Multiple model self-tuning control for a class of nonlinear systems

This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of control Vol. 88; no. 10; pp. 1984 - 1994
Main Authors Huang, Miao, Wang, Xin, Wang, Zhenlei
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.10.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0020-7179
1366-5820
DOI10.1080/00207179.2015.1027271

Cover

Abstract This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
AbstractList This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a modified robust adaptive law are proposed to expand the application range, thus eliminating the assumption that either the nonlinear term of the nonlinear system or its differential term is global-bounded. The nonlinear self-tuning control method can address the situation wherein the nonlinear system is not subject to a globally uniformly asymptotically stable zero dynamics by incorporating the pole-placement scheme. A novel, nonlinear control structure based on this scheme is presented to improve control precision. Stability and convergence can be confirmed when the proposed multiple model self-tuning control method is applied. Furthermore, simulation results demonstrate the effectiveness of the proposed method.
Author Wang, Xin
Wang, Zhenlei
Huang, Miao
Author_xml – sequence: 1
  givenname: Miao
  surname: Huang
  fullname: Huang, Miao
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology
– sequence: 2
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: Center of Electrical and Electronic Technology, Shanghai Jiao Tong University
– sequence: 3
  givenname: Zhenlei
  surname: Wang
  fullname: Wang, Zhenlei
  email: wangzhen_l@ecust.edu.cn
  organization: Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology
BookMark eNqFkE1r3DAQhkVIoZuPn1AQ9NKLkxnJWtv00rK0SSEhl-YsZrVSUJClrSRT9t_HZtNLDulpYHje-XjO2GlM0TL2CeEKoYdrAAEddsOVAFRzS3SiwxO2QrleN6oXcMpWC9Ms0Ed2VsozAErV44pt7qdQ_T5YPqadDbzY4Jo6RR-fuEmx5hS4S5kTN4FK4cnxeXvw0VLm5VCqHcsF--AoFHv5Ws_Z488fvze3zd3Dza_N97vGtC3WxqyFMs5s0W171e1AteBoK6UEYwHMQM4aR2sCJGg73IG0ahhIyq0w1Fkhz9mX49x9Tn8mW6oefTE2BIo2TUVjD9C2SkA_o5_foM9pynG-TmMHvcBBDjhTX4-UyamUbJ02vlL1y9_kg0bQi2D9T7BeBOtXwXNavUnvsx8pH_6b-3bM-TibHelvymGnKx1Cyi5TNL5o-f6IF0Ipkyw
CitedBy_id crossref_primary_10_1016_j_isatra_2016_04_011
crossref_primary_10_1109_ACCESS_2018_2878722
crossref_primary_10_1155_2018_4789142
crossref_primary_10_1080_00207179_2017_1390257
crossref_primary_10_1080_00207721_2019_1615569
crossref_primary_10_1109_ACCESS_2019_2944435
Cites_doi 10.1016/j.automatica.2006.10.007
10.1109/9.802910
10.1109/37.387616
10.1002/aic.690320602
10.1109/9.649687
10.1016/S0005-1098(01)00072-3
10.1049/iet-cta.2013.0242
10.1002/1099-1239(200009/10)10:11/12<909::AID-RNC532>3.0.CO;2-Z
10.1002/acs.912
10.1109/TAC.2010.2042345
10.1080/00207170600789087
10.1016/S0005-1098(02)00024-9
10.1109/9.539424
10.1016/j.automatica.2006.12.010
10.1109/9.250565
10.1080/00207170701837371
10.1016/0005-1098(83)90002-X
10.1109/5.537106
10.1080/00207179208934286
10.1016/j.neucom.2011.10.019
10.1109/9.159571
10.1109/9.554398
10.1109/9.981733
10.1080/00207179.2011.588960
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
2015 Taylor & Francis
Copyright_xml – notice: 2015 Taylor & Francis 2015
– notice: 2015 Taylor & Francis
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207179.2015.1027271
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-5820
EndPage 1994
ExternalDocumentID 3793075051
10_1080_00207179_2015_1027271
1027271
Genre Article
Feature
GrantInformation_xml – fundername: Shanghai Natural Science Foundation
  grantid: 14ZR1421800
– fundername: Shanghai Leading Academic Discipline Project
  grantid: B504
– fundername: National Natural Science Foundation of China
  grantid: 61333010; 61203157
  funderid: 10.13039/501100001809
– fundername: Major State Basic Research Development Program of China
  grantid: 2012CB720500
– fundername: Fundamental Research Funds for the Central Universities, Shanghai Key Technologies R&D Program
  grantid: 12dz1125100
– fundername: State Key Laboratory of Synthetical Automation for Process Industries
  grantid: PAL-N201404
– fundername: National Key Scientific and Technical Project of China
  grantid: 2012BAF05B00
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACBEA
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADIYS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7SP
7TB
8FD
ADYSH
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c441t-c625cfcb1fb857d0540fab3330ce00c9afecfa6a01a0471d03e599a33b2ca7e23
ISSN 0020-7179
IngestDate Thu Oct 02 06:13:17 EDT 2025
Mon Jul 14 07:49:52 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Oct 01 04:18:20 EDT 2025
Mon Oct 20 23:47:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c441t-c625cfcb1fb857d0540fab3330ce00c9afecfa6a01a0471d03e599a33b2ca7e23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1708219391
PQPubID 176145
PageCount 11
ParticipantIDs proquest_miscellaneous_1800445208
crossref_primary_10_1080_00207179_2015_1027271
proquest_journals_1708219391
crossref_citationtrail_10_1080_00207179_2015_1027271
informaworld_taylorfrancis_310_1080_00207179_2015_1027271
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-03
PublicationDateYYYYMMDD 2015-10-03
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of control
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0012
cit0010
Tong S.C. (cit0026) 2011; 22
Fu Y. (cit0013) 2012; 8
cit0019
cit0017
cit0018
cit0015
cit0016
cit0001
cit0023
cit0020
cit0021
Ge S.S. (cit0014) 2010
Desoer C. (cit0009) 1975
cit0008
cit0006
cit0028
cit0007
cit0029
cit0004
Mosca E (cit0022) 1995
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0028
  doi: 10.1016/j.automatica.2006.10.007
– ident: cit0003
  doi: 10.1109/9.802910
– ident: cit0025
  doi: 10.1109/37.387616
– ident: cit0027
  doi: 10.1002/aic.690320602
– ident: cit0020
  doi: 10.1109/9.649687
– ident: cit0006
  doi: 10.1016/S0005-1098(01)00072-3
– ident: cit0015
  doi: 10.1049/iet-cta.2013.0242
– volume: 22
  start-page: 1045
  issue: 7
  year: 2011
  ident: cit0026
  publication-title: IEEE Transactions on Neural Networks
– ident: cit0001
  doi: 10.1002/1099-1239(200009/10)10:11/12<909::AID-RNC532>3.0.CO;2-Z
– ident: cit0010
  doi: 10.1002/acs.912
– ident: cit0018
  doi: 10.1109/TAC.2010.2042345
– volume-title: Optimal, predictive, and adaptive control
  year: 1995
  ident: cit0022
– ident: cit0007
  doi: 10.1080/00207170600789087
– ident: cit0016
  doi: 10.1016/S0005-1098(02)00024-9
– ident: cit0019
  doi: 10.1109/9.539424
– ident: cit0011
  doi: 10.1016/j.automatica.2006.12.010
– ident: cit0008
  doi: 10.1109/9.250565
– ident: cit0004
  doi: 10.1080/00207170701837371
– ident: cit0002
  doi: 10.1016/0005-1098(83)90002-X
– volume: 8
  start-page: 1867
  issue: 3
  year: 2012
  ident: cit0013
  publication-title: International Journal of Innovative Computing, Information and Control
– ident: cit0023
  doi: 10.1109/5.537106
– ident: cit0005
  doi: 10.1080/00207179208934286
– ident: cit0029
  doi: 10.1016/j.neucom.2011.10.019
– volume-title: Stable adaptive neural network control
  year: 2010
  ident: cit0014
– ident: cit0021
  doi: 10.1109/9.159571
– ident: cit0024
  doi: 10.1109/9.554398
– ident: cit0017
  doi: 10.1109/9.981733
– ident: cit0012
  doi: 10.1080/00207179.2011.588960
– volume-title: Feedback systems: Input-ouput properties
  year: 1975
  ident: cit0009
SSID ssj0013581
Score 2.161539
Snippet This study develops a novel nonlinear multiple model self-tuning control method for a class of nonlinear discrete-time systems. An increment system model and a...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1984
SubjectTerms Asymptotic properties
Computer simulation
Control systems
Convergence
Dynamical systems
increment model
Mathematical models
multiple model self-tuning control
Nonlinear dynamics
Nonlinear systems
Nonlinearity
pole-placement scheme
Title Multiple model self-tuning control for a class of nonlinear systems
URI https://www.tandfonline.com/doi/abs/10.1080/00207179.2015.1027271
https://www.proquest.com/docview/1708219391
https://www.proquest.com/docview/1800445208
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1366-5820
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013581
  issn: 0020-7179
  databaseCode: AMVHM
  dateStart: 19980710
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1366-5820
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013581
  issn: 0020-7179
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1366-5820
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013581
  issn: 0020-7179
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYDGQkdpoyOXGTOMdpW1WhdVxSUe1i2a4tKlXpRtMLV_5xnmMncenEgEtU2XXS-n15_mw_fw-hTzJTMZMmi0QK9G1UqDwSxiphMqaZWIgiaZayp9fZZDb6PE_ng8HPIGppW8tT9ePecyX_Y1UoA7vaU7L_YNnuplAAn8G-cAULw_WvbDxtowGbfDYnG70yUb2t3DlaF4LeBEmeKMuRm5gNp4whWgnnTUhOd1cHA00Jf7MeAn6ReboU635F3pXNl9XvRTffdLXSy3CBIW6ESQntIFHu5foIAo7ceQASwaTQOT7t3CjNsgiMT0I_y1iIJxJ4zbhwaeL23Hkb_5jYWac9VhSnVmsCOFfcj1_tnv31Fz6eXV3x8nJe7ta64Ro8keVHaXxMx7d3kU08Zjfoj-mFQ8YjdJDA0ECG6OBscnHztd-MSplLvOj_aHsQzEq03_fTdijOjgDu3oDfsJjyGXrqpx_4zGHpORro6gV6EohSvkTnLapwgyocoAp7IGB4Fha4QRVeG9yhCntUvUKz8WV5Pol8qo1IAR-uIwXTYGWUjI1kab6wPN4ISSklShOiCmG0MiITJBYE6MyCUJ0WhaBUJkrkOqGv0RCepd8gzLRONDRjSSGteJ-gkqmFZGS0oJnJ00M0anuHK69Db9OhrHjcydW6TuW2U7nv1EN02jW7dUIsDzUowq7ndYNj4yDM6QNtj1o7cf-2bXicA12G-U4B1R-7avDGdotNVHq9he8wGyGRJoS9_fMt3qHH_bt2hIb1961-D_S2lh88_H4BHheftQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN-KNkVhTOXGdOCNCoAJtJ5DYLNuxF6qC2nTh13MXJ6UFoQ6dnYvfvu_su-8IuTGpjaXxaaQFwLdObrNIe2TClNJJXeg8qa6y-4O0-9p5ehNvc7Ew6FaJNrQPRBHVWY2bGy-jG5c4DOFGMwTjTGKB5AOghMECWhcA9jGLAWeDn5cEIUPWPDCTUKaJ4vnvNwv6aYG99M9pXamghx1im8YHz5P39rQ0bfv1i9dxtd7tku0aodLbsKT2yJob7ZOtOd7CA3LXr90QaZVIh07c0EflFK9YaO37TqFHVFOL4Jx-eDoKbdFjGrijJ4fk9eH-5a4b1dkYIguQqYwsWErWWxN7I0VWINTz2nDOmXWM2Vx7Z71ONYs1A41XMO5EnmvOTWJ15hJ-RFpQlzsmVDqXOBCTSW6Q301zI21hJOsUPPWZOCGdZg6UranKMWPGUMUzRtMwRgrHSNVjdELaM7HPwNWxTCCfn2BVVpckPmQ0UXyJ7HmzGlS97ScqzgBRASTOofh6VgwbFl9h9Mh9TOEbiY_oImHydIXqr8hG96XfU73HwfMZ2cSiysWQn5NWOZ66C4BKpbms9sI3AUoDqw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QkBAceCMGA4LEtVParG16RINpPDZxYBK3KEmTC9M2re2FX0_ctGMDoR12Tt08Hdux_RmhOxkpn0kTeSK06lsnUbEnDCBhMqaZSEUSlE_Zg2HUH3WeP8I6mjCrwirBhjYOKKK8q4G5Z6mpI-IggxusEEgz8UPAHrAy2BpA2xF4xSCLgwx_HAkhc0XzrJUENHUSz3-_WRFPK-Clfy7rUgL1DpCsx-4CTz7bRS7b6usXrONGkztE-5V-iu_dgTpCW3pyjPaWUAtPUHdQBSHisowOzvTYeHkBDyy4inzHdkJYYAWqOZ4aPHFDEXPskKOzUzTqPb53-15Vi8FTVmHKPWXtJGWU9I1kYZyComeEpJQSpQlRiTBaGREJ4gti5V1KqA6TRFAqAyViHdAz1LB96XOEmdaBtmQsSCSguwkqmUolI52URiYOm6hTbwFXFVA51MsYc3-BZ-rWiMMa8WqNmqi9IJs5pI51BMny_vK8fCIxrp4Jp2toW_Vh4BXTZ9yPrT5lFeLENt8umi27gg9GTPS0sN8wcKGHAWEXG3R_g3beHnr89Wn4col2oaWML6Qt1Mjnhb6yelIur0tO-Aa96AJP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+model+self-tuning+control+for+a+class+of+nonlinear+systems&rft.jtitle=International+journal+of+control&rft.au=Huang%2C+Miao&rft.au=Wang%2C+Xin&rft.au=Wang%2C+Zhenlei&rft.date=2015-10-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7179&rft.eissn=1366-5820&rft.volume=88&rft.issue=10&rft.spage=1984&rft_id=info:doi/10.1080%2F00207179.2015.1027271&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3793075051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7179&client=summon