A robust deformed convolutional neural network (CNN) for image denoising

Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pix...

Full description

Saved in:
Bibliographic Details
Published inCAAI Transactions on Intelligence Technology Vol. 8; no. 2; pp. 331 - 342
Main Authors Zhang, Qi, Xiao, Jingyu, Tian, Chunwei, Chun‐Wei Lin, Jerry, Zhang, Shichao
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.06.2023
Wiley
Subjects
Online AccessGet full text
ISSN2468-2322
2468-2322
DOI10.1049/cit2.12110

Cover

Abstract Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pixels can effectively resolve this problem. Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an enhanced block (EB) and a residual block (RB). The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture, according to relations of surrounding pixels. The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers, batch normalisation (BN) and ReLU, which can enhance the learning ability of the proposed RDDCNN. To address long‐term dependency problem, the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image. Besides, we implement a blind denoising model. Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN.
AbstractList Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pixels can effectively resolve this problem. Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an enhanced block (EB) and a residual block (RB). The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture, according to relations of surrounding pixels. The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers, batch normalisation (BN) and ReLU, which can enhance the learning ability of the proposed RDDCNN. To address long‐term dependency problem, the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image. Besides, we implement a blind denoising model. Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN .
Abstract Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change original distributions of noise in corrupted images, which may increase training difficulty in image denoising. Using relations of surrounding pixels can effectively resolve this problem. Inspired by that, we propose a robust deformed denoising CNN (RDDCNN) in this paper. The proposed RDDCNN contains three blocks: a deformable block (DB), an enhanced block (EB) and a residual block (RB). The DB can extract more representative noise features via a deformable learnable kernel and stacked convolutional architecture, according to relations of surrounding pixels. The EB can facilitate contextual interaction through a dilated convolution and a novel combination of convolutional layers, batch normalisation (BN) and ReLU, which can enhance the learning ability of the proposed RDDCNN. To address long‐term dependency problem, the RB is used to enhance the memory ability of shallow layer on deep layers and construct a clean image. Besides, we implement a blind denoising model. Experimental results demonstrate that our denoising model outperforms popular denoising methods in terms of qualitative and quantitative analysis. Codes can be obtained at https://github.com/hellloxiaotian/RDDCNN.
Author Zhang, Qi
Xiao, Jingyu
Chun‐Wei Lin, Jerry
Zhang, Shichao
Tian, Chunwei
Author_xml – sequence: 1
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: Harbin Institute of Technology at Weihai
– sequence: 2
  givenname: Jingyu
  surname: Xiao
  fullname: Xiao, Jingyu
  organization: Central South University
– sequence: 3
  givenname: Chunwei
  orcidid: 0000-0002-6058-5077
  surname: Tian
  fullname: Tian, Chunwei
  email: chunweitian@163.com
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Jerry
  surname: Chun‐Wei Lin
  fullname: Chun‐Wei Lin, Jerry
  organization: Western Norway University of Applied Sciences
– sequence: 5
  givenname: Shichao
  surname: Zhang
  fullname: Zhang, Shichao
  organization: Central South University
BookMark eNp9kEFrGzEQhUVJoGniS3_BQi5twY5mJO2ujsakjSE4F_cstFrJyN2sHGm3If8-sreFEEpPMwzfe8x7n8hZH3pLyGegC6Bc3hg_4AIQgH4gF8jLeo4M8ezN_pHMUtpTSkFKKVh1Qe6WRQzNmIaitS7ER9sWJvS_QzcOPvS6K3o7xtMYnkP8VXxZbTZfi0wW_lHvbFb1wSff767IudNdsrM_85L8_H67Xd3N7x9-rFfL-7nhHOmcVQJtWfHaQilpA6XlTvManMCylmAaoI1oGTY8B3Fc2prWABJBM6DWGnZJ1pNvG_ReHWJ-I76ooL06HULcKR0HbzqrmIASkbmqwpqbxtRao4NWNFiBMMJlr-vJ6xDD02jToPZhjDl1UoxKkIIiikzRiTIxpBStU7lofaxniNp3Cqg61n-8ojrVnyXf3kn-PvpPGCb42Xf25T-kWq23OGleAb0Rk6Y
CitedBy_id crossref_primary_10_1007_s00357_024_09467_1
crossref_primary_10_1007_s12596_023_01380_x
crossref_primary_10_1109_TIFS_2023_3341392
crossref_primary_10_1049_cit2_12229
crossref_primary_10_3390_math10203891
crossref_primary_10_1016_j_robot_2024_104819
crossref_primary_10_1007_s11042_023_17198_5
crossref_primary_10_1038_s41598_024_71358_7
crossref_primary_10_1109_TPAMI_2023_3337005
crossref_primary_10_3390_electronics12112364
crossref_primary_10_3934_math_2024243
crossref_primary_10_1007_s41478_022_00534_7
crossref_primary_10_1109_JSTARS_2023_3255837
crossref_primary_10_1111_coin_12611
crossref_primary_10_3390_math11071657
crossref_primary_10_3390_sym16060649
crossref_primary_10_1016_j_jksuci_2024_102192
crossref_primary_10_1007_s12530_023_09533_w
crossref_primary_10_1109_TETCI_2024_3398011
crossref_primary_10_1109_ACCESS_2024_3424972
crossref_primary_10_1088_1361_6560_ad8294
crossref_primary_10_3389_fncom_2023_1309694
crossref_primary_10_1080_0954898X_2024_2350578
crossref_primary_10_3390_app14177557
crossref_primary_10_1007_s10489_023_04861_5
crossref_primary_10_3934_mbe_2023914
crossref_primary_10_1016_j_csite_2024_104452
crossref_primary_10_1002_rob_22358
crossref_primary_10_1049_cit2_12208
crossref_primary_10_3934_mbe_2023609
crossref_primary_10_1109_TIP_2023_3299791
crossref_primary_10_1109_TCSVT_2024_3441053
crossref_primary_10_1016_j_aej_2024_08_073
crossref_primary_10_1109_ACCESS_2023_3264604
crossref_primary_10_1007_s11042_023_17468_2
crossref_primary_10_1007_s00371_023_03046_y
crossref_primary_10_1109_TSMC_2024_3429345
crossref_primary_10_1016_j_ins_2024_120229
crossref_primary_10_1016_j_inffus_2024_102582
crossref_primary_10_1016_j_cplett_2024_141606
crossref_primary_10_1007_s10489_023_04895_9
crossref_primary_10_1007_s11760_023_02731_8
crossref_primary_10_1016_j_jisa_2023_103677
crossref_primary_10_1007_s12596_023_01356_x
crossref_primary_10_3390_rs16142595
crossref_primary_10_1007_s00894_023_05727_w
crossref_primary_10_3390_app132312581
crossref_primary_10_1038_s41598_024_72343_w
crossref_primary_10_3390_electronics13234613
crossref_primary_10_1109_TIM_2023_3304676
crossref_primary_10_1117_1_JEI_33_4_043015
crossref_primary_10_1109_ACCESS_2023_3326478
crossref_primary_10_1080_13682199_2023_2198350
crossref_primary_10_1007_s11042_023_17670_2
crossref_primary_10_3390_agronomy15040794
crossref_primary_10_1080_07391102_2023_2275180
crossref_primary_10_7717_peerj_cs_2449
crossref_primary_10_1051_matecconf_202439201156
crossref_primary_10_3390_app14209430
crossref_primary_10_1007_s11760_023_02944_x
crossref_primary_10_1007_s11554_024_01447_3
crossref_primary_10_1016_j_comcom_2024_04_032
crossref_primary_10_3390_electronics12245019
crossref_primary_10_3390_w15223940
crossref_primary_10_1049_cit2_12159
crossref_primary_10_1007_s11042_023_16452_0
crossref_primary_10_1109_TCE_2024_3367539
crossref_primary_10_1016_j_jenvman_2024_120756
crossref_primary_10_1016_j_ins_2022_10_109
crossref_primary_10_1080_00268976_2023_2273980
crossref_primary_10_1080_00268976_2023_2279686
crossref_primary_10_1109_JIOT_2024_3378779
crossref_primary_10_1007_s10489_022_04313_6
crossref_primary_10_1109_ACCESS_2024_3397725
crossref_primary_10_3390_app14167044
crossref_primary_10_1109_TGRS_2024_3477969
crossref_primary_10_1016_j_engappai_2024_108345
crossref_primary_10_1038_s41598_024_74777_8
crossref_primary_10_1007_s00530_024_01469_8
crossref_primary_10_1007_s11042_023_16346_1
crossref_primary_10_1016_j_compeleceng_2024_110043
crossref_primary_10_2351_7_0001231
crossref_primary_10_1080_23742917_2024_2367795
crossref_primary_10_1109_JAS_2023_123543
crossref_primary_10_1007_s11280_024_01258_3
crossref_primary_10_1109_JETCAS_2024_3392868
crossref_primary_10_3390_jsan13040042
crossref_primary_10_3390_s25010077
crossref_primary_10_3390_s25020317
crossref_primary_10_1007_s10115_023_01965_9
crossref_primary_10_1016_j_inffus_2024_102370
crossref_primary_10_3390_pollutants4010001
crossref_primary_10_3390_app13010028
crossref_primary_10_11834_jig_230254
crossref_primary_10_3233_JIFS_233302
crossref_primary_10_3233_JIFS_234632
crossref_primary_10_1049_cit2_12250
crossref_primary_10_1142_S0219467825500032
crossref_primary_10_1016_j_dibe_2024_100494
crossref_primary_10_1080_13682199_2023_2229040
crossref_primary_10_1080_0951192X_2024_2397817
crossref_primary_10_3390_app132011560
crossref_primary_10_3390_app132312673
crossref_primary_10_3390_drones7080486
crossref_primary_10_1007_s11760_023_02587_y
crossref_primary_10_1016_j_iswa_2024_200399
crossref_primary_10_1007_s11760_024_03093_5
crossref_primary_10_1109_ACCESS_2024_3427143
crossref_primary_10_1109_TIP_2023_3310307
crossref_primary_10_3390_electronics12132927
crossref_primary_10_1007_s11269_024_03769_0
crossref_primary_10_3847_1538_4357_ad5954
crossref_primary_10_1109_ACCESS_2024_3407795
crossref_primary_10_1007_s12596_023_01543_w
crossref_primary_10_1049_cit2_12384
crossref_primary_10_3390_electronics11223760
crossref_primary_10_1051_matecconf_202439201143
crossref_primary_10_1016_j_eswa_2024_125041
crossref_primary_10_1016_j_ins_2024_121008
crossref_primary_10_1016_j_eswa_2025_127124
crossref_primary_10_1016_j_knosys_2025_113342
Cites_doi 10.1007/s11263‐009‐0272‐7
10.1109/34.276126
10.1186/s13640‐017‐0203‐4
10.1109/CVPR.2012.6247952
10.1109/CVPR42600.2020.00676
10.1109/TIP.2015.2414873
10.1016/j.neunet.2019.08.022
10.1109/CVPR.2014.349
10.1109/TCSVT.2021.3096814
10.1109/CVPR.2005.160
10.1109/CVPR.2019.00181
10.1109/ICCV.2011.6126278
10.1109/lsp.2017.2768660
10.3390/app9061103
10.1109/CVPR.2016.90
10.1016/j.knosys.2020.106235
10.1109/ICCV.2009.5459452
10.1109/ACCESS.2021.3061062
10.1109/CVPR.2016.186
10.1109/ICPR48806.2021.9412605
10.1109/ICCV.2017.486
10.1109/TIP.2012.2202675
10.1023/b:jmiv.0000011321.19549.88
10.1109/CVPR42600.2020.01251
10.1109/ICCV.2019.00325
10.1016/j.neucom.2020.06.128
10.1109/tmm.2013.2284759
10.1109/ACCESS.2019.2917537
10.1109/34.56205
10.1016/j.patcog.2021.108506
10.1109/tpami.2016.2596743
10.1109/ICDAR.2003.1227801
10.1109/tip.2017.2662206
10.1109/tpami.1985.4767641
10.1109/TIP.2020.3048629
10.1109/CVPR.2017.300
10.1137/16M1100010
10.1016/j.neunet.2020.07.025
10.1109/tip.2008.919949
10.1109/tassp.1984.1164453
10.1016/j.image.2019.115727
10.1109/CVPR.2014.366
10.1109/CVPRW.2017.152
10.1109/tip.2018.2839891
10.1109/TPAMI.1980.4766994
10.1007/11744047_21
10.1109/tip.2007.901238
10.1109/CVPR46437.2021.00797
10.1109/ICTAI.2017.00192
10.1016/j.neunet.2019.12.024
10.1109/CVPR42600.2020.01104
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology and Chongqing University of Technology.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1049/cit2.12110
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2468-2322
EndPage 342
ExternalDocumentID oai_doaj_org_article_3516223f77284cbc8aa2f1d5b2715c5f
10_1049_cit2_12110
CIT212110
Genre article
GrantInformation_xml – fundername: Key Project of NSFC
  funderid: 61836016
– fundername: Fundamental Research Funds for the Central Universities
  funderid: D5000210966
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2021A1515110079
– fundername: Basic Research Plan in Taicang
  funderid: TC2021JC23
GroupedDBID 0R~
0SF
1OC
24P
6I.
AACTN
AAEDW
AAFTH
AAHHS
AAHJG
AAJGR
AALRI
AAXUO
ABMAC
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACXQS
ADBBV
ADVLN
ADZOD
AEEZP
AEQDE
AEXQZ
AFKRA
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
ARAPS
ARCSS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
ITC
K7-
M41
M43
NCXOZ
O9-
OCL
OK1
PIMPY
RIE
RIG
ROL
RUI
SSZ
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
ADMLS
AEFGJ
AEUPX
AFPUW
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
ICD
PHGZM
PHGZT
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
WIN
ID FETCH-LOGICAL-c4420-3752e6748e1690b16e4fa481f526891cb10b5d32b4121f49e80811921a310eec3
IEDL.DBID BENPR
ISSN 2468-2322
IngestDate Wed Aug 27 01:27:46 EDT 2025
Sat Jul 26 00:21:30 EDT 2025
Sun Jul 06 05:06:14 EDT 2025
Thu Apr 24 23:14:11 EDT 2025
Wed Jan 22 16:22:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4420-3752e6748e1690b16e4fa481f526891cb10b5d32b4121f49e80811921a310eec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6058-5077
OpenAccessLink https://www.proquest.com/docview/3091950225?pq-origsite=%requestingapplication%&accountid=15518
PQID 3091950225
PQPubID 6852857
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_3516223f77284cbc8aa2f1d5b2715c5f
proquest_journals_3091950225
crossref_citationtrail_10_1049_cit2_12110
crossref_primary_10_1049_cit2_12110
wiley_primary_10_1049_cit2_12110_CIT212110
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle CAAI Transactions on Intelligence Technology
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2021; 9
2019; 7
2004; 20
2019; 9
1990; 12
2017; 26
2012
2011
2020; 121
2020; 82
1985; 7
2008; 17
2009
2006
2020; 124
2016; 39
2021; 30
2018; 27
2018; 25
2007; 16
2016; 99
2015; 24
2010; 86
2013; 16
2022
2021; 453
2020; 131
2021
2020
1984; 32
2019
2003; 3
2018
2017
1994; 16
2016
2015
2014
2022; 32
1980
2005; 2
2012; 22
2022; 125
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Hassani I.K. (e_1_2_8_25_1) 2021
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Mao X. (e_1_2_8_57_1) 2016
e_1_2_8_13_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Kingma D. (e_1_2_8_43_1) 2014
Abbas J.K. (e_1_2_8_11_1) 2022
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Alawode B.O. (e_1_2_8_29_1) 2021
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Ioffe S. (e_1_2_8_20_1) 2015
Li Y. (e_1_2_8_36_1) 2021
e_1_2_8_23_1
e_1_2_8_44_1
Xu J. (e_1_2_8_45_1) 2018
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Dai J. (e_1_2_8_39_1) 2017
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 86
  start-page: 1
  issue: 1
  year: 2010
  end-page: 32
  article-title: From local kernel to nonlocal multiple‐model image denoising
  publication-title: Int. J. Comput.
– volume: 9
  issue: 6
  year: 2019
  article-title: Learning deep cnn denoiser priors for depth image inpainting
  publication-title: J. Appl. Sci.
– start-page: 770
  year: 2016
  end-page: 778
– start-page: 12493
  year: 2020
  end-page: 12502
– volume: 453
  start-page: 853
  year: 2021
  end-page: 864
  article-title: Adaptive deformable convolutional network
  publication-title: J Neurocomputing
– year: 2021
– year: 2017
  article-title: Deformable convolutional networks
  publication-title: CoRR
– start-page: 479
  year: 2011
  end-page: 486
– volume: 32
  start-page: 2937
  issue: 5
  year: 2022
  end-page: 2948
  article-title: Gaussian dynamic convolution for efficient single‐image segmentation
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  end-page: 2095
  article-title: Image denoising by sparse 3‐D transform‐domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– start-page: 1141
  year: 2017
  end-page: 1149
– start-page: 6728
  year: 2020
  end-page: 6737
– start-page: 2272
  year: 2009
  end-page: 2279
– volume: 2
  start-page: 860
  year: 2005
  end-page: 867
– start-page: 2802
  year: 2016
  end-page: 2810
  article-title: Image restoration using very deep convolutional encoder–decoder networks with symmetric skip connections
– start-page: 8060
  year: 2021
  end-page: 8069
– year: 2014
  article-title: A method for stochastic optimization
  publication-title: arXiv Preprint 2014, arXiv:1412.6980
– volume: 22
  start-page: 91
  issue: 1
  year: 2012
  end-page: 103
  article-title: Optimal inversion of the generalized anscombe transformation for Poisson–sgaussian noise
  publication-title: IEEE Trans. Image Process.
– volume: 9
  start-page: 31742
  year: 2021
  end-page: 31754
  article-title: A residual dense U‐net neural network for image denoising
  publication-title: IEEE Access
– volume: 124
  start-page: 117
  year: 2020
  end-page: 129
  article-title: Attention‐guided CNN for image denoising [J]
  publication-title: Neural Network.
– volume: 25
  start-page: 55
  issue: 1
  year: 2018
  end-page: 59
  article-title: BM3D‐Net: a convolutional neural network for transform‐domain collaborative filtering
  publication-title: IEEE Signal Process. Lett.
– start-page: 165
  issue: 2
  year: 1980
  end-page: 168
  article-title: Digital image enhancement and noise filtering by use of local statistics
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2021
  article-title: Dilated convolution with learnable spacings
  publication-title: arXiv preprint arXiv:2112.03740
– volume: 131
  start-page: 251
  year: 2020
  end-page: 275
  article-title: Deep learning on image denoising: an overview
  publication-title: Neural Network.
– volume: 17
  start-page: 664
  issue: 5
  year: 2008
  end-page: 678
  article-title: Adaptive bilateral filter for sharpness enhancement and noise removal
  publication-title: J IEEE Transactions Image Process
– start-page: 2774
  year: 2014
  end-page: 2781
– volume: 82
  year: 2020
  article-title: A nonsubsampled countourlet transform based CNN for real image denoising
  publication-title: Signal Process. Image Commun
– start-page: 1
  year: 2017
  end-page: 27
  article-title: Patch‐based models and algorithms for image denoising: a comparative review between patch‐based images denoising methods for additive noise reduction
  publication-title: EURASIP J. Image Video Proces.
– start-page: 269
  year: 2006
  end-page: 282
– start-page: 1683
  year: 2016
  end-page: 1691
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  end-page: 3155
  article-title: Beyond a Gaussian denoiser: residual learning of deep cnn for image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 2392
  year: 2012
  end-page: 2399
– volume: 20
  start-page: 89
  issue: 1
  year: 2004
  end-page: 97
  article-title: An algorithm for total variation minimization and applications
  publication-title: J. Math. Imag. Vis.
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  end-page: 4622
  article-title: Toward a fast and flexible solution for CNN‐based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 121
  start-page: 461
  year: 2020
  end-page: 473
  article-title: Image denoising using deep CNN with batch renormalization
  publication-title: Neural Network.
– volume: 16
  start-page: 83
  issue: 1
  year: 2013
  end-page: 93
  article-title: Self‐learning based image decomposition with applications to single image denoising
  publication-title: IEEE Trans. Multimed.
– start-page: 1712
  year: 2019
  end-page: 1722
– start-page: 11027
  year: 2020
  end-page: 11036
– volume: 12
  start-page: 629
  issue: 7
  year: 1990
  end-page: 639
  article-title: Scale space and edge detection using anisotropic diffusion
  publication-title: J IEEE Transactions Pattern Analysis Machine Intelligence
– year: 2018
  article-title: Real‐world noisy image denoising: a new benchmark
  publication-title: arXiv preprint arXiv:1804.02603
– volume: 3
  year: 2003
– volume: 24
  start-page: 2167
  issue: 7
  year: 2015
  end-page: 2181
  article-title: Adaptive image denoising by targeted databases
  publication-title: IEEE Trans. Image Process
– volume: 99
  issue: 6
  year: 2016
  article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 267
  issue: 3
  year: 1994
  end-page: 276
  article-title: Radiometric ccd camera calibration and noise estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3155
  year: 2019
  end-page: 3164
– start-page: 2862
  year: 2014
  end-page: 2869
– start-page: 1272
  year: 2017
  end-page: 1279
– volume: 32
  start-page: 1109
  issue: 6
  year: 1984
  end-page: 1121
  article-title: Speech enhancement using a minimum‐mean square error short‐time spectral amplitude estimator
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– year: 2020
– year: 2021
  article-title: Revisiting dynamic convolution via matrix decomposition
  publication-title: arXiv preprint arXiv:2103.08756
– volume: 7
  start-page: 165
  issue: 2
  year: 1985
  end-page: 177
  article-title: Adaptive noise smoothing filter for images with signal dependent noise
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 2879
  issue: 6
  year: 2016
  end-page: 2910
  article-title: A novel variable‐separation method based on sparse representation for stochastic partial differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 125
  year: 2022
  article-title: Joint image denoising with gradient direction and edge‐preserving regularization
  publication-title: J Pattern Recognition
– volume: 7
  start-page: 63447
  year: 2019
  end-page: 63456
  article-title: Adaptively tuning a convolutional neural network by gate process for image denoising
  publication-title: IEEE Access
– volume: 30
  start-page: 1784
  year: 2021
  end-page: 1798
  article-title: Dynamic selection network for image inpainting
  publication-title: IEEE Trans. Image Process.
– start-page: 448
  year: 2015
  end-page: 456
– year: 2021
  article-title: Meta‐optimization of deep CNN for image denoising using LSTM at
  publication-title: arXiv:2107.06845
– start-page: 2636
  year: 2022
  end-page: 9346
– start-page: 3929
  year: 2017
  end-page: 3938
– start-page: 4539
  year: 2017
  end-page: 4547
– ident: e_1_2_8_7_1
  doi: 10.1007/s11263‐009‐0272‐7
– ident: e_1_2_8_2_1
  doi: 10.1109/34.276126
– ident: e_1_2_8_8_1
  doi: 10.1186/s13640‐017‐0203‐4
– ident: e_1_2_8_54_1
  doi: 10.1109/CVPR.2012.6247952
– ident: e_1_2_8_41_1
  doi: 10.1109/CVPR42600.2020.00676
– ident: e_1_2_8_61_1
  doi: 10.1109/TIP.2015.2414873
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neunet.2019.08.022
– ident: e_1_2_8_55_1
  doi: 10.1109/CVPR.2014.349
– ident: e_1_2_8_38_1
  doi: 10.1109/TCSVT.2021.3096814
– ident: e_1_2_8_47_1
  doi: 10.1109/CVPR.2005.160
– ident: e_1_2_8_28_1
  doi: 10.1109/CVPR.2019.00181
– ident: e_1_2_8_53_1
  doi: 10.1109/ICCV.2011.6126278
– year: 2021
  ident: e_1_2_8_25_1
  article-title: Dilated convolution with learnable spacings
  publication-title: arXiv preprint arXiv:2112.03740
– start-page: 2802
  volume-title: Proc. Adv. Neural Inf. Process. Syst
  year: 2016
  ident: e_1_2_8_57_1
– start-page: 448
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: e_1_2_8_20_1
– ident: e_1_2_8_10_1
  doi: 10.1109/lsp.2017.2768660
– ident: e_1_2_8_30_1
  doi: 10.3390/app9061103
– ident: e_1_2_8_21_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_32_1
  doi: 10.1016/j.knosys.2020.106235
– ident: e_1_2_8_48_1
  doi: 10.1109/ICCV.2009.5459452
– ident: e_1_2_8_3_1
  doi: 10.1109/ACCESS.2021.3061062
– ident: e_1_2_8_49_1
  doi: 10.1109/CVPR.2016.186
– ident: e_1_2_8_56_1
  doi: 10.1109/ICPR48806.2021.9412605
– ident: e_1_2_8_60_1
  doi: 10.1109/ICCV.2017.486
– ident: e_1_2_8_62_1
  doi: 10.1109/TIP.2012.2202675
– start-page: 2636
  volume-title: Visual Perception Method for Medical Image De‐noising
  year: 2022
  ident: e_1_2_8_11_1
– ident: e_1_2_8_12_1
  doi: 10.1023/b:jmiv.0000011321.19549.88
– ident: e_1_2_8_35_1
  doi: 10.1109/CVPR42600.2020.01251
– ident: e_1_2_8_27_1
  doi: 10.1109/ICCV.2019.00325
– ident: e_1_2_8_40_1
  doi: 10.1016/j.neucom.2020.06.128
– ident: e_1_2_8_50_1
  doi: 10.1109/tmm.2013.2284759
– ident: e_1_2_8_58_1
  doi: 10.1109/ACCESS.2019.2917537
– ident: e_1_2_8_13_1
  doi: 10.1109/34.56205
– ident: e_1_2_8_17_1
  doi: 10.1016/j.patcog.2021.108506
– ident: e_1_2_8_52_1
  doi: 10.1109/tpami.2016.2596743
– year: 2021
  ident: e_1_2_8_29_1
  article-title: Meta‐optimization of deep CNN for image denoising using LSTM at
  publication-title: arXiv:2107.06845
– ident: e_1_2_8_46_1
  doi: 10.1109/ICDAR.2003.1227801
– ident: e_1_2_8_19_1
  doi: 10.1109/tip.2017.2662206
– ident: e_1_2_8_24_1
  doi: 10.1109/ICCV.2017.486
– ident: e_1_2_8_5_1
  doi: 10.1109/tpami.1985.4767641
– ident: e_1_2_8_37_1
  doi: 10.1109/TIP.2020.3048629
– ident: e_1_2_8_51_1
  doi: 10.1109/CVPR.2017.300
– ident: e_1_2_8_14_1
  doi: 10.1137/16M1100010
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neunet.2020.07.025
– ident: e_1_2_8_6_1
  doi: 10.1109/tip.2008.919949
– year: 2014
  ident: e_1_2_8_43_1
  article-title: A method for stochastic optimization
  publication-title: arXiv Preprint 2014, arXiv:1412.6980
– ident: e_1_2_8_42_1
  doi: 10.1109/tassp.1984.1164453
– ident: e_1_2_8_59_1
  doi: 10.1016/j.image.2019.115727
– ident: e_1_2_8_15_1
  doi: 10.1109/CVPR.2014.366
– year: 2021
  ident: e_1_2_8_36_1
  article-title: Revisiting dynamic convolution via matrix decomposition
  publication-title: arXiv preprint arXiv:2103.08756
– year: 2017
  ident: e_1_2_8_39_1
  article-title: Deformable convolutional networks
  publication-title: CoRR
– ident: e_1_2_8_23_1
  doi: 10.1109/CVPRW.2017.152
– ident: e_1_2_8_22_1
  doi: 10.1109/tip.2018.2839891
– ident: e_1_2_8_4_1
  doi: 10.1109/TPAMI.1980.4766994
– ident: e_1_2_8_16_1
  doi: 10.1007/11744047_21
– ident: e_1_2_8_9_1
  doi: 10.1109/tip.2007.901238
– ident: e_1_2_8_34_1
  doi: 10.1109/CVPR46437.2021.00797
– ident: e_1_2_8_31_1
  doi: 10.1109/ICTAI.2017.00192
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neunet.2019.12.024
– year: 2018
  ident: e_1_2_8_45_1
  article-title: Real‐world noisy image denoising: a new benchmark
  publication-title: arXiv preprint arXiv:1804.02603
– ident: e_1_2_8_33_1
  doi: 10.1109/CVPR42600.2020.01104
SSID ssj0001999537
Score 2.6060631
Snippet Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may change...
Abstract Due to strong learning ability, convolutional neural networks (CNNs) have been developed in image denoising. However, convolutional operations may...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms Artificial neural networks
blind denoising
CNN
Deep learning
Deformation effects
deformed block
Efficiency
enhanced block
Formability
Image enhancement
Learning
Methods
Neural networks
Noise
Noise levels
Noise reduction
Partial differential equations
Pixels
Qualitative analysis
Robustness
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDePIiiorVKQE9OKGsaZOmPc7hmII7bbBbSdIEBtrJ1v3_vpd2o4LoxVNLeIX0vTT5ND--j5B76coEMEOGJjIqBL41oQYuDxWgtcwSm1q_XPA2TSdz_roQi06qL9wT1sgDN44bJIKlMIQ5oMCMG20ypWLHSqFjyYQRDnvfKI86P1N-dgW4RyRyp0fK84FZ1jFKKeBR2c4I5IX6v9Fll1H9IDM-IcctHdJhU6tTcmCrMzIZ0vVKbzc1LS0ipi0p7hVv2wyYoyalv_gd3fRhNJ32KVjS5Qf0FvBUtVrilMA5mY-fZ6NJ2CZACA3neLJZithiNhCLi1mapZY7xTPmUKMlZ0azSIsyiTWHF3M8t5hGAwXOFECbtSa5IIfVqrKXhHJntEw1c8oKLmFAUtALGsCpNC2VNDwg_Z1TCtOqg2OSivfCr1LzHEvjwjswIHd7289GE-NHqyf07d4Cdax9AUS3aKNb_BXdgPR2kSnaj2tTJMA4uQD4EAF59NH6pRrF6GUW-7ur_6jQNTnChPPNZrEeOazXW3sDWFLrW98CvwB1mNt2
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMfDmBcvoqhYnVLQgxOKa5o0LXiZwzEFh4cNditJmshAV9m6_9_30nZzIIKnlvAC7cuvD0ne9xFyI2weAWaIQPe0DIBvdaCAywMJaC2SyMTGHRe8juPRlL3M-KxFHppYmEofYrPhhiPDzdc4wKWqspAA1EIj6nlJURsB46v2gOoj7N-UvW13WIB9uBPNpBheBOhAG31Slt5vq--sSE64f4c2fzKrW3SGh-SgpkW_XzXvEWmZxTEZ9f1lodar0s8NIqfJfbw7XvchMEeNSvdwN7z928F43PXB0p9_wuwBtRbFHLcITsh0-DQZjII6IUKgGcNIZ8GpwewgBg-3VBgbZiVLQouaLWmoVdhTPI-oYvBjlqUG02qg4JkEiDNGR6ekvSgW5oz4zGolYhVaaTgTsEBJmBU1-CiOcyk080i3cUqma7VwTFrxkblTa5ZiKc2cAz1yvbH9qjQyfrV6RN9uLFDX2hUUy_esHiZZxMMYgMUC8ydMK51ISW2Yc0VFyDW3Huk0LZPVg22VRcA8KQcY4R65c631x2dkg-cJdW_n_zG-IPuYaL66JNYh7XK5NpeAI6W6cr3uG0A-1bo
  priority: 102
  providerName: Wiley-Blackwell
Title A robust deformed convolutional neural network (CNN) for image denoising
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcit2.12110
https://www.proquest.com/docview/3091950225
https://doaj.org/article/3516223f77284cbc8aa2f1d5b2715c5f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB509-JFFBXXx1LQgwrFbZs07UFkXV1X0SI-wFtJ0kQWdKv7-P_OZFsfIF7aEqalzWPmayb5PoB9YYsIYYbwdUdLH_Gt9hXicl8itBZJZGLj0gW3WTx4YtfP_HkBsnovDC2rrH2ic9RFqWmO_DjCwJZyjDj89P3DJ9Uoyq7WEhqyklYoThzF2CI00SXzTgOaZxfZ3f33rAviIR6JmqeUpcd6OA2JYoG20P6ITI7A_xfq_IldXfDpr8ByhRq97ryZV2HBjNZg0PXGpZpNpl5hCHqawqM15FVfQnPiqnQnt9LbO-hl2aGHlt7wDb0I3jUqhzRVsA5P_YvH3sCvhBF8zRjteBY8NKQSYijJpYLYMCtZEljibkkDrYKO4kUUKoYfZllqSF6DiM8kgjljdLQBjVE5MpvgMauViFVgpeFMYKCS6B01wqw4LqTQrAWHdaXkumINJ_GK19xlr1lKpWHuKrAFe1-273OujD-tzqhuvyyI39oVlOOXvBouecSDGIGLReyfMK10ImVog4KrUARcc9uCnbpl8mrQTfLvLtKCI9da_7xG3rt6DN3V1v_P2oYlkpifLw_bgcZ0PDO7CESmqg2LIbvDY9K_bEOze35789Cuelzb_dx_AhRp3hM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3faxQxEB7q9UFfiqLiadWAClZY2mSTze1DkfZsubPtInKFvsUkm5UDe1vvroj_nH-bM7lsW0H61qddwmxYJpPMl1_fB_BWN3WOMENnfsfbDPGtzxzi8switNaDPBQhbhecVMXoVH4-U2dr8Ke7C0PHKrsxMQ7UdetpjXw7x8RWKsw46uPFz4xUo2h3tZPQsElaod6NFGPpYsdR-P0Lp3CL3fEnbO93QhweTIajLKkMZF5Kuj6slQgkuRFox8jxIsjGygFviAil5N7xHafqXDjJBW9kGUirgljELCKjEHyO9d6DdUkLKD1Y3z-ovny9XuVB_KVy3fGiynLbT5eCKB3oyu6NTBgFA_5BuTexckx2hw9hI6FUtrcKq0ewFmaPYbTH5q27XCxZHQjqhprRmfUUu2hO3JjxEU-Ws_fDqtpiaMmm5zhq4VezdkpLE0_g9E5c9BR6s3YWngGTjXe6cLyxQUmNidHiaOwR1hVFbbWXfdjqnGJ8YiknsYwfJu6Wy5JKhYkO7MObK9uLFTfHf632ybdXFsSnHQva-XeTuqfJFS8QKDU41xhI7_zAWtHwWjmhufKq6cNm1zImdfKFuQ7JPnyIrXXLb5jheCLi2_Pb63oN90eTk2NzPK6OXsADkrdfHU3bhN5yfhleIghaulcp0hh8u-vg_gtOWROj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS8MwFMfDmCC-iKLidGpBH5xQXNOkXcGXOR2bl7GHDfYWkjSRga5jl-_vOWm3ORDBp5ZyAm1yTvJrLv9DyE1s0xAwI_Z1XUsf-Fb7Crjcl4DWcSM0kXHLBe-9qDNkLyM-KpGH1VmYXB9iPeGGkeH6awzwaWrz_02GGpl6vKCojYDnq3YYOB76N2X9zQwLsA93opkUjxcBOtCVPilL7jfFt0YkJ9y_RZs_mdUNOu0Dsl_QotfMm_eQlMzkiHSa3ixTy_nCSw0ip0k93Dte-BCYo0alu7gd3t5tq9ereWDpjb-g94BSk2yMUwTHZNh-HrQ6fpEQwdeM4UnnmFOD2UEMLm6pIDLMStYILGq2JIFWQV3xNKSKwYdZlhhMq4GCZxIgzhgdnpDyJJuYU-Ixq1UcqcBKw1kMA5SEXlFDHUVRKmPNKqS2qhShC7VwTFrxKdyqNUvwKRWuAivkem07zTUyfrV6xLpdW6CutXuQzT5EESYi5EEEwGKB-RtMK92Qktog5YrGAdfcVkh11TKiCLa5CIF5Eg4wwivkzrXWH68hWt0BdXdn_zG-Irv9p7Z46_Zez8ke5pzP94tVSXkxW5oLIJOFunQO-A26t9hb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+deformed+convolutional+neural+network+%28CNN%29+for+image+denoising&rft.jtitle=CAAI+Transactions+on+Intelligence+Technology&rft.au=Zhang%2C+Qi&rft.au=Xiao%2C+Jingyu&rft.au=Tian%2C+Chunwei&rft.au=Chun%E2%80%90Wei+Lin%2C+Jerry&rft.date=2023-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2468-2322&rft.volume=8&rft.issue=2&rft.spage=331&rft.epage=342&rft_id=info:doi/10.1049%2Fcit2.12110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-2322&client=summon