A Latent Auto-Regressive Approach for Bayesian Structural Equation Modeling of Spatially or Socially Dependent Data
Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First...
Saved in:
| Published in | Multivariate behavioral research Vol. 58; no. 1; pp. 90 - 114 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Routledge
2023
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0027-3171 1532-7906 1532-7906 |
| DOI | 10.1080/00273171.2021.1957663 |
Cover
| Abstract | Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research. |
|---|---|
| AbstractList | Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research. Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research.Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research. |
| Author | Roman, Zachary J. Brandt, Holger |
| Author_xml | – sequence: 1 givenname: Zachary J. surname: Roman fullname: Roman, Zachary J. organization: Psychology, University of Zurich – sequence: 2 givenname: Holger surname: Brandt fullname: Brandt, Holger organization: Psychology, University of Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34379011$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URKeFnwCyxIZNBj8SP8SGoS0PaRASA2vLSZziymOntkOVf4_DTFl0AaxsWd-59_icM3DigzcAPMdojZFArxEinGKO1wQRvMay4YzRR2CFG0oqLhE7AauFqRboFJyldIMQYk0tn4BTWtOCYLwCaQO3Ohuf4WbKofpqrqNJyf40cDOOMejuBxxChO_0bJLVHu5ynLo8Re3g1e2ksw0efg69cdZfwzDA3VjetHMzLKpd6A73SzMa3y9bLnXWT8HjQbtknh3Pc_D9_dW3i4_V9suHTxebbdXVNc7V0HDRsh61gxRo4IgLhlqKe9EQaShp65YJLYQYDJM1JbRQUrSSNrRlbdMzeg7YYe7kRz3fFSdqjHav46wwUkuK6j5FtaSojikW4auDsCRwO5mU1d6mzjinvQlTUqRhiEiJ-LLj5QP0JkzRl28pIhDnohaYF-rFkZraven_2LjvoQDNAehiSCma4b-dvnmg62z-3UqO2rp_qt8e1NaXkvf6LkTXq6xnF-IQte9sUvTvI34Bpkq-eg |
| CitedBy_id | crossref_primary_10_3389_fpsyg_2022_789223 |
| Cites_doi | 10.1002/9781118619179 10.1016/B978-044452044-9/50013-6 10.1111/j.1538-4632.2009.00758.x 10.21500/20112084.857 10.1080/09595238300185261 10.4000/rei.3887 10.1111/j.1435-5957.2008.00213.x 10.1068/a4078 10.1007/978-3-642-23430-9_91 10.1353/sof.2001.0086 10.1007/s11336-013-9323-7 10.1007/BF02291366 10.3390/econometrics2040217 10.1007/978-1-4612-0099-4_1 10.1111/j.1468-2257.2010.00526.x 10.1177/0013164419891205 10.1016/j.jmva.2009.04.008 10.52324/001c.8081 10.1007/BF02294856 10.1080/10705511.2016.1253479 10.1080/01621459.2000.10474283 10.1037/a0034687 10.1016/j.elerap.2010.07.003 10.1080/07418820902763079 10.1023/A:1007544208712 10.1111/j.1538-4632.2007.00703.x 10.1037/1082-989X.12.2.205 10.1198/106186006X112396 10.1111/j.1467-6494.1991.tb00772.x 10.1111/j.1465-7295.2007.00049.x 10.1111/j.1541-0420.2012.01751.x 10.1201/b16018 10.1002/9780470024737 10.1111/j.1745-9125.2001.tb00932.x 10.18637/jss.v085.i04 10.1111/j.1745-9125.1991.tb01087.x 10.1080/10705511.2017.1406803 10.1016/S0277-9536(99)00276-2 10.1080/10705510701301511 10.2139/ssrn.1133438 10.1080/10705511.2017.1392862 10.1201/9781420064254 10.1093/biostatistics/4.4.569 10.2307/1924845 10.1007/BF02296338 10.1016/S0277-9536(96)00385-1 10.1007/978-3-642-79877-1_2 10.1037/0033-2909.86.2.297 10.1016/S0378-8733(01)00049-1 10.1080/10705511.2018.1474114 10.1177/0022427803256238 10.1080/10705511.2018.1555692 10.1007/978-0-387-77650-7_33 10.1111/j.1475-6773.2011.01314.x 10.1177/016001760002300201 10.1093/bjc/azi054 10.1080/00273171.2012.715560 10.1007/978-1-4419-0742-4 10.1086/229381 10.1111/j.1538-4632.2008.00717.x 10.1007/s40980-015-0016-y 10.1080/10705511.2014.947375 10.1111/j.1541-0064.1996.tb00462.x 10.1080/00273171.2012.731927 10.1037/a0026802 10.1016/j.socscimed.2009.08.003 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021 – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1080/00273171.2021.1957663 |
| DatabaseName | Taylor & Francis Journals Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 0YH name: Taylor and Francis Online url: https://www.tandfonline.com sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1532-7906 |
| EndPage | 114 |
| ExternalDocumentID | 10.1080/00273171.2021.1957663 34379011 10_1080_00273171_2021_1957663 1957663 |
| Genre | Research Article Journal Article |
| GroupedDBID | --Z -~X .7I .QK 0BK 0R~ 0YH 123 4.4 5VS 8VB AAGDL AAGZJ AAHIA AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABFIM ABIVO ABJNI ABLIJ ABLJU ABPEM ABPPZ ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACHQT ACIWK ACNCT ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEKEX AENEX AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO DU5 EBS EMOBN E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HZ~ IPNFZ J.O KYCEM LJTGL M4Z MS~ NA5 NW- O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TN5 TNTFI TRJHH TUROJ TWZ UT5 UT9 VAE WH7 YNT YQT ZL0 ~01 ~S~ AAYXX CITATION .GJ 07M 53G AANPH ABRLO ABVXC ABWZE ACPKE ACRBO ADEWX ADIUE ADXAZ ADYSH AEXSR AFFNX AIXGP ALEEW ALLRG C5A CAG CBZAQ CGR CKOZC COF CUY CVF C~T DGXZK ECM EFRLQ EGDCR EIF EJD FXNIP HVGLF H~9 JLMOS L7Y LPU NEJ NPM OHT P-O QZZOY RBICI ROL UA1 UAP VXZ XOL ZCG ZXP 7X8 ABBZI ADLFI ADTOC AETEA UNPAY |
| ID | FETCH-LOGICAL-c441t-f578b6d0bf980f707860b31d8529e32b4b68a888fe69432398098b9353b6b5d63 |
| IEDL.DBID | 0YH |
| ISSN | 0027-3171 1532-7906 |
| IngestDate | Tue Aug 19 16:50:18 EDT 2025 Thu Oct 02 09:58:45 EDT 2025 Wed Aug 13 08:03:46 EDT 2025 Wed Feb 19 02:24:45 EST 2025 Thu Apr 24 22:54:06 EDT 2025 Wed Oct 01 05:04:50 EDT 2025 Mon Oct 20 23:46:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Latent variable structural equation models network auto-regressive nonlinear spatial |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-f578b6d0bf980f707860b31d8529e32b4b68a888fe69432398098b9353b6b5d63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1957663 |
| PMID | 34379011 |
| PQID | 2807784817 |
| PQPubID | 47318 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2807784817 pubmed_primary_34379011 proquest_miscellaneous_2560299076 crossref_primary_10_1080_00273171_2021_1957663 unpaywall_primary_10_1080_00273171_2021_1957663 informaworld_taylorfrancis_310_1080_00273171_2021_1957663 crossref_citationtrail_10_1080_00273171_2021_1957663 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Mahwah |
| PublicationTitle | Multivariate behavioral research |
| PublicationTitleAlternate | Multivariate Behav Res |
| PublicationYear | 2023 |
| Publisher | Routledge Taylor & Francis Ltd |
| Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
| References | CIT0072 CIT0071 CIT0030 CIT0073 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0033 CIT0077 CIT0070 Vehtari A. (CIT0074) 2020 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 Kelava A. (CIT0032) 2014; 5 Brandt H. (CIT0012) 2019; 0 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0056 CIT0011 CIT0055 DiStefano C. (CIT0016) 2009; 14 CIT0014 CIT0058 CIT0013 CIT0057 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 Asparouhov T. (CIT0004) 2010 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0010 doi: 10.1002/9781118619179 – ident: CIT0063 doi: 10.1016/B978-044452044-9/50013-6 – ident: CIT0067 doi: 10.1111/j.1538-4632.2009.00758.x – ident: CIT0056 doi: 10.21500/20112084.857 – ident: CIT0078 doi: 10.1080/09595238300185261 – ident: CIT0043 doi: 10.4000/rei.3887 – ident: CIT0069 doi: 10.1111/j.1435-5957.2008.00213.x – ident: CIT0020 doi: 10.1068/a4078 – ident: CIT0048 doi: 10.1007/978-3-642-23430-9_91 – ident: CIT0064 doi: 10.1353/sof.2001.0086 – ident: CIT0068 doi: 10.1007/s11336-013-9323-7 – ident: CIT0030 doi: 10.1007/BF02291366 – ident: CIT0047 doi: 10.3390/econometrics2040217 – ident: CIT0014 doi: 10.1007/978-1-4612-0099-4_1 – ident: CIT0015 doi: 10.1111/j.1468-2257.2010.00526.x – ident: CIT0022 doi: 10.1177/0013164419891205 – ident: CIT0050 doi: 10.1016/j.jmva.2009.04.008 – ident: CIT0044 doi: 10.52324/001c.8081 – ident: CIT0003 doi: 10.1007/BF02294856 – ident: CIT0006 doi: 10.1080/10705511.2016.1253479 – start-page: 5 year: 2020 ident: CIT0074 publication-title: Bayesian Analysis – ident: CIT0075 doi: 10.1080/01621459.2000.10474283 – ident: CIT0008 doi: 10.1037/a0034687 – ident: CIT0077 doi: 10.1016/j.elerap.2010.07.003 – ident: CIT0065 doi: 10.1080/07418820902763079 – ident: CIT0055 doi: 10.1023/A:1007544208712 – ident: CIT0049 doi: 10.1111/j.1538-4632.2007.00703.x – ident: CIT0029 doi: 10.1037/1082-989X.12.2.205 – ident: CIT0018 doi: 10.1198/106186006X112396 – ident: CIT0013 doi: 10.1111/j.1467-6494.1991.tb00772.x – volume: 14 start-page: 1 issue: 20 year: 2009 ident: CIT0016 publication-title: Practical Assessment, Research & Evaluation – ident: CIT0052 doi: 10.1111/j.1465-7295.2007.00049.x – ident: CIT0019 – ident: CIT0028 doi: 10.1111/j.1541-0420.2012.01751.x – volume-title: Bayesian analysis using mplus year: 2010 ident: CIT0004 – ident: CIT0023 doi: 10.1201/b16018 – ident: CIT0039 doi: 10.1002/9780470024737 – ident: CIT0042 – ident: CIT0057 doi: 10.1111/j.1745-9125.2001.tb00932.x – ident: CIT0054 doi: 10.18637/jss.v085.i04 – ident: CIT0061 doi: 10.1111/j.1745-9125.1991.tb01087.x – ident: CIT0007 doi: 10.1080/10705511.2017.1406803 – ident: CIT0035 doi: 10.1016/S0277-9536(99)00276-2 – ident: CIT0040 doi: 10.1080/10705510701301511 – ident: CIT0060 doi: 10.2139/ssrn.1133438 – ident: CIT0066 doi: 10.1080/10705511.2017.1392862 – ident: CIT0046 doi: 10.1201/9781420064254 – ident: CIT0076 doi: 10.1093/biostatistics/4.4.569 – volume: 0 start-page: 1 year: 2019 ident: CIT0012 publication-title: Psychological Methods – ident: CIT0017 doi: 10.2307/1924845 – ident: CIT0036 doi: 10.1007/BF02296338 – ident: CIT0045 doi: 10.1007/978-3-642-23430-9_91 – ident: CIT0073 doi: 10.1016/S0277-9536(96)00385-1 – ident: CIT0071 – ident: CIT0002 doi: 10.1007/978-3-642-79877-1_2 – ident: CIT0051 doi: 10.1037/0033-2909.86.2.297 – ident: CIT0041 doi: 10.1016/S0378-8733(01)00049-1 – ident: CIT0011 doi: 10.1080/10705511.2018.1474114 – ident: CIT0062 – ident: CIT0037 doi: 10.1177/0022427803256238 – ident: CIT0033 doi: 10.1080/10705511.2018.1555692 – ident: CIT0009 doi: 10.1007/978-0-387-77650-7_33 – ident: CIT0031 doi: 10.1111/j.1475-6773.2011.01314.x – ident: CIT0026 doi: 10.1177/016001760002300201 – ident: CIT0001 doi: 10.1093/bjc/azi054 – ident: CIT0034 doi: 10.1080/00273171.2012.715560 – ident: CIT0021 doi: 10.1007/978-1-4419-0742-4 – ident: CIT0024 – ident: CIT0038 doi: 10.1086/229381 – ident: CIT0059 doi: 10.1111/j.1538-4632.2008.00717.x – ident: CIT0025 doi: 10.1007/s40980-015-0016-y – ident: CIT0005 doi: 10.1080/10705511.2014.947375 – ident: CIT0027 doi: 10.1111/j.1541-0064.1996.tb00462.x – ident: CIT0070 doi: 10.1080/00273171.2012.731927 – ident: CIT0072 – ident: CIT0058 doi: 10.1037/a0026802 – volume: 5 start-page: 510 issue: 748 year: 2014 ident: CIT0032 publication-title: Frontiers in Quantitative Psychology and Measurement – ident: CIT0053 doi: 10.1016/j.socscimed.2009.08.003 |
| SSID | ssj0006549 |
| Score | 2.365343 |
| Snippet | Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with... |
| SourceID | unpaywall proquest pubmed crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 90 |
| SubjectTerms | Algorithms Autoregressive models Bayes Theorem Bayesian analysis Computer Simulation Empirical analysis Latent Class Analysis Latent variable Models, Theoretical Multivariate statistical analysis network auto-regressive nonlinear Polynomials Social networks spatial Spatial analysis Spatial data Structural equation modeling structural equation models |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMdPo3tgPPB7EBjISLymi-3ESR4QCmzThGDiV6XxFNmJ_UKVli0RKn89d3ESbQg0kHhr1F5VO-fL91zf5wCeC2UxCTA8FLLSYcxFGhqV8lBrYTmmXFL0MJ13J-p4Eb85TU634MNYC0PHKimHdh4U0cdqWtzr2o0n4vZ7BgtPKbsTfM5zlMxKvmww2hd9k8EX7Vlnr8G2SlCez2B7cfK--OKPetCeXDowVFFZ5pEaq3r-9L2XnleXaKa_06Q34HrXrPXmu14uLzynjm7B2ThCfzzl67xrzbz68Qv88b9OwW24OahaVng3vANbtrkLO1Nw3dyD84K9RVnbtKzo2lX40fZ5PoZaVgxUc4ZjZq_0xlJZJ_vUc22JCcIOv3kcOaO-bVQ9z1aOUStlXDrLDUMrX2OMrw-Glr4tO9Ctvg-Lo8PPr4_DoeFDWKEqa0OH4cOoOjIuzyJHHCIVGcnrLBG5lcLERmUaU3ZnVR5LIhdGeWZymUijTFIruQuzZtXYh8CE4BXhxSqleeyU0DqtM6uyKnEo8TIdQDze1rIaaOjUlGNZ8gma6qe4pCkuhykOYD6ZrT0O5CqD_KLPlG2_D-N805RSXmG7NzpYOUSW85LoRSn1QEgDeDa9jTGB_ujRjV11-BmUsSQzUhXAA--Y06-VBKDEoB7A_uSpfzeUR_9s8Rh28FL6Has9mJFTPkEN15qnw6r8CeNhNFw priority: 102 providerName: Unpaywall |
| Title | A Latent Auto-Regressive Approach for Bayesian Structural Equation Modeling of Spatially or Socially Dependent Data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1957663 https://www.ncbi.nlm.nih.gov/pubmed/34379011 https://www.proquest.com/docview/2807784817 https://www.proquest.com/docview/2560299076 https://www.tandfonline.com/doi/pdf/10.1080/00273171.2021.1957663?needAccess=true |
| UnpaywallVersion | publishedVersion |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 1532-7906 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Social Science and Humanities Library - DRAA customDbUrl: eissn: 1532-7906 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006549 issn: 1532-7906 databaseCode: TRJHH dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/ providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Be6AcEM8SKJWRuKaN7cROjoFttUJQIWAF5RLZWfu0yhZtVmj_PTOxE7USqEickihxEmce_sbxfAPwRiiHQYDlqZCtSXMudGqV5qkxwnEMuaQYyHQ-Xqj5In__vRhXE27iskqKoX0gihh8NRm3sZtxRdzpwMHCNUV3gp_wCiGzkndhX2hekWJnl_PJGasiImBB03Gaj0k8f7vNjeHpBnnpnyDofbi37a7M7pdZra4NS-cP4UHEk6wOCvAI7rjuMRxMbm33BDY1-4CAsutZve3X6Wc3RNjo5Fgd-cQZPp69NTtHCZXsy8AoS2wc7OxnIAJnVDGN8tbZ2jMqYoxKu9oxbBWye3F_Fovp9mxmevMUFudnX9_N01hqIW0RD_WpR8O1aplZX5WZJwYglVnJl2UhKieFza0qDQbL3qkql8QZmFWlrWQhrbLFUslnsNetO_ccmBC8JWKvVhmeeyWM0cvSqbItPIKr0iSQj1-4aSMPOZXDWDV8oisNgmlIME0UTAInU7OrQMRxW4PquviafpgB8aFcSSNvaXs0yrqJNr1piDdIU_UBncDr6TRaI_1iMZ1bb_EaBJA0wGuVwGHQkeltJVE_ojtN4HRSmn_ryov_6MpLOMBDGWaNjmAPdci9QhzV2-PBUo5hv57PfnzD7eLiU335G-tEDtE |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOEAPFVAeaWlrpF4DsZ04yXHLQ0tZOFCQ6Mmys_ZplQWRVbX_vjNxNlqkViD1FilxEmce_mbi-Qbgm1AOgwDLYyErE6dc5LFVOY-NEY5jyCVFS6ZzfaOG9-mPh-xhqRaGtlVSDO0DUUTrq8m4KRm92BJ30pKw8JzCO8GPeYmYWclVWM8QLlL7huTXsPfGKusgsKB8XM4XVTz_us2L9ekFe-nfMOg72JjVj2b-20wmS-vSxRa87wAlGwQN2IYVV-_AZu_X5h_gecBGiCjrhg1mzTS-dW2IjV6ODTpCcYaPZ9_N3FFFJfvZUsoSHQc7fwpM4IxaplHhOpt6Rl2MUWsnc4ajQnkvHp913XQbdmYaswv3F-d3p8O467UQVwiImtij5Vo1Tqwvi8QTBZBKrOTjIhOlk8KmVhUGo2XvVJlKIg1MysKWMpNW2Wys5B6s1dPaHQATglfE7FUpw1OvhDH5uHCqqDKP6KowEaSLL6yrjoic-mFMNO_5SoNgNAlGd4KJ4Lgf9hiYOF4bUC6LTzdtCsSHfiVavjL2cCFr3Rn1sybioJzaD-QRHPWn0RzpH4up3XSG1yCCpBU-VxHsBx3p31YS9yP60whOeqV521Q-_sdUvsLG8O56pEeXN1efYBNPyZBCOoQ11Cf3GUFVY7-0VvMHew8O4w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAcEK_SQAtG4po2thMnOS7drhYoFQIqwcmyE_u0yi7arKr998zESdRKVEXqLVLiJM68vnE83wB8EMphEmB5LGRl4pSLPLYq57ExwnFMuaToyHS-nqv5Rfr5VzbsJlz32yoph_aBKKLz1WTcq9oPO-KOOw4WnlN2J_gRLxEyK3kfHmQFhjdU6eT3fHTGKusRsKDluJwPRTw33eZaeLpGXvovCPoYHm2aldlemsXiSliaPYUnPZ5kk6AAz-Cea57D7ujWti9gPWFnCCiblk027TL-7roMG50cm_R84gwfzz6araOCSvajY5QlNg52-icQgTPqmEZ162zpGTUxRqVdbBmOCtW9eDztm-m2bGpa8xIuZqc_T-Zx32ohrhAPtbFHw7WqTqwvi8QTA5BKrOR1kYnSSWFTqwqDybJ3qkwlcQYmZWFLmUmrbFYruQc7zbJx-8CE4BURe1XK8NQrYUxeF04VVeYRXBUmgnT4wrrqecipHcZC85GuNAhGk2B0L5gIjsZhq0DEcduA8qr4dNutgPjQrkTLW8YeDLLWvU2vNfEG5dR9II_g_XgarZF-sZjGLTd4DQJICvC5iuBV0JHxbSVRP6I7jeB4VJr_m8rrO0zlHTz8Np3ps0_nX97ALp6RYQHpAHZQndwhQqrWvu2M5i_KXA4V |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMdPo3tgPPB7EBjISLymi-3ESR4QCmzThGDiV6XxFNmJ_UKVli0RKn89d3ESbQg0kHhr1F5VO-fL91zf5wCeC2UxCTA8FLLSYcxFGhqV8lBrYTmmXFL0MJ13J-p4Eb85TU634MNYC0PHKimHdh4U0cdqWtzr2o0n4vZ7BgtPKbsTfM5zlMxKvmww2hd9k8EX7Vlnr8G2SlCez2B7cfK--OKPetCeXDowVFFZ5pEaq3r-9L2XnleXaKa_06Q34HrXrPXmu14uLzynjm7B2ThCfzzl67xrzbz68Qv88b9OwW24OahaVng3vANbtrkLO1Nw3dyD84K9RVnbtKzo2lX40fZ5PoZaVgxUc4ZjZq_0xlJZJ_vUc22JCcIOv3kcOaO-bVQ9z1aOUStlXDrLDUMrX2OMrw-Glr4tO9Ctvg-Lo8PPr4_DoeFDWKEqa0OH4cOoOjIuzyJHHCIVGcnrLBG5lcLERmUaU3ZnVR5LIhdGeWZymUijTFIruQuzZtXYh8CE4BXhxSqleeyU0DqtM6uyKnEo8TIdQDze1rIaaOjUlGNZ8gma6qe4pCkuhykOYD6ZrT0O5CqD_KLPlG2_D-N805RSXmG7NzpYOUSW85LoRSn1QEgDeDa9jTGB_ujRjV11-BmUsSQzUhXAA--Y06-VBKDEoB7A_uSpfzeUR_9s8Rh28FL6Has9mJFTPkEN15qnw6r8CeNhNFw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Latent+Auto-Regressive+Approach+for+Bayesian+Structural+Equation+Modeling+of+Spatially+or+Socially+Dependent+Data&rft.jtitle=Multivariate+behavioral+research&rft.au=Roman%2C+Zachary+J.&rft.au=Brandt%2C+Holger&rft.date=2023&rft.pub=Routledge&rft.issn=0027-3171&rft.eissn=1532-7906&rft.volume=58&rft.issue=1&rft.spage=90&rft.epage=114&rft_id=info:doi/10.1080%2F00273171.2021.1957663&rft.externalDBID=0YH&rft.externalDocID=1957663 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon |