and 3D compressible flow calculations is developed. This adaptive technique applies a solution‐based indicator in order to identify local clouds where new points should be inserted in or existing points could be safely removed from the computational domain. The flow solver and the adaptive procedure have been evaluated and the results are encouraging. Several numerical examples are provided in order to illustrate the good performance of the numerical methods presented. Copyright © 2008 John Wiley & Sons, Ltd.
Author Ortega, Enrique
Idelsohn, Sergio
Oñate, Eugenio
Author_xml – sequence: 1
  givenname: Enrique
  surname: Ortega
  fullname: Ortega, Enrique
  email: eortega@cimne.upc.edu
  organization: International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, Spain
– sequence: 2
  givenname: Eugenio
  surname: Oñate
  fullname: Oñate, Eugenio
  organization: International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, Spain
– sequence: 3
  givenname: Sergio
  surname: Idelsohn
  fullname: Idelsohn, Sergio
  organization: International Center for Numerical Methods in Engineering (CIMNE), Universidad Politécnica de Cataluña, Edificio C1, Campus Norte, UPC, Gran Capitán, s/n, 08034 Barcelona, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22097736$$DView record in Pascal Francis
BookMark eNp9kM1uEzEUhS3USqQtEo8wG6SymOCfiT1eVi0tRWlZlJ-l5XiuVYNnPNgeQt6-DolagYCFZVn3O9a53xE6GMIACL0keE4wpm-s7-aklfQZmhEsRY0ZZwdohqkgNcWSPEdHKX3FGEvashm6O6usG1yGagxuyFUP-T50lQ2x0p0es_sBVb6PAHXnehiSC4P2lQn9GCElt_JQWR_WldHeTF7nMk8n6NBqn-DF_j5Gny7ffjx_Vy8_XF2fny1r0zSU1gtsuZbcCMsZlhZwSxd8JQ2lK8laIsqoM1JIYxYcOskEBrGybacZ5cJQw47R692_0zDqzVp7r8boeh03imC1taGKDbW1UViyY02ajIpgIBqdVdDu6bE9FAuqaEOapimZ011mjOH7BCmr3iUD3usBwpQU4YJsNxGioK_2qE5FhY16MC491qHFfKF44eb7GjGkFMEq4_Ivazlq5__W-_SPwH9WrHfo2nnY_JNTl8uL33mXMvx85HX8prhgYqG-3F6p95_xBW7vbtQtewCq8Ltl
CODEN IJNFDW
CitedBy_id crossref_primary_10_1007_s00466_017_1402_7
crossref_primary_10_1016_j_jcp_2022_111172
crossref_primary_10_1016_j_jocs_2019_04_001
crossref_primary_10_1007_s10915_019_01105_y
crossref_primary_10_1016_j_jcp_2014_01_023
crossref_primary_10_1016_j_compfluid_2013_08_002
crossref_primary_10_1007_s40571_019_00248_x
crossref_primary_10_1177_0954410011412131
crossref_primary_10_1016_j_cma_2014_07_022
crossref_primary_10_1016_j_cma_2017_03_040
crossref_primary_10_1016_j_compfluid_2013_10_024
crossref_primary_10_1016_j_rimni_2011_11_001
crossref_primary_10_1007_s00466_011_0673_7
crossref_primary_10_1016_j_enganabound_2014_05_001
crossref_primary_10_1016_j_cma_2014_11_010
crossref_primary_10_1016_j_enganabound_2012_01_002
crossref_primary_10_1051_epjconf_201714302003
crossref_primary_10_1007_s40430_018_0978_y
crossref_primary_10_1142_S0219876213500473
crossref_primary_10_1016_j_enganabound_2011_01_003
crossref_primary_10_1002_fld_3799
crossref_primary_10_1016_j_enganabound_2015_02_009
crossref_primary_10_1007_s11831_023_09965_2
crossref_primary_10_1002_fld_3871
crossref_primary_10_1016_j_enganabound_2022_06_029
crossref_primary_10_1016_j_cma_2018_07_036
crossref_primary_10_32604_cmes_2024_048313
crossref_primary_10_1002_nme_3171
Cites_doi 10.1016/0021-9991(79)90145-1
10.1007/s007910050053
10.2514/6.1985-18
10.1007/s00466-006-0154-6
10.1016/S0021-9991(03)00197-9
10.1016/0021-9991(78)90023-2
10.1007/BF02736130
10.1142/S0219876205000673
10.1016/S0045-7825(96)01088-2
10.1137/1.9781611971446
10.1016/S0045-7825(03)00298-6
10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
10.1007/BF02897874
10.1090/S0025-5718-1981-0616367-1
10.1016/j.advengsoft.2007.02.007
10.1016/0021-9991(81)90128-5
10.1016/S0045-7949(01)00067-0
10.1016/S0045-7825(96)01078-X
10.1016/S0045-7825(97)00119-9
10.1002/nme.1278
10.1115/1.1431547
10.1002/nme.334
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa
Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
Contributor_xml – sequence: 1
  fullname: Escola Tècnica Superior d'Enginyeries Industrial i Aeronàutica de Terrassa
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. Departament de Resistència de Materials i Estructures a l'Enginyeria
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2009 INIST-CNRS
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2009 INIST-CNRS
– notice: info:eu-repo/semantics/openAccess
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
XX2
ADTOC
UNPAY
DOI 10.1002/fld.1892
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Aerospace Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 971
ExternalDocumentID oai:upcommons.upc.edu:2117/24488
oai_recercat_cat_2072_241444
22097736
10_1002_fld_1892
FLD1892
ark_67375_WNG_JV0D08SM_N
Genre article
GrantInformation_xml – fundername: European Union Programme of High Level Scholarships for Latin America
  funderid: E04D027284AR
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
6TJ
ABEML
ACSCC
AGHNM
AI.
AMVHM
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
ZY4
~A~
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
XX2
ADTOC
AIQQE
UNPAY
ID FETCH-LOGICAL-c4422-50f6a96c7f6309fe08256b9c22b9381796cdc979cc56ed9370e7bf8da3267c2c3
IEDL.DBID DR2
ISSN 0271-2091
1097-0363
IngestDate Sun Oct 26 03:42:43 EDT 2025
Sat Oct 18 15:22:03 EDT 2025
Thu Oct 02 11:57:52 EDT 2025
Mon Jul 21 09:17:24 EDT 2025
Wed Oct 01 02:49:32 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
Tue Sep 09 05:12:52 EDT 2025
Sun Sep 21 06:24:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Compressible fluid
collocation
time integration explicit
Computational fluid dynamics
compressible flow
Digital simulation
Finite point method
Adaptive method
Upwind scheme
meshless methods
adaptivity
Three dimensional flow
Meshless method
Modelling
Collocation method
Time integration
Numerical convergence
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
public-domain
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4422-50f6a96c7f6309fe08256b9c22b9381796cdc979cc56ed9370e7bf8da3267c2c3
Notes European Union Programme of High Level Scholarships for Latin America - No. E04D027284AR
istex:27F7AC9577BD3256F383820B18369C958D48E086
ark:/67375/WNG-JV0D08SM-N
ArticleID:FLD1892
ICREA Research Professor at CIMNE.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2117/24488
PQID 1671442277
PQPubID 23500
PageCount 35
ParticipantIDs unpaywall_primary_10_1002_fld_1892
csuc_recercat_oai_recercat_cat_2072_241444
proquest_miscellaneous_1671442277
pascalfrancis_primary_22097736
crossref_citationtrail_10_1002_fld_1892
crossref_primary_10_1002_fld_1892
wiley_primary_10_1002_fld_1892_FLD1892
istex_primary_ark_67375_WNG_JV0D08SM_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 July 2009
PublicationDateYYYYMMDD 2009-07-30
PublicationDate_xml – month: 07
  year: 2009
  text: 30 July 2009
  day: 30
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Demmel JW. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics: Philadelphia, 1997.
Zorin D, Schröder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. Proceedings of SIG-GRAPH 1996; 96:189-192.
Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering 1996; 139:315-346.
Löhner R, Sacco C, Oñate E, Idelsohn S. A finite point method for compressible flow. International Journal for Numerical Methods in Engineering 2002; 53:1765-1779.
Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43:357-372.
Li S, Liu WK. Meshfree and particle methods and their applications. Applied Mechanics Reviews 2002; 55:1-34.
Gu YT. Meshfree methods and their comparisons. International Journal of Computational Methods 2005; 4:477-515.
Perazzo F, Miquel J, Oñate E. A finite point method for solids dynamic problems (in Spanish). Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2004; 20(3):235-246.
Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering 1996; 39:3839-3866.
Oñate E, Perazzo F, Miquel J. A finite point method for elasticity problems. Computers and Structures 2001; 79:2151-2163.
Ortega E, Oñate E, Idelsohn S. An improved finite point method for three-dimensional potential flows. Computational Mechanics 2007; 40:949-963.
Liu WK, Chen Y, Jun S, Belytschko T. Overview and application of the reproducing Kernel particle method. Archives of Computational Methods in Engineering 1996; 5(1):3-80.
Sridar D, Balakrishnan N. An upwind finite difference scheme for meshless solvers. Journal of Computational Physics 2003; 189:1-29.
Perazzo F, Oller S, Miquel J, Oñate E. Advances in the finite point method for solid mechanics (in Spanish). Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2006; 22(3):153-167.
Oñate E, Sacco C, Idelsohn S. A finite point method for incompressible flow problems. Computing and Visualization in Science 2000; 3:67-75.
Perazzo F, Löhner R, Perez-Pozo L. Adaptive methodology for meshless finite point method. Advances in Engineering Software 2007; 39:156-166.
Van Leer B. Towards the ultimate conservative difference scheme. V-A second-order sequel to Godunov's method. Journal of Computational Physics 1979; 32:101-136.
Boroomand B, Tabatabaei AA, Oñate E. Simple modifications for stabilization of the finite point method. International Journal for Numerical Methods in Engineering 2005; 63:351-379.
Dolbow J, Belytschko T. An introduction to programming the meshless element free-Galerkin method. Archives of Computational Methods in Engineering 1998; 5(3):207-241.
Fries T, Matthies H. Classification and Overview of Meshfree Methods. Department of Mathematics and Computer Science, Technical University of Braunschweig. Inf. 2003-3, 2004.
Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3-47.
Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Mathematics of Computation 1981; 37:141-158.
Oñate E. Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems. Computer Methods in Applied Mechanics and Engineering 1998; 151:233-265.
Idelsohn S, Calvo N, Oñate E. Polyhedrization of an arbitrary 3D point set. Computer Methods in Applied Mechanics and Engineering 2003; 192:2649-2667.
Sod GA. A survey of several finite-differences methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics 1978; 27:1-31.
2007; 39
2004; 20
1996; 39
2002; 53
2000; 3
2002; 55
2005; 63
1997
1996
2007
1996; 96
1995
2003; 192
1951
2004
1979; 32
1998; 151
1981; 43
1979
2001
2006; 22
2005; 4
1985
1981; 37
1978; 27
2007; 40
1996; 5
1998; 5
2001; 79
2003; 189
1996; 139
1988
Perazzo F (e_1_2_1_18_2) 2006; 22
Fries T (e_1_2_1_3_2) 2004
Zorin D (e_1_2_1_34_2) 1996; 96
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Perazzo F (e_1_2_1_17_2) 2004; 20
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_9_2
References_xml – reference: Perazzo F, Miquel J, Oñate E. A finite point method for solids dynamic problems (in Spanish). Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2004; 20(3):235-246.
– reference: Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow. International Journal for Numerical Methods in Engineering 1996; 39:3839-3866.
– reference: Dolbow J, Belytschko T. An introduction to programming the meshless element free-Galerkin method. Archives of Computational Methods in Engineering 1998; 5(3):207-241.
– reference: Perazzo F, Löhner R, Perez-Pozo L. Adaptive methodology for meshless finite point method. Advances in Engineering Software 2007; 39:156-166.
– reference: Sod GA. A survey of several finite-differences methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics 1978; 27:1-31.
– reference: Boroomand B, Tabatabaei AA, Oñate E. Simple modifications for stabilization of the finite point method. International Journal for Numerical Methods in Engineering 2005; 63:351-379.
– reference: Oñate E. Derivation of stabilized equations for numerical solution of advective-diffusive transport and fluid flow problems. Computer Methods in Applied Mechanics and Engineering 1998; 151:233-265.
– reference: Oñate E, Perazzo F, Miquel J. A finite point method for elasticity problems. Computers and Structures 2001; 79:2151-2163.
– reference: Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43:357-372.
– reference: Li S, Liu WK. Meshfree and particle methods and their applications. Applied Mechanics Reviews 2002; 55:1-34.
– reference: Sridar D, Balakrishnan N. An upwind finite difference scheme for meshless solvers. Journal of Computational Physics 2003; 189:1-29.
– reference: Idelsohn S, Calvo N, Oñate E. Polyhedrization of an arbitrary 3D point set. Computer Methods in Applied Mechanics and Engineering 2003; 192:2649-2667.
– reference: Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3-47.
– reference: Gu YT. Meshfree methods and their comparisons. International Journal of Computational Methods 2005; 4:477-515.
– reference: Löhner R, Sacco C, Oñate E, Idelsohn S. A finite point method for compressible flow. International Journal for Numerical Methods in Engineering 2002; 53:1765-1779.
– reference: Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Mathematics of Computation 1981; 37:141-158.
– reference: Oñate E, Sacco C, Idelsohn S. A finite point method for incompressible flow problems. Computing and Visualization in Science 2000; 3:67-75.
– reference: Zorin D, Schröder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. Proceedings of SIG-GRAPH 1996; 96:189-192.
– reference: Van Leer B. Towards the ultimate conservative difference scheme. V-A second-order sequel to Godunov's method. Journal of Computational Physics 1979; 32:101-136.
– reference: Fries T, Matthies H. Classification and Overview of Meshfree Methods. Department of Mathematics and Computer Science, Technical University of Braunschweig. Inf. 2003-3, 2004.
– reference: Ortega E, Oñate E, Idelsohn S. An improved finite point method for three-dimensional potential flows. Computational Mechanics 2007; 40:949-963.
– reference: Demmel JW. Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics: Philadelphia, 1997.
– reference: Oñate E, Idelsohn S, Zienkiewicz OC, Taylor RL, Sacco C. A stabilized finite point method for analysis of fluid mechanics problems. Computer Methods in Applied Mechanics and Engineering 1996; 139:315-346.
– reference: Liu WK, Chen Y, Jun S, Belytschko T. Overview and application of the reproducing Kernel particle method. Archives of Computational Methods in Engineering 1996; 5(1):3-80.
– reference: Perazzo F, Oller S, Miquel J, Oñate E. Advances in the finite point method for solid mechanics (in Spanish). Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2006; 22(3):153-167.
– year: 1985
– volume: 139
  start-page: 315
  year: 1996
  end-page: 346
  article-title: A stabilized finite point method for analysis of fluid mechanics problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 79
  start-page: 2151
  year: 2001
  end-page: 2163
  article-title: A finite point method for elasticity problems
  publication-title: Computers and Structures
– volume: 43
  start-page: 357
  year: 1981
  end-page: 372
  article-title: Approximate Riemann solvers, parameter vectors and difference schemes
  publication-title: Journal of Computational Physics
– volume: 96
  start-page: 189
  year: 1996
  end-page: 192
  article-title: Interpolating subdivision for meshes with arbitrary topology
  publication-title: Proceedings of SIG‐GRAPH
– volume: 5
  start-page: 3
  issue: 1
  year: 1996
  end-page: 80
  article-title: Overview and application of the reproducing Kernel particle method
  publication-title: Archives of Computational Methods in Engineering
– volume: 27
  start-page: 1
  year: 1978
  end-page: 31
  article-title: A survey of several finite‐differences methods for systems of nonlinear hyperbolic conservation laws
  publication-title: Journal of Computational Physics
– volume: 139
  start-page: 3
  year: 1996
  end-page: 47
  article-title: Meshless methods: an overview and recent developments
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2001
– volume: 189
  start-page: 1
  year: 2003
  end-page: 29
  article-title: An upwind finite difference scheme for meshless solvers
  publication-title: Journal of Computational Physics
– year: 2007
– start-page: 15
  end-page: 21
– year: 1996
– volume: 20
  start-page: 235
  issue: 3
  year: 2004
  end-page: 246
  article-title: A finite point method for solids dynamic problems (in Spanish)
  publication-title: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
– volume: 22
  start-page: 153
  issue: 3
  year: 2006
  end-page: 167
  article-title: Advances in the finite point method for solid mechanics (in Spanish)
  publication-title: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
– year: 1979
– volume: 192
  start-page: 2649
  year: 2003
  end-page: 2667
  article-title: Polyhedrization of an arbitrary 3D point set
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 3
  start-page: 67
  year: 2000
  end-page: 75
  article-title: A finite point method for incompressible flow problems
  publication-title: Computing and Visualization in Science
– volume: 63
  start-page: 351
  year: 2005
  end-page: 379
  article-title: Simple modifications for stabilization of the finite point method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 39
  start-page: 3839
  year: 1996
  end-page: 3866
  article-title: A finite point method for analysis of fluid mechanics problems. Applications to convective transport and fluid flow
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 40
  start-page: 949
  year: 2007
  end-page: 963
  article-title: An improved finite point method for three‐dimensional potential flows
  publication-title: Computational Mechanics
– volume: 37
  start-page: 141
  year: 1981
  end-page: 158
  article-title: Surfaces generated by moving least squares methods
  publication-title: Mathematics of Computation
– volume: 32
  start-page: 101
  year: 1979
  end-page: 136
  article-title: Towards the ultimate conservative difference scheme. V‐A second‐order sequel to Godunov's method
  publication-title: Journal of Computational Physics
– volume: 53
  start-page: 1765
  year: 2002
  end-page: 1779
  article-title: A finite point method for compressible flow
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 151
  start-page: 233
  year: 1998
  end-page: 265
  article-title: Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 39
  start-page: 156
  year: 2007
  end-page: 166
  article-title: Adaptive methodology for meshless finite point method
  publication-title: Advances in Engineering Software
– year: 1988
– year: 2004
– volume: 55
  start-page: 1
  year: 2002
  end-page: 34
  article-title: Meshfree and particle methods and their applications
  publication-title: Applied Mechanics Reviews
– year: 1997
– year: 1995
– year: 1951
– volume: 4
  start-page: 477
  year: 2005
  end-page: 515
  article-title: Meshfree methods and their comparisons
  publication-title: International Journal of Computational Methods
– volume: 5
  start-page: 207
  issue: 3
  year: 1998
  end-page: 241
  article-title: An introduction to programming the meshless element free‐Galerkin method
  publication-title: Archives of Computational Methods in Engineering
– ident: e_1_2_1_30_2
  doi: 10.1016/0021-9991(79)90145-1
– volume-title: Classification and Overview of Meshfree Methods
  year: 2004
  ident: e_1_2_1_3_2
– ident: e_1_2_1_12_2
  doi: 10.1007/s007910050053
– ident: e_1_2_1_14_2
– ident: e_1_2_1_36_2
  doi: 10.2514/6.1985-18
– ident: e_1_2_1_23_2
  doi: 10.1007/s00466-006-0154-6
– ident: e_1_2_1_20_2
  doi: 10.1016/S0021-9991(03)00197-9
– ident: e_1_2_1_13_2
– volume: 96
  start-page: 189
  year: 1996
  ident: e_1_2_1_34_2
  article-title: Interpolating subdivision for meshes with arbitrary topology
  publication-title: Proceedings of SIG‐GRAPH
– ident: e_1_2_1_35_2
  doi: 10.1016/0021-9991(78)90023-2
– ident: e_1_2_1_6_2
– ident: e_1_2_1_7_2
  doi: 10.1007/BF02736130
– ident: e_1_2_1_10_2
– ident: e_1_2_1_33_2
– ident: e_1_2_1_5_2
  doi: 10.1142/S0219876205000673
– ident: e_1_2_1_11_2
  doi: 10.1016/S0045-7825(96)01088-2
– ident: e_1_2_1_26_2
  doi: 10.1137/1.9781611971446
– ident: e_1_2_1_27_2
  doi: 10.1016/S0045-7825(03)00298-6
– ident: e_1_2_1_32_2
– ident: e_1_2_1_9_2
  doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
– ident: e_1_2_1_8_2
  doi: 10.1007/BF02897874
– ident: e_1_2_1_25_2
  doi: 10.1090/S0025-5718-1981-0616367-1
– ident: e_1_2_1_21_2
– ident: e_1_2_1_24_2
  doi: 10.1016/j.advengsoft.2007.02.007
– ident: e_1_2_1_28_2
  doi: 10.1016/0021-9991(81)90128-5
– ident: e_1_2_1_16_2
  doi: 10.1016/S0045-7949(01)00067-0
– ident: e_1_2_1_2_2
  doi: 10.1016/S0045-7825(96)01078-X
– ident: e_1_2_1_19_2
  doi: 10.1016/S0045-7825(97)00119-9
– ident: e_1_2_1_22_2
  doi: 10.1002/nme.1278
– volume: 20
  start-page: 235
  issue: 3
  year: 2004
  ident: e_1_2_1_17_2
  article-title: A finite point method for solids dynamic problems (in Spanish)
  publication-title: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
– ident: e_1_2_1_4_2
  doi: 10.1115/1.1431547
– ident: e_1_2_1_29_2
– volume: 22
  start-page: 153
  issue: 3
  year: 2006
  ident: e_1_2_1_18_2
  article-title: Advances in the finite point method for solid mechanics (in Spanish)
  publication-title: Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería
– ident: e_1_2_1_15_2
  doi: 10.1002/nme.334
– ident: e_1_2_1_31_2
SSID ssj0009283
Score 2.0828168
Snippet The finite point method (FPM) is a meshless technique, which is based on both, a weighted least‐squares numerical approximation on local clouds of points and a...
The finite point method (FPM) is a meshless technique, which is based on both, a weighted least-squares numerical approximation on local clouds of points and a...
Electronic version of an article published as "International journal for numerical methods in fluids", vol. 60, no 9, 2009, p. 937-971. DOI:10.1002/fld.1892...
SourceID unpaywall
csuc
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 937
SubjectTerms 76 Fluid mechanics
Adaptivity
Anàlisi numèrica
Classificació AMS
Clouds
Collocation
Compressible flow
Computational methods in fluid dynamics
Elements finits
Elements finits, Mètode dels
Exact sciences and technology
Finite element method
Finite point method
Fluid dynamics
Flux de fluids
Fundamental areas of phenomenology (including applications)
Física
Física de fluids
Matemàtiques i estadística
Mathematical analysis
Mathematical models
Mecànica de fluids
Meshfree methods (Numerical analysis)
Meshless methods
Mètodes en elements finits
Numerical analysis
Physics
Three dimensional
Time integration explicit
Àrees temàtiques de la UPC
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbK9gAcKBQqlp_KIFQkpN06TmInxxVlqSq6QoKFcrIc_0hVo-xqk6jAiUfgGXkSZpJsxAJFHKIoiuPYnrHnm3jyDSHPOPcAslM_AnfCooMSwjpo-cj5WKfCRHEY4d_IpzNxPI9OzuKzLbJOWfcbvQB4J_IQDFCSXCPbIga0PSDb89nbyafm04kMQMhNUjzcRx3hnuSaX5bxQ5_bcZCkfMPiDExZGwCiOIafMRBSlzAWvk1isYEyr9fFUn-51Hm-iVsbwzPdaQMgy4avEONNLsZ1lY3N1z_ZHK_s021yq0OddNKqyR2y5YpdstMhUNrN73KX3PyFnvAumU-oP0dMSpeL86KibbZpCjCXaquXuFDSCnTB_fj23WKWgJbhg2KYehNem-WO-nxxSaHzpssTVt4j8-mr9y-PR10ahpGJInRVmRcoN-lFyFLv0KkUWWo4z1Lk94Nb1qQyNSYWzgLcYU5mPrEakKE03IR7ZFAsCnefUHAnvWE6SwxzkQgDHRhrufRx6OLEhNGQPF-LSpmOoxxTZeSqZVfmCoSqUKhD8qQvuWx5Of5S5gVKW4HpcCujK4VU2v0FHpxJrgDDRBG8-qDRib42vbrAoDcZq4-z1-rkAztiybtTNRuS_Q2l6R_goItShgKattYiBXMVN2B04RZ1qQIhAxxSKYfkaa9e_2j_QaN3VxZQ0zdHeH7wP7U9JDfanTAwKuwRGVSr2j0GQFVl-92c-gnmZhx6
  priority: 102
  providerName: Unpaywall
Title A finite point method for adaptive three-dimensional compressible flow calculations
URI https://api.istex.fr/ark:/67375/WNG-JV0D08SM-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.1892
https://www.proquest.com/docview/1671442277
https://recercat.cat/handle/2072/241444
http://hdl.handle.net/2117/24488
UnpaywallVersion submittedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0363
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5k-6A-WK1K1-oyilQQdjuZXCZ5XKxrKXYRdbXiwzCZC5SG7LJJqPrkT_A3-ks8J7e6oiI-hBAySSYn35z5TnLyHUIec-6AZCduDOGEwQDFBz9o-Ni6UCWRDkI_wL-RT-bR0SI4Pg1P26xK_Bem0YfoX7jhyKj9NQ5wlRYHl6KhLjMTL07Q_Xp-VEdTry-VoxLeKHBy4QEQEq_TnWX8oDtwYyYa6KLSQFDRtp8wQVIVYCPXFLfYYJ9Xq3ylPl-oLNvks_WENNsmH7tbafJQzidVmU70l19UHv_vXm-SGy1PpdMGWLfIFZvvkO2Ws9LWIxQ75PpPgoa3yWJK3RmyWLpanuUlbepTUyDGVBm1QtdKS0CP_f71m8G6Ao0mCMXE9johN80sddnygoJZdFtZrLhDFrPnb58djdvCDWMdBBjcMhfhkxYu8lniLIahUZpoztMEFQFhl9GJSLQOI2uAIDErUhcbBVxSaK79u2SQL3O7SygEoE4zlcaa2SDyPeVpY7hwoW_DWPvBkDzpHqLUrao5FtfIZKPHzCXYTqLthuRh33LVKHn8ps1TxIGEycautSolim_3G7hwJrgE1hMEcOn9Gi392dT6HNPkRCjfz1_I43fskMVvTuR8SEYbcOoP4IBMIfwIutbhS8Loxk82KrfLqpBeJDw0qRBD8qgH3l_6v1_D6I8N5OzlIa7v_WvDPXKt-X4GUxG7TwblurIPgIaV6agecCOytZi_mn74AQgGMJQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5V6aFwoFBABEpZECoSUlJ7_VhbnCpKCCXJARroodJqvQ-pquVEsa0CJ34Cv5FfwoxfJQgQ4mBZltev8bez36zH3xDylDELJDu2AwgnNAYoHvhBzQbGBjIOlR94Pv6NPJ2F47l_fBqcbpAX7b8wtT5EN-GGPaPy19jBcUL64Eo11KZ66EYx-N9NP4QwBRnRuyvtqJjVGpyMuwCF2G2VZx120B65Nhb1VF4qoKho3U-YIilzsJKty1us8c-tMlvKz5cyTdcZbTUkjbbJWfswdSbKxbAskqH68ovO438-7U1yo6Gq9LDG1i2yYbIdst3QVto4hXyHXP9J0_A2mR9Se45Eli4X51lB6xLVFLgxlVou0bvSAgBkvn_9prG0QC0LQjG3vcrJTVJDbbq4pGAX1RQXy--Q-ejVycvxoKndMFC-j_GtY0N82dyGnhNbg5FomMSKsSRGUUDYpVXMY6WC0GjgSI7hiY20BDrJFVPeXdLLFpm5RyjEoFY5MomUY_zQc6WrtGbcBp4JIuX5ffKsfYtCNcLmWF8jFbUkMxNgO4G265PHXctlLebxmzbPEQgCxhuzUrIQqL_dbeDCHM4EEB_fh0vvV3DpziZXF5gpxwPxcfZaHH9wjpzo_VTM-mRvDU_dAQygybkXwq21ABPQwfGrjczMosyFG3IXTcp5nzzpkPeX-9-vcPTHBmI0OcL1_X9t-IhsjU-mEzF5M3v7gFyrP6fByOTskl6xKs1DYGVFslf1vh9j9zMF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7KCmofrFbFrVpHkQrCbpPJZTL4VFzXWttF1K19EIbJXKA0ZJdNlqpP_gR_o7_Ec3KrKyriQwghk2Ry8s2Z7yQn3yHkMWMOSLZwAwgnDAYoAfhBwwbWRUrEOoyCEP9GPprE-9Pw4CQ6WSPP2n9han2I7oUbjozKX-MAt3Pjdi9UQ11mhn4iwP9eCiORYD7f6O2FdpRgtQYn4z5AQfit8qzHdtsjV-aini6WGigqWvcTpkiqAqzk6vIWK_zzyjKfq8_nKstWGW01JY03yMf2ZupMlLPhskyH-ssvOo__ebfXybWGqtK9Gls3yJrNN8lGQ1tp4xSKTbL-k6bhTTLdo-4UiSydz07zktYlqilwY6qMmqN3pSUAyH7_-s1gaYFaFoRibnuVk5tmlrpsdk7BLropLlbcItPxi_fP9wdN7YaBDkOMbz0X48PmLg484SxGonEqNGOpQFFA2GW04ELrKLYGOJJneeoSo4BOcs10cJv08llu7xAKMajTnkoT7dkwDnzla2MYd1Fgo0QHYZ88aZ-i1I2wOdbXyGQtycwk2E6i7frkYddyXot5_KbNUwSChPnGLrQqJepvdxu4MI8zCcQnDOHSOxVcurOpxRlmyvFIfpi8lAfH3shL3h3JSZ9sr-CpO4ABNDkPYuhaCzAJAxy_2qjczpaF9GPuo0k575NHHfL-0v-dCkd_bCDHhyNcb_1rwwfk8pvRWB6-mry-S67WX9NgYvLukV65WNr7QMrKdLsafD8AyR4yiQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELbK9gAcKBQqlp_KIFQkpN06TmInxxVlqSq6QoKFcrIc_0hVo-xqk6jAiUfgGXkSZpJsxAJFHKIoiuPYnrHnm3jyDSHPOPcAslM_AnfCooMSwjpo-cj5WKfCRHEY4d_IpzNxPI9OzuKzLbJOWfcbvQB4J_IQDFCSXCPbIga0PSDb89nbyafm04kMQMhNUjzcRx3hnuSaX5bxQ5_bcZCkfMPiDExZGwCiOIafMRBSlzAWvk1isYEyr9fFUn-51Hm-iVsbwzPdaQMgy4avEONNLsZ1lY3N1z_ZHK_s021yq0OddNKqyR2y5YpdstMhUNrN73KX3PyFnvAumU-oP0dMSpeL86KibbZpCjCXaquXuFDSCnTB_fj23WKWgJbhg2KYehNem-WO-nxxSaHzpssTVt4j8-mr9y-PR10ahpGJInRVmRcoN-lFyFLv0KkUWWo4z1Lk94Nb1qQyNSYWzgLcYU5mPrEakKE03IR7ZFAsCnefUHAnvWE6SwxzkQgDHRhrufRx6OLEhNGQPF-LSpmOoxxTZeSqZVfmCoSqUKhD8qQvuWx5Of5S5gVKW4HpcCujK4VU2v0FHpxJrgDDRBG8-qDRib42vbrAoDcZq4-z1-rkAztiybtTNRuS_Q2l6R_goItShgKattYiBXMVN2B04RZ1qQIhAxxSKYfkaa9e_2j_QaN3VxZQ0zdHeH7wP7U9JDfanTAwKuwRGVSr2j0GQFVl-92c-gnmZhx6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+finite+point+method+for+adaptive+three-dimensional+compressible+flow+calculations&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=ORTEGA%2C+Enrique&rft.au=ONATE%2C+Eugenio&rft.au=IDELSOHN%2C+Sergio&rft.date=2009-07-30&rft.pub=Wiley&rft.issn=0271-2091&rft.volume=60&rft.issue=9&rft.spage=937&rft.epage=971&rft_id=info:doi/10.1002%2Ffld.1892&rft.externalDBID=n%2Fa&rft.externalDocID=22097736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon