A robust deformed convolutional neural network (CNN) for image denoising
Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pix...
Saved in:
Published in | CAAI Transactions on Intelligence Technology Vol. 8; no. 2; pp. 331 - 342 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.06.2023
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2468-2322 2468-2322 |
DOI | 10.1049/cit2.12110 |
Cover
Abstract | Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pixels can effectively resolve this problem. Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an enhanced block (EB) and a residual block (RB). The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture, according to relations of surrounding pixels. The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers, batch normalisation (BN) and ReLU, which can enhance the learning ability of the proposed RDDCNN. To address long‐term dependency problem, the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image. Besides, we implement a blind denoising model. Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN. |
---|---|
AbstractList | Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pixels can effectively resolve this problem. Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an enhanced block (EB) and a residual block (RB). The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture, according to relations of surrounding pixels. The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers, batch normalisation (BN) and ReLU, which can enhance the learning ability of the proposed RDDCNN. To address long‐term dependency problem, the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image. Besides, we implement a blind denoising model. Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN . Abstract Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pixels can effectively resolve this problem. Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an enhanced block (EB) and a residual block (RB). The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture, according to relations of surrounding pixels. The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers, batch normalisation (BN) and ReLU, which can enhance the learning ability of the proposed RDDCNN. To address long‐term dependency problem, the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image. Besides, we implement a blind denoising model. Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN. |
Author | Zhang, Qi Xiao, Jingyu Chun‐Wei Lin, Jerry Zhang, Shichao Tian, Chunwei |
Author_xml | – sequence: 1 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: Harbin Institute of Technology at Weihai – sequence: 2 givenname: Jingyu surname: Xiao fullname: Xiao, Jingyu organization: Central South University – sequence: 3 givenname: Chunwei orcidid: 0000-0002-6058-5077 surname: Tian fullname: Tian, Chunwei email: chunweitian@163.com organization: Northwestern Polytechnical University – sequence: 4 givenname: Jerry surname: Chun‐Wei Lin fullname: Chun‐Wei Lin, Jerry organization: Western Norway University of Applied Sciences – sequence: 5 givenname: Shichao surname: Zhang fullname: Zhang, Shichao organization: Central South University |
BookMark | eNp9kEFrGzEQhUVJoGniS3_BQi5twY5mJO2ujsakjSE4F_cstFrJyN2sHGm3If8-sreFEEpPMwzfe8x7n8hZH3pLyGegC6Bc3hg_4AIQgH4gF8jLeo4M8ezN_pHMUtpTSkFKKVh1Qe6WRQzNmIaitS7ER9sWJvS_QzcOPvS6K3o7xtMYnkP8VXxZbTZfi0wW_lHvbFb1wSff767IudNdsrM_85L8_H67Xd3N7x9-rFfL-7nhHOmcVQJtWfHaQilpA6XlTvManMCylmAaoI1oGTY8B3Fc2prWABJBM6DWGnZJ1pNvG_ReHWJ-I76ooL06HULcKR0HbzqrmIASkbmqwpqbxtRao4NWNFiBMMJlr-vJ6xDD02jToPZhjDl1UoxKkIIiikzRiTIxpBStU7lofaxniNp3Cqg61n-8ojrVnyXf3kn-PvpPGCb42Xf25T-kWq23OGleAb0Rk6Y |
CitedBy_id | crossref_primary_10_1007_s00357_024_09467_1 crossref_primary_10_1007_s12596_023_01380_x crossref_primary_10_1109_TIFS_2023_3341392 crossref_primary_10_1049_cit2_12229 crossref_primary_10_3390_math10203891 crossref_primary_10_1016_j_robot_2024_104819 crossref_primary_10_1007_s11042_023_17198_5 crossref_primary_10_1038_s41598_024_71358_7 crossref_primary_10_1109_TPAMI_2023_3337005 crossref_primary_10_3390_electronics12112364 crossref_primary_10_3934_math_2024243 crossref_primary_10_1007_s41478_022_00534_7 crossref_primary_10_1109_JSTARS_2023_3255837 crossref_primary_10_1111_coin_12611 crossref_primary_10_3390_math11071657 crossref_primary_10_3390_sym16060649 crossref_primary_10_1016_j_jksuci_2024_102192 crossref_primary_10_1007_s12530_023_09533_w crossref_primary_10_1109_TETCI_2024_3398011 crossref_primary_10_1109_ACCESS_2024_3424972 crossref_primary_10_1088_1361_6560_ad8294 crossref_primary_10_3389_fncom_2023_1309694 crossref_primary_10_1080_0954898X_2024_2350578 crossref_primary_10_3390_app14177557 crossref_primary_10_1007_s10489_023_04861_5 crossref_primary_10_3934_mbe_2023914 crossref_primary_10_1016_j_csite_2024_104452 crossref_primary_10_1002_rob_22358 crossref_primary_10_1049_cit2_12208 crossref_primary_10_3934_mbe_2023609 crossref_primary_10_1109_TIP_2023_3299791 crossref_primary_10_1109_TCSVT_2024_3441053 crossref_primary_10_1016_j_aej_2024_08_073 crossref_primary_10_1109_ACCESS_2023_3264604 crossref_primary_10_1007_s11042_023_17468_2 crossref_primary_10_1007_s00371_023_03046_y crossref_primary_10_1109_TSMC_2024_3429345 crossref_primary_10_1016_j_ins_2024_120229 crossref_primary_10_1016_j_inffus_2024_102582 crossref_primary_10_1016_j_cplett_2024_141606 crossref_primary_10_1007_s10489_023_04895_9 crossref_primary_10_1007_s11760_023_02731_8 crossref_primary_10_1016_j_jisa_2023_103677 crossref_primary_10_1007_s12596_023_01356_x crossref_primary_10_3390_rs16142595 crossref_primary_10_1007_s00894_023_05727_w crossref_primary_10_3390_app132312581 crossref_primary_10_1038_s41598_024_72343_w crossref_primary_10_3390_electronics13234613 crossref_primary_10_1109_TIM_2023_3304676 crossref_primary_10_1117_1_JEI_33_4_043015 crossref_primary_10_1109_ACCESS_2023_3326478 crossref_primary_10_1080_13682199_2023_2198350 crossref_primary_10_1007_s11042_023_17670_2 crossref_primary_10_3390_agronomy15040794 crossref_primary_10_1080_07391102_2023_2275180 crossref_primary_10_7717_peerj_cs_2449 crossref_primary_10_1051_matecconf_202439201156 crossref_primary_10_3390_app14209430 crossref_primary_10_1007_s11760_023_02944_x crossref_primary_10_1007_s11554_024_01447_3 crossref_primary_10_1016_j_comcom_2024_04_032 crossref_primary_10_3390_electronics12245019 crossref_primary_10_3390_w15223940 crossref_primary_10_1049_cit2_12159 crossref_primary_10_1007_s11042_023_16452_0 crossref_primary_10_1109_TCE_2024_3367539 crossref_primary_10_1016_j_jenvman_2024_120756 crossref_primary_10_1016_j_ins_2022_10_109 crossref_primary_10_1080_00268976_2023_2273980 crossref_primary_10_1080_00268976_2023_2279686 crossref_primary_10_1109_JIOT_2024_3378779 crossref_primary_10_1007_s10489_022_04313_6 crossref_primary_10_1109_ACCESS_2024_3397725 crossref_primary_10_3390_app14167044 crossref_primary_10_1109_TGRS_2024_3477969 crossref_primary_10_1016_j_engappai_2024_108345 crossref_primary_10_1038_s41598_024_74777_8 crossref_primary_10_1007_s00530_024_01469_8 crossref_primary_10_1007_s11042_023_16346_1 crossref_primary_10_1016_j_compeleceng_2024_110043 crossref_primary_10_2351_7_0001231 crossref_primary_10_1080_23742917_2024_2367795 crossref_primary_10_1109_JAS_2023_123543 crossref_primary_10_1007_s11280_024_01258_3 crossref_primary_10_1109_JETCAS_2024_3392868 crossref_primary_10_3390_jsan13040042 crossref_primary_10_3390_s25010077 crossref_primary_10_3390_s25020317 crossref_primary_10_1007_s10115_023_01965_9 crossref_primary_10_1016_j_inffus_2024_102370 crossref_primary_10_3390_pollutants4010001 crossref_primary_10_3390_app13010028 crossref_primary_10_11834_jig_230254 crossref_primary_10_3233_JIFS_233302 crossref_primary_10_3233_JIFS_234632 crossref_primary_10_1049_cit2_12250 crossref_primary_10_1142_S0219467825500032 crossref_primary_10_1016_j_dibe_2024_100494 crossref_primary_10_1080_13682199_2023_2229040 crossref_primary_10_1080_0951192X_2024_2397817 crossref_primary_10_3390_app132011560 crossref_primary_10_3390_app132312673 crossref_primary_10_3390_drones7080486 crossref_primary_10_1007_s11760_023_02587_y crossref_primary_10_1016_j_iswa_2024_200399 crossref_primary_10_1007_s11760_024_03093_5 crossref_primary_10_1109_ACCESS_2024_3427143 crossref_primary_10_1109_TIP_2023_3310307 crossref_primary_10_3390_electronics12132927 crossref_primary_10_1007_s11269_024_03769_0 crossref_primary_10_3847_1538_4357_ad5954 crossref_primary_10_1109_ACCESS_2024_3407795 crossref_primary_10_1007_s12596_023_01543_w crossref_primary_10_1049_cit2_12384 crossref_primary_10_3390_electronics11223760 crossref_primary_10_1051_matecconf_202439201143 crossref_primary_10_1016_j_eswa_2024_125041 crossref_primary_10_1016_j_ins_2024_121008 crossref_primary_10_1016_j_eswa_2025_127124 crossref_primary_10_1016_j_knosys_2025_113342 |
Cites_doi | 10.1007/s11263‐009‐0272‐7 10.1109/34.276126 10.1186/s13640‐017‐0203‐4 10.1109/CVPR.2012.6247952 10.1109/CVPR42600.2020.00676 10.1109/TIP.2015.2414873 10.1016/j.neunet.2019.08.022 10.1109/CVPR.2014.349 10.1109/TCSVT.2021.3096814 10.1109/CVPR.2005.160 10.1109/CVPR.2019.00181 10.1109/ICCV.2011.6126278 10.1109/lsp.2017.2768660 10.3390/app9061103 10.1109/CVPR.2016.90 10.1016/j.knosys.2020.106235 10.1109/ICCV.2009.5459452 10.1109/ACCESS.2021.3061062 10.1109/CVPR.2016.186 10.1109/ICPR48806.2021.9412605 10.1109/ICCV.2017.486 10.1109/TIP.2012.2202675 10.1023/b:jmiv.0000011321.19549.88 10.1109/CVPR42600.2020.01251 10.1109/ICCV.2019.00325 10.1016/j.neucom.2020.06.128 10.1109/tmm.2013.2284759 10.1109/ACCESS.2019.2917537 10.1109/34.56205 10.1016/j.patcog.2021.108506 10.1109/tpami.2016.2596743 10.1109/ICDAR.2003.1227801 10.1109/tip.2017.2662206 10.1109/tpami.1985.4767641 10.1109/TIP.2020.3048629 10.1109/CVPR.2017.300 10.1137/16M1100010 10.1016/j.neunet.2020.07.025 10.1109/tip.2008.919949 10.1109/tassp.1984.1164453 10.1016/j.image.2019.115727 10.1109/CVPR.2014.366 10.1109/CVPRW.2017.152 10.1109/tip.2018.2839891 10.1109/TPAMI.1980.4766994 10.1007/11744047_21 10.1109/tip.2007.901238 10.1109/CVPR46437.2021.00797 10.1109/ICTAI.2017.00192 10.1016/j.neunet.2019.12.024 10.1109/CVPR42600.2020.01104 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology. – notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1049/cit2.12110 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2468-2322 |
EndPage | 342 |
ExternalDocumentID | oai_doaj_org_article_3516223f77284cbc8aa2f1d5b2715c5f 10_1049_cit2_12110 CIT212110 |
Genre | article |
GrantInformation_xml | – fundername: Key Project of NSFC funderid: 61836016 – fundername: Fundamental Research Funds for the Central Universities funderid: D5000210966 – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2021A1515110079 – fundername: Basic Research Plan in Taicang funderid: TC2021JC23 |
GroupedDBID | 0R~ 0SF 1OC 24P 6I. AACTN AAEDW AAFTH AAHHS AAHJG AAJGR AALRI AAXUO ABMAC ABQXS ACCFJ ACCMX ACESK ACGFS ACXQS ADBBV ADVLN ADZOD AEEZP AEQDE AEXQZ AFKRA AITUG AIWBW AJBDE AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ ARAPS ARCSS AVUZU BCNDV BENPR BGLVJ CCPQU EBS EJD FDB GROUPED_DOAJ HCIFZ IAO IDLOA ITC K7- M41 M43 NCXOZ O9- OCL OK1 PIMPY RIE RIG ROL RUI SSZ AAMMB AAYWO AAYXX ACVFH ADCNI ADMLS AEFGJ AEUPX AFPUW AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION ICD PHGZM PHGZT 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4420-3752e6748e1690b16e4fa481f526891cb10b5d32b4121f49e80811921a310eec3 |
IEDL.DBID | BENPR |
ISSN | 2468-2322 |
IngestDate | Wed Aug 27 01:27:46 EDT 2025 Sat Jul 26 00:21:30 EDT 2025 Sun Jul 06 05:06:14 EDT 2025 Thu Apr 24 23:14:11 EDT 2025 Wed Jan 22 16:22:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4420-3752e6748e1690b16e4fa481f526891cb10b5d32b4121f49e80811921a310eec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6058-5077 |
OpenAccessLink | https://www.proquest.com/docview/3091950225?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 3091950225 |
PQPubID | 6852857 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3516223f77284cbc8aa2f1d5b2715c5f proquest_journals_3091950225 crossref_citationtrail_10_1049_cit2_12110 crossref_primary_10_1049_cit2_12110 wiley_primary_10_1049_cit2_12110_CIT212110 |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | CAAI Transactions on Intelligence Technology |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2021; 9 2019; 7 2004; 20 2019; 9 1990; 12 2017; 26 2012 2011 2020; 121 2020; 82 1985; 7 2008; 17 2009 2006 2020; 124 2016; 39 2021; 30 2018; 27 2018; 25 2007; 16 2016; 99 2015; 24 2010; 86 2013; 16 2022 2021; 453 2020; 131 2021 2020 1984; 32 2019 2003; 3 2018 2017 1994; 16 2016 2015 2014 2022; 32 1980 2005; 2 2012; 22 2022; 125 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 Hassani I.K. (e_1_2_8_25_1) 2021 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Mao X. (e_1_2_8_57_1) 2016 e_1_2_8_13_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 Kingma D. (e_1_2_8_43_1) 2014 Abbas J.K. (e_1_2_8_11_1) 2022 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Alawode B.O. (e_1_2_8_29_1) 2021 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Ioffe S. (e_1_2_8_20_1) 2015 Li Y. (e_1_2_8_36_1) 2021 e_1_2_8_23_1 e_1_2_8_44_1 Xu J. (e_1_2_8_45_1) 2018 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Dai J. (e_1_2_8_39_1) 2017 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 86 start-page: 1 issue: 1 year: 2010 end-page: 32 article-title: From local kernel to nonlocal multiple‐model image denoising publication-title: Int. J. Comput. – volume: 9 issue: 6 year: 2019 article-title: Learning deep cnn denoiser priors for depth image inpainting publication-title: J. Appl. Sci. – start-page: 770 year: 2016 end-page: 778 – start-page: 12493 year: 2020 end-page: 12502 – volume: 453 start-page: 853 year: 2021 end-page: 864 article-title: Adaptive deformable convolutional network publication-title: J Neurocomputing – year: 2021 – year: 2017 article-title: Deformable convolutional networks publication-title: CoRR – start-page: 479 year: 2011 end-page: 486 – volume: 32 start-page: 2937 issue: 5 year: 2022 end-page: 2948 article-title: Gaussian dynamic convolution for efficient single‐image segmentation publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 16 start-page: 2080 issue: 8 year: 2007 end-page: 2095 article-title: Image denoising by sparse 3‐D transform‐domain collaborative filtering publication-title: IEEE Trans. Image Process. – start-page: 1141 year: 2017 end-page: 1149 – start-page: 6728 year: 2020 end-page: 6737 – start-page: 2272 year: 2009 end-page: 2279 – volume: 2 start-page: 860 year: 2005 end-page: 867 – start-page: 2802 year: 2016 end-page: 2810 article-title: Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections – start-page: 8060 year: 2021 end-page: 8069 – year: 2014 article-title: A method for stochastic optimization publication-title: arXiv Preprint 2014, arXiv:1412.6980 – volume: 22 start-page: 91 issue: 1 year: 2012 end-page: 103 article-title: Optimal inversion of the generalized anscombe transformation for Poisson–sgaussian noise publication-title: IEEE Trans. Image Process. – volume: 9 start-page: 31742 year: 2021 end-page: 31754 article-title: A residual dense U‐net neural network for image denoising publication-title: IEEE Access – volume: 124 start-page: 117 year: 2020 end-page: 129 article-title: Attention‐guided CNN for image denoising [J] publication-title: Neural Network. – volume: 25 start-page: 55 issue: 1 year: 2018 end-page: 59 article-title: BM3D‐Net: a convolutional neural network for transform‐domain collaborative filtering publication-title: IEEE Signal Process. Lett. – start-page: 165 issue: 2 year: 1980 end-page: 168 article-title: Digital image enhancement and noise filtering by use of local statistics publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2021 article-title: Dilated convolution with learnable spacings publication-title: arXiv preprint arXiv:2112.03740 – volume: 131 start-page: 251 year: 2020 end-page: 275 article-title: Deep learning on image denoising: an overview publication-title: Neural Network. – volume: 17 start-page: 664 issue: 5 year: 2008 end-page: 678 article-title: Adaptive bilateral filter for sharpness enhancement and noise removal publication-title: J IEEE Transactions Image Process – start-page: 2774 year: 2014 end-page: 2781 – volume: 82 year: 2020 article-title: A nonsubsampled countourlet transform based CNN for real image denoising publication-title: Signal Process. Image Commun – start-page: 1 year: 2017 end-page: 27 article-title: Patch‐based models and algorithms for image denoising: a comparative review between patch‐based images denoising methods for additive noise reduction publication-title: EURASIP J. Image Video Proces. – start-page: 269 year: 2006 end-page: 282 – start-page: 1683 year: 2016 end-page: 1691 – volume: 26 start-page: 3142 issue: 7 year: 2017 end-page: 3155 article-title: Beyond a Gaussian denoiser: residual learning of deep cnn for image denoising publication-title: IEEE Trans. Image Process. – start-page: 2392 year: 2012 end-page: 2399 – volume: 20 start-page: 89 issue: 1 year: 2004 end-page: 97 article-title: An algorithm for total variation minimization and applications publication-title: J. Math. Imag. Vis. – volume: 27 start-page: 4608 issue: 9 year: 2018 end-page: 4622 article-title: Toward a fast and flexible solution for CNN‐based image denoising publication-title: IEEE Trans. Image Process. – volume: 121 start-page: 461 year: 2020 end-page: 473 article-title: Image denoising using deep CNN with batch renormalization publication-title: Neural Network. – volume: 16 start-page: 83 issue: 1 year: 2013 end-page: 93 article-title: Self‐learning based image decomposition with applications to single image denoising publication-title: IEEE Trans. Multimed. – start-page: 1712 year: 2019 end-page: 1722 – start-page: 11027 year: 2020 end-page: 11036 – volume: 12 start-page: 629 issue: 7 year: 1990 end-page: 639 article-title: Scale space and edge detection using anisotropic diffusion publication-title: J IEEE Transactions Pattern Analysis Machine Intelligence – year: 2018 article-title: Real‐world noisy image denoising: a new benchmark publication-title: arXiv preprint arXiv:1804.02603 – volume: 3 year: 2003 – volume: 24 start-page: 2167 issue: 7 year: 2015 end-page: 2181 article-title: Adaptive image denoising by targeted databases publication-title: IEEE Trans. Image Process – volume: 99 issue: 6 year: 2016 article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 16 start-page: 267 issue: 3 year: 1994 end-page: 276 article-title: Radiometric ccd camera calibration and noise estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3155 year: 2019 end-page: 3164 – start-page: 2862 year: 2014 end-page: 2869 – start-page: 1272 year: 2017 end-page: 1279 – volume: 32 start-page: 1109 issue: 6 year: 1984 end-page: 1121 article-title: Speech enhancement using a minimum‐mean square error short‐time spectral amplitude estimator publication-title: IEEE Trans. Acoust. Speech Signal Process. – year: 2020 – year: 2021 article-title: Revisiting dynamic convolution via matrix decomposition publication-title: arXiv preprint arXiv:2103.08756 – volume: 7 start-page: 165 issue: 2 year: 1985 end-page: 177 article-title: Adaptive noise smoothing filter for images with signal dependent noise publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 39 start-page: 2879 issue: 6 year: 2016 end-page: 2910 article-title: A novel variable‐separation method based on sparse representation for stochastic partial differential equations publication-title: SIAM J. Sci. Comput. – volume: 125 year: 2022 article-title: Joint image denoising with gradient direction and edge‐preserving regularization publication-title: J Pattern Recognition – volume: 7 start-page: 63447 year: 2019 end-page: 63456 article-title: Adaptively tuning a convolutional neural network by gate process for image denoising publication-title: IEEE Access – volume: 30 start-page: 1784 year: 2021 end-page: 1798 article-title: Dynamic selection network for image inpainting publication-title: IEEE Trans. Image Process. – start-page: 448 year: 2015 end-page: 456 – year: 2021 article-title: Meta‐optimization of deep CNN for image denoising using LSTM at publication-title: arXiv:2107.06845 – start-page: 2636 year: 2022 end-page: 9346 – start-page: 3929 year: 2017 end-page: 3938 – start-page: 4539 year: 2017 end-page: 4547 – ident: e_1_2_8_7_1 doi: 10.1007/s11263‐009‐0272‐7 – ident: e_1_2_8_2_1 doi: 10.1109/34.276126 – ident: e_1_2_8_8_1 doi: 10.1186/s13640‐017‐0203‐4 – ident: e_1_2_8_54_1 doi: 10.1109/CVPR.2012.6247952 – ident: e_1_2_8_41_1 doi: 10.1109/CVPR42600.2020.00676 – ident: e_1_2_8_61_1 doi: 10.1109/TIP.2015.2414873 – ident: e_1_2_8_26_1 doi: 10.1016/j.neunet.2019.08.022 – ident: e_1_2_8_55_1 doi: 10.1109/CVPR.2014.349 – ident: e_1_2_8_38_1 doi: 10.1109/TCSVT.2021.3096814 – ident: e_1_2_8_47_1 doi: 10.1109/CVPR.2005.160 – ident: e_1_2_8_28_1 doi: 10.1109/CVPR.2019.00181 – ident: e_1_2_8_53_1 doi: 10.1109/ICCV.2011.6126278 – year: 2021 ident: e_1_2_8_25_1 article-title: Dilated convolution with learnable spacings publication-title: arXiv preprint arXiv:2112.03740 – start-page: 2802 volume-title: Proc. Adv. Neural Inf. Process. Syst year: 2016 ident: e_1_2_8_57_1 – start-page: 448 volume-title: International Conference on Machine Learning year: 2015 ident: e_1_2_8_20_1 – ident: e_1_2_8_10_1 doi: 10.1109/lsp.2017.2768660 – ident: e_1_2_8_30_1 doi: 10.3390/app9061103 – ident: e_1_2_8_21_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_8_32_1 doi: 10.1016/j.knosys.2020.106235 – ident: e_1_2_8_48_1 doi: 10.1109/ICCV.2009.5459452 – ident: e_1_2_8_3_1 doi: 10.1109/ACCESS.2021.3061062 – ident: e_1_2_8_49_1 doi: 10.1109/CVPR.2016.186 – ident: e_1_2_8_56_1 doi: 10.1109/ICPR48806.2021.9412605 – ident: e_1_2_8_60_1 doi: 10.1109/ICCV.2017.486 – ident: e_1_2_8_62_1 doi: 10.1109/TIP.2012.2202675 – start-page: 2636 volume-title: Visual Perception Method for Medical Image De‐noising year: 2022 ident: e_1_2_8_11_1 – ident: e_1_2_8_12_1 doi: 10.1023/b:jmiv.0000011321.19549.88 – ident: e_1_2_8_35_1 doi: 10.1109/CVPR42600.2020.01251 – ident: e_1_2_8_27_1 doi: 10.1109/ICCV.2019.00325 – ident: e_1_2_8_40_1 doi: 10.1016/j.neucom.2020.06.128 – ident: e_1_2_8_50_1 doi: 10.1109/tmm.2013.2284759 – ident: e_1_2_8_58_1 doi: 10.1109/ACCESS.2019.2917537 – ident: e_1_2_8_13_1 doi: 10.1109/34.56205 – ident: e_1_2_8_17_1 doi: 10.1016/j.patcog.2021.108506 – ident: e_1_2_8_52_1 doi: 10.1109/tpami.2016.2596743 – year: 2021 ident: e_1_2_8_29_1 article-title: Meta‐optimization of deep CNN for image denoising using LSTM at publication-title: arXiv:2107.06845 – ident: e_1_2_8_46_1 doi: 10.1109/ICDAR.2003.1227801 – ident: e_1_2_8_19_1 doi: 10.1109/tip.2017.2662206 – ident: e_1_2_8_24_1 doi: 10.1109/ICCV.2017.486 – ident: e_1_2_8_5_1 doi: 10.1109/tpami.1985.4767641 – ident: e_1_2_8_37_1 doi: 10.1109/TIP.2020.3048629 – ident: e_1_2_8_51_1 doi: 10.1109/CVPR.2017.300 – ident: e_1_2_8_14_1 doi: 10.1137/16M1100010 – ident: e_1_2_8_18_1 doi: 10.1016/j.neunet.2020.07.025 – ident: e_1_2_8_6_1 doi: 10.1109/tip.2008.919949 – year: 2014 ident: e_1_2_8_43_1 article-title: A method for stochastic optimization publication-title: arXiv Preprint 2014, arXiv:1412.6980 – ident: e_1_2_8_42_1 doi: 10.1109/tassp.1984.1164453 – ident: e_1_2_8_59_1 doi: 10.1016/j.image.2019.115727 – ident: e_1_2_8_15_1 doi: 10.1109/CVPR.2014.366 – year: 2021 ident: e_1_2_8_36_1 article-title: Revisiting dynamic convolution via matrix decomposition publication-title: arXiv preprint arXiv:2103.08756 – year: 2017 ident: e_1_2_8_39_1 article-title: Deformable convolutional networks publication-title: CoRR – ident: e_1_2_8_23_1 doi: 10.1109/CVPRW.2017.152 – ident: e_1_2_8_22_1 doi: 10.1109/tip.2018.2839891 – ident: e_1_2_8_4_1 doi: 10.1109/TPAMI.1980.4766994 – ident: e_1_2_8_16_1 doi: 10.1007/11744047_21 – ident: e_1_2_8_9_1 doi: 10.1109/tip.2007.901238 – ident: e_1_2_8_34_1 doi: 10.1109/CVPR46437.2021.00797 – ident: e_1_2_8_31_1 doi: 10.1109/ICTAI.2017.00192 – ident: e_1_2_8_44_1 doi: 10.1016/j.neunet.2019.12.024 – year: 2018 ident: e_1_2_8_45_1 article-title: Real‐world noisy image denoising: a new benchmark publication-title: arXiv preprint arXiv:1804.02603 – ident: e_1_2_8_33_1 doi: 10.1109/CVPR42600.2020.01104 |
SSID | ssj0001999537 |
Score | 2.6060631 |
Snippet | Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change... Abstract Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 331 |
SubjectTerms | Artificial neural networks blind denoising CNN Deep learning Deformation effects deformed block Efficiency enhanced block Formability Image enhancement Learning Methods Neural networks Noise Noise levels Noise reduction Partial differential equations Pixels Qualitative analysis Robustness |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDePIiiorVKQE9OKGsaZOmPc7hmII7bbBbSdIEBtrJ1v3_vpd2o4LoxVNLeIX0vTT5ND--j5B76coEMEOGJjIqBL41oQYuDxWgtcwSm1q_XPA2TSdz_roQi06qL9wT1sgDN44bJIKlMIQ5oMCMG20ypWLHSqFjyYQRDnvfKI86P1N-dgW4RyRyp0fK84FZ1jFKKeBR2c4I5IX6v9Fll1H9IDM-IcctHdJhU6tTcmCrMzIZ0vVKbzc1LS0ipi0p7hVv2wyYoyalv_gd3fRhNJ32KVjS5Qf0FvBUtVrilMA5mY-fZ6NJ2CZACA3neLJZithiNhCLi1mapZY7xTPmUKMlZ0azSIsyiTWHF3M8t5hGAwXOFECbtSa5IIfVqrKXhHJntEw1c8oKLmFAUtALGsCpNC2VNDwg_Z1TCtOqg2OSivfCr1LzHEvjwjswIHd7289GE-NHqyf07d4Cdax9AUS3aKNb_BXdgPR2kSnaj2tTJMA4uQD4EAF59NH6pRrF6GUW-7ur_6jQNTnChPPNZrEeOazXW3sDWFLrW98CvwB1mNt2 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDmBcvoqhYnVLQgxOKa5o0LXiZwzEFh4cNditJmshAV9m6_9_30nZzIIKnlvAC7cuvD0ne9xFyI2weAWaIQPe0DIBvdaCAywMJaC2SyMTGHRe8juPRlL3M-KxFHppYmEofYrPhhiPDzdc4wKWqspAA1EIj6nlJURsB46v2gOoj7N-UvW13WIB9uBPNpBheBOhAG31Slt5vq--sSE64f4c2fzKrW3SGh-SgpkW_XzXvEWmZxTEZ9f1lodar0s8NIqfJfbw7XvchMEeNSvdwN7z928F43PXB0p9_wuwBtRbFHLcITsh0-DQZjII6IUKgGcNIZ8GpwewgBg-3VBgbZiVLQouaLWmoVdhTPI-oYvBjlqUG02qg4JkEiDNGR6ekvSgW5oz4zGolYhVaaTgTsEBJmBU1-CiOcyk080i3cUqma7VwTFrxkblTa5ZiKc2cAz1yvbH9qjQyfrV6RN9uLFDX2hUUy_esHiZZxMMYgMUC8ydMK51ISW2Yc0VFyDW3Huk0LZPVg22VRcA8KQcY4R65c631x2dkg-cJdW_n_zG-IPuYaL66JNYh7XK5NpeAI6W6cr3uG0A-1bo priority: 102 providerName: Wiley-Blackwell |
Title | A robust deformed convolutional neural network (CNN) for image denoising |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12110 https://www.proquest.com/docview/3091950225 https://doaj.org/article/3516223f77284cbc8aa2f1d5b2715c5f |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB509-JFFBXXx1LQgwrFbZs07UFkXV1X0SI-wFtJ0kQWdKv7-P_OZFsfIF7aEqalzWPmayb5PoB9YYsIYYbwdUdLH_Gt9hXicl8itBZJZGLj0gW3WTx4YtfP_HkBsnovDC2rrH2ic9RFqWmO_DjCwJZyjDj89P3DJ9Uoyq7WEhqyklYoThzF2CI00SXzTgOaZxfZ3f33rAviIR6JmqeUpcd6OA2JYoG20P6ITI7A_xfq_IldXfDpr8ByhRq97ryZV2HBjNZg0PXGpZpNpl5hCHqawqM15FVfQnPiqnQnt9LbO-hl2aGHlt7wDb0I3jUqhzRVsA5P_YvH3sCvhBF8zRjteBY8NKQSYijJpYLYMCtZEljibkkDrYKO4kUUKoYfZllqSF6DiM8kgjljdLQBjVE5MpvgMauViFVgpeFMYKCS6B01wqw4LqTQrAWHdaXkumINJ_GK19xlr1lKpWHuKrAFe1-273OujD-tzqhuvyyI39oVlOOXvBouecSDGIGLReyfMK10ImVog4KrUARcc9uCnbpl8mrQTfLvLtKCI9da_7xG3rt6DN3V1v_P2oYlkpifLw_bgcZ0PDO7CESmqg2LIbvDY9K_bEOze35789Cuelzb_dx_AhRp3hM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7q9UFfiqLiadWAClZY2mSTze1DkfZsubPtInKFvsUkm5UDe1vvroj_nH-bM7lsW0H61qddwmxYJpPMl1_fB_BWN3WOMENnfsfbDPGtzxzi8switNaDPBQhbhecVMXoVH4-U2dr8Ke7C0PHKrsxMQ7UdetpjXw7x8RWKsw46uPFz4xUo2h3tZPQsElaod6NFGPpYsdR-P0Lp3CL3fEnbO93QhweTIajLKkMZF5Kuj6slQgkuRFox8jxIsjGygFviAil5N7xHafqXDjJBW9kGUirgljELCKjEHyO9d6DdUkLKD1Y3z-ovny9XuVB_KVy3fGiynLbT5eCKB3oyu6NTBgFA_5BuTexckx2hw9hI6FUtrcKq0ewFmaPYbTH5q27XCxZHQjqhprRmfUUu2hO3JjxEU-Ws_fDqtpiaMmm5zhq4VezdkpLE0_g9E5c9BR6s3YWngGTjXe6cLyxQUmNidHiaOwR1hVFbbWXfdjqnGJ8YiknsYwfJu6Wy5JKhYkO7MObK9uLFTfHf632ybdXFsSnHQva-XeTuqfJFS8QKDU41xhI7_zAWtHwWjmhufKq6cNm1zImdfKFuQ7JPnyIrXXLb5jheCLi2_Pb63oN90eTk2NzPK6OXsADkrdfHU3bhN5yfhleIghaulcp0hh8u-vg_gtOWROj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS8MwFMfDmCC-iKLidGpBH5xQXNOkXcGXOR2bl7GHDfYWkjSRga5jl-_vOWm3ORDBp5ZyAm1yTvJrLv9DyE1s0xAwI_Z1XUsf-Fb7Crjcl4DWcSM0kXHLBe-9qDNkLyM-KpGH1VmYXB9iPeGGkeH6awzwaWrz_02GGpl6vKCojYDnq3YYOB76N2X9zQwLsA93opkUjxcBOtCVPilL7jfFt0YkJ9y_RZs_mdUNOu0Dsl_QotfMm_eQlMzkiHSa3ixTy_nCSw0ip0k93Dte-BCYo0alu7gd3t5tq9ereWDpjb-g94BSk2yMUwTHZNh-HrQ6fpEQwdeM4UnnmFOD2UEMLm6pIDLMStYILGq2JIFWQV3xNKSKwYdZlhhMq4GCZxIgzhgdnpDyJJuYU-Ixq1UcqcBKw1kMA5SEXlFDHUVRKmPNKqS2qhShC7VwTFrxKdyqNUvwKRWuAivkem07zTUyfrV6xLpdW6CutXuQzT5EESYi5EEEwGKB-RtMK92Qktog5YrGAdfcVkh11TKiCLa5CIF5Eg4wwivkzrXWH68hWt0BdXdn_zG-Irv9p7Z46_Zez8ke5pzP94tVSXkxW5oLIJOFunQO-A26t9hb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+deformed+convolutional+neural+network+%28CNN%29+for+image+denoising&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Zhang%2C+Qi&rft.au=Xiao%2C+Jingyu&rft.au=Tian%2C+Chunwei&rft.au=Chun%E2%80%90Wei+Lin%2C+Jerry&rft.date=2023-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=8&rft.issue=2&rft.spage=331&rft.epage=342&rft_id=info:doi/10.1049%2Fcit2.12110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon |