A review on longitudinal data analysis with random forest

Abstract In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard s...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 2
Main Authors Hu, Jianchang, Szymczak, Silke
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.03.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbad002

Cover

Abstract Abstract In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.
AbstractList In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.
Abstract In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.
In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.
Author Szymczak, Silke
Hu, Jianchang
Author_xml – sequence: 1
  givenname: Jianchang
  surname: Hu
  fullname: Hu, Jianchang
– sequence: 2
  givenname: Silke
  surname: Szymczak
  fullname: Szymczak, Silke
  email: silke.szymczak@uni-luebeck.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36653905$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LxDAQxYMofqyevEtBEEHqJmmatCcR8QsEL3oO03RWI91kTVrF_94su4ou4ikD-c3jzXs7ZN15h4TsM3rKaF2MG9uMmwZaSvka2WZCqVzQUqzPZ6nyUshii-zE-JIAqiq2SbYKKcuipuU2qc-zgG8W3zPvss67J9sPrXXQZS30kEGaPqKN2bvtn7MArvXTbOIDxn6XbEygi7i3fEfk8ery4eImv7u_vr04v8uNEKzPW2jaiUAFhiMwqNBwJWowpqkQEDmnVJXQcixBVqzg0AjKjDBSqATwohiRs4XubGim2Bp0fYBOz4KdQvjQHqz-_ePss37yb5qle0uRrh-R46VC8K9Dsq6nNhrsOnDoh6i5korJmsoqoYcr6IsfQgoh6oKKOuVdVXPBg5-Wvr18xZoAtgBM8DEGnGhje-itnzu0XbKm59XpVJ1eVpd2TlZ2vmT_po8WtB9m_4Kf1zepBw
CitedBy_id crossref_primary_10_57159_jcmm_3_5_24123
crossref_primary_10_3390_microorganisms12122457
crossref_primary_10_3390_genes16030339
crossref_primary_10_3389_fimmu_2024_1367602
crossref_primary_10_1186_s40001_024_01940_2
crossref_primary_10_3389_fneur_2024_1385013
crossref_primary_10_1515_tsd_2024_2636
crossref_primary_10_1007_s43621_024_00418_9
crossref_primary_10_3390_bdcc9020045
crossref_primary_10_2147_CMAR_S451871
crossref_primary_10_1007_s11033_023_08969_2
crossref_primary_10_3389_fphar_2024_1497397
crossref_primary_10_1177_11779322241281652
crossref_primary_10_1007_s00414_025_03447_9
crossref_primary_10_1093_biostatistics_kxaf007
crossref_primary_10_3389_fcvm_2024_1442275
crossref_primary_10_1002_tox_24261
crossref_primary_10_1016_j_rico_2024_100462
crossref_primary_10_5194_essd_16_5267_2024
crossref_primary_10_1007_s00261_024_04673_2
crossref_primary_10_1016_j_hpb_2024_07_413
crossref_primary_10_1038_s41598_024_62963_7
crossref_primary_10_3390_land14020265
crossref_primary_10_3390_ijms26052054
crossref_primary_10_56977_jicce_2024_22_2_145
crossref_primary_10_1186_s12967_024_05934_w
crossref_primary_10_1093_gerona_glae269
crossref_primary_10_3390_fractalfract8080490
crossref_primary_10_1038_s41598_025_85799_1
crossref_primary_10_1016_j_acra_2024_09_049
crossref_primary_10_1111_bmsp_12375
crossref_primary_10_1186_s12967_025_06190_2
crossref_primary_10_1186_s40708_024_00243_w
crossref_primary_10_3389_fphar_2024_1334929
crossref_primary_10_1108_JTF_02_2024_0033
crossref_primary_10_1016_j_intimp_2024_114008
crossref_primary_10_2147_JIR_S505813
crossref_primary_10_3389_fimmu_2024_1335675
crossref_primary_10_1177_15333175251325091
crossref_primary_10_1016_j_metop_2025_100354
crossref_primary_10_20517_jmi_2023_18
crossref_primary_10_1002_hsr2_2203
crossref_primary_10_1016_j_jep_2024_119295
crossref_primary_10_1021_acsmaterialslett_4c01267
crossref_primary_10_3389_fcvm_2024_1497170
crossref_primary_10_3390_en17102278
crossref_primary_10_1007_s12672_024_00934_0
crossref_primary_10_1038_s41598_025_89810_7
crossref_primary_10_1155_da_7645625
crossref_primary_10_3389_fcell_2025_1563911
crossref_primary_10_3390_polym16121752
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1080_17452759_2024_2318774
crossref_primary_10_1016_j_eswa_2025_127204
crossref_primary_10_3390_foods13244126
crossref_primary_10_38124_ijisrt_IJISRT24SEP354
crossref_primary_10_1002_jum_16620
crossref_primary_10_7717_peerj_18310
crossref_primary_10_1111_jcmm_70301
crossref_primary_10_3389_fdata_2024_1353469
crossref_primary_10_1016_j_mehy_2024_111405
crossref_primary_10_1177_18796397241304312
crossref_primary_10_3389_fmicb_2023_1237993
crossref_primary_10_3390_rs16132399
crossref_primary_10_3390_s24155022
crossref_primary_10_1049_rsn2_12678
crossref_primary_10_3390_cells14010014
crossref_primary_10_1186_s12903_025_05555_9
crossref_primary_10_1038_s41598_024_72819_9
crossref_primary_10_3390_rs17060973
crossref_primary_10_1186_s12884_024_07028_3
crossref_primary_10_3390_diagnostics14060620
crossref_primary_10_3389_fneur_2024_1441886
crossref_primary_10_3390_w17010121
crossref_primary_10_1038_s41467_024_55301_y
crossref_primary_10_3390_ijms251910304
crossref_primary_10_1016_j_canlet_2024_216967
crossref_primary_10_54097_6s1zj166
crossref_primary_10_1111_jcmm_70454
crossref_primary_10_5937_jaes0_45837
crossref_primary_10_1063_5_0172371
crossref_primary_10_3389_fcvm_2024_1343210
crossref_primary_10_1016_j_ebiom_2025_105586
crossref_primary_10_1111_dom_16095
crossref_primary_10_1186_s40537_024_00947_0
crossref_primary_10_2147_JIR_S488023
crossref_primary_10_1186_s12884_025_07433_2
crossref_primary_10_3389_fmed_2024_1496869
crossref_primary_10_1186_s12974_024_03243_z
crossref_primary_10_1038_s41598_025_86931_x
crossref_primary_10_1186_s12935_024_03247_y
crossref_primary_10_1038_s41598_024_78392_5
crossref_primary_10_3390_s23136040
crossref_primary_10_3389_fonc_2025_1505385
crossref_primary_10_1186_s40001_024_02101_1
crossref_primary_10_35848_1347_4065_ada77f
crossref_primary_10_1038_s41598_025_86178_6
crossref_primary_10_3389_fped_2024_1432113
crossref_primary_10_3389_fendo_2024_1475958
crossref_primary_10_1016_j_bone_2024_117178
crossref_primary_10_1007_s13318_024_00883_7
crossref_primary_10_3390_en17122815
crossref_primary_10_1186_s41065_024_00354_8
crossref_primary_10_3390_ph17040429
crossref_primary_10_1016_j_foodcont_2024_110966
crossref_primary_10_1016_j_saa_2024_124618
crossref_primary_10_1016_j_snb_2024_137205
crossref_primary_10_1016_j_heliyon_2024_e38422
crossref_primary_10_1016_j_measurement_2024_115575
crossref_primary_10_3390_medicina61030374
crossref_primary_10_3390_molecules29030682
crossref_primary_10_3390_nu16193306
crossref_primary_10_62347_TWTG6803
crossref_primary_10_1016_j_rineng_2025_104506
crossref_primary_10_1016_j_foodchem_2025_143555
crossref_primary_10_3390_w16111466
crossref_primary_10_1016_j_dcmed_2024_12_006
crossref_primary_10_1186_s13036_024_00466_9
crossref_primary_10_1111_jog_15720
crossref_primary_10_1016_j_jii_2025_100796
crossref_primary_10_1016_j_trim_2024_102101
crossref_primary_10_1111_sji_13304
crossref_primary_10_1186_s12889_024_20713_4
crossref_primary_10_1186_s13020_024_01026_5
crossref_primary_10_1007_s00262_024_03684_8
crossref_primary_10_1016_j_jksuci_2024_101961
crossref_primary_10_17474_artvinofd_1500569
crossref_primary_10_1016_j_jenvman_2023_118213
crossref_primary_10_1017_S0007114524000795
crossref_primary_10_3390_jcm14020612
crossref_primary_10_1016_j_marpolbul_2023_115459
crossref_primary_10_1186_s12912_024_02570_z
crossref_primary_10_3389_fimmu_2024_1489171
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124783
crossref_primary_10_3389_fimmu_2023_1286203
crossref_primary_10_1016_j_asej_2024_103060
crossref_primary_10_1097_SHK_0000000000002472
crossref_primary_10_1002_orm2_70001
crossref_primary_10_1016_j_ijbiomac_2024_137431
crossref_primary_10_1016_j_neucom_2024_127600
crossref_primary_10_1016_j_neo_2024_101009
crossref_primary_10_1302_2046_3758_138_BJR_2023_0351_R2
crossref_primary_10_1016_j_bpsc_2025_02_002
crossref_primary_10_3390_ph17091230
Cites_doi 10.1002/sim.1266
10.1080/00949655.2012.741599
10.1007/s11634-018-0342-1
10.1016/j.csda.2010.11.017
10.2307/2529876
10.1080/01621459.1992.10475220
10.1371/journal.pone.0007087
10.1093/bib/bbx124
10.1201/9780203753736
10.1007/s00180-011-0249-1
10.1016/S1474-4422(17)30328-9
10.1177/0962280220946080
10.1515/sagmb-2013-0040
10.1007/s00439-014-1484-7
10.1080/03610918.2018.1490429
10.1097/01.ogx.0000472121.21647.38
10.1111/j.0006-341X.2004.00202.x
10.1007/978-1-4419-6824-1
10.1183/13993003.00391-2017
10.1023/A:1010933404324
10.1890/07-0539.1
10.1373/clinchem.2003.028035
10.1016/j.jbi.2018.09.001
10.1007/s10994-011-5258-3
10.1016/j.spl.2017.02.033
10.1016/j.ygeno.2012.04.003
10.1007/s00439-012-1221-z
10.1111/insr.12016
10.1371/journal.pone.0061562
10.1016/j.chemolab.2019.01.002
10.1080/01621459.1998.10474100
10.1214/08-AOAS169
10.1111/biom.13284
10.1016/j.spl.2010.12.003
10.3758/s13428-017-0971-x
10.1093/bioinformatics/btw765
10.1038/nrg.2016.86
10.4310/SII.2008.v1.n1.a14
10.1177/0013164421992818
10.1007/978-3-540-25966-4_33
10.1198/106186006X133933
10.1080/00273171.2018.1552555
10.1007/978-0-387-73186-5_9
10.3390/cancers9110146
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. 2023
The Author(s) 2023. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. 2023
– notice: The Author(s) 2023. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
DOI 10.1093/bib/bbad002
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Genetics Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection (Oxford University Press)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID PMC10025446
36653905
10_1093_bib_bbad002
10.1093/bib/bbad002
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 01ZX1510
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
77I
7X8
5PM
ID FETCH-LOGICAL-c441t-dabdf4e7ac2ea1a8ec2749accb8eaee220075ad2e5a68132ab401c4c6478ea233
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Thu Aug 21 18:37:23 EDT 2025
Fri Sep 05 07:32:55 EDT 2025
Fri Jul 04 00:17:32 EDT 2025
Wed Feb 19 02:24:18 EST 2025
Tue Jul 01 03:39:45 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Wed Apr 02 07:05:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords clustered data
machine learning
multivariate response
longitudinal data
repeated measurements
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2023. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-dabdf4e7ac2ea1a8ec2749accb8eaee220075ad2e5a68132ab401c4c6478ea233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://dx.doi.org/10.1093/bib/bbad002
PMID 36653905
PQID 3049109886
PQPubID 26846
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025446
proquest_miscellaneous_2767169068
proquest_journals_3049109886
pubmed_primary_36653905
crossref_citationtrail_10_1093_bib_bbad002
crossref_primary_10_1093_bib_bbad002
oup_primary_10_1093_bib_bbad002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-19
PublicationDateYYYYMMDD 2023-03-19
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Segal (2023032004262088500_) 1992; 87
Ashley (2023032004262088500_) 2016; 17
Rodríguez (2023032004262088500_) 2008
Sela (2023032004262088500_) 2021
Pellagatti (2023032004262088500_) 2021; 14
Hothorn (2023032004262088500_) 2006; 15
Laird (2023032004262088500_) 1982
Capitaine (2023032004262088500_) 2020
König (2023032004262088500_) 2017; 50
Rahman (2023032004262088500_) 2017; 33
Fokkema (2023032004262088500_) 2018; 50
Karpievitch (2023032004262088500_) 2009; 4
Ritchie (2023032004262088500_) 2012; 131
Zhang (2023032004262088500_) 2019; 9
Loh (2023032004262088500_) 2002; 12
Hajjem (2023032004262088500_) 2011; 81
Zhang (2023032004262088500_) 2010
Lin (2023032004262088500_) 2019; 54
Raudenbush (2023032004262088500_) 2002
De’ath (2023032004262088500_) 2014
Adler (2023032004262088500_) 2011; 26
Matchett (2023032004262088500_) 2017; 9
Breiman (2023032004262088500_) 2001; 45
Speiser (2023032004262088500_) 2019; 185
Larsen (2023032004262088500_) 2004; 60
Capitaine (2023032004262088500_) 2021; 30
Rahman (2023032004262088500_) 2017
Boulesteix (2023032004262088500_) 2013; 8
Sela (2023032004262088500_) 2012; 86
Fontana (2023032004262088500_) 2018; 9
Sim (2023032004262088500_) 2013; 12
Segal (2023032004262088500_) 2011; 1
Mooney (2023032004262088500_) 2015; 134
Kogalur Hemant Ishwaran (2023032004262088500_) 2022
Hajjem (2023032004262088500_) 2014; 84
Loh (2023032004262088500_) 2014; 82
Adler (2023032004262088500_) 2011; 55
Chen (2023032004262088500_) 2012; 99
Liaw (2023032004262088500_) 2002; 2
Breiman (2023032004262088500_) 1984
(2023032004262088500_) 2002; 83
Krasniqi (2023032004262088500_) 2021; 17
Zhang (2023032004262088500_) 2008; 1
Sexton (2023032004262088500_) 2018
Speiser (2023032004262088500_) 2020; 49
Hajjem (2023032004262088500_) 2017; 126
Vlahou (2023032004262088500_) 2004; 50
Larry Jameson (2023032004262088500_) 2015; 70
Degenhardt (2023032004262088500_) 2019; 20
Calhoun (2023032004262088500_) 2021; 77
McCullagh (2023032004262088500_) 2019
Hedeker (2023032004262088500_) 2006
Ishwaran (2023032004262088500_) 2008; 2
Seibold (2023032004262088500_) 2019; 13
Svetnik (2023032004262088500_) 2004
Ngufor (2023032004262088500_) 2019; 89
Zhang (2023032004262088500_) 1998; 93
Richard Cutler (2023032004262088500_) 2007; 88
Latourelle (2023032004262088500_) 2017; 16
Abdolell (2023032004262088500_) 2002; 21
Mangino (2023032004262088500_) 2021; 81
Fitzmaurice (2023032004262088500_) 2012
References_xml – volume: 21
  start-page: 3395
  issue: 22
  year: 2002
  ident: 2023032004262088500_
  article-title: Binary partitioning for continuous longitudinal data: categorizing a prognostic variable
  publication-title: Stat Med
  doi: 10.1002/sim.1266
– volume: 84
  start-page: 1313
  issue: 6
  year: 2014
  ident: 2023032004262088500_
  article-title: Mixed-effects random forest for clustered data
  publication-title: J Stat Comput Simulation
  doi: 10.1080/00949655.2012.741599
– volume: 13
  start-page: 703
  issue: 3
  year: 2019
  ident: 2023032004262088500_
  article-title: Generalised linear model trees with global additive effects
  publication-title: Adv Data Anal Classification
  doi: 10.1007/s11634-018-0342-1
– volume: 55
  start-page: 1933
  issue: 5
  year: 2011
  ident: 2023032004262088500_
  article-title: Ensemble classification of paired data
  publication-title: Comput Stat Data Analysis
  doi: 10.1016/j.csda.2010.11.017
– volume-title: mvpart: multivariate partitioning
  year: 2014
  ident: 2023032004262088500_
– start-page: 963
  year: 1982
  ident: 2023032004262088500_
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 87
  start-page: 407
  issue: 418
  year: 1992
  ident: 2023032004262088500_
  article-title: Tree-structured methods for longitudinal data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1992.10475220
– volume: 4
  issue: 9
  year: 2009
  ident: 2023032004262088500_
  article-title: An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0007087
– volume: 20
  start-page: 492
  issue: 2
  year: 2019
  ident: 2023032004262088500_
  article-title: Evaluation of variable selection methods for random forests and omics data sets
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx124
– volume-title: REEMtree: regression trees with random effects for longitudinal (panel) data
  year: 2021
  ident: 2023032004262088500_
– volume-title: Generalized Linear Models
  year: 2019
  ident: 2023032004262088500_
  doi: 10.1201/9780203753736
– volume: 26
  start-page: 355
  issue: 2
  year: 2011
  ident: 2023032004262088500_
  article-title: Classification of repeated measurements data using tree-based ensemble methods
  publication-title: Comput Stat
  doi: 10.1007/s00180-011-0249-1
– volume: 16
  start-page: 908
  issue: 11
  year: 2017
  ident: 2023032004262088500_
  article-title: Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed parkinson’s disease: a longitudinal cohort study and validation
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(17)30328-9
– volume: 30
  start-page: 166
  issue: 1
  year: 2021
  ident: 2023032004262088500_
  article-title: Random forests for high-dimensional longitudinal data
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280220946080
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 2023032004262088500_
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 12
  start-page: 757
  issue: 6
  year: 2013
  ident: 2023032004262088500_
  article-title: Random forests on distance matrices for imaging genetics studies
  publication-title: Stat Appl Genet Mol Biol
  doi: 10.1515/sagmb-2013-0040
– volume: 134
  start-page: 459
  issue: 5
  year: 2015
  ident: 2023032004262088500_
  article-title: Progress towards the integration of pharmacogenomics in practice
  publication-title: Hum Genet
  doi: 10.1007/s00439-014-1484-7
– volume: 49
  start-page: 1004
  issue: 4
  year: 2020
  ident: 2023032004262088500_
  article-title: BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2018.1490429
– volume: 70
  start-page: 612
  issue: 10
  year: 2015
  ident: 2023032004262088500_
  article-title: Precision medicine-personalized, problematic, and promising
  publication-title: Obstet Gynecol Surv
  doi: 10.1097/01.ogx.0000472121.21647.38
– volume-title: randomForestSRC: fast unified random forests for survival, regression, and classification (RF-SRC)
  year: 2022
  ident: 2023032004262088500_
– volume: 60
  start-page: 543
  issue: 2
  year: 2004
  ident: 2023032004262088500_
  article-title: Multivariate regression trees for analysis of abundance data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2004.00202.x
– volume-title: Applied Longitudinal Analysis
  year: 2012
  ident: 2023032004262088500_
– volume-title: Recursive Partitioning and Applications
  year: 2010
  ident: 2023032004262088500_
  doi: 10.1007/978-1-4419-6824-1
– volume: 12
  start-page: 361
  issue: 2
  year: 2002
  ident: 2023032004262088500_
  article-title: Regression trees with unbiased variable selection and interaction detection
  publication-title: Statistica Sinica
– volume: 50
  issue: 4
  year: 2017
  ident: 2023032004262088500_
  article-title: What is precision medicine?
  publication-title: Eur Respir J
  doi: 10.1183/13993003.00391-2017
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 2023032004262088500_
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 88
  start-page: 2783
  issue: 11
  year: 2007
  ident: 2023032004262088500_
  article-title: Random forests for classification in ecology
  publication-title: Ecology
  doi: 10.1890/07-0539.1
– volume: 50
  start-page: 1438
  issue: 8
  year: 2004
  ident: 2023032004262088500_
  article-title: Protein profiling in urine for the diagnosis of bladder cancer
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2003.028035
– volume-title: MultivariateRandomForest: models multivariate cases using random forests
  year: 2017
  ident: 2023032004262088500_
– volume: 89
  start-page: 56
  year: 2019
  ident: 2023032004262088500_
  article-title: Mixed effect machine learning: a framework for predicting longitudinal change in hemoglobin a1c
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.09.001
– volume-title: Historical random forests
  year: 2018
  ident: 2023032004262088500_
– volume: 9
  start-page: 1
  year: 2018
  ident: 2023032004262088500_
  article-title: Performing learning analytics via generalized mixed-effects trees
  publication-title: MOX-Modelling and Scientific Computing, Department of Mathematics, Politecnico di Milano, via Bonardi
– volume: 86
  start-page: 169
  issue: 2
  year: 2012
  ident: 2023032004262088500_
  article-title: RE-EM trees: a data mining approach for longitudinal and clustered data
  publication-title: Mach Learn
  doi: 10.1007/s10994-011-5258-3
– volume: 126
  start-page: 114
  year: 2017
  ident: 2023032004262088500_
  article-title: Generalized mixed effects regression trees
  publication-title: Stat Probability Lett
  doi: 10.1016/j.spl.2017.02.033
– volume-title: LongituRF: random forests for longitudinal data
  year: 2020
  ident: 2023032004262088500_
– volume: 99
  start-page: 323
  issue: 6
  year: 2012
  ident: 2023032004262088500_
  article-title: Random forests for genomic data analysis
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2012.04.003
– volume: 131
  start-page: 1615
  issue: 10
  year: 2012
  ident: 2023032004262088500_
  article-title: The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-gwas era
  publication-title: Hum Genet
  doi: 10.1007/s00439-012-1221-z
– volume: 1
  start-page: 80
  issue: 1
  year: 2011
  ident: 2023032004262088500_
  article-title: Multivariate random forests
  publication-title: Wiley Interdisciplinary Rev
– volume: 82
  start-page: 329
  issue: 3
  year: 2014
  ident: 2023032004262088500_
  article-title: Fifty years of classification and regression trees
  publication-title: Int Stat Rev
  doi: 10.1111/insr.12016
– volume: 8
  issue: 4
  year: 2013
  ident: 2023032004262088500_
  article-title: A plea for neutral comparison studies in computational sciences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061562
– volume-title: htree: historical tree ensembles for longitudinal data
  year: 2018
  ident: 2023032004262088500_
– volume: 185
  start-page: 122
  year: 2019
  ident: 2023032004262088500_
  article-title: BiMM forest: a random forest method for modeling clustered and longitudinal binary outcomes
  publication-title: Chemom Intel Lab Syst
  doi: 10.1016/j.chemolab.2019.01.002
– volume: 93
  start-page: 180
  issue: 441
  year: 1998
  ident: 2023032004262088500_
  article-title: Classification trees for multiple binary responses
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1998.10474100
– volume: 2
  start-page: 841
  issue: 3
  year: 2008
  ident: 2023032004262088500_
  article-title: Random survival forests
  publication-title: Ann Appl Stat
  doi: 10.1214/08-AOAS169
– volume-title: Hierarchical Linear Models: Applications and Data Analysis Methods
  year: 2002
  ident: 2023032004262088500_
– volume: 77
  start-page: 343
  issue: 1
  year: 2021
  ident: 2023032004262088500_
  article-title: Repeated measures random forests (rmrf): identifying factors associated with nocturnal hypoglycemia
  publication-title: Biometrics
  doi: 10.1111/biom.13284
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 2023032004262088500_
  article-title: Data-driven subtyping of parkinson’s disease using longitudinal clinical records: a cohort study
  publication-title: Sci Rep
– volume: 81
  start-page: 451
  issue: 4
  year: 2011
  ident: 2023032004262088500_
  article-title: Mixed effects regression trees for clustered data
  publication-title: Stat Probability Lett
  doi: 10.1016/j.spl.2010.12.003
– volume: 50
  start-page: 2016
  issue: 5
  year: 2018
  ident: 2023032004262088500_
  article-title: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees
  publication-title: Behav Res Methods
  doi: 10.3758/s13428-017-0971-x
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 2023032004262088500_
– volume: 33
  start-page: 1407
  issue: 9
  year: 2017
  ident: 2023032004262088500_
  article-title: IntegratedMRF: random forest-based framework for integrating prediction from different data types
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw765
– volume: 17
  start-page: 507
  issue: 9
  year: 2016
  ident: 2023032004262088500_
  article-title: Towards precision medicine
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.86
– volume: 1
  start-page: 169
  issue: 1
  year: 2008
  ident: 2023032004262088500_
  article-title: A tree-based method for modeling a multivariate ordinal response
  publication-title: Statistics Interface
  doi: 10.4310/SII.2008.v1.n1.a14
– volume: 17
  start-page: 1860
  issue: 1
  year: 2021
  ident: 2023032004262088500_
  article-title: Data-driven stratification of parkinson’s disease patients based on the progression of motor and cognitive disease markers datengetriebene stratifizierung von patienten mit parkinson-krankheit anhand von verlaufsdaten motorischer und kognitiver kennzahlen der erkrankung
  publication-title: GMS Medizinische Informatik, Biometrie und Epidemiologie
– volume: 81
  start-page: 1118
  issue: 6
  year: 2021
  ident: 2023032004262088500_
  article-title: Prediction with mixed effects models: a Monte Carlo simulation study
  publication-title: Educ Psychol Meas
  doi: 10.1177/0013164421992818
– volume: 83
  start-page: 1105
  issue: 4
  year: 2002
  ident: 2023032004262088500_
  article-title: Multivariate regression trees: a new technique for modeling species-environment relationships
  publication-title: Ecology
– start-page: 334
  volume-title: International Workshop on Multiple Classifier Systems
  year: 2004
  ident: 2023032004262088500_
  article-title: Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules
  doi: 10.1007/978-3-540-25966-4_33
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  ident: 2023032004262088500_
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J Comput Graph Stat
  doi: 10.1198/106186006X133933
– volume: 54
  start-page: 578
  issue: 4
  year: 2019
  ident: 2023032004262088500_
  article-title: A new multilevel cart algorithm for multilevel data with binary outcomes
  publication-title: Multivar Behav Res
  doi: 10.1080/00273171.2018.1552555
– start-page: 335
  volume-title: Handbook of Multilevel Analysis
  year: 2008
  ident: 2023032004262088500_
  article-title: Multilevel generalized linear models
  doi: 10.1007/978-0-387-73186-5_9
– volume: 14
  start-page: 241
  issue: 3
  year: 2021
  ident: 2023032004262088500_
  article-title: Generalized mixed-effects random forest: a flexible approach to predict university student dropout. Statistical analysis and data mining: the ASA
  publication-title: Data Sci J
– volume-title: Longitudinal Data Analysis
  year: 2006
  ident: 2023032004262088500_
– volume: 9
  start-page: 146
  issue: 11
  year: 2017
  ident: 2023032004262088500_
  article-title: Advances in precision medicine: tailoring individualized therapies
  publication-title: Cancer
  doi: 10.3390/cancers9110146
SSID ssj0020781
Score 2.7035437
SecondaryResourceType review_article
Snippet Abstract In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to...
In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Data Analysis
Data structures
Longitudinal Studies
Machine learning
Multivariate analysis
Prediction models
Random Forest
Review
Software
Statistical methods
Title A review on longitudinal data analysis with random forest
URI https://www.ncbi.nlm.nih.gov/pubmed/36653905
https://www.proquest.com/docview/3049109886
https://www.proquest.com/docview/2767169068
https://pubmed.ncbi.nlm.nih.gov/PMC10025446
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4iCL6Iv61OjbAnoaxt2jR9HOIYgvqywd7KJU1xMFtx24P_vbklK-sY-txrG-7S3l3uvu8I6YqySCFgCN0KSz9G8lmpzM8wDFicFpkoARDv_PrGh-P4ZZJMXIPsfEcJP2M9OZU9KaGwnJHG_eJ2Hr1PmrwK-WosiCj1kd3dwfC27m05nhaYbSOm3G6N3PA1g2Ny5IJE2rdWPSF7ujolB3Zs5M8ZyfrUIk5oXdFZjROHlgVOt6LY70nB8YxQPGOlxhcV9Sc1salZwTkZD55HT0PfjUDwlYlTFn4BsihjnYKKNIQgtDJZZAZKSaFB6whPGhMoIp0AFyaxBGnyJRUrRJBqiBi7IPtVXekrQk0gE0caHxYgnFQBl0zGJQOJ_DhR6pHHtX5y5fjBcUzFLLd1apYbZeZOmR7pNsJflhZjt9i9UfTfEp21EXL39cxzLP0ZQSG4Rx6ay2bfYzEDKl0v53mUciT6CbjwyKW1WfMexpFwN0g8IlrWbASQU7t9pZp-rLi1Q0vaxq__XfkNOcTR89iPFmYdsr_4XupbE6As5N1qe_4CN9fkFA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+longitudinal+data+analysis+with+random+forest&rft.jtitle=Briefings+in+bioinformatics&rft.au=Hu%2C+Jianchang&rft.au=Szymczak%2C+Silke&rft.date=2023-03-19&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbad002&rft.externalDocID=10.1093%2Fbib%2Fbbad002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon