A review on longitudinal data analysis with random forest
Abstract In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard s...
Saved in:
Published in | Briefings in bioinformatics Vol. 24; no. 2 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
19.03.2023
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
ISSN | 1467-5463 1477-4054 1477-4054 |
DOI | 10.1093/bib/bbad002 |
Cover
Abstract | Abstract
In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions. |
---|---|
AbstractList | In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions.In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions. Abstract In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions. In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop prediction models, machine learning approaches such as the powerful random forest (RF) are often promising alternatives to standard statistical methods, especially in the context of high-dimensional data. In this paper, we review extensions of the standard RF method for the purpose of longitudinal data analysis. Extension methods are categorized according to the data structures for which they are designed. We consider both univariate and multivariate response longitudinal data and further categorize the repeated measurements according to whether the time effect is relevant. Even though most extensions are proposed for low-dimensional data, some can be applied to high-dimensional data. Information of available software implementations of the reviewed extensions is also given. We conclude with discussions on the limitations of our review and some future research directions. |
Author | Szymczak, Silke Hu, Jianchang |
Author_xml | – sequence: 1 givenname: Jianchang surname: Hu fullname: Hu, Jianchang – sequence: 2 givenname: Silke surname: Szymczak fullname: Szymczak, Silke email: silke.szymczak@uni-luebeck.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36653905$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LxDAQxYMofqyevEtBEEHqJmmatCcR8QsEL3oO03RWI91kTVrF_94su4ou4ikD-c3jzXs7ZN15h4TsM3rKaF2MG9uMmwZaSvka2WZCqVzQUqzPZ6nyUshii-zE-JIAqiq2SbYKKcuipuU2qc-zgG8W3zPvss67J9sPrXXQZS30kEGaPqKN2bvtn7MArvXTbOIDxn6XbEygi7i3fEfk8ery4eImv7u_vr04v8uNEKzPW2jaiUAFhiMwqNBwJWowpqkQEDmnVJXQcixBVqzg0AjKjDBSqATwohiRs4XubGim2Bp0fYBOz4KdQvjQHqz-_ePss37yb5qle0uRrh-R46VC8K9Dsq6nNhrsOnDoh6i5korJmsoqoYcr6IsfQgoh6oKKOuVdVXPBg5-Wvr18xZoAtgBM8DEGnGhje-itnzu0XbKm59XpVJ1eVpd2TlZ2vmT_po8WtB9m_4Kf1zepBw |
CitedBy_id | crossref_primary_10_57159_jcmm_3_5_24123 crossref_primary_10_3390_microorganisms12122457 crossref_primary_10_3390_genes16030339 crossref_primary_10_3389_fimmu_2024_1367602 crossref_primary_10_1186_s40001_024_01940_2 crossref_primary_10_3389_fneur_2024_1385013 crossref_primary_10_1515_tsd_2024_2636 crossref_primary_10_1007_s43621_024_00418_9 crossref_primary_10_3390_bdcc9020045 crossref_primary_10_2147_CMAR_S451871 crossref_primary_10_1007_s11033_023_08969_2 crossref_primary_10_3389_fphar_2024_1497397 crossref_primary_10_1177_11779322241281652 crossref_primary_10_1007_s00414_025_03447_9 crossref_primary_10_1093_biostatistics_kxaf007 crossref_primary_10_3389_fcvm_2024_1442275 crossref_primary_10_1002_tox_24261 crossref_primary_10_1016_j_rico_2024_100462 crossref_primary_10_5194_essd_16_5267_2024 crossref_primary_10_1007_s00261_024_04673_2 crossref_primary_10_1016_j_hpb_2024_07_413 crossref_primary_10_1038_s41598_024_62963_7 crossref_primary_10_3390_land14020265 crossref_primary_10_3390_ijms26052054 crossref_primary_10_56977_jicce_2024_22_2_145 crossref_primary_10_1186_s12967_024_05934_w crossref_primary_10_1093_gerona_glae269 crossref_primary_10_3390_fractalfract8080490 crossref_primary_10_1038_s41598_025_85799_1 crossref_primary_10_1016_j_acra_2024_09_049 crossref_primary_10_1111_bmsp_12375 crossref_primary_10_1186_s12967_025_06190_2 crossref_primary_10_1186_s40708_024_00243_w crossref_primary_10_3389_fphar_2024_1334929 crossref_primary_10_1108_JTF_02_2024_0033 crossref_primary_10_1016_j_intimp_2024_114008 crossref_primary_10_2147_JIR_S505813 crossref_primary_10_3389_fimmu_2024_1335675 crossref_primary_10_1177_15333175251325091 crossref_primary_10_1016_j_metop_2025_100354 crossref_primary_10_20517_jmi_2023_18 crossref_primary_10_1002_hsr2_2203 crossref_primary_10_1016_j_jep_2024_119295 crossref_primary_10_1021_acsmaterialslett_4c01267 crossref_primary_10_3389_fcvm_2024_1497170 crossref_primary_10_3390_en17102278 crossref_primary_10_1007_s12672_024_00934_0 crossref_primary_10_1038_s41598_025_89810_7 crossref_primary_10_1155_da_7645625 crossref_primary_10_3389_fcell_2025_1563911 crossref_primary_10_3390_polym16121752 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1080_17452759_2024_2318774 crossref_primary_10_1016_j_eswa_2025_127204 crossref_primary_10_3390_foods13244126 crossref_primary_10_38124_ijisrt_IJISRT24SEP354 crossref_primary_10_1002_jum_16620 crossref_primary_10_7717_peerj_18310 crossref_primary_10_1111_jcmm_70301 crossref_primary_10_3389_fdata_2024_1353469 crossref_primary_10_1016_j_mehy_2024_111405 crossref_primary_10_1177_18796397241304312 crossref_primary_10_3389_fmicb_2023_1237993 crossref_primary_10_3390_rs16132399 crossref_primary_10_3390_s24155022 crossref_primary_10_1049_rsn2_12678 crossref_primary_10_3390_cells14010014 crossref_primary_10_1186_s12903_025_05555_9 crossref_primary_10_1038_s41598_024_72819_9 crossref_primary_10_3390_rs17060973 crossref_primary_10_1186_s12884_024_07028_3 crossref_primary_10_3390_diagnostics14060620 crossref_primary_10_3389_fneur_2024_1441886 crossref_primary_10_3390_w17010121 crossref_primary_10_1038_s41467_024_55301_y crossref_primary_10_3390_ijms251910304 crossref_primary_10_1016_j_canlet_2024_216967 crossref_primary_10_54097_6s1zj166 crossref_primary_10_1111_jcmm_70454 crossref_primary_10_5937_jaes0_45837 crossref_primary_10_1063_5_0172371 crossref_primary_10_3389_fcvm_2024_1343210 crossref_primary_10_1016_j_ebiom_2025_105586 crossref_primary_10_1111_dom_16095 crossref_primary_10_1186_s40537_024_00947_0 crossref_primary_10_2147_JIR_S488023 crossref_primary_10_1186_s12884_025_07433_2 crossref_primary_10_3389_fmed_2024_1496869 crossref_primary_10_1186_s12974_024_03243_z crossref_primary_10_1038_s41598_025_86931_x crossref_primary_10_1186_s12935_024_03247_y crossref_primary_10_1038_s41598_024_78392_5 crossref_primary_10_3390_s23136040 crossref_primary_10_3389_fonc_2025_1505385 crossref_primary_10_1186_s40001_024_02101_1 crossref_primary_10_35848_1347_4065_ada77f crossref_primary_10_1038_s41598_025_86178_6 crossref_primary_10_3389_fped_2024_1432113 crossref_primary_10_3389_fendo_2024_1475958 crossref_primary_10_1016_j_bone_2024_117178 crossref_primary_10_1007_s13318_024_00883_7 crossref_primary_10_3390_en17122815 crossref_primary_10_1186_s41065_024_00354_8 crossref_primary_10_3390_ph17040429 crossref_primary_10_1016_j_foodcont_2024_110966 crossref_primary_10_1016_j_saa_2024_124618 crossref_primary_10_1016_j_snb_2024_137205 crossref_primary_10_1016_j_heliyon_2024_e38422 crossref_primary_10_1016_j_measurement_2024_115575 crossref_primary_10_3390_medicina61030374 crossref_primary_10_3390_molecules29030682 crossref_primary_10_3390_nu16193306 crossref_primary_10_62347_TWTG6803 crossref_primary_10_1016_j_rineng_2025_104506 crossref_primary_10_1016_j_foodchem_2025_143555 crossref_primary_10_3390_w16111466 crossref_primary_10_1016_j_dcmed_2024_12_006 crossref_primary_10_1186_s13036_024_00466_9 crossref_primary_10_1111_jog_15720 crossref_primary_10_1016_j_jii_2025_100796 crossref_primary_10_1016_j_trim_2024_102101 crossref_primary_10_1111_sji_13304 crossref_primary_10_1186_s12889_024_20713_4 crossref_primary_10_1186_s13020_024_01026_5 crossref_primary_10_1007_s00262_024_03684_8 crossref_primary_10_1016_j_jksuci_2024_101961 crossref_primary_10_17474_artvinofd_1500569 crossref_primary_10_1016_j_jenvman_2023_118213 crossref_primary_10_1017_S0007114524000795 crossref_primary_10_3390_jcm14020612 crossref_primary_10_1016_j_marpolbul_2023_115459 crossref_primary_10_1186_s12912_024_02570_z crossref_primary_10_3389_fimmu_2024_1489171 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124783 crossref_primary_10_3389_fimmu_2023_1286203 crossref_primary_10_1016_j_asej_2024_103060 crossref_primary_10_1097_SHK_0000000000002472 crossref_primary_10_1002_orm2_70001 crossref_primary_10_1016_j_ijbiomac_2024_137431 crossref_primary_10_1016_j_neucom_2024_127600 crossref_primary_10_1016_j_neo_2024_101009 crossref_primary_10_1302_2046_3758_138_BJR_2023_0351_R2 crossref_primary_10_1016_j_bpsc_2025_02_002 crossref_primary_10_3390_ph17091230 |
Cites_doi | 10.1002/sim.1266 10.1080/00949655.2012.741599 10.1007/s11634-018-0342-1 10.1016/j.csda.2010.11.017 10.2307/2529876 10.1080/01621459.1992.10475220 10.1371/journal.pone.0007087 10.1093/bib/bbx124 10.1201/9780203753736 10.1007/s00180-011-0249-1 10.1016/S1474-4422(17)30328-9 10.1177/0962280220946080 10.1515/sagmb-2013-0040 10.1007/s00439-014-1484-7 10.1080/03610918.2018.1490429 10.1097/01.ogx.0000472121.21647.38 10.1111/j.0006-341X.2004.00202.x 10.1007/978-1-4419-6824-1 10.1183/13993003.00391-2017 10.1023/A:1010933404324 10.1890/07-0539.1 10.1373/clinchem.2003.028035 10.1016/j.jbi.2018.09.001 10.1007/s10994-011-5258-3 10.1016/j.spl.2017.02.033 10.1016/j.ygeno.2012.04.003 10.1007/s00439-012-1221-z 10.1111/insr.12016 10.1371/journal.pone.0061562 10.1016/j.chemolab.2019.01.002 10.1080/01621459.1998.10474100 10.1214/08-AOAS169 10.1111/biom.13284 10.1016/j.spl.2010.12.003 10.3758/s13428-017-0971-x 10.1093/bioinformatics/btw765 10.1038/nrg.2016.86 10.4310/SII.2008.v1.n1.a14 10.1177/0013164421992818 10.1007/978-3-540-25966-4_33 10.1198/106186006X133933 10.1080/00273171.2018.1552555 10.1007/978-0-387-73186-5_9 10.3390/cancers9110146 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. 2023 The Author(s) 2023. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. 2023 – notice: The Author(s) 2023. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM |
DOI | 10.1093/bib/bbad002 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection (Oxford University Press) url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | PMC10025446 36653905 10_1093_bib_bbad002 10.1093/bib/bbad002 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: 01ZX1510 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 77I 7X8 5PM |
ID | FETCH-LOGICAL-c441t-dabdf4e7ac2ea1a8ec2749accb8eaee220075ad2e5a68132ab401c4c6478ea233 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Aug 21 18:37:23 EDT 2025 Fri Sep 05 07:32:55 EDT 2025 Fri Jul 04 00:17:32 EDT 2025 Wed Feb 19 02:24:18 EST 2025 Tue Jul 01 03:39:45 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Wed Apr 02 07:05:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | clustered data machine learning multivariate response longitudinal data repeated measurements |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2023. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-dabdf4e7ac2ea1a8ec2749accb8eaee220075ad2e5a68132ab401c4c6478ea233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://dx.doi.org/10.1093/bib/bbad002 |
PMID | 36653905 |
PQID | 3049109886 |
PQPubID | 26846 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025446 proquest_miscellaneous_2767169068 proquest_journals_3049109886 pubmed_primary_36653905 crossref_citationtrail_10_1093_bib_bbad002 crossref_primary_10_1093_bib_bbad002 oup_primary_10_1093_bib_bbad002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-19 |
PublicationDateYYYYMMDD | 2023-03-19 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2023 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Segal (2023032004262088500_) 1992; 87 Ashley (2023032004262088500_) 2016; 17 Rodríguez (2023032004262088500_) 2008 Sela (2023032004262088500_) 2021 Pellagatti (2023032004262088500_) 2021; 14 Hothorn (2023032004262088500_) 2006; 15 Laird (2023032004262088500_) 1982 Capitaine (2023032004262088500_) 2020 König (2023032004262088500_) 2017; 50 Rahman (2023032004262088500_) 2017; 33 Fokkema (2023032004262088500_) 2018; 50 Karpievitch (2023032004262088500_) 2009; 4 Ritchie (2023032004262088500_) 2012; 131 Zhang (2023032004262088500_) 2019; 9 Loh (2023032004262088500_) 2002; 12 Hajjem (2023032004262088500_) 2011; 81 Zhang (2023032004262088500_) 2010 Lin (2023032004262088500_) 2019; 54 Raudenbush (2023032004262088500_) 2002 De’ath (2023032004262088500_) 2014 Adler (2023032004262088500_) 2011; 26 Matchett (2023032004262088500_) 2017; 9 Breiman (2023032004262088500_) 2001; 45 Speiser (2023032004262088500_) 2019; 185 Larsen (2023032004262088500_) 2004; 60 Capitaine (2023032004262088500_) 2021; 30 Rahman (2023032004262088500_) 2017 Boulesteix (2023032004262088500_) 2013; 8 Sela (2023032004262088500_) 2012; 86 Fontana (2023032004262088500_) 2018; 9 Sim (2023032004262088500_) 2013; 12 Segal (2023032004262088500_) 2011; 1 Mooney (2023032004262088500_) 2015; 134 Kogalur Hemant Ishwaran (2023032004262088500_) 2022 Hajjem (2023032004262088500_) 2014; 84 Loh (2023032004262088500_) 2014; 82 Adler (2023032004262088500_) 2011; 55 Chen (2023032004262088500_) 2012; 99 Liaw (2023032004262088500_) 2002; 2 Breiman (2023032004262088500_) 1984 (2023032004262088500_) 2002; 83 Krasniqi (2023032004262088500_) 2021; 17 Zhang (2023032004262088500_) 2008; 1 Sexton (2023032004262088500_) 2018 Speiser (2023032004262088500_) 2020; 49 Hajjem (2023032004262088500_) 2017; 126 Vlahou (2023032004262088500_) 2004; 50 Larry Jameson (2023032004262088500_) 2015; 70 Degenhardt (2023032004262088500_) 2019; 20 Calhoun (2023032004262088500_) 2021; 77 McCullagh (2023032004262088500_) 2019 Hedeker (2023032004262088500_) 2006 Ishwaran (2023032004262088500_) 2008; 2 Seibold (2023032004262088500_) 2019; 13 Svetnik (2023032004262088500_) 2004 Ngufor (2023032004262088500_) 2019; 89 Zhang (2023032004262088500_) 1998; 93 Richard Cutler (2023032004262088500_) 2007; 88 Latourelle (2023032004262088500_) 2017; 16 Abdolell (2023032004262088500_) 2002; 21 Mangino (2023032004262088500_) 2021; 81 Fitzmaurice (2023032004262088500_) 2012 |
References_xml | – volume: 21 start-page: 3395 issue: 22 year: 2002 ident: 2023032004262088500_ article-title: Binary partitioning for continuous longitudinal data: categorizing a prognostic variable publication-title: Stat Med doi: 10.1002/sim.1266 – volume: 84 start-page: 1313 issue: 6 year: 2014 ident: 2023032004262088500_ article-title: Mixed-effects random forest for clustered data publication-title: J Stat Comput Simulation doi: 10.1080/00949655.2012.741599 – volume: 13 start-page: 703 issue: 3 year: 2019 ident: 2023032004262088500_ article-title: Generalised linear model trees with global additive effects publication-title: Adv Data Anal Classification doi: 10.1007/s11634-018-0342-1 – volume: 55 start-page: 1933 issue: 5 year: 2011 ident: 2023032004262088500_ article-title: Ensemble classification of paired data publication-title: Comput Stat Data Analysis doi: 10.1016/j.csda.2010.11.017 – volume-title: mvpart: multivariate partitioning year: 2014 ident: 2023032004262088500_ – start-page: 963 year: 1982 ident: 2023032004262088500_ article-title: Random-effects models for longitudinal data publication-title: Biometrics doi: 10.2307/2529876 – volume: 87 start-page: 407 issue: 418 year: 1992 ident: 2023032004262088500_ article-title: Tree-structured methods for longitudinal data publication-title: J Am Stat Assoc doi: 10.1080/01621459.1992.10475220 – volume: 4 issue: 9 year: 2009 ident: 2023032004262088500_ article-title: An introspective comparison of random forest-based classifiers for the analysis of cluster-correlated data by way of RF++ publication-title: PLoS One doi: 10.1371/journal.pone.0007087 – volume: 20 start-page: 492 issue: 2 year: 2019 ident: 2023032004262088500_ article-title: Evaluation of variable selection methods for random forests and omics data sets publication-title: Brief Bioinform doi: 10.1093/bib/bbx124 – volume-title: REEMtree: regression trees with random effects for longitudinal (panel) data year: 2021 ident: 2023032004262088500_ – volume-title: Generalized Linear Models year: 2019 ident: 2023032004262088500_ doi: 10.1201/9780203753736 – volume: 26 start-page: 355 issue: 2 year: 2011 ident: 2023032004262088500_ article-title: Classification of repeated measurements data using tree-based ensemble methods publication-title: Comput Stat doi: 10.1007/s00180-011-0249-1 – volume: 16 start-page: 908 issue: 11 year: 2017 ident: 2023032004262088500_ article-title: Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed parkinson’s disease: a longitudinal cohort study and validation publication-title: Lancet Neurol doi: 10.1016/S1474-4422(17)30328-9 – volume: 30 start-page: 166 issue: 1 year: 2021 ident: 2023032004262088500_ article-title: Random forests for high-dimensional longitudinal data publication-title: Stat Methods Med Res doi: 10.1177/0962280220946080 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 2023032004262088500_ article-title: Classification and regression by randomforest publication-title: R News – volume: 12 start-page: 757 issue: 6 year: 2013 ident: 2023032004262088500_ article-title: Random forests on distance matrices for imaging genetics studies publication-title: Stat Appl Genet Mol Biol doi: 10.1515/sagmb-2013-0040 – volume: 134 start-page: 459 issue: 5 year: 2015 ident: 2023032004262088500_ article-title: Progress towards the integration of pharmacogenomics in practice publication-title: Hum Genet doi: 10.1007/s00439-014-1484-7 – volume: 49 start-page: 1004 issue: 4 year: 2020 ident: 2023032004262088500_ article-title: BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes publication-title: Commun Stat Simul Comput doi: 10.1080/03610918.2018.1490429 – volume: 70 start-page: 612 issue: 10 year: 2015 ident: 2023032004262088500_ article-title: Precision medicine-personalized, problematic, and promising publication-title: Obstet Gynecol Surv doi: 10.1097/01.ogx.0000472121.21647.38 – volume-title: randomForestSRC: fast unified random forests for survival, regression, and classification (RF-SRC) year: 2022 ident: 2023032004262088500_ – volume: 60 start-page: 543 issue: 2 year: 2004 ident: 2023032004262088500_ article-title: Multivariate regression trees for analysis of abundance data publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00202.x – volume-title: Applied Longitudinal Analysis year: 2012 ident: 2023032004262088500_ – volume-title: Recursive Partitioning and Applications year: 2010 ident: 2023032004262088500_ doi: 10.1007/978-1-4419-6824-1 – volume: 12 start-page: 361 issue: 2 year: 2002 ident: 2023032004262088500_ article-title: Regression trees with unbiased variable selection and interaction detection publication-title: Statistica Sinica – volume: 50 issue: 4 year: 2017 ident: 2023032004262088500_ article-title: What is precision medicine? publication-title: Eur Respir J doi: 10.1183/13993003.00391-2017 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 2023032004262088500_ article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 88 start-page: 2783 issue: 11 year: 2007 ident: 2023032004262088500_ article-title: Random forests for classification in ecology publication-title: Ecology doi: 10.1890/07-0539.1 – volume: 50 start-page: 1438 issue: 8 year: 2004 ident: 2023032004262088500_ article-title: Protein profiling in urine for the diagnosis of bladder cancer publication-title: Clin Chem doi: 10.1373/clinchem.2003.028035 – volume-title: MultivariateRandomForest: models multivariate cases using random forests year: 2017 ident: 2023032004262088500_ – volume: 89 start-page: 56 year: 2019 ident: 2023032004262088500_ article-title: Mixed effect machine learning: a framework for predicting longitudinal change in hemoglobin a1c publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.09.001 – volume-title: Historical random forests year: 2018 ident: 2023032004262088500_ – volume: 9 start-page: 1 year: 2018 ident: 2023032004262088500_ article-title: Performing learning analytics via generalized mixed-effects trees publication-title: MOX-Modelling and Scientific Computing, Department of Mathematics, Politecnico di Milano, via Bonardi – volume: 86 start-page: 169 issue: 2 year: 2012 ident: 2023032004262088500_ article-title: RE-EM trees: a data mining approach for longitudinal and clustered data publication-title: Mach Learn doi: 10.1007/s10994-011-5258-3 – volume: 126 start-page: 114 year: 2017 ident: 2023032004262088500_ article-title: Generalized mixed effects regression trees publication-title: Stat Probability Lett doi: 10.1016/j.spl.2017.02.033 – volume-title: LongituRF: random forests for longitudinal data year: 2020 ident: 2023032004262088500_ – volume: 99 start-page: 323 issue: 6 year: 2012 ident: 2023032004262088500_ article-title: Random forests for genomic data analysis publication-title: Genomics doi: 10.1016/j.ygeno.2012.04.003 – volume: 131 start-page: 1615 issue: 10 year: 2012 ident: 2023032004262088500_ article-title: The success of pharmacogenomics in moving genetic association studies from bench to bedside: study design and implementation of precision medicine in the post-gwas era publication-title: Hum Genet doi: 10.1007/s00439-012-1221-z – volume: 1 start-page: 80 issue: 1 year: 2011 ident: 2023032004262088500_ article-title: Multivariate random forests publication-title: Wiley Interdisciplinary Rev – volume: 82 start-page: 329 issue: 3 year: 2014 ident: 2023032004262088500_ article-title: Fifty years of classification and regression trees publication-title: Int Stat Rev doi: 10.1111/insr.12016 – volume: 8 issue: 4 year: 2013 ident: 2023032004262088500_ article-title: A plea for neutral comparison studies in computational sciences publication-title: PLoS One doi: 10.1371/journal.pone.0061562 – volume-title: htree: historical tree ensembles for longitudinal data year: 2018 ident: 2023032004262088500_ – volume: 185 start-page: 122 year: 2019 ident: 2023032004262088500_ article-title: BiMM forest: a random forest method for modeling clustered and longitudinal binary outcomes publication-title: Chemom Intel Lab Syst doi: 10.1016/j.chemolab.2019.01.002 – volume: 93 start-page: 180 issue: 441 year: 1998 ident: 2023032004262088500_ article-title: Classification trees for multiple binary responses publication-title: J Am Stat Assoc doi: 10.1080/01621459.1998.10474100 – volume: 2 start-page: 841 issue: 3 year: 2008 ident: 2023032004262088500_ article-title: Random survival forests publication-title: Ann Appl Stat doi: 10.1214/08-AOAS169 – volume-title: Hierarchical Linear Models: Applications and Data Analysis Methods year: 2002 ident: 2023032004262088500_ – volume: 77 start-page: 343 issue: 1 year: 2021 ident: 2023032004262088500_ article-title: Repeated measures random forests (rmrf): identifying factors associated with nocturnal hypoglycemia publication-title: Biometrics doi: 10.1111/biom.13284 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 2023032004262088500_ article-title: Data-driven subtyping of parkinson’s disease using longitudinal clinical records: a cohort study publication-title: Sci Rep – volume: 81 start-page: 451 issue: 4 year: 2011 ident: 2023032004262088500_ article-title: Mixed effects regression trees for clustered data publication-title: Stat Probability Lett doi: 10.1016/j.spl.2010.12.003 – volume: 50 start-page: 2016 issue: 5 year: 2018 ident: 2023032004262088500_ article-title: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees publication-title: Behav Res Methods doi: 10.3758/s13428-017-0971-x – volume-title: Classification and Regression Trees year: 1984 ident: 2023032004262088500_ – volume: 33 start-page: 1407 issue: 9 year: 2017 ident: 2023032004262088500_ article-title: IntegratedMRF: random forest-based framework for integrating prediction from different data types publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw765 – volume: 17 start-page: 507 issue: 9 year: 2016 ident: 2023032004262088500_ article-title: Towards precision medicine publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.86 – volume: 1 start-page: 169 issue: 1 year: 2008 ident: 2023032004262088500_ article-title: A tree-based method for modeling a multivariate ordinal response publication-title: Statistics Interface doi: 10.4310/SII.2008.v1.n1.a14 – volume: 17 start-page: 1860 issue: 1 year: 2021 ident: 2023032004262088500_ article-title: Data-driven stratification of parkinson’s disease patients based on the progression of motor and cognitive disease markers datengetriebene stratifizierung von patienten mit parkinson-krankheit anhand von verlaufsdaten motorischer und kognitiver kennzahlen der erkrankung publication-title: GMS Medizinische Informatik, Biometrie und Epidemiologie – volume: 81 start-page: 1118 issue: 6 year: 2021 ident: 2023032004262088500_ article-title: Prediction with mixed effects models: a Monte Carlo simulation study publication-title: Educ Psychol Meas doi: 10.1177/0013164421992818 – volume: 83 start-page: 1105 issue: 4 year: 2002 ident: 2023032004262088500_ article-title: Multivariate regression trees: a new technique for modeling species-environment relationships publication-title: Ecology – start-page: 334 volume-title: International Workshop on Multiple Classifier Systems year: 2004 ident: 2023032004262088500_ article-title: Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules doi: 10.1007/978-3-540-25966-4_33 – volume: 15 start-page: 651 issue: 3 year: 2006 ident: 2023032004262088500_ article-title: Unbiased recursive partitioning: a conditional inference framework publication-title: J Comput Graph Stat doi: 10.1198/106186006X133933 – volume: 54 start-page: 578 issue: 4 year: 2019 ident: 2023032004262088500_ article-title: A new multilevel cart algorithm for multilevel data with binary outcomes publication-title: Multivar Behav Res doi: 10.1080/00273171.2018.1552555 – start-page: 335 volume-title: Handbook of Multilevel Analysis year: 2008 ident: 2023032004262088500_ article-title: Multilevel generalized linear models doi: 10.1007/978-0-387-73186-5_9 – volume: 14 start-page: 241 issue: 3 year: 2021 ident: 2023032004262088500_ article-title: Generalized mixed-effects random forest: a flexible approach to predict university student dropout. Statistical analysis and data mining: the ASA publication-title: Data Sci J – volume-title: Longitudinal Data Analysis year: 2006 ident: 2023032004262088500_ – volume: 9 start-page: 146 issue: 11 year: 2017 ident: 2023032004262088500_ article-title: Advances in precision medicine: tailoring individualized therapies publication-title: Cancer doi: 10.3390/cancers9110146 |
SSID | ssj0020781 |
Score | 2.7035437 |
SecondaryResourceType | review_article |
Snippet | Abstract
In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to... In longitudinal studies variables are measured repeatedly over time, leading to clustered and correlated observations. If the goal of the study is to develop... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Data Analysis Data structures Longitudinal Studies Machine learning Multivariate analysis Prediction models Random Forest Review Software Statistical methods |
Title | A review on longitudinal data analysis with random forest |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36653905 https://www.proquest.com/docview/3049109886 https://www.proquest.com/docview/2767169068 https://pubmed.ncbi.nlm.nih.gov/PMC10025446 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA4iCL6Iv61OjbAnoaxt2jR9HOIYgvqywd7KJU1xMFtx24P_vbklK-sY-txrG-7S3l3uvu8I6YqySCFgCN0KSz9G8lmpzM8wDFicFpkoARDv_PrGh-P4ZZJMXIPsfEcJP2M9OZU9KaGwnJHG_eJ2Hr1PmrwK-WosiCj1kd3dwfC27m05nhaYbSOm3G6N3PA1g2Ny5IJE2rdWPSF7ujolB3Zs5M8ZyfrUIk5oXdFZjROHlgVOt6LY70nB8YxQPGOlxhcV9Sc1salZwTkZD55HT0PfjUDwlYlTFn4BsihjnYKKNIQgtDJZZAZKSaFB6whPGhMoIp0AFyaxBGnyJRUrRJBqiBi7IPtVXekrQk0gE0caHxYgnFQBl0zGJQOJ_DhR6pHHtX5y5fjBcUzFLLd1apYbZeZOmR7pNsJflhZjt9i9UfTfEp21EXL39cxzLP0ZQSG4Rx6ay2bfYzEDKl0v53mUciT6CbjwyKW1WfMexpFwN0g8IlrWbASQU7t9pZp-rLi1Q0vaxq__XfkNOcTR89iPFmYdsr_4XupbE6As5N1qe_4CN9fkFA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+longitudinal+data+analysis+with+random+forest&rft.jtitle=Briefings+in+bioinformatics&rft.au=Hu%2C+Jianchang&rft.au=Szymczak%2C+Silke&rft.date=2023-03-19&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=2&rft_id=info:doi/10.1093%2Fbib%2Fbbad002&rft.externalDocID=10.1093%2Fbib%2Fbbad002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |