Towards cost reduction of breast cancer diagnosis using mammography texture analysis

In this paper we analyse the performance of various texture analysis methods for the purpose of reducing the number of false positives in breast cancer detection; as a result, the cost of breast cancer diagnosis would be reduced. We consider well-known methods such as local binary patterns, histogra...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental & theoretical artificial intelligence Vol. 28; no. 1-2; pp. 385 - 402
Main Authors Abdel-Nasser, Mohamed, Moreno, Antonio, Puig, Domenec
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.03.2016
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0952-813X
1362-3079
DOI10.1080/0952813X.2015.1024496

Cover

Abstract In this paper we analyse the performance of various texture analysis methods for the purpose of reducing the number of false positives in breast cancer detection; as a result, the cost of breast cancer diagnosis would be reduced. We consider well-known methods such as local binary patterns, histogram of oriented gradients, co-occurrence matrix features and Gabor filters. Moreover, we propose the use of local directional number patterns as a new feature extraction method for breast mass detection. For each method, different classifiers are trained on the extracted features to predict the class of unknown instances. In order to improve the mass detection capability of each individual method, we use feature combination techniques and classifier majority voting. Some experiments were performed on the images obtained from a public breast cancer database, achieving promising levels of sensitivity and specificity.
AbstractList In this paper we analyse the performance of various texture analysis methods for the purpose of reducing the number of false positives in breast cancer detection; as a result, the cost of breast cancer diagnosis would be reduced. We consider well-known methods such as local binary patterns, histogram of oriented gradients, co-occurrence matrix features and Gabor filters. Moreover, we propose the use of local directional number patterns as a new feature extraction method for breast mass detection. For each method, different classifiers are trained on the extracted features to predict the class of unknown instances. In order to improve the mass detection capability of each individual method, we use feature combination techniques and classifier majority voting. Some experiments were performed on the images obtained from a public breast cancer database, achieving promising levels of sensitivity and specificity.
Author Abdel-Nasser, Mohamed
Puig, Domenec
Moreno, Antonio
Author_xml – sequence: 1
  givenname: Mohamed
  orcidid: 0000-0002-1074-2441
  surname: Abdel-Nasser
  fullname: Abdel-Nasser, Mohamed
  email: egnaser@gmail.com
  organization: Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
– sequence: 2
  givenname: Antonio
  orcidid: 0000-0003-3945-2314
  surname: Moreno
  fullname: Moreno, Antonio
  organization: Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
– sequence: 3
  givenname: Domenec
  orcidid: 0000-0002-0562-4205
  surname: Puig
  fullname: Puig, Domenec
  organization: Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili
BookMark eNqFkE1r3DAQhkVIIJukP6Eg6KUXp5JsyTa9tIT0AwK9bKE3MauPrYItbUcy6f77ymx6yaFlDgPD874MzxU5jyk6Ql5zdsvZwN6xUYqBtz9uBeOynkTXjeqMbHirRNOyfjwnm5VpVuiSXOX8yFhFOd-Q7TY9AdpMTcqForOLKSFFmjzdoYN6MxCNQ2oD7GPKIdMlh7inM8xz2iMcfh5pcb_Lgo5ChOlYkRty4WHK7tXzvibfP91v7740D98-f737-NCYruOlMbvBeaPYTlrTCW86a7lV3Bg2GrCdGkExyVsnByu6nRGD99xbNjIlpFTA2mvy9tR7wPRrcbnoOWTjpgmiS0vWfGDrqH5F37xAH9OC9d9K9b0YeiEGWan3J8pgyhmd1yYUWIUUhDBpzvRqXP81rlfj-tl4TcsX6QOGGfD439yHUy5En3CGp4ST1QWOU0KPVX_Iuv13xR9MeJsl
CitedBy_id crossref_primary_10_3390_electronics8010100
crossref_primary_10_1016_j_knosys_2021_107303
crossref_primary_10_3389_fonc_2021_629321
crossref_primary_10_1007_s11042_023_14566_z
crossref_primary_10_1080_0952813X_2021_1938698
crossref_primary_10_1088_1742_6596_1530_1_012101
crossref_primary_10_1155_2016_1370259
crossref_primary_10_1088_1361_6560_abaeb7
Cites_doi 10.1007/BF00058655
10.5589/m02-004
10.1109/36.752194
10.1007/978-3-642-13666-5_24
10.1023/A:1010933404324
10.1016/j.patcog.2008.08.014
10.1109/CVPR.2005.177
10.1007/978-3-540-75757-3_35
10.1002/0470013192.bsa501
10.1145/1961189.1961199
10.1007/978-3-540-69812-8_74
10.1152/jn.1987.58.6.1233
10.1109/TSMC.1973.4309314
10.1016/S1076-6332(99)80166-4
10.1001/jama.293.10.1245
10.1158/1055-9965.EPI-10-0703
10.1109/TIP.2012.2235848
10.1016/S0895-6111(02)00031-9
10.1016/S0031-3203(96)00047-7
10.1080/00031305.1992.10475879
10.1007/s11265-008-0209-3
10.1016/j.patcog.2003.03.001
10.1109/TPAMI.2002.1017623
10.1118/1.2214177
10.3390/a3010044
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
2015 Taylor & Francis
Copyright_xml – notice: 2015 Taylor & Francis 2015
– notice: 2015 Taylor & Francis
DBID AAYXX
CITATION
JQ2
7SC
8FD
F28
FR3
L7M
L~C
L~D
DOI 10.1080/0952813X.2015.1024496
DatabaseName CrossRef
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1362-3079
EndPage 402
ExternalDocumentID 3983869541
10_1080_0952813X_2015_1024496
1024496
Genre Article
Feature
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29K
2DF
30N
4.4
5GY
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABIVO
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D-I
DGEBU
DKSSO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
MK~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
JQ2
7SC
8FD
F28
FR3
L7M
L~C
L~D
ID FETCH-LOGICAL-c441t-cb8efc60b5dc42fc4dd1d61cc09cad469a60513e58d24bc28ff1fd09062556a03
ISSN 0952-813X
IngestDate Thu Oct 02 05:39:43 EDT 2025
Sun Oct 05 00:30:20 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Wed Oct 01 03:54:36 EDT 2025
Mon Oct 20 23:43:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-cb8efc60b5dc42fc4dd1d61cc09cad469a60513e58d24bc28ff1fd09062556a03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3945-2314
0000-0002-0562-4205
0000-0002-1074-2441
PQID 1772872285
PQPubID 53008
PageCount 18
ParticipantIDs proquest_journals_1772872285
crossref_citationtrail_10_1080_0952813X_2015_1024496
proquest_miscellaneous_1808080670
informaworld_taylorfrancis_310_1080_0952813X_2015_1024496
crossref_primary_10_1080_0952813X_2015_1024496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-03-03
PublicationDateYYYYMMDD 2016-03-03
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-03-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of experimental & theoretical artificial intelligence
PublicationYear 2016
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0031
Jones J. P. (CIT0017) 1987; 58
CIT0011
Scholkopft B. (CIT0025) 1999
CIT0014
CIT0013
Malvezzi M. (CIT0019) 2014
García-Manso A. (CIT0012) 2013
CIT0016
CIT0015
CIT0018
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0003
  doi: 10.1007/BF00058655
– year: 1999
  ident: CIT0025
  publication-title: IX Neural networks for signal processing
– ident: CIT0008
  doi: 10.5589/m02-004
– ident: CIT0026
  doi: 10.1109/36.752194
– ident: CIT0031
  doi: 10.1007/978-3-642-13666-5_24
– ident: CIT0004
  doi: 10.1023/A:1010933404324
– ident: CIT0014
  doi: 10.1016/j.patcog.2008.08.014
– year: 2013
  ident: CIT0012
  publication-title: Computational and Mathematical Methods in Medicine 2013
– ident: CIT0009
  doi: 10.1109/CVPR.2005.177
– ident: CIT0021
  doi: 10.1007/978-3-540-75757-3_35
– ident: CIT0006
– ident: CIT0016
  doi: 10.1002/0470013192.bsa501
– ident: CIT0005
  doi: 10.1145/1961189.1961199
– ident: CIT0015
  doi: 10.1007/978-3-540-69812-8_74
– volume: 58
  start-page: 1233
  year: 1987
  ident: CIT0017
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1987.58.6.1233
– ident: CIT0013
  doi: 10.1109/TSMC.1973.4309314
– year: 2014
  ident: CIT0019
  publication-title: Annals of Oncology
– ident: CIT0023
  doi: 10.1016/S1076-6332(99)80166-4
– ident: CIT0011
  doi: 10.1001/jama.293.10.1245
– ident: CIT0018
  doi: 10.1158/1055-9965.EPI-10-0703
– ident: CIT0024
  doi: 10.1109/TIP.2012.2235848
– ident: CIT0007
  doi: 10.1016/S0895-6111(02)00031-9
– ident: CIT0029
  doi: 10.1016/S0031-3203(96)00047-7
– ident: CIT0001
  doi: 10.1080/00031305.1992.10475879
– ident: CIT0010
  doi: 10.1007/s11265-008-0209-3
– ident: CIT0028
– ident: CIT0027
  doi: 10.1016/j.patcog.2003.03.001
– ident: CIT0022
– ident: CIT0020
  doi: 10.1109/TPAMI.2002.1017623
– ident: CIT0002
  doi: 10.1118/1.2214177
– ident: CIT0030
  doi: 10.3390/a3010044
SSID ssj0001511
Score 2.1316054
Snippet In this paper we analyse the performance of various texture analysis methods for the purpose of reducing the number of false positives in breast cancer...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 385
SubjectTerms Artificial intelligence
Breast
Breast cancer
Cancer
Classification
Classifiers
Diagnosis
feature combination
Feature extraction
majority voting
Mammography
Medical diagnosis
Surface layer
Texture
Title Towards cost reduction of breast cancer diagnosis using mammography texture analysis
URI https://www.tandfonline.com/doi/abs/10.1080/0952813X.2015.1024496
https://www.proquest.com/docview/1772872285
https://www.proquest.com/docview/1808080670
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1362-3079
  dateEnd: 20241028
  omitProxy: true
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: ABDBF
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1362-3079
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: AKVCP
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1362-3079
  dateEnd: 20241028
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: ADMLS
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1362-3079
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: AHDZW
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1362-3079
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001511
  issn: 0952-813X
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MwbEShokegpcuW112Z9rGijCqXlgCPlZtn7gEjULo194X_wf5nZXRtHDWrhYkWON-vsfJ4dz-MbQt5HWagSweKAy8wEPJEhxndVYASTYaYqKW0zmIvL9HzFP62T9WTya5S11LXVsfy5t67kf6QK50CuWCX7D5IdfhROwGeQLxxBwnC8n4xtzut2LpttO79BEtbe_qsw17zFlC6JLcBdPt1mO--sa-CqhHt0VNVzzPxwQQTHTvIXa3WnEwDCZVwBibfmmSg2I4rPP6ElZYvHMPJvHbDNt_LKF1W5fF9dN57JAFRMM6jrbvPVGfkwr5ZjBwVLbYZWvONpBKXLbNtf2HKcnsViLVAv2VgRR2IMOF8V6fRq7Pr6-C2a2yLt29rfp0vCfDgd5u0lSE3BebaHbfvyc7FYLZdFfrbOj-LF9Y8AW5FhyP4oPnVYeUAOItgswik5ODm9WH4Ztngwk5gjcXT_rC8NQ9L2fbPvGD07lLi3TABr1-SPyUMvYnri0PWETHT9lDzqm31Qr_ufkdyDjSLY6AA22hjqwEYd2OgANmrBRkdgox5stAfbc7JanOUfzwPfkiOQYDe3gayENjINq0RJHhnJlWIqZRKea1kqnmYlvB6zWCdCRbySkTCGGRUiGXaSpGUYvyDTuqn1S0LDxFRCYJsXWfJKw1CmhSlNyUMYH-kZ4f2aFdLz1WPblO8F62lt_VIXuNSFX-oZOR6GXTvClrsGZGOBFK31lBnX1qaI7xh72Euv8HphWzB4YRUfokgkM_Ju-Bq0Nobiylo3HVyDdK4Ca-Re3eOa1-hNwhQqfLAOybS96fQbsIXb6q1H5m_1WbUx
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5BOcCF8hSBAkbiusHetRfvESGqAG1OqZSbZY9thCgJSjaX_vrO7CNqQaiHnr3j3fWMxzP2528A3peNjMaqqtDY5EIblHy-G4tsFcomBsSuGMzpvJ6d6W9Ls7xyF4ZhlZxD554oovPVPLl5M3qExH2gsKCk_peMzDJMPqB1U9-Fe4aCfa5iUMn53hvTiqZ6vj2a-SQz3uL5XzfX1qdr7KX_eOtuCTo-BBw_vkee_Jru2jDFi794HW_3d4_g4RChik-9ST2GO2n1BA7H6g9icAZPYbHoELdbgettKzZMActKFussAiPdW4FsURsRezTfz61gkP0P8duT7fdE2YJxJ7tNEn7gRnkGZ8dfFp9nxVCjoUAKpNoCg00ZaxlMRF1m1DGqWCskRaOPlHt7ypdUlYyNpQ5Y2pxVjpLZkY2pvayew8FqvUovQEiTA-XjldbodUgkqpLNPnstSb5ME9CjZhwOBOZcR-PcqZHndBg5xyPnhpGbwHQv9qdn8LhJoLmqdtd2Wye5r3Piqhtkj0YbcYMz2DpFGYz9WJbWTODdvpmmMZ_N-FVa7-gZ5ve0fGnq5S1e_xbuzxanJ-7k6_z7K3hATXWHl6uO4KDd7NJrCqDa8KabIZddVg3r
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLpTzEQqFG6jWLndjBOSLaVXmtethKvVn22EZVy261yV749cwkzoqCUA89J-Mknodn4s_fMHZYNiJoI6tCQZMKpUHQ_m4okpEgmuAB-mYw3-f1yZn6cq5HNGGbYZVUQ6eBKKKP1eTc1yGNiLj3mBWUOPw5AbM0cQ8o1dT32YOadsXoFIeYb4MxLmhyoNtDx0eZ8RDP_4a5sTzdIC_9J1j3K9Bsl_nx3QfgyeV00_kp_PqL1vFOH_eEPc75Kf84GNQeuxeXT9nu2PuB51DwjC0WPd625bBqO74mAlhSMV8l7gnn3nEge1rzMGD5LlpOEPsf_KdDyx9osjmhTjbryF1mRnnOzmbHi08nRe7QUACmUV0B3sQEtfA6gCoTqBBkqCWgmsEFrLwdVkuyitqEUnkoTUoyBUHcyFrXTlQv2M5ytYwvGRc6eazGK6XAKR9RVEaTXHJKoHwZJ0yNirGQ6cupi8aVlSPLaZ45SzNn88xN2HQrdj3wd9wm0Pypddv1P07S0OXEVrfI7o8mYnMoaK3E-sV8KEujJ-zd9jI6Me3MuGVcbfAeYvc0dGTq1R0ef8Aenh7N7LfP86-v2SO8UvdguWqf7XTrTXyD2VPn3_b-8Rv5pwyP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+cost+reduction+of+breast+cancer+diagnosis+using+mammography+texture+analysis&rft.jtitle=Journal+of+experimental+%26+theoretical+artificial+intelligence&rft.au=Abdel-Nasser%2C+Mohamed&rft.au=Moreno%2C+Antonio&rft.au=Puig%2C+Domenec&rft.date=2016-03-03&rft.issn=0952-813X&rft.eissn=1362-3079&rft.volume=28&rft.issue=1-2&rft.spage=385&rft.epage=402&rft_id=info:doi/10.1080%2F0952813X.2015.1024496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-813X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-813X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-813X&client=summon