Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles

To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 10; p. 3459
Main Authors Goudarzi, Shidrokh, Kama, Mohd Nazri, Anisi, Mohammad Hossein, Soleymani, Seyed Ahmad, Doctor, Faiyaz
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 15.10.2018
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s18103459

Cover

Abstract To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.
AbstractList To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.
To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.
Author Soleymani, Seyed Ahmad
Kama, Mohd Nazri
Anisi, Mohammad Hossein
Doctor, Faiyaz
Goudarzi, Shidrokh
AuthorAffiliation 3 Faculty of Computing, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Skudai, Johor 81310, Malaysia; asseyed4@live.utm.my
2 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK; fdocto@essex.ac.uk
1 Advanced Informatics School, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Jalan Semarak, Kuala Lumpur 54100, Malaysia; gshidrokh2@live.utm.my (S.G.); mdnazri@utm.my (M.N.K.)
AuthorAffiliation_xml – name: 3 Faculty of Computing, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Skudai, Johor 81310, Malaysia; asseyed4@live.utm.my
– name: 1 Advanced Informatics School, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Jalan Semarak, Kuala Lumpur 54100, Malaysia; gshidrokh2@live.utm.my (S.G.); mdnazri@utm.my (M.N.K.)
– name: 2 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK; fdocto@essex.ac.uk
Author_xml – sequence: 1
  givenname: Shidrokh
  orcidid: 0000-0003-0383-3553
  surname: Goudarzi
  fullname: Goudarzi, Shidrokh
– sequence: 2
  givenname: Mohd Nazri
  orcidid: 0000-0003-2535-3438
  surname: Kama
  fullname: Kama, Mohd Nazri
– sequence: 3
  givenname: Mohammad Hossein
  surname: Anisi
  fullname: Anisi, Mohammad Hossein
– sequence: 4
  givenname: Seyed Ahmad
  surname: Soleymani
  fullname: Soleymani, Seyed Ahmad
– sequence: 5
  givenname: Faiyaz
  surname: Doctor
  fullname: Doctor, Faiyaz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30326567$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFvEzEQhS1URNvAgT-AfASkpfbau2tfkKBQiFQRJCKuluMdJy6OvbUdovbXsyElahHi5JH95nvPM6foKMQACD2n5A1jkpxlKihhvJGP0AnlNa9EXZOje_UxOs35ipCaMSaeoGNGWN02bXeC7DfwtpqlpQ7u1oUlnidtrTP4wsct_pqgd6a4GPDWlRXWAc-G4tbuFnr8AWDA78E7sPgLlG1MP7CNCU9DgRSg4Gjxd1g54yE_RY-t9hme3Z0TNL_4OD__XF3OPk3P311WhnNaqr6tu0XHbAuaMdMJI3m3EJ2VogEgpuV9rTtBWkmoJA1lDbW0F2DHzxBuJZug6R7bR32lhuTWOt2oqJ36fRHTUulUdonUCOC9oJ3pOeVAtbSdZJxZ3msqbatH1us9axMGfbPV3h-AlKjd3NVh7qP47V48bBZr6A2EkrR_kODhS3ArtYw_VVtTIiQfAS_vAClebyAXtXbZgPc6QNxkVdOaciHa0W-CXtz3Opj8WeooeLUXmBRzTmD_G_zsL61xRe82PsZ0_h8dvwBZ07_F
CitedBy_id crossref_primary_10_3390_s19092059
crossref_primary_10_1016_j_optmat_2021_111134
crossref_primary_10_1109_ACCESS_2022_3142346
crossref_primary_10_1109_ACCESS_2020_3002380
crossref_primary_10_1088_1742_6596_1486_5_052018
crossref_primary_10_1155_2022_4439189
crossref_primary_10_3390_s21227518
crossref_primary_10_1016_j_scs_2021_103062
crossref_primary_10_1016_j_dcan_2020_12_002
crossref_primary_10_3390_math13040658
crossref_primary_10_1155_2021_8926738
crossref_primary_10_3390_s19010204
crossref_primary_10_1109_ACCESS_2019_2962619
crossref_primary_10_1155_2021_9022558
crossref_primary_10_1002_dac_4397
crossref_primary_10_1016_j_micpro_2024_105101
crossref_primary_10_1109_TGCN_2021_3091388
crossref_primary_10_4018_IJSWIS_332769
crossref_primary_10_1007_s00521_020_04843_5
crossref_primary_10_1080_15472450_2023_2245750
crossref_primary_10_1109_JSEN_2020_3007809
crossref_primary_10_1016_j_comnet_2020_107530
crossref_primary_10_1007_s11227_024_06186_7
crossref_primary_10_1016_j_procs_2020_07_046
crossref_primary_10_1088_1742_6596_1864_1_012105
crossref_primary_10_3390_s20010150
crossref_primary_10_1109_ACCESS_2021_3104099
crossref_primary_10_3390_fi16050159
crossref_primary_10_3390_s20133749
crossref_primary_10_1109_ACCESS_2020_2994415
crossref_primary_10_1016_j_inffus_2020_10_014
crossref_primary_10_1007_s42421_020_00020_1
crossref_primary_10_3389_fbioe_2022_855667
crossref_primary_10_3390_ijgi8090366
crossref_primary_10_1155_2021_9943153
Cites_doi 10.1038/nature14539
10.1109/ACCESS.2017.2733225
10.1109/ICSNC.2007.6
10.1016/S0968-090X(02)00009-8
10.1038/323533a0
10.1061/(ASCE)TE.1943-5436.0000435
10.1080/18128600608685653
10.1007/978-3-540-30115-8_39
10.1109/CECNet.2012.6201868
10.1109/TITS.2006.869623
10.1016/S0169-2070(96)00697-8
10.3141/1836-17
10.1016/S0377-2217(00)00125-9
10.1287/mnsc.35.3.372
10.1016/j.trc.2005.04.007
10.1016/j.fss.2004.09.015
10.1155/2015/620658
10.1109/TITS.2009.2026312
10.1016/j.trc.2011.12.006
10.1016/j.neucom.2017.02.008
10.1007/978-3-642-04441-0_8
10.1016/S0925-2312(01)00702-0
10.1016/j.trc.2005.03.001
10.1080/713930748
10.5296/npa.v5i4.4134
10.1016/S0968-090X(97)00015-6
10.1287/mnsc.32.12.1521
10.1016/S0305-9006(98)00015-4
10.1016/j.compositesb.2006.12.008
10.1145/2536146.2536176
10.1007/s40815-016-0171-3
10.3141/1776-25
10.1126/science.1127647
10.1007/s11276-012-0470-z
10.1061/(ASCE)0733-947X(2006)132:2(114)
10.1016/S0968-090X(01)00004-3
10.1061/(ASCE)0733-947X(2003)129:6(664)
10.1080/02329290290017770
10.1162/neco.2006.18.7.1527
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s18103459
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_1904d817cd414e1a9f79343f4da19f6a
10.3390/s18103459
PMC6210894
30326567
10_3390_s18103459
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
7X8
PUEGO
5PM
ADTOC
IAO
ITC
UNPAY
ID FETCH-LOGICAL-c441t-d627b73f6ea33c78c947b87f985ee0c64d2a78069019051351f1d8ef26504f93
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:51:45 EDT 2025
Sun Oct 26 04:16:28 EDT 2025
Tue Sep 30 16:46:24 EDT 2025
Wed Oct 01 13:25:44 EDT 2025
Tue Aug 05 11:47:53 EDT 2025
Thu Oct 16 04:36:53 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords deep belief network
historical time traffic flows
traffic flow prediction
optimization
restricted Boltzmann machine
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-d627b73f6ea33c78c947b87f985ee0c64d2a78069019051351f1d8ef26504f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0383-3553
0000-0003-2535-3438
OpenAccessLink https://doaj.org/article/1904d817cd414e1a9f79343f4da19f6a
PMID 30326567
PQID 2121488610
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1904d817cd414e1a9f79343f4da19f6a
unpaywall_primary_10_3390_s18103459
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6210894
proquest_miscellaneous_2121488610
pubmed_primary_30326567
crossref_primary_10_3390_s18103459
crossref_citationtrail_10_3390_s18103459
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Soleymani (ref_2) 2017; 19
ref_50
Sun (ref_9) 2006; 7
Zhang (ref_41) 2003; 50
Vlahogianni (ref_6) 2005; 13
Smith (ref_17) 2002; 10
ref_51
Ledoux (ref_11) 1997; 5
ref_16
Lucon (ref_49) 2007; 38
Sun (ref_23) 2012; 138
Chen (ref_20) 2012; 22
Rumelhart (ref_40) 1986; 323
ref_25
ref_24
Williams (ref_8) 2003; 129
ref_22
Gao (ref_33) 2005; 150
Williams (ref_7) 2001; 1776
Abdulhai (ref_5) 2002; 7
ref_28
Hinton (ref_29) 2006; 1
ref_26
Ghafoor (ref_4) 2013; 5
Smith (ref_21) 2003; 1836
Gardner (ref_42) 1989; 35
Huisken (ref_18) 2003; 43
Tok (ref_48) 2017; 239
ref_36
ref_35
Qu (ref_19) 2009; 10
ref_31
Dougherty (ref_10) 1997; 13
Soleymani (ref_1) 2017; 5
LeCun (ref_38) 2015; 521
Ghafoor (ref_3) 2013; 19
Ackley (ref_27) 1985; 9
ref_37
Shmueli (ref_12) 1998; 50
Lawerence (ref_32) 1986; 32
Zheng (ref_34) 2006; 132
ref_47
Dia (ref_13) 2001; 131
ref_46
ref_45
ref_44
ref_43
Yin (ref_14) 2002; 10
Hinton (ref_39) 2006; 313
Lan (ref_15) 2006; 2
Hoogendoorn (ref_30) 2005; 13
16873662 - Science. 2006 Jul 28;313(5786):504-7
16764513 - Neural Comput. 2006 Jul;18(7):1527-54
26017442 - Nature. 2015 May 28;521(7553):436-44
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: ref_38
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 5
  start-page: 15619
  year: 2017
  ident: ref_1
  article-title: A secure trust model based on fuzzy logic in vehicular ad hoc networks with fog computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2733225
– ident: ref_22
  doi: 10.1109/ICSNC.2007.6
– volume: 10
  start-page: 303
  year: 2002
  ident: ref_17
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(02)00009-8
– ident: ref_26
– ident: ref_51
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_40
  article-title: Learning representation by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 138
  start-page: 1358
  year: 2012
  ident: ref_23
  article-title: Network-scale traffic modeling and forecasting with graphical lasso and neural networks
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000435
– ident: ref_16
– volume: 2
  start-page: 11
  year: 2006
  ident: ref_15
  article-title: A rolling-trained fuzzy neural network approach for freeway incident detection
  publication-title: Transportmetrica
  doi: 10.1080/18128600608685653
– ident: ref_31
  doi: 10.1007/978-3-540-30115-8_39
– ident: ref_35
  doi: 10.1109/CECNet.2012.6201868
– volume: 7
  start-page: 124
  year: 2006
  ident: ref_9
  article-title: A Bayesian network approach to traffic flow forecasting
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2006.869623
– volume: 13
  start-page: 21
  year: 1997
  ident: ref_10
  article-title: Short-term inter-urban traffic forecasts using neural networks
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(96)00697-8
– volume: 1836
  start-page: 132
  year: 2003
  ident: ref_21
  article-title: Exploring imputation techniques for missing data in transportation management systems
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1836-17
– volume: 131
  start-page: 253
  year: 2001
  ident: ref_13
  article-title: An object-oriented neural network approach to short-term traffic forecasting
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(00)00125-9
– volume: 35
  start-page: 372
  year: 1989
  ident: ref_42
  article-title: Seasonal exponential smoothing with damped trends
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.35.3.372
– ident: ref_45
– volume: 13
  start-page: 211
  year: 2005
  ident: ref_6
  article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2005.04.007
– volume: 150
  start-page: 331
  year: 2005
  ident: ref_33
  article-title: NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2004.09.015
– ident: ref_46
  doi: 10.1155/2015/620658
– ident: ref_28
– volume: 10
  start-page: 512
  year: 2009
  ident: ref_19
  article-title: PPCA based missing data imputation for traffic flow volume: A systematical approach
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2009.2026312
– volume: 9
  start-page: 147
  year: 1985
  ident: ref_27
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cogn. Sci.
– volume: 22
  start-page: 103
  year: 2012
  ident: ref_20
  article-title: The retrieval of intra-day trend and its influence on traffic prediction
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2011.12.006
– ident: ref_24
– volume: 239
  start-page: 102
  year: 2017
  ident: ref_48
  article-title: Factorized f-step radial basis function model for model predictive control
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.008
– ident: ref_43
  doi: 10.1007/978-3-642-04441-0_8
– ident: ref_47
– volume: 50
  start-page: 159
  year: 2003
  ident: ref_41
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 13
  start-page: 347
  year: 2005
  ident: ref_30
  article-title: Accurate freeway travel time prediction with state-space neural networks under missing data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2005.03.001
– volume: 7
  start-page: 3
  year: 2002
  ident: ref_5
  article-title: Short-term traffic flow prediction using neuro-genetic algorithms
  publication-title: J. Intell. Transp. Syst.
  doi: 10.1080/713930748
– ident: ref_37
– volume: 5
  start-page: 39
  year: 2013
  ident: ref_4
  article-title: Routing protocols in vehicular ad hoc networks: Survey and research challenges
  publication-title: Netw. Protocols Algorithms
  doi: 10.5296/npa.v5i4.4134
– volume: 5
  start-page: 287
  year: 1997
  ident: ref_11
  article-title: An urban traffic flow model integrating neural networks
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(97)00015-6
– ident: ref_44
– volume: 32
  start-page: 1521
  year: 1986
  ident: ref_32
  article-title: The accuracy of combining judgmental and statistical forecasts
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.32.12.1521
– volume: 50
  start-page: 141
  year: 1998
  ident: ref_12
  article-title: Applications of neural networks in transportation planning
  publication-title: Prog. Plan.
  doi: 10.1016/S0305-9006(98)00015-4
– volume: 38
  start-page: 817
  year: 2007
  ident: ref_49
  article-title: An artificial neural network approach to multiphase continua constitutive modeling
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2006.12.008
– ident: ref_50
  doi: 10.1145/2536146.2536176
– volume: 19
  start-page: 301
  year: 2017
  ident: ref_2
  article-title: BRAIN-F: Beacon rate adaption based on fuzzy logic in vehicular ad hoc network
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-016-0171-3
– volume: 1776
  start-page: 194
  year: 2001
  ident: ref_7
  article-title: Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling
  publication-title: Transp. Res. Rec.
  doi: 10.3141/1776-25
– ident: ref_25
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_39
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 19
  start-page: 345
  year: 2013
  ident: ref_3
  article-title: Intelligent beaconless geographical forwarding for urban vehicular environments
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-012-0470-z
– volume: 132
  start-page: 114
  year: 2006
  ident: ref_34
  article-title: Short-term freeway traffic flow prediction: Bayesian combined neural network approach
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
– volume: 10
  start-page: 85
  year: 2002
  ident: ref_14
  article-title: Urban traffic flow prediction using a fuzzy-neural approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(01)00004-3
– volume: 129
  start-page: 664
  year: 2003
  ident: ref_8
  article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
– ident: ref_36
– volume: 43
  start-page: 165
  year: 2003
  ident: ref_18
  article-title: Soft-computing techniques applied to short-term traffic flow forecasting
  publication-title: Syst. Anal. Model. Simul.
  doi: 10.1080/02329290290017770
– volume: 1
  start-page: 1527
  year: 2006
  ident: ref_29
  article-title: A faster learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7
– reference: 16764513 - Neural Comput. 2006 Jul;18(7):1527-54
– reference: 26017442 - Nature. 2015 May 28;521(7553):436-44
SSID ssj0023338
Score 2.432287
Snippet To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3459
SubjectTerms deep belief network
historical time traffic flows
optimization
restricted Boltzmann machine
traffic flow prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoAD4ptAQab0wCVqsnZi-0iBVYVEi0Rb9RY58Yy2Usiuurtatb--4yQb7apFXLg6lvwxY783Y-cZYJ8s5ZZ8EmsK2SqdJ3GpQg4-My5LSI-kD6mBn8f50Zn6cZFdbDz1Fe6EdfLA3cQdMGApb1JdeZUqTJ0l9iglSXmXcjstNUqMXQdTfaglOfLqdIQkB_UHc8axRKogSLqBPq1I_33M8u4FyYfLZuauV66uN9Bn_BSe9LRRfOm6-wweYPMcHm-ICb4A-o01xf2_lVwiGIaCPoQY19OV-HUVTmSCFURIvQrXiBPeLf5c3qAX3xBn4hCZjpI47u6FCyazoksX4kJMSZzjpL1B9xJOx99Pvx7F_SsKccVUZxH7fKRLLSlHJ2WlTWWVLo0mazLEpMqVHzltgmBxGrS6ZJZS6g3SiLmbIitfwU4zbfANCGWRdwdpGNC0ImfKStpSM4erLCpebRF8Xk9uUfUK4-Ghi7rgSCPYoRjsEMHeUHXWyWrcV-kwWGioEJSw2wL2j6L3j-Jf_hHBx7V9C1454TjENThdzgsGbY4FDfPHCF539h6aYmDn8ec6Ar3lCVt92f7SXE5ade6cg2hjVQSfBp_5-xDf_o8hvoNHTONald4024WdxdUS3zNVWpQf2lVxC3uYEAM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAceD_CS-Zx4JJuvHZi-9gCqwqJpRItKqfI8YOuCMlqN6uK_nrGSTbqQpF6TSaKrZnxfDMefwZ465XPlLdJLHyoVoksiQseavCp1GnixYTZUBr4PMsOjvmnk_SkP6y-6tsqMRWft4t0OIUVYwRLxlSie48ZT9V4Yf112MlShN4j2DmeHe59b08Q9aIdexDDVH68wuiVhG-2Yk5LzX8Znvy3LfLGulro32e6LC_EnOkdmG1G27Wa_NxdN8WuOf-LyPHK07kLt3v0SfY6c7kH11x1H25d4CR8AP6rK33cH9HEJwSjWaCZINOyPiOHy7CxE5RJQgWX6Ip8wUXn1_zcWfLBuQXZd4hqPZl17eUEMTHpqo6uIbUn39xp24j3EI6mH4_eH8T9ZQyxQcTUxDabiEIwnznNmBHSKC4KKbySqXOJybidaCED7zENlF8spZ5a6fwEISD3ij2CUVVX7gkQrhwuMkxiXBTca1kYpgqBUNAox9FpI3i30VZueqLycF9GmWPCEhSbD4qN4PUguujYOS4T2g8qHwQCoXb7oF7-yHv_zHHQ3EoqjOWUO6qVx4WLM8-tpmjOOoJXG4PJ0QHDroquXL1e5Rj7MaWUCEMjeNwZ0PArxAc4_0xEILZMa2ss22-q-WlL8p1hLi4Vj-DNYIT_n-LTK0k9g5sI91o2X5o-h1GzXLsXCKma4mXvSH8AkyQanw
  priority: 102
  providerName: Unpaywall
Title Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles
URI https://www.ncbi.nlm.nih.gov/pubmed/30326567
https://www.proquest.com/docview/2121488610
https://pubmed.ncbi.nlm.nih.gov/PMC6210894
https://www.mdpi.com/1424-8220/18/10/3459/pdf
https://doaj.org/article/1904d817cd414e1a9f79343f4da19f6a
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYAeEG_CY2UeQlwCydqJ7QNCXehSIXVZQRdtT5GT2G2lkN3uQ6X8emaSbNQVi8QlB8dKbI_H883Y_gbgldMu1i4PfOkoWiXjwE8FxeAjZaLAyS7PKTRwNIgPR-LLOBpvwepYczOA842uHeWTGs2Kt78urj6gwr8njxNd9ndztFIBF5F-Pb3wKZ8U7bs2yTW2YRdtlqakDkei3V_ocl7luKZrXj6ayKDmHFr_2pqlqgj9N6HQvw9T3liWU3N1aYrimqXq34ZbDcRk-_WcuANbtrwLe9eIB--B-24L5zf3MLGEockiLgnWLyaXbDij3RuSGKMwLTMl-4ory8_z3zZnn6ydsp5F6OrYoD5DzhD4sjq0aBds4tgPe1adtrsPx_2D44-HfpNxwc8QFi38PO7KVHIXW8N5JlWmhUyVdFpF1gZZLPKukYrIjUPi9eJR6MJcWddFnCec5g9gp5yU9hEwoS2uJFyh8ZPCGZVmXKcS8V6mrUDN9ODNanCTrGEjp6QYRYJeCckhaeXgwYu26rSm4NhUqUcSaisQa3ZVMJmdJo0SJthokatQZrkIhQ2Ndrg6Ce5EbkKcs8aD5yv5JqhltHViSjtZzhM08Og3KsSaHjys5d3-CkEA9j-WHsi1mbDWlvU35flZxeQdo8OttPDgZTtn_t3Fx__RuidwExFdRdgbRk9hZzFb2meImhZpB7blWOJT9T93YLd3MBh-61QRiE6lGlg2Ggz3T_4AVgwajQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAceD_CS-Zx4JJuvHZi-9gCqwqJpRItKqfI8YOuCMlqN6uK_nrGSTbqQpF6TSaKrZnxfDMefwZ465XPlLdJLHyoVoksiQseavCp1GnixYTZUBr4PMsOjvmnk_SkP6y-6tsqMRWft4t0OIUVYwRLxlSie48ZT9V4Yf112MlShN4j2DmeHe59b08Q9aIdexDDVH68wuiVhG-2Yk5LzX8Znvy3LfLGulro32e6LC_EnOkdmG1G27Wa_NxdN8WuOf-LyPHK07kLt3v0SfY6c7kH11x1H25d4CR8AP6rK33cH9HEJwSjWaCZINOyPiOHy7CxE5RJQgWX6Ip8wUXn1_zcWfLBuQXZd4hqPZl17eUEMTHpqo6uIbUn39xp24j3EI6mH4_eH8T9ZQyxQcTUxDabiEIwnznNmBHSKC4KKbySqXOJybidaCED7zENlF8spZ5a6fwEISD3ij2CUVVX7gkQrhwuMkxiXBTca1kYpgqBUNAox9FpI3i30VZueqLycF9GmWPCEhSbD4qN4PUguujYOS4T2g8qHwQCoXb7oF7-yHv_zHHQ3EoqjOWUO6qVx4WLM8-tpmjOOoJXG4PJ0QHDroquXL1e5Rj7MaWUCEMjeNwZ0PArxAc4_0xEILZMa2ss22-q-WlL8p1hLi4Vj-DNYIT_n-LTK0k9g5sI91o2X5o-h1GzXLsXCKma4mXvSH8AkyQanw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Organizing+Traffic+Flow+Prediction+with+an+Optimized+Deep+Belief+Network+for+Internet+of+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Goudarzi%2C+Shidrokh&rft.au=Kama%2C+Mohd+Nazri&rft.au=Anisi%2C+Mohammad+Hossein&rft.au=Soleymani%2C+Seyed+Ahmad&rft.date=2018-10-15&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fs18103459&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon