A Latent Auto-Regressive Approach for Bayesian Structural Equation Modeling of Spatially or Socially Dependent Data

Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First...

Full description

Saved in:
Bibliographic Details
Published inMultivariate behavioral research Vol. 58; no. 1; pp. 90 - 114
Main Authors Roman, Zachary J., Brandt, Holger
Format Journal Article
LanguageEnglish
Published United States Routledge 2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0027-3171
1532-7906
1532-7906
DOI10.1080/00273171.2021.1957663

Cover

Abstract Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research.
AbstractList Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research.
Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research.Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with social network auto-regressive models which are also gaining popularity in the behavioral sciences. These models have two major benefits. First, dependent data, either socially or spatially, must be accounted for to acquire unbiased results. Second, analysis of the dependence provides rich additional information such as spillover effects. Structural Equation Models (SEM) are widely used in psychological research for measuring and testing multi-faceted constructs. So far, SEM that allow for spatial or social dependency are limited with regard to their flexibility, for example, when estimating nonlinear effects. Here, we provide a cohesive framework which can simultaneously estimate latent interaction/polynomial effects and account for spatial effects with both exogenous and endogenous latent variables, the Bayesian Spatial Auto-Regressive Structural Equation Model (BARDSEM). First, we briefly outline classic auto-regressive models. Next, we present the BARDSEM and introduce simulation results to exemplify its performance. Finally, we provide an empirical example using the spatially dependent extended US southern homicide data to show the rich interpretations that are possible using the BARDSEM. Finally, we discuss implications, limitations, and future research.
Author Roman, Zachary J.
Brandt, Holger
Author_xml – sequence: 1
  givenname: Zachary J.
  surname: Roman
  fullname: Roman, Zachary J.
  organization: Psychology, University of Zurich
– sequence: 2
  givenname: Holger
  surname: Brandt
  fullname: Brandt, Holger
  organization: Psychology, University of Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34379011$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFnwCyxIZNBj8SP8SGoS0PaRASA2vLSZziymOntkOVf4_DTFl0AaxsWd-59_icM3DigzcAPMdojZFArxEinGKO1wQRvMay4YzRR2CFG0oqLhE7AauFqRboFJyldIMQYk0tn4BTWtOCYLwCaQO3Ohuf4WbKofpqrqNJyf40cDOOMejuBxxChO_0bJLVHu5ynLo8Re3g1e2ksw0efg69cdZfwzDA3VjetHMzLKpd6A73SzMa3y9bLnXWT8HjQbtknh3Pc_D9_dW3i4_V9suHTxebbdXVNc7V0HDRsh61gxRo4IgLhlqKe9EQaShp65YJLYQYDJM1JbRQUrSSNrRlbdMzeg7YYe7kRz3fFSdqjHav46wwUkuK6j5FtaSojikW4auDsCRwO5mU1d6mzjinvQlTUqRhiEiJ-LLj5QP0JkzRl28pIhDnohaYF-rFkZraven_2LjvoQDNAehiSCma4b-dvnmg62z-3UqO2rp_qt8e1NaXkvf6LkTXq6xnF-IQte9sUvTvI34Bpkq-eg
CitedBy_id crossref_primary_10_3389_fpsyg_2022_789223
Cites_doi 10.1002/9781118619179
10.1016/B978-044452044-9/50013-6
10.1111/j.1538-4632.2009.00758.x
10.21500/20112084.857
10.1080/09595238300185261
10.4000/rei.3887
10.1111/j.1435-5957.2008.00213.x
10.1068/a4078
10.1007/978-3-642-23430-9_91
10.1353/sof.2001.0086
10.1007/s11336-013-9323-7
10.1007/BF02291366
10.3390/econometrics2040217
10.1007/978-1-4612-0099-4_1
10.1111/j.1468-2257.2010.00526.x
10.1177/0013164419891205
10.1016/j.jmva.2009.04.008
10.52324/001c.8081
10.1007/BF02294856
10.1080/10705511.2016.1253479
10.1080/01621459.2000.10474283
10.1037/a0034687
10.1016/j.elerap.2010.07.003
10.1080/07418820902763079
10.1023/A:1007544208712
10.1111/j.1538-4632.2007.00703.x
10.1037/1082-989X.12.2.205
10.1198/106186006X112396
10.1111/j.1467-6494.1991.tb00772.x
10.1111/j.1465-7295.2007.00049.x
10.1111/j.1541-0420.2012.01751.x
10.1201/b16018
10.1002/9780470024737
10.1111/j.1745-9125.2001.tb00932.x
10.18637/jss.v085.i04
10.1111/j.1745-9125.1991.tb01087.x
10.1080/10705511.2017.1406803
10.1016/S0277-9536(99)00276-2
10.1080/10705510701301511
10.2139/ssrn.1133438
10.1080/10705511.2017.1392862
10.1201/9781420064254
10.1093/biostatistics/4.4.569
10.2307/1924845
10.1007/BF02296338
10.1016/S0277-9536(96)00385-1
10.1007/978-3-642-79877-1_2
10.1037/0033-2909.86.2.297
10.1016/S0378-8733(01)00049-1
10.1080/10705511.2018.1474114
10.1177/0022427803256238
10.1080/10705511.2018.1555692
10.1007/978-0-387-77650-7_33
10.1111/j.1475-6773.2011.01314.x
10.1177/016001760002300201
10.1093/bjc/azi054
10.1080/00273171.2012.715560
10.1007/978-1-4419-0742-4
10.1086/229381
10.1111/j.1538-4632.2008.00717.x
10.1007/s40980-015-0016-y
10.1080/10705511.2014.947375
10.1111/j.1541-0064.1996.tb00462.x
10.1080/00273171.2012.731927
10.1037/a0026802
10.1016/j.socscimed.2009.08.003
ContentType Journal Article
Copyright 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021
2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021
– notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1080/00273171.2021.1957663
DatabaseName Taylor & Francis Journals Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 0YH
  name: Taylor and Francis Online
  url: https://www.tandfonline.com
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1532-7906
EndPage 114
ExternalDocumentID 10.1080/00273171.2021.1957663
34379011
10_1080_00273171_2021_1957663
1957663
Genre Research Article
Journal Article
GroupedDBID --Z
-~X
.7I
.QK
0BK
0R~
0YH
123
4.4
5VS
8VB
AAGDL
AAGZJ
AAHIA
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABIVO
ABJNI
ABLIJ
ABLJU
ABPEM
ABPPZ
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACHQT
ACIWK
ACNCT
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEISY
AEKEX
AENEX
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
DU5
EBS
EMOBN
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HZ~
IPNFZ
J.O
KYCEM
LJTGL
M4Z
MS~
NA5
NW-
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TN5
TNTFI
TRJHH
TUROJ
TWZ
UT5
UT9
VAE
WH7
YNT
YQT
ZL0
~01
~S~
AAYXX
CITATION
.GJ
07M
53G
AANPH
ABRLO
ABVXC
ABWZE
ACPKE
ACRBO
ADEWX
ADIUE
ADXAZ
ADYSH
AEXSR
AFFNX
AIXGP
ALEEW
ALLRG
C5A
CAG
CBZAQ
CGR
CKOZC
COF
CUY
CVF
C~T
DGXZK
ECM
EFRLQ
EGDCR
EIF
EJD
FXNIP
HVGLF
H~9
JLMOS
L7Y
LPU
NEJ
NPM
OHT
P-O
QZZOY
RBICI
ROL
UA1
UAP
VXZ
XOL
ZCG
ZXP
7X8
ABBZI
ADLFI
ADTOC
AETEA
UNPAY
ID FETCH-LOGICAL-c441t-f578b6d0bf980f707860b31d8529e32b4b68a888fe69432398098b9353b6b5d63
IEDL.DBID 0YH
ISSN 0027-3171
1532-7906
IngestDate Tue Aug 19 16:50:18 EDT 2025
Thu Oct 02 09:58:45 EDT 2025
Wed Aug 13 08:03:46 EDT 2025
Wed Feb 19 02:24:45 EST 2025
Thu Apr 24 22:54:06 EDT 2025
Wed Oct 01 05:04:50 EDT 2025
Mon Oct 20 23:46:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Latent variable
structural equation models
network auto-regressive
nonlinear
spatial
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-f578b6d0bf980f707860b31d8529e32b4b68a888fe69432398098b9353b6b5d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1957663
PMID 34379011
PQID 2807784817
PQPubID 47318
PageCount 25
ParticipantIDs proquest_journals_2807784817
pubmed_primary_34379011
proquest_miscellaneous_2560299076
crossref_primary_10_1080_00273171_2021_1957663
unpaywall_primary_10_1080_00273171_2021_1957663
informaworld_taylorfrancis_310_1080_00273171_2021_1957663
crossref_citationtrail_10_1080_00273171_2021_1957663
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mahwah
PublicationTitle Multivariate behavioral research
PublicationTitleAlternate Multivariate Behav Res
PublicationYear 2023
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References CIT0072
CIT0071
CIT0030
CIT0073
CIT0076
CIT0031
CIT0075
CIT0034
CIT0078
CIT0033
CIT0077
CIT0070
Vehtari A. (CIT0074) 2020
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
Kelava A. (CIT0032) 2014; 5
Brandt H. (CIT0012) 2019; 0
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0056
CIT0011
CIT0055
DiStefano C. (CIT0016) 2009; 14
CIT0014
CIT0058
CIT0013
CIT0057
CIT0015
CIT0059
CIT0018
CIT0017
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0065
CIT0020
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
Asparouhov T. (CIT0004) 2010
CIT0025
CIT0069
CIT0024
CIT0068
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0010
  doi: 10.1002/9781118619179
– ident: CIT0063
  doi: 10.1016/B978-044452044-9/50013-6
– ident: CIT0067
  doi: 10.1111/j.1538-4632.2009.00758.x
– ident: CIT0056
  doi: 10.21500/20112084.857
– ident: CIT0078
  doi: 10.1080/09595238300185261
– ident: CIT0043
  doi: 10.4000/rei.3887
– ident: CIT0069
  doi: 10.1111/j.1435-5957.2008.00213.x
– ident: CIT0020
  doi: 10.1068/a4078
– ident: CIT0048
  doi: 10.1007/978-3-642-23430-9_91
– ident: CIT0064
  doi: 10.1353/sof.2001.0086
– ident: CIT0068
  doi: 10.1007/s11336-013-9323-7
– ident: CIT0030
  doi: 10.1007/BF02291366
– ident: CIT0047
  doi: 10.3390/econometrics2040217
– ident: CIT0014
  doi: 10.1007/978-1-4612-0099-4_1
– ident: CIT0015
  doi: 10.1111/j.1468-2257.2010.00526.x
– ident: CIT0022
  doi: 10.1177/0013164419891205
– ident: CIT0050
  doi: 10.1016/j.jmva.2009.04.008
– ident: CIT0044
  doi: 10.52324/001c.8081
– ident: CIT0003
  doi: 10.1007/BF02294856
– ident: CIT0006
  doi: 10.1080/10705511.2016.1253479
– start-page: 5
  year: 2020
  ident: CIT0074
  publication-title: Bayesian Analysis
– ident: CIT0075
  doi: 10.1080/01621459.2000.10474283
– ident: CIT0008
  doi: 10.1037/a0034687
– ident: CIT0077
  doi: 10.1016/j.elerap.2010.07.003
– ident: CIT0065
  doi: 10.1080/07418820902763079
– ident: CIT0055
  doi: 10.1023/A:1007544208712
– ident: CIT0049
  doi: 10.1111/j.1538-4632.2007.00703.x
– ident: CIT0029
  doi: 10.1037/1082-989X.12.2.205
– ident: CIT0018
  doi: 10.1198/106186006X112396
– ident: CIT0013
  doi: 10.1111/j.1467-6494.1991.tb00772.x
– volume: 14
  start-page: 1
  issue: 20
  year: 2009
  ident: CIT0016
  publication-title: Practical Assessment, Research & Evaluation
– ident: CIT0052
  doi: 10.1111/j.1465-7295.2007.00049.x
– ident: CIT0019
– ident: CIT0028
  doi: 10.1111/j.1541-0420.2012.01751.x
– volume-title: Bayesian analysis using mplus
  year: 2010
  ident: CIT0004
– ident: CIT0023
  doi: 10.1201/b16018
– ident: CIT0039
  doi: 10.1002/9780470024737
– ident: CIT0042
– ident: CIT0057
  doi: 10.1111/j.1745-9125.2001.tb00932.x
– ident: CIT0054
  doi: 10.18637/jss.v085.i04
– ident: CIT0061
  doi: 10.1111/j.1745-9125.1991.tb01087.x
– ident: CIT0007
  doi: 10.1080/10705511.2017.1406803
– ident: CIT0035
  doi: 10.1016/S0277-9536(99)00276-2
– ident: CIT0040
  doi: 10.1080/10705510701301511
– ident: CIT0060
  doi: 10.2139/ssrn.1133438
– ident: CIT0066
  doi: 10.1080/10705511.2017.1392862
– ident: CIT0046
  doi: 10.1201/9781420064254
– ident: CIT0076
  doi: 10.1093/biostatistics/4.4.569
– volume: 0
  start-page: 1
  year: 2019
  ident: CIT0012
  publication-title: Psychological Methods
– ident: CIT0017
  doi: 10.2307/1924845
– ident: CIT0036
  doi: 10.1007/BF02296338
– ident: CIT0045
  doi: 10.1007/978-3-642-23430-9_91
– ident: CIT0073
  doi: 10.1016/S0277-9536(96)00385-1
– ident: CIT0071
– ident: CIT0002
  doi: 10.1007/978-3-642-79877-1_2
– ident: CIT0051
  doi: 10.1037/0033-2909.86.2.297
– ident: CIT0041
  doi: 10.1016/S0378-8733(01)00049-1
– ident: CIT0011
  doi: 10.1080/10705511.2018.1474114
– ident: CIT0062
– ident: CIT0037
  doi: 10.1177/0022427803256238
– ident: CIT0033
  doi: 10.1080/10705511.2018.1555692
– ident: CIT0009
  doi: 10.1007/978-0-387-77650-7_33
– ident: CIT0031
  doi: 10.1111/j.1475-6773.2011.01314.x
– ident: CIT0026
  doi: 10.1177/016001760002300201
– ident: CIT0001
  doi: 10.1093/bjc/azi054
– ident: CIT0034
  doi: 10.1080/00273171.2012.715560
– ident: CIT0021
  doi: 10.1007/978-1-4419-0742-4
– ident: CIT0024
– ident: CIT0038
  doi: 10.1086/229381
– ident: CIT0059
  doi: 10.1111/j.1538-4632.2008.00717.x
– ident: CIT0025
  doi: 10.1007/s40980-015-0016-y
– ident: CIT0005
  doi: 10.1080/10705511.2014.947375
– ident: CIT0027
  doi: 10.1111/j.1541-0064.1996.tb00462.x
– ident: CIT0070
  doi: 10.1080/00273171.2012.731927
– ident: CIT0072
– ident: CIT0058
  doi: 10.1037/a0026802
– volume: 5
  start-page: 510
  issue: 748
  year: 2014
  ident: CIT0032
  publication-title: Frontiers in Quantitative Psychology and Measurement
– ident: CIT0053
  doi: 10.1016/j.socscimed.2009.08.003
SSID ssj0006549
Score 2.365343
Snippet Spatial analytic approaches are classic models in econometric literature, but relatively new in social sciences. Spatial analysis models are synonymous with...
SourceID unpaywall
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 90
SubjectTerms Algorithms
Autoregressive models
Bayes Theorem
Bayesian analysis
Computer Simulation
Empirical analysis
Latent Class Analysis
Latent variable
Models, Theoretical
Multivariate statistical analysis
network auto-regressive
nonlinear
Polynomials
Social networks
spatial
Spatial analysis
Spatial data
Structural equation modeling
structural equation models
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMdPo3tgPPB7EBjISLymi-3ESR4QCmzThGDiV6XxFNmJ_UKVli0RKn89d3ESbQg0kHhr1F5VO-fL91zf5wCeC2UxCTA8FLLSYcxFGhqV8lBrYTmmXFL0MJ13J-p4Eb85TU634MNYC0PHKimHdh4U0cdqWtzr2o0n4vZ7BgtPKbsTfM5zlMxKvmww2hd9k8EX7Vlnr8G2SlCez2B7cfK--OKPetCeXDowVFFZ5pEaq3r-9L2XnleXaKa_06Q34HrXrPXmu14uLzynjm7B2ThCfzzl67xrzbz68Qv88b9OwW24OahaVng3vANbtrkLO1Nw3dyD84K9RVnbtKzo2lX40fZ5PoZaVgxUc4ZjZq_0xlJZJ_vUc22JCcIOv3kcOaO-bVQ9z1aOUStlXDrLDUMrX2OMrw-Glr4tO9Ctvg-Lo8PPr4_DoeFDWKEqa0OH4cOoOjIuzyJHHCIVGcnrLBG5lcLERmUaU3ZnVR5LIhdGeWZymUijTFIruQuzZtXYh8CE4BXhxSqleeyU0DqtM6uyKnEo8TIdQDze1rIaaOjUlGNZ8gma6qe4pCkuhykOYD6ZrT0O5CqD_KLPlG2_D-N805RSXmG7NzpYOUSW85LoRSn1QEgDeDa9jTGB_ujRjV11-BmUsSQzUhXAA--Y06-VBKDEoB7A_uSpfzeUR_9s8Rh28FL6Has9mJFTPkEN15qnw6r8CeNhNFw
  priority: 102
  providerName: Unpaywall
Title A Latent Auto-Regressive Approach for Bayesian Structural Equation Modeling of Spatially or Socially Dependent Data
URI https://www.tandfonline.com/doi/abs/10.1080/00273171.2021.1957663
https://www.ncbi.nlm.nih.gov/pubmed/34379011
https://www.proquest.com/docview/2807784817
https://www.proquest.com/docview/2560299076
https://www.tandfonline.com/doi/pdf/10.1080/00273171.2021.1957663?needAccess=true
UnpaywallVersion publishedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 1532-7906
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Social Science and Humanities Library - DRAA
  customDbUrl:
  eissn: 1532-7906
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006549
  issn: 1532-7906
  databaseCode: TRJHH
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Be6AcEM8SKJWRuKaN7cROjoFttUJQIWAF5RLZWfu0yhZtVmj_PTOxE7USqEickihxEmce_sbxfAPwRiiHQYDlqZCtSXMudGqV5qkxwnEMuaQYyHQ-Xqj5In__vRhXE27iskqKoX0gihh8NRm3sZtxRdzpwMHCNUV3gp_wCiGzkndhX2hekWJnl_PJGasiImBB03Gaj0k8f7vNjeHpBnnpnyDofbi37a7M7pdZra4NS-cP4UHEk6wOCvAI7rjuMRxMbm33BDY1-4CAsutZve3X6Wc3RNjo5Fgd-cQZPp69NTtHCZXsy8AoS2wc7OxnIAJnVDGN8tbZ2jMqYoxKu9oxbBWye3F_Fovp9mxmevMUFudnX9_N01hqIW0RD_WpR8O1aplZX5WZJwYglVnJl2UhKieFza0qDQbL3qkql8QZmFWlrWQhrbLFUslnsNetO_ccmBC8JWKvVhmeeyWM0cvSqbItPIKr0iSQj1-4aSMPOZXDWDV8oisNgmlIME0UTAInU7OrQMRxW4PquviafpgB8aFcSSNvaXs0yrqJNr1piDdIU_UBncDr6TRaI_1iMZ1bb_EaBJA0wGuVwGHQkeltJVE_ojtN4HRSmn_ryov_6MpLOMBDGWaNjmAPdci9QhzV2-PBUo5hv57PfnzD7eLiU335G-tEDtE
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOEAPFVAeaWlrpF4DsZ04yXHLQ0tZOFCQ6Mmys_ZplQWRVbX_vjNxNlqkViD1FilxEmce_mbi-Qbgm1AOgwDLYyErE6dc5LFVOY-NEY5jyCVFS6ZzfaOG9-mPh-xhqRaGtlVSDO0DUUTrq8m4KRm92BJ30pKw8JzCO8GPeYmYWclVWM8QLlL7huTXsPfGKusgsKB8XM4XVTz_us2L9ekFe-nfMOg72JjVj2b-20wmS-vSxRa87wAlGwQN2IYVV-_AZu_X5h_gecBGiCjrhg1mzTS-dW2IjV6ODTpCcYaPZ9_N3FFFJfvZUsoSHQc7fwpM4IxaplHhOpt6Rl2MUWsnc4ajQnkvHp913XQbdmYaswv3F-d3p8O467UQVwiImtij5Vo1Tqwvi8QTBZBKrOTjIhOlk8KmVhUGo2XvVJlKIg1MysKWMpNW2Wys5B6s1dPaHQATglfE7FUpw1OvhDH5uHCqqDKP6KowEaSLL6yrjoic-mFMNO_5SoNgNAlGd4KJ4Lgf9hiYOF4bUC6LTzdtCsSHfiVavjL2cCFr3Rn1sybioJzaD-QRHPWn0RzpH4up3XSG1yCCpBU-VxHsBx3p31YS9yP60whOeqV521Q-_sdUvsLG8O56pEeXN1efYBNPyZBCOoQ11Cf3GUFVY7-0VvMHew8O4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaAcEK_SQAtG4po2thMnOS7drhYoFQIqwcmyE_u0yi7arKr998zESdRKVEXqLVLiJM68vnE83wB8EMphEmB5LGRl4pSLPLYq57ExwnFMuaToyHS-nqv5Rfr5VzbsJlz32yoph_aBKKLz1WTcq9oPO-KOOw4WnlN2J_gRLxEyK3kfHmQFhjdU6eT3fHTGKusRsKDluJwPRTw33eZaeLpGXvovCPoYHm2aldlemsXiSliaPYUnPZ5kk6AAz-Cea57D7ujWti9gPWFnCCiblk027TL-7roMG50cm_R84gwfzz6araOCSvajY5QlNg52-icQgTPqmEZ162zpGTUxRqVdbBmOCtW9eDztm-m2bGpa8xIuZqc_T-Zx32ohrhAPtbFHw7WqTqwvi8QTA5BKrOR1kYnSSWFTqwqDybJ3qkwlcQYmZWFLmUmrbFYruQc7zbJx-8CE4BURe1XK8NQrYUxeF04VVeYRXBUmgnT4wrrqecipHcZC85GuNAhGk2B0L5gIjsZhq0DEcduA8qr4dNutgPjQrkTLW8YeDLLWvU2vNfEG5dR9II_g_XgarZF-sZjGLTd4DQJICvC5iuBV0JHxbSVRP6I7jeB4VJr_m8rrO0zlHTz8Np3ps0_nX97ALp6RYQHpAHZQndwhQqrWvu2M5i_KXA4V
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMdPo3tgPPB7EBjISLymi-3ESR4QCmzThGDiV6XxFNmJ_UKVli0RKn89d3ESbQg0kHhr1F5VO-fL91zf5wCeC2UxCTA8FLLSYcxFGhqV8lBrYTmmXFL0MJ13J-p4Eb85TU634MNYC0PHKimHdh4U0cdqWtzr2o0n4vZ7BgtPKbsTfM5zlMxKvmww2hd9k8EX7Vlnr8G2SlCez2B7cfK--OKPetCeXDowVFFZ5pEaq3r-9L2XnleXaKa_06Q34HrXrPXmu14uLzynjm7B2ThCfzzl67xrzbz68Qv88b9OwW24OahaVng3vANbtrkLO1Nw3dyD84K9RVnbtKzo2lX40fZ5PoZaVgxUc4ZjZq_0xlJZJ_vUc22JCcIOv3kcOaO-bVQ9z1aOUStlXDrLDUMrX2OMrw-Glr4tO9Ctvg-Lo8PPr4_DoeFDWKEqa0OH4cOoOjIuzyJHHCIVGcnrLBG5lcLERmUaU3ZnVR5LIhdGeWZymUijTFIruQuzZtXYh8CE4BXhxSqleeyU0DqtM6uyKnEo8TIdQDze1rIaaOjUlGNZ8gma6qe4pCkuhykOYD6ZrT0O5CqD_KLPlG2_D-N805RSXmG7NzpYOUSW85LoRSn1QEgDeDa9jTGB_ujRjV11-BmUsSQzUhXAA--Y06-VBKDEoB7A_uSpfzeUR_9s8Rh28FL6Has9mJFTPkEN15qnw6r8CeNhNFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Latent+Auto-Regressive+Approach+for+Bayesian+Structural+Equation+Modeling+of+Spatially+or+Socially+Dependent+Data&rft.jtitle=Multivariate+behavioral+research&rft.au=Roman%2C+Zachary+J.&rft.au=Brandt%2C+Holger&rft.date=2023&rft.pub=Routledge&rft.issn=0027-3171&rft.eissn=1532-7906&rft.volume=58&rft.issue=1&rft.spage=90&rft.epage=114&rft_id=info:doi/10.1080%2F00273171.2021.1957663&rft.externalDBID=0YH&rft.externalDocID=1957663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-3171&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-3171&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-3171&client=summon