Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles
To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 18; no. 10; p. 3459 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI
15.10.2018
MDPI AG |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s18103459 |
Cover
| Abstract | To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators. |
|---|---|
| AbstractList | To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators.To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators. To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network connectivity is needed. Accurate traffic information prediction can improve traffic congestion and operation efficiency, which helps to reduce commute times, noise and carbon emissions. In this study, we present a novel approach for predicting the traffic flow volume by using traffic data in self-organizing vehicular networks. The proposed method is based on using a probabilistic generative neural network techniques called deep belief network (DBN) that includes multiple layers of restricted Boltzmann machine (RBM) auto-encoders. Time series data generated from the roadside units (RSUs) for five highway links are used by a three layer DBN to extract and learn key input features for constructing a model to predict traffic flow. Back-propagation is utilized as a general learning algorithm for fine-tuning the weight parameters among the visible and hidden layers of RBMs. During the training process the firefly algorithm (FFA) is applied for optimizing the DBN topology and learning rate parameter. Monte Carlo simulations are used to assess the accuracy of the prediction model. The results show that the proposed model achieves superior performance accuracy for predicting traffic flow in comparison with other approaches applied in the literature. The proposed approach can help to solve the problem of traffic congestion, and provide guidance and advice for road users and traffic regulators. |
| Author | Soleymani, Seyed Ahmad Kama, Mohd Nazri Anisi, Mohammad Hossein Doctor, Faiyaz Goudarzi, Shidrokh |
| AuthorAffiliation | 3 Faculty of Computing, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Skudai, Johor 81310, Malaysia; asseyed4@live.utm.my 2 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK; fdocto@essex.ac.uk 1 Advanced Informatics School, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Jalan Semarak, Kuala Lumpur 54100, Malaysia; gshidrokh2@live.utm.my (S.G.); mdnazri@utm.my (M.N.K.) |
| AuthorAffiliation_xml | – name: 3 Faculty of Computing, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Skudai, Johor 81310, Malaysia; asseyed4@live.utm.my – name: 1 Advanced Informatics School, Universiti Teknologi Malaysia Kuala Lumpur (UTM), Jalan Semarak, Kuala Lumpur 54100, Malaysia; gshidrokh2@live.utm.my (S.G.); mdnazri@utm.my (M.N.K.) – name: 2 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK; fdocto@essex.ac.uk |
| Author_xml | – sequence: 1 givenname: Shidrokh orcidid: 0000-0003-0383-3553 surname: Goudarzi fullname: Goudarzi, Shidrokh – sequence: 2 givenname: Mohd Nazri orcidid: 0000-0003-2535-3438 surname: Kama fullname: Kama, Mohd Nazri – sequence: 3 givenname: Mohammad Hossein surname: Anisi fullname: Anisi, Mohammad Hossein – sequence: 4 givenname: Seyed Ahmad surname: Soleymani fullname: Soleymani, Seyed Ahmad – sequence: 5 givenname: Faiyaz surname: Doctor fullname: Doctor, Faiyaz |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30326567$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFvEzEQhS1URNvAgT-AfASkpfbau2tfkKBQiFQRJCKuluMdJy6OvbUdovbXsyElahHi5JH95nvPM6foKMQACD2n5A1jkpxlKihhvJGP0AnlNa9EXZOje_UxOs35ipCaMSaeoGNGWN02bXeC7DfwtpqlpQ7u1oUlnidtrTP4wsct_pqgd6a4GPDWlRXWAc-G4tbuFnr8AWDA78E7sPgLlG1MP7CNCU9DgRSg4Gjxd1g54yE_RY-t9hme3Z0TNL_4OD__XF3OPk3P311WhnNaqr6tu0XHbAuaMdMJI3m3EJ2VogEgpuV9rTtBWkmoJA1lDbW0F2DHzxBuJZug6R7bR32lhuTWOt2oqJ36fRHTUulUdonUCOC9oJ3pOeVAtbSdZJxZ3msqbatH1us9axMGfbPV3h-AlKjd3NVh7qP47V48bBZr6A2EkrR_kODhS3ArtYw_VVtTIiQfAS_vAClebyAXtXbZgPc6QNxkVdOaciHa0W-CXtz3Opj8WeooeLUXmBRzTmD_G_zsL61xRe82PsZ0_h8dvwBZ07_F |
| CitedBy_id | crossref_primary_10_3390_s19092059 crossref_primary_10_1016_j_optmat_2021_111134 crossref_primary_10_1109_ACCESS_2022_3142346 crossref_primary_10_1109_ACCESS_2020_3002380 crossref_primary_10_1088_1742_6596_1486_5_052018 crossref_primary_10_1155_2022_4439189 crossref_primary_10_3390_s21227518 crossref_primary_10_1016_j_scs_2021_103062 crossref_primary_10_1016_j_dcan_2020_12_002 crossref_primary_10_3390_math13040658 crossref_primary_10_1155_2021_8926738 crossref_primary_10_3390_s19010204 crossref_primary_10_1109_ACCESS_2019_2962619 crossref_primary_10_1155_2021_9022558 crossref_primary_10_1002_dac_4397 crossref_primary_10_1016_j_micpro_2024_105101 crossref_primary_10_1109_TGCN_2021_3091388 crossref_primary_10_4018_IJSWIS_332769 crossref_primary_10_1007_s00521_020_04843_5 crossref_primary_10_1080_15472450_2023_2245750 crossref_primary_10_1109_JSEN_2020_3007809 crossref_primary_10_1016_j_comnet_2020_107530 crossref_primary_10_1007_s11227_024_06186_7 crossref_primary_10_1016_j_procs_2020_07_046 crossref_primary_10_1088_1742_6596_1864_1_012105 crossref_primary_10_3390_s20010150 crossref_primary_10_1109_ACCESS_2021_3104099 crossref_primary_10_3390_fi16050159 crossref_primary_10_3390_s20133749 crossref_primary_10_1109_ACCESS_2020_2994415 crossref_primary_10_1016_j_inffus_2020_10_014 crossref_primary_10_1007_s42421_020_00020_1 crossref_primary_10_3389_fbioe_2022_855667 crossref_primary_10_3390_ijgi8090366 crossref_primary_10_1155_2021_9943153 |
| Cites_doi | 10.1038/nature14539 10.1109/ACCESS.2017.2733225 10.1109/ICSNC.2007.6 10.1016/S0968-090X(02)00009-8 10.1038/323533a0 10.1061/(ASCE)TE.1943-5436.0000435 10.1080/18128600608685653 10.1007/978-3-540-30115-8_39 10.1109/CECNet.2012.6201868 10.1109/TITS.2006.869623 10.1016/S0169-2070(96)00697-8 10.3141/1836-17 10.1016/S0377-2217(00)00125-9 10.1287/mnsc.35.3.372 10.1016/j.trc.2005.04.007 10.1016/j.fss.2004.09.015 10.1155/2015/620658 10.1109/TITS.2009.2026312 10.1016/j.trc.2011.12.006 10.1016/j.neucom.2017.02.008 10.1007/978-3-642-04441-0_8 10.1016/S0925-2312(01)00702-0 10.1016/j.trc.2005.03.001 10.1080/713930748 10.5296/npa.v5i4.4134 10.1016/S0968-090X(97)00015-6 10.1287/mnsc.32.12.1521 10.1016/S0305-9006(98)00015-4 10.1016/j.compositesb.2006.12.008 10.1145/2536146.2536176 10.1007/s40815-016-0171-3 10.3141/1776-25 10.1126/science.1127647 10.1007/s11276-012-0470-z 10.1061/(ASCE)0733-947X(2006)132:2(114) 10.1016/S0968-090X(01)00004-3 10.1061/(ASCE)0733-947X(2003)129:6(664) 10.1080/02329290290017770 10.1162/neco.2006.18.7.1527 |
| ContentType | Journal Article |
| Copyright | 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s18103459 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_1904d817cd414e1a9f79343f4da19f6a 10.3390/s18103459 PMC6210894 30326567 10_3390_s18103459 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 7X8 PUEGO 5PM ADTOC IAO ITC UNPAY |
| ID | FETCH-LOGICAL-c441t-d627b73f6ea33c78c947b87f985ee0c64d2a78069019051351f1d8ef26504f93 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:51:45 EDT 2025 Sun Oct 26 04:16:28 EDT 2025 Tue Sep 30 16:46:24 EDT 2025 Wed Oct 01 13:25:44 EDT 2025 Tue Aug 05 11:47:53 EDT 2025 Thu Oct 16 04:36:53 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | deep belief network historical time traffic flows traffic flow prediction optimization restricted Boltzmann machine |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c441t-d627b73f6ea33c78c947b87f985ee0c64d2a78069019051351f1d8ef26504f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0383-3553 0000-0003-2535-3438 |
| OpenAccessLink | https://doaj.org/article/1904d817cd414e1a9f79343f4da19f6a |
| PMID | 30326567 |
| PQID | 2121488610 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1904d817cd414e1a9f79343f4da19f6a unpaywall_primary_10_3390_s18103459 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6210894 proquest_miscellaneous_2121488610 pubmed_primary_30326567 crossref_primary_10_3390_s18103459 crossref_citationtrail_10_3390_s18103459 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-15 |
| PublicationDateYYYYMMDD | 2018-10-15 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI MDPI AG |
| Publisher_xml | – name: MDPI – name: MDPI AG |
| References | Soleymani (ref_2) 2017; 19 ref_50 Sun (ref_9) 2006; 7 Zhang (ref_41) 2003; 50 Vlahogianni (ref_6) 2005; 13 Smith (ref_17) 2002; 10 ref_51 Ledoux (ref_11) 1997; 5 ref_16 Lucon (ref_49) 2007; 38 Sun (ref_23) 2012; 138 Chen (ref_20) 2012; 22 Rumelhart (ref_40) 1986; 323 ref_25 ref_24 Williams (ref_8) 2003; 129 ref_22 Gao (ref_33) 2005; 150 Williams (ref_7) 2001; 1776 Abdulhai (ref_5) 2002; 7 ref_28 Hinton (ref_29) 2006; 1 ref_26 Ghafoor (ref_4) 2013; 5 Smith (ref_21) 2003; 1836 Gardner (ref_42) 1989; 35 Huisken (ref_18) 2003; 43 Tok (ref_48) 2017; 239 ref_36 ref_35 Qu (ref_19) 2009; 10 ref_31 Dougherty (ref_10) 1997; 13 Soleymani (ref_1) 2017; 5 LeCun (ref_38) 2015; 521 Ghafoor (ref_3) 2013; 19 Ackley (ref_27) 1985; 9 ref_37 Shmueli (ref_12) 1998; 50 Lawerence (ref_32) 1986; 32 Zheng (ref_34) 2006; 132 ref_47 Dia (ref_13) 2001; 131 ref_46 ref_45 ref_44 ref_43 Yin (ref_14) 2002; 10 Hinton (ref_39) 2006; 313 Lan (ref_15) 2006; 2 Hoogendoorn (ref_30) 2005; 13 16873662 - Science. 2006 Jul 28;313(5786):504-7 16764513 - Neural Comput. 2006 Jul;18(7):1527-54 26017442 - Nature. 2015 May 28;521(7553):436-44 |
| References_xml | – volume: 521 start-page: 436 year: 2015 ident: ref_38 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 5 start-page: 15619 year: 2017 ident: ref_1 article-title: A secure trust model based on fuzzy logic in vehicular ad hoc networks with fog computing publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2733225 – ident: ref_22 doi: 10.1109/ICSNC.2007.6 – volume: 10 start-page: 303 year: 2002 ident: ref_17 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(02)00009-8 – ident: ref_26 – ident: ref_51 – volume: 323 start-page: 533 year: 1986 ident: ref_40 article-title: Learning representation by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 138 start-page: 1358 year: 2012 ident: ref_23 article-title: Network-scale traffic modeling and forecasting with graphical lasso and neural networks publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000435 – ident: ref_16 – volume: 2 start-page: 11 year: 2006 ident: ref_15 article-title: A rolling-trained fuzzy neural network approach for freeway incident detection publication-title: Transportmetrica doi: 10.1080/18128600608685653 – ident: ref_31 doi: 10.1007/978-3-540-30115-8_39 – ident: ref_35 doi: 10.1109/CECNet.2012.6201868 – volume: 7 start-page: 124 year: 2006 ident: ref_9 article-title: A Bayesian network approach to traffic flow forecasting publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2006.869623 – volume: 13 start-page: 21 year: 1997 ident: ref_10 article-title: Short-term inter-urban traffic forecasts using neural networks publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(96)00697-8 – volume: 1836 start-page: 132 year: 2003 ident: ref_21 article-title: Exploring imputation techniques for missing data in transportation management systems publication-title: Transp. Res. Rec. doi: 10.3141/1836-17 – volume: 131 start-page: 253 year: 2001 ident: ref_13 article-title: An object-oriented neural network approach to short-term traffic forecasting publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(00)00125-9 – volume: 35 start-page: 372 year: 1989 ident: ref_42 article-title: Seasonal exponential smoothing with damped trends publication-title: Manag. Sci. doi: 10.1287/mnsc.35.3.372 – ident: ref_45 – volume: 13 start-page: 211 year: 2005 ident: ref_6 article-title: Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2005.04.007 – volume: 150 start-page: 331 year: 2005 ident: ref_33 article-title: NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2004.09.015 – ident: ref_46 doi: 10.1155/2015/620658 – ident: ref_28 – volume: 10 start-page: 512 year: 2009 ident: ref_19 article-title: PPCA based missing data imputation for traffic flow volume: A systematical approach publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2009.2026312 – volume: 9 start-page: 147 year: 1985 ident: ref_27 article-title: A learning algorithm for Boltzmann machines publication-title: Cogn. Sci. – volume: 22 start-page: 103 year: 2012 ident: ref_20 article-title: The retrieval of intra-day trend and its influence on traffic prediction publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2011.12.006 – ident: ref_24 – volume: 239 start-page: 102 year: 2017 ident: ref_48 article-title: Factorized f-step radial basis function model for model predictive control publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.008 – ident: ref_43 doi: 10.1007/978-3-642-04441-0_8 – ident: ref_47 – volume: 50 start-page: 159 year: 2003 ident: ref_41 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 13 start-page: 347 year: 2005 ident: ref_30 article-title: Accurate freeway travel time prediction with state-space neural networks under missing data publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2005.03.001 – volume: 7 start-page: 3 year: 2002 ident: ref_5 article-title: Short-term traffic flow prediction using neuro-genetic algorithms publication-title: J. Intell. Transp. Syst. doi: 10.1080/713930748 – ident: ref_37 – volume: 5 start-page: 39 year: 2013 ident: ref_4 article-title: Routing protocols in vehicular ad hoc networks: Survey and research challenges publication-title: Netw. Protocols Algorithms doi: 10.5296/npa.v5i4.4134 – volume: 5 start-page: 287 year: 1997 ident: ref_11 article-title: An urban traffic flow model integrating neural networks publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(97)00015-6 – ident: ref_44 – volume: 32 start-page: 1521 year: 1986 ident: ref_32 article-title: The accuracy of combining judgmental and statistical forecasts publication-title: Manag. Sci. doi: 10.1287/mnsc.32.12.1521 – volume: 50 start-page: 141 year: 1998 ident: ref_12 article-title: Applications of neural networks in transportation planning publication-title: Prog. Plan. doi: 10.1016/S0305-9006(98)00015-4 – volume: 38 start-page: 817 year: 2007 ident: ref_49 article-title: An artificial neural network approach to multiphase continua constitutive modeling publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2006.12.008 – ident: ref_50 doi: 10.1145/2536146.2536176 – volume: 19 start-page: 301 year: 2017 ident: ref_2 article-title: BRAIN-F: Beacon rate adaption based on fuzzy logic in vehicular ad hoc network publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-016-0171-3 – volume: 1776 start-page: 194 year: 2001 ident: ref_7 article-title: Multivariate vehicular traffic flow prediction: Evaluation of ARIMAX modeling publication-title: Transp. Res. Rec. doi: 10.3141/1776-25 – ident: ref_25 – volume: 313 start-page: 504 year: 2006 ident: ref_39 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 19 start-page: 345 year: 2013 ident: ref_3 article-title: Intelligent beaconless geographical forwarding for urban vehicular environments publication-title: Wirel. Netw. doi: 10.1007/s11276-012-0470-z – volume: 132 start-page: 114 year: 2006 ident: ref_34 article-title: Short-term freeway traffic flow prediction: Bayesian combined neural network approach publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2006)132:2(114) – volume: 10 start-page: 85 year: 2002 ident: ref_14 article-title: Urban traffic flow prediction using a fuzzy-neural approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(01)00004-3 – volume: 129 start-page: 664 year: 2003 ident: ref_8 article-title: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:6(664) – ident: ref_36 – volume: 43 start-page: 165 year: 2003 ident: ref_18 article-title: Soft-computing techniques applied to short-term traffic flow forecasting publication-title: Syst. Anal. Model. Simul. doi: 10.1080/02329290290017770 – volume: 1 start-page: 1527 year: 2006 ident: ref_29 article-title: A faster learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – reference: 16873662 - Science. 2006 Jul 28;313(5786):504-7 – reference: 16764513 - Neural Comput. 2006 Jul;18(7):1527-54 – reference: 26017442 - Nature. 2015 May 28;521(7553):436-44 |
| SSID | ssj0023338 |
| Score | 2.432287 |
| Snippet | To assist in the broadcasting of time-critical traffic information in an Internet of Vehicles (IoV) and vehicular sensor networks (VSN), fast network... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3459 |
| SubjectTerms | deep belief network historical time traffic flows optimization restricted Boltzmann machine traffic flow prediction |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoAD4ptAQab0wCVqsnZi-0iBVYVEi0Rb9RY58Yy2Usiuurtatb--4yQb7apFXLg6lvwxY783Y-cZYJ8s5ZZ8EmsK2SqdJ3GpQg4-My5LSI-kD6mBn8f50Zn6cZFdbDz1Fe6EdfLA3cQdMGApb1JdeZUqTJ0l9iglSXmXcjstNUqMXQdTfaglOfLqdIQkB_UHc8axRKogSLqBPq1I_33M8u4FyYfLZuauV66uN9Bn_BSe9LRRfOm6-wweYPMcHm-ICb4A-o01xf2_lVwiGIaCPoQY19OV-HUVTmSCFURIvQrXiBPeLf5c3qAX3xBn4hCZjpI47u6FCyazoksX4kJMSZzjpL1B9xJOx99Pvx7F_SsKccVUZxH7fKRLLSlHJ2WlTWWVLo0mazLEpMqVHzltgmBxGrS6ZJZS6g3SiLmbIitfwU4zbfANCGWRdwdpGNC0ImfKStpSM4erLCpebRF8Xk9uUfUK4-Ghi7rgSCPYoRjsEMHeUHXWyWrcV-kwWGioEJSw2wL2j6L3j-Jf_hHBx7V9C1454TjENThdzgsGbY4FDfPHCF539h6aYmDn8ec6Ar3lCVt92f7SXE5ade6cg2hjVQSfBp_5-xDf_o8hvoNHTONald4024WdxdUS3zNVWpQf2lVxC3uYEAM priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAceD_CS-Zx4JJuvHZi-9gCqwqJpRItKqfI8YOuCMlqN6uK_nrGSTbqQpF6TSaKrZnxfDMefwZ465XPlLdJLHyoVoksiQseavCp1GnixYTZUBr4PMsOjvmnk_SkP6y-6tsqMRWft4t0OIUVYwRLxlSie48ZT9V4Yf112MlShN4j2DmeHe59b08Q9aIdexDDVH68wuiVhG-2Yk5LzX8Znvy3LfLGulro32e6LC_EnOkdmG1G27Wa_NxdN8WuOf-LyPHK07kLt3v0SfY6c7kH11x1H25d4CR8AP6rK33cH9HEJwSjWaCZINOyPiOHy7CxE5RJQgWX6Ip8wUXn1_zcWfLBuQXZd4hqPZl17eUEMTHpqo6uIbUn39xp24j3EI6mH4_eH8T9ZQyxQcTUxDabiEIwnznNmBHSKC4KKbySqXOJybidaCED7zENlF8spZ5a6fwEISD3ij2CUVVX7gkQrhwuMkxiXBTca1kYpgqBUNAox9FpI3i30VZueqLycF9GmWPCEhSbD4qN4PUguujYOS4T2g8qHwQCoXb7oF7-yHv_zHHQ3EoqjOWUO6qVx4WLM8-tpmjOOoJXG4PJ0QHDroquXL1e5Rj7MaWUCEMjeNwZ0PArxAc4_0xEILZMa2ss22-q-WlL8p1hLi4Vj-DNYIT_n-LTK0k9g5sI91o2X5o-h1GzXLsXCKma4mXvSH8AkyQanw priority: 102 providerName: Unpaywall |
| Title | Self-Organizing Traffic Flow Prediction with an Optimized Deep Belief Network for Internet of Vehicles |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30326567 https://www.proquest.com/docview/2121488610 https://pubmed.ncbi.nlm.nih.gov/PMC6210894 https://www.mdpi.com/1424-8220/18/10/3459/pdf https://doaj.org/article/1904d817cd414e1a9f79343f4da19f6a |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYAeEG_CY2UeQlwCydqJ7QNCXehSIXVZQRdtT5GT2G2lkN3uQ6X8emaSbNQVi8QlB8dKbI_H883Y_gbgldMu1i4PfOkoWiXjwE8FxeAjZaLAyS7PKTRwNIgPR-LLOBpvwepYczOA842uHeWTGs2Kt78urj6gwr8njxNd9ndztFIBF5F-Pb3wKZ8U7bs2yTW2YRdtlqakDkei3V_ocl7luKZrXj6ayKDmHFr_2pqlqgj9N6HQvw9T3liWU3N1aYrimqXq34ZbDcRk-_WcuANbtrwLe9eIB--B-24L5zf3MLGEockiLgnWLyaXbDij3RuSGKMwLTMl-4ory8_z3zZnn6ydsp5F6OrYoD5DzhD4sjq0aBds4tgPe1adtrsPx_2D44-HfpNxwc8QFi38PO7KVHIXW8N5JlWmhUyVdFpF1gZZLPKukYrIjUPi9eJR6MJcWddFnCec5g9gp5yU9hEwoS2uJFyh8ZPCGZVmXKcS8V6mrUDN9ODNanCTrGEjp6QYRYJeCckhaeXgwYu26rSm4NhUqUcSaisQa3ZVMJmdJo0SJthokatQZrkIhQ2Ndrg6Ce5EbkKcs8aD5yv5JqhltHViSjtZzhM08Og3KsSaHjys5d3-CkEA9j-WHsi1mbDWlvU35flZxeQdo8OttPDgZTtn_t3Fx__RuidwExFdRdgbRk9hZzFb2meImhZpB7blWOJT9T93YLd3MBh-61QRiE6lGlg2Ggz3T_4AVgwajQ |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7B9gAceD_CS-Zx4JJuvHZi-9gCqwqJpRItKqfI8YOuCMlqN6uK_nrGSTbqQpF6TSaKrZnxfDMefwZ465XPlLdJLHyoVoksiQseavCp1GnixYTZUBr4PMsOjvmnk_SkP6y-6tsqMRWft4t0OIUVYwRLxlSie48ZT9V4Yf112MlShN4j2DmeHe59b08Q9aIdexDDVH68wuiVhG-2Yk5LzX8Znvy3LfLGulro32e6LC_EnOkdmG1G27Wa_NxdN8WuOf-LyPHK07kLt3v0SfY6c7kH11x1H25d4CR8AP6rK33cH9HEJwSjWaCZINOyPiOHy7CxE5RJQgWX6Ip8wUXn1_zcWfLBuQXZd4hqPZl17eUEMTHpqo6uIbUn39xp24j3EI6mH4_eH8T9ZQyxQcTUxDabiEIwnznNmBHSKC4KKbySqXOJybidaCED7zENlF8spZ5a6fwEISD3ij2CUVVX7gkQrhwuMkxiXBTca1kYpgqBUNAox9FpI3i30VZueqLycF9GmWPCEhSbD4qN4PUguujYOS4T2g8qHwQCoXb7oF7-yHv_zHHQ3EoqjOWUO6qVx4WLM8-tpmjOOoJXG4PJ0QHDroquXL1e5Rj7MaWUCEMjeNwZ0PArxAc4_0xEILZMa2ss22-q-WlL8p1hLi4Vj-DNYIT_n-LTK0k9g5sI91o2X5o-h1GzXLsXCKma4mXvSH8AkyQanw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Organizing+Traffic+Flow+Prediction+with+an+Optimized+Deep+Belief+Network+for+Internet+of+Vehicles&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Goudarzi%2C+Shidrokh&rft.au=Kama%2C+Mohd+Nazri&rft.au=Anisi%2C+Mohammad+Hossein&rft.au=Soleymani%2C+Seyed+Ahmad&rft.date=2018-10-15&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fs18103459&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |