Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes

Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of...

Full description

Saved in:
Bibliographic Details
Published inJACC. Cardiovascular imaging Vol. 16; no. 10; pp. 1253 - 1267
Main Authors Bernard, Jérémy, Yanamala, Naveena, Shah, Rohan, Seetharam, Karthik, Altes, Alexandre, Dupuis, Marlène, Toubal, Oumhani, Mahjoub, Haïfa, Dumortier, Hélène, Tartar, Jean, Salaun, Erwan, O’Connor, Kim, Bernier, Mathieu, Beaudoin, Jonathan, Côté, Nancy, Vincentelli, André, LeVen, Florent, Maréchaux, Sylvestre, Pibarot, Philippe, Sengupta, Partho P.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2023
Elsevier/American College of Cardiology
Subjects
Online AccessGet full text
ISSN1936-878X
1876-7591
1876-7591
DOI10.1016/j.jcmg.2023.02.016

Cover

Abstract Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups’ incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery. [Display omitted]
AbstractList Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups’ incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery. [Display omitted]
Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease.BACKGROUNDPrimary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease.The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery.OBJECTIVESThe purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery.The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure).METHODSThe authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure).High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution.RESULTSHigh-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution.Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.CONCLUSIONSNovel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.
Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 (IQR: 1.3-5.3) years and 6.8 (IQR: 4.0-8.5) years, respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.7 and P = 0.5, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.
Author Dupuis, Marlène
Tartar, Jean
Shah, Rohan
Côté, Nancy
O’Connor, Kim
Toubal, Oumhani
Bernard, Jérémy
Maréchaux, Sylvestre
Seetharam, Karthik
Mahjoub, Haïfa
Bernier, Mathieu
Yanamala, Naveena
Beaudoin, Jonathan
Dumortier, Hélène
LeVen, Florent
Sengupta, Partho P.
Vincentelli, André
Salaun, Erwan
Altes, Alexandre
Pibarot, Philippe
Author_xml – sequence: 1
  givenname: Jérémy
  surname: Bernard
  fullname: Bernard, Jérémy
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 2
  givenname: Naveena
  surname: Yanamala
  fullname: Yanamala, Naveena
  organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
– sequence: 3
  givenname: Rohan
  surname: Shah
  fullname: Shah, Rohan
  organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
– sequence: 4
  givenname: Karthik
  surname: Seetharam
  fullname: Seetharam, Karthik
  organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
– sequence: 5
  givenname: Alexandre
  surname: Altes
  fullname: Altes, Alexandre
  organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France
– sequence: 6
  givenname: Marlène
  surname: Dupuis
  fullname: Dupuis, Marlène
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 7
  givenname: Oumhani
  surname: Toubal
  fullname: Toubal, Oumhani
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 8
  givenname: Haïfa
  surname: Mahjoub
  fullname: Mahjoub, Haïfa
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 9
  givenname: Hélène
  surname: Dumortier
  fullname: Dumortier, Hélène
  organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France
– sequence: 10
  givenname: Jean
  surname: Tartar
  fullname: Tartar, Jean
  organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France
– sequence: 11
  givenname: Erwan
  surname: Salaun
  fullname: Salaun, Erwan
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 12
  givenname: Kim
  surname: O’Connor
  fullname: O’Connor, Kim
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 13
  givenname: Mathieu
  surname: Bernier
  fullname: Bernier, Mathieu
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 14
  givenname: Jonathan
  surname: Beaudoin
  fullname: Beaudoin, Jonathan
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 15
  givenname: Nancy
  surname: Côté
  fullname: Côté, Nancy
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 16
  givenname: André
  surname: Vincentelli
  fullname: Vincentelli, André
  organization: Cardiac Surgery Department, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
– sequence: 17
  givenname: Florent
  surname: LeVen
  fullname: LeVen, Florent
  organization: Department of Cardiology, Hôpital La Cavale Blanche–Centre Hospitalier Regional Universitaire de Brest, Brest, France
– sequence: 18
  givenname: Sylvestre
  surname: Maréchaux
  fullname: Maréchaux, Sylvestre
  organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France
– sequence: 19
  givenname: Philippe
  surname: Pibarot
  fullname: Pibarot, Philippe
  email: philippe.pibarot@med.ulaval.ca
  organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
– sequence: 20
  givenname: Partho P.
  surname: Sengupta
  fullname: Sengupta, Partho P.
  email: partho.sengupta@rutgers.edu
  organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37178071$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04464609$$DView record in HAL
BookMark eNqFkc2O0zAUhSM0iPmBF2CBvIRFiu0kdoLYVJ3CjFREhUCwsxznJnVx7WK7FX2Red5x1A6LWQwb2zo637F97mV2Zp2FLHtN8IRgwt6vJ2u1GSYU02KC6SRJz7ILUnOW86ohZ-ncFCyvef3rPLsMYY0xw6zkL7LzghNeY04usrtbG2HwMmo7oLlaOSV9p11StqsDWkovNxDBB_RTxxWa_90aqa1sDaCpj7rXSkuDxgxj9ABWAeqdR9cyyvza6z1YNDO7kBLGfNejpdcb6Q_oi44-kd9g2PlBx3S_s2i5AuviYQvhZfa8lybAq9N-lf34NP8-u8kXXz_fzqaLXJUliXkLinKCqew5BdJzpgrSMdp2dVPIJu192ZQ9VLWsFPQyrbhQtOx4WzHelrK4yt4dc1fSiO3xbcJJLW6mCzFquCxZyXCzJ8n79ujdevdnByGKjQ4qfVxacLsgaE2KqmKMVsn65mTdtRvo_iU_9J4M9dGgvAvBQy_UqYRUizaCYDGOWKzFOGIxjlhgKpKUUPoIfUh_Evp4hCCVudfgRVB6HFenPagoOqefxj88wpXRVitpfsPhf_A9fUjWbw
CitedBy_id crossref_primary_10_1007_s11886_023_02005_2
crossref_primary_10_1016_j_jcmg_2024_12_001
crossref_primary_10_1016_j_jcmg_2024_05_026
crossref_primary_10_1016_j_jcmg_2023_03_003
crossref_primary_10_1016_j_jcmg_2025_01_001
crossref_primary_10_1016_j_jcmg_2023_09_001
crossref_primary_10_1136_heartjnl_2024_324739
crossref_primary_10_1007_s12055_023_01668_4
crossref_primary_10_1016_S0140_6736_23_02754_X
crossref_primary_10_1016_j_jcmg_2023_07_010
crossref_primary_10_7759_cureus_66925
Cites_doi 10.1038/nbt0908-1011
10.1161/01.CIR.0000028933.34260.09
10.1016/j.jacc.2019.04.065
10.1093/ehjci/jet105
10.1016/j.jcmg.2020.07.015
10.3389/fimmu.2020.611004
10.1016/j.jcmg.2021.12.014
10.1016/j.jcmg.2021.07.004
10.1093/ehjci/jev014
10.1016/j.jcmg.2018.01.009
10.1016/j.echo.2017.01.007
10.1016/j.jacc.2020.11.035
10.1016/j.jpainsymman.2020.08.008
10.1093/eurheartj/ehaa485
10.1053/j.semtcvs.2020.09.024
10.1161/CIRCULATIONAHA.116.023340
10.1016/j.jcmg.2019.12.018
10.1161/CIRCULATIONAHA.117.033173
10.1093/eurheartj/ehab395
10.1161/CIRCULATIONAHA.115.017888
10.1016/j.jcmg.2018.11.025
10.1186/s12872-017-0715-y
10.1016/j.jcmg.2021.03.020
10.1016/j.jcmg.2021.05.020
10.1002/sim.7286
ContentType Journal Article
Copyright 2023
Copyright © 2023. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023
– notice: Copyright © 2023. Published by Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
DOI 10.1016/j.jcmg.2023.02.016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1876-7591
EndPage 1267
ExternalDocumentID oai_HAL_hal_04464609v1
37178071
10_1016_j_jcmg_2023_02_016
S1936878X23001134
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
4.4
457
4G.
53G
5GY
5VS
7-5
8P~
AAEDT
AAEDW
AAIKJ
AALRI
AAOAW
AAQFI
AAXUO
AAYWO
ABBQC
ABFRF
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACGFO
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEFWE
AEKER
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGCQF
AGHFR
AGYEJ
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BLXMC
CS3
DIK
E3Z
EBS
EFKBS
EJD
F5P
FDB
FEDTE
FNPLU
GBLVA
H13
HVGLF
HZ~
IXB
J1W
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OK1
OL0
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SEL
SES
SSZ
W8F
Z5R
6I.
AACTN
AAFTH
AAIAV
ABVKL
AFCTW
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
T5K
AAYXX
AFETI
CITATION
0SF
NPM
7X8
~HD
1XC
ID FETCH-LOGICAL-c441t-bec27102af72e1f76c31d62bd893a92bdf494fe58a5cefaa5c03c24d7b567b4a3
IEDL.DBID .~1
ISSN 1936-878X
1876-7591
IngestDate Fri Sep 12 12:54:16 EDT 2025
Sat Sep 27 19:22:52 EDT 2025
Wed Feb 19 02:23:37 EST 2025
Tue Jul 01 00:39:25 EDT 2025
Thu Apr 24 23:04:40 EDT 2025
Fri Feb 23 02:36:29 EST 2024
Tue Aug 26 16:33:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords PISA
risk stratification
MR
HCA
LS
RVol
primary mitral regurgitation
LVESV
MV
HS
MVS
machine learning
phenogrouping
mitral valve intervention
LVEDV
LVESD
IVSd
Language English
License Copyright © 2023. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-bec27102af72e1f76c31d62bd893a92bdf494fe58a5cefaa5c03c24d7b567b4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9687-0518
0000-0003-2356-1110
PMID 37178071
PQID 2813556625
PQPubID 23479
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_04464609v1
proquest_miscellaneous_2813556625
pubmed_primary_37178071
crossref_citationtrail_10_1016_j_jcmg_2023_02_016
crossref_primary_10_1016_j_jcmg_2023_02_016
elsevier_sciencedirect_doi_10_1016_j_jcmg_2023_02_016
elsevier_clinicalkey_doi_10_1016_j_jcmg_2023_02_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JACC. Cardiovascular imaging
PublicationTitleAlternate JACC Cardiovasc Imaging
PublicationYear 2023
Publisher Elsevier Inc
Elsevier/American College of Cardiology
Publisher_xml – name: Elsevier Inc
– name: Elsevier/American College of Cardiology
References Myerson, d'Arcy, Christiansen (bib9) 2016; 133
Baumgartner, Iung, Otto (bib8) 2020; 41
Sosa-Hernandez, Torres-Ruiz, Cervantes-Diaz (bib16) 2020; 11
El Sabbagh, Reddy, Nishimura (bib2) 2018; 11
Sengupta, Shrestha, Kagiyama (bib13) 2021; 14
Choi, Park, Hwang (bib24) 2022; 15
Casaclang-Verzosa, Shrestha, Khalil (bib25) 2019; 12
Avierinos, Gersh, Melton (bib1) 2002; 106
Lang, Badano, Mor-Avi (bib15) 2015; 16
Lancellotti, Tribouilloy, Hagendorff (bib5) 2013; 14
van Smeden, Moons (bib19) 2017; 36
Zoghbi, Adams, Bonow (bib4) 2017; 30
Tokodi, Shrestha, Bianco (bib26) 2020; 13
Antoine, Benfari, Michelena (bib3) 2018; 138
Vahanian, Beyersdorf, Praz (bib7) 2022; 43
Otto, Nishimura, Bonow (bib6) 2021; 77
Pimor, Galli, Vitel (bib22) 2019; 20
Kobayashi, Huttin, Magnusson (bib12) 2022; 15
Tastet, Tribouilloy, Maréchaux (bib11) 2019; 74
Lazam, Vanoverschelde, Tribouilloy (bib23) 2017; 135
Rha, Lee (bib17) 2021; 61
Sengupta, Shrestha, Berthon (bib20) 2020; 13
Liu, Edwards, Neal (bib10) 2017; 17
Bartko, Heitzinger, Spinka (bib14) 2021; 14
Kingsford, Salzberg (bib18) 2008; 26
Canessa, Thamman, Americo, Soca, Dayan (bib21) 2021; 33
Casaclang-Verzosa (10.1016/j.jcmg.2023.02.016_bib25) 2019; 12
Avierinos (10.1016/j.jcmg.2023.02.016_bib1) 2002; 106
El Sabbagh (10.1016/j.jcmg.2023.02.016_bib2) 2018; 11
Liu (10.1016/j.jcmg.2023.02.016_bib10) 2017; 17
Vahanian (10.1016/j.jcmg.2023.02.016_bib7) 2022; 43
Lancellotti (10.1016/j.jcmg.2023.02.016_bib5) 2013; 14
Pimor (10.1016/j.jcmg.2023.02.016_bib22) 2019; 20
Canessa (10.1016/j.jcmg.2023.02.016_bib21) 2021; 33
Sosa-Hernandez (10.1016/j.jcmg.2023.02.016_bib16) 2020; 11
Lazam (10.1016/j.jcmg.2023.02.016_bib23) 2017; 135
Sengupta (10.1016/j.jcmg.2023.02.016_bib13) 2021; 14
Antoine (10.1016/j.jcmg.2023.02.016_bib3) 2018; 138
Otto (10.1016/j.jcmg.2023.02.016_bib6) 2021; 77
Sengupta (10.1016/j.jcmg.2023.02.016_bib20) 2020; 13
Lang (10.1016/j.jcmg.2023.02.016_bib15) 2015; 16
Bartko (10.1016/j.jcmg.2023.02.016_bib14) 2021; 14
Kobayashi (10.1016/j.jcmg.2023.02.016_bib12) 2022; 15
Rha (10.1016/j.jcmg.2023.02.016_bib17) 2021; 61
Kingsford (10.1016/j.jcmg.2023.02.016_bib18) 2008; 26
Baumgartner (10.1016/j.jcmg.2023.02.016_bib8) 2020; 41
van Smeden (10.1016/j.jcmg.2023.02.016_bib19) 2017; 36
Choi (10.1016/j.jcmg.2023.02.016_bib24) 2022; 15
Tokodi (10.1016/j.jcmg.2023.02.016_bib26) 2020; 13
Myerson (10.1016/j.jcmg.2023.02.016_bib9) 2016; 133
Zoghbi (10.1016/j.jcmg.2023.02.016_bib4) 2017; 30
Tastet (10.1016/j.jcmg.2023.02.016_bib11) 2019; 74
References_xml – volume: 77
  start-page: 450
  year: 2021
  end-page: 500
  ident: bib6
  article-title: 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines
  publication-title: J Am Coll Cardiol
– volume: 61
  start-page: 544
  year: 2021
  end-page: 554
  ident: bib17
  article-title: Stable symptom clusters and evolving symptom networks in relation to chemotherapy cycles
  publication-title: J Pain Symptom Manage
– volume: 14
  start-page: 611
  year: 2013
  end-page: 644
  ident: bib5
  article-title: Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging
  publication-title: Eur Heart J Cardiovasc Imag
– volume: 14
  start-page: 2288
  year: 2021
  end-page: 2300
  ident: bib14
  article-title: Principal morphomic and functional components of secondary mitral regurgitation
  publication-title: J Am Coll Cardiol Img
– volume: 41
  start-page: 4349
  year: 2020
  end-page: 4356
  ident: bib8
  article-title: Timing of intervention in asymptomatic patients with valvular heart disease
  publication-title: Eur Heart J
– volume: 20
  start-page: 177
  year: 2019
  end-page: 184
  ident: bib22
  article-title: Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation
  publication-title: Eur Heart J Cardiovasc Imag
– volume: 43
  start-page: 561
  year: 2022
  end-page: 632
  ident: bib7
  article-title: 2021 ESC/EACTS guidelines for the management of valvular heart disease
  publication-title: Eur Heart J
– volume: 11
  year: 2020
  ident: bib16
  article-title: B cell subsets as severity-associated signatures in COVID-19 patients
  publication-title: Front Immunol
– volume: 133
  start-page: 2287
  year: 2016
  end-page: 2296
  ident: bib9
  article-title: Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification
  publication-title: Circulation
– volume: 11
  start-page: 628
  year: 2018
  end-page: 643
  ident: bib2
  article-title: Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions
  publication-title: J Am Coll Cardiol Img
– volume: 15
  start-page: 974
  year: 2022
  end-page: 986
  ident: bib24
  article-title: Network analysis of cardiac remodeling by primary mitral regurgitation emphasizes the role of diastolic function
  publication-title: J Am Coll Cardiol Img
– volume: 12
  start-page: 236
  year: 2019
  end-page: 248
  ident: bib25
  article-title: Network tomography for understanding phenotypic presentations in aortic stenosis
  publication-title: J Am Coll Cardiol Img
– volume: 36
  start-page: 4495
  year: 2017
  end-page: 4497
  ident: bib19
  article-title: Event rate net reclassification index and the integrated discrimination improvement for studying incremental value of risk markers
  publication-title: Stat Med
– volume: 15
  start-page: 193
  year: 2022
  end-page: 208
  ident: bib12
  article-title: Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals
  publication-title: J Am Coll Cardiol Img
– volume: 26
  start-page: 1011
  year: 2008
  end-page: 1013
  ident: bib18
  article-title: What are decision trees?
  publication-title: Nat Biotechnol
– volume: 30
  start-page: 303
  year: 2017
  end-page: 371
  ident: bib4
  article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance
  publication-title: J Am Soc Echocardiogr
– volume: 74
  start-page: 550
  year: 2019
  end-page: 563
  ident: bib11
  article-title: Staging cardiac damage in patients with asymptomatic aortic valve stenosis
  publication-title: J Am Coll Cardiol
– volume: 138
  start-page: 1317
  year: 2018
  end-page: 1326
  ident: bib3
  article-title: Clinical outcome of degenerative mitral regurgitation: critical importance of echocardiographic quantitative assessment in routine practice
  publication-title: Circulation
– volume: 14
  start-page: 1707
  year: 2021
  end-page: 1720
  ident: bib13
  article-title: A machine-learning framework to identify distinct phenotypes of aortic stenosis severity
  publication-title: J Am Coll Cardiol Img
– volume: 13
  start-page: 1119
  year: 2020
  end-page: 1132
  ident: bib26
  article-title: Interpatient similarities in cardiac function: a platform for personalized cardiovascular medicine
  publication-title: J Am Coll Cardiol Img
– volume: 13
  start-page: 2017
  year: 2020
  end-page: 2035
  ident: bib20
  article-title: Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council
  publication-title: J Am Coll Cardiol Img
– volume: 33
  start-page: 337
  year: 2021
  end-page: 342
  ident: bib21
  article-title: Global longitudinal strain predicts survival and left ventricular function after mitral valve surgery: a meta-analysis
  publication-title: Semin Thorac Cardiovasc Surg
– volume: 17
  start-page: 282
  year: 2017
  ident: bib10
  article-title: A prospective study examining the role of myocardial Fibrosis in outcome following mitral valve repair IN DEgenerative mitral Regurgitation: rationale and design of the mitral FINDER study
  publication-title: BMC Cardiovasc Disorders
– volume: 106
  start-page: 1355
  year: 2002
  end-page: 1361
  ident: bib1
  article-title: Natural history of asymptomatic mitral valve prolapse in the community
  publication-title: Circulation
– volume: 16
  start-page: 233
  year: 2015
  end-page: 270
  ident: bib15
  article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 135
  start-page: 410
  year: 2017
  end-page: 422
  ident: bib23
  article-title: Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation: analysis of a large, prospective, multicenter, international registry
  publication-title: Circulation
– volume: 26
  start-page: 1011
  year: 2008
  ident: 10.1016/j.jcmg.2023.02.016_bib18
  article-title: What are decision trees?
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0908-1011
– volume: 106
  start-page: 1355
  year: 2002
  ident: 10.1016/j.jcmg.2023.02.016_bib1
  article-title: Natural history of asymptomatic mitral valve prolapse in the community
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000028933.34260.09
– volume: 74
  start-page: 550
  year: 2019
  ident: 10.1016/j.jcmg.2023.02.016_bib11
  article-title: Staging cardiac damage in patients with asymptomatic aortic valve stenosis
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2019.04.065
– volume: 14
  start-page: 611
  year: 2013
  ident: 10.1016/j.jcmg.2023.02.016_bib5
  article-title: Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging
  publication-title: Eur Heart J Cardiovasc Imag
  doi: 10.1093/ehjci/jet105
– volume: 13
  start-page: 2017
  year: 2020
  ident: 10.1016/j.jcmg.2023.02.016_bib20
  article-title: Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2020.07.015
– volume: 11
  year: 2020
  ident: 10.1016/j.jcmg.2023.02.016_bib16
  article-title: B cell subsets as severity-associated signatures in COVID-19 patients
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2020.611004
– volume: 15
  start-page: 974
  year: 2022
  ident: 10.1016/j.jcmg.2023.02.016_bib24
  article-title: Network analysis of cardiac remodeling by primary mitral regurgitation emphasizes the role of diastolic function
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2021.12.014
– volume: 15
  start-page: 193
  issue: 2
  year: 2022
  ident: 10.1016/j.jcmg.2023.02.016_bib12
  article-title: Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2021.07.004
– volume: 16
  start-page: 233
  issue: 3
  year: 2015
  ident: 10.1016/j.jcmg.2023.02.016_bib15
  article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jev014
– volume: 11
  start-page: 628
  year: 2018
  ident: 10.1016/j.jcmg.2023.02.016_bib2
  article-title: Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2018.01.009
– volume: 30
  start-page: 303
  year: 2017
  ident: 10.1016/j.jcmg.2023.02.016_bib4
  article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance
  publication-title: J Am Soc Echocardiogr
  doi: 10.1016/j.echo.2017.01.007
– volume: 77
  start-page: 450
  year: 2021
  ident: 10.1016/j.jcmg.2023.02.016_bib6
  article-title: 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2020.11.035
– volume: 61
  start-page: 544
  year: 2021
  ident: 10.1016/j.jcmg.2023.02.016_bib17
  article-title: Stable symptom clusters and evolving symptom networks in relation to chemotherapy cycles
  publication-title: J Pain Symptom Manage
  doi: 10.1016/j.jpainsymman.2020.08.008
– volume: 41
  start-page: 4349
  year: 2020
  ident: 10.1016/j.jcmg.2023.02.016_bib8
  article-title: Timing of intervention in asymptomatic patients with valvular heart disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa485
– volume: 33
  start-page: 337
  year: 2021
  ident: 10.1016/j.jcmg.2023.02.016_bib21
  article-title: Global longitudinal strain predicts survival and left ventricular function after mitral valve surgery: a meta-analysis
  publication-title: Semin Thorac Cardiovasc Surg
  doi: 10.1053/j.semtcvs.2020.09.024
– volume: 20
  start-page: 177
  year: 2019
  ident: 10.1016/j.jcmg.2023.02.016_bib22
  article-title: Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation
  publication-title: Eur Heart J Cardiovasc Imag
– volume: 135
  start-page: 410
  year: 2017
  ident: 10.1016/j.jcmg.2023.02.016_bib23
  article-title: Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation: analysis of a large, prospective, multicenter, international registry
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.023340
– volume: 13
  start-page: 1119
  year: 2020
  ident: 10.1016/j.jcmg.2023.02.016_bib26
  article-title: Interpatient similarities in cardiac function: a platform for personalized cardiovascular medicine
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2019.12.018
– volume: 138
  start-page: 1317
  year: 2018
  ident: 10.1016/j.jcmg.2023.02.016_bib3
  article-title: Clinical outcome of degenerative mitral regurgitation: critical importance of echocardiographic quantitative assessment in routine practice
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.033173
– volume: 43
  start-page: 561
  issue: 7
  year: 2022
  ident: 10.1016/j.jcmg.2023.02.016_bib7
  article-title: 2021 ESC/EACTS guidelines for the management of valvular heart disease
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehab395
– volume: 133
  start-page: 2287
  year: 2016
  ident: 10.1016/j.jcmg.2023.02.016_bib9
  article-title: Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.017888
– volume: 12
  start-page: 236
  year: 2019
  ident: 10.1016/j.jcmg.2023.02.016_bib25
  article-title: Network tomography for understanding phenotypic presentations in aortic stenosis
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2018.11.025
– volume: 17
  start-page: 282
  year: 2017
  ident: 10.1016/j.jcmg.2023.02.016_bib10
  article-title: A prospective study examining the role of myocardial Fibrosis in outcome following mitral valve repair IN DEgenerative mitral Regurgitation: rationale and design of the mitral FINDER study
  publication-title: BMC Cardiovasc Disorders
  doi: 10.1186/s12872-017-0715-y
– volume: 14
  start-page: 1707
  year: 2021
  ident: 10.1016/j.jcmg.2023.02.016_bib13
  article-title: A machine-learning framework to identify distinct phenotypes of aortic stenosis severity
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2021.03.020
– volume: 14
  start-page: 2288
  year: 2021
  ident: 10.1016/j.jcmg.2023.02.016_bib14
  article-title: Principal morphomic and functional components of secondary mitral regurgitation
  publication-title: J Am Coll Cardiol Img
  doi: 10.1016/j.jcmg.2021.05.020
– volume: 36
  start-page: 4495
  year: 2017
  ident: 10.1016/j.jcmg.2023.02.016_bib19
  article-title: Event rate net reclassification index and the integrated discrimination improvement for studying incremental value of risk markers
  publication-title: Stat Med
  doi: 10.1002/sim.7286
SSID ssj0060647
Score 2.4637206
Snippet Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1253
SubjectTerms Life Sciences
machine learning
mitral valve intervention
phenogrouping
primary mitral regurgitation
risk stratification
Title Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1936878X23001134
https://dx.doi.org/10.1016/j.jcmg.2023.02.016
https://www.ncbi.nlm.nih.gov/pubmed/37178071
https://www.proquest.com/docview/2813556625
https://hal.science/hal-04464609
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGHiZe0GB8lAHyEG_Iaz4cJ3kc3aZ2YqgCJvpm2Y7ddhrp1KU88jP2e3dv7EQgwZB4SRTLtpz45vrYPveYkHdK89RV2jClc8UwlpGB3XBWFtqIMjdRVrUs309ifMHPZtlsi4y6WBikVQbf7316661DyjB8zeH1cjn8AtBDFHkxAxANRpqiJijnOdr64c-e5iEwmNLvLAuGuUPgjOd4XZrv80M8QLzV7cQzz_88OD1YIEvybxC0HYpOd8mjgCHpkW_mY7Jl6ydk5zzsku-R20nQgIBhiZ6AfzMt6dRrU9OpQj4WimrSb8tmQZGFF0Ko2iq9pASd_KLVSQHZ0mPVKHa8Ru9IR1cbFFjA-leOTr1iBT1f4rIJ_Wznm_U8aH_T6cLWK1zovXlKLk5Pvo7GLJy_wAyApIZB9yYIQJTLExu7XJg0rkSiK8A4qoS74yV3NitUZqxTcI1Sk_Aq15nINVfpM7Jdr2r7gtDIlUWk49TC7ArjqHUGWWKnwCziSFfJgMTdh5cmNBDPyLiSHQvtUmJnSewsGSUSkgbkfV_m2r_ovbnTrj9lF3QKblLCyHFvqawv9ZtZ_rPcWzCZvlmo4T0--igxDXfQuYjKH_GAHHQWJeGnxp0aVdvV5kYmRQw4UMDcdECee1Pr60phAl4AMHz5n03bJw_xyRMSX5HtZr2xrwFYNfpN--fAdTL7cAdIeSLy
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQEvE3c6bgbxhkxzcZzkcXSbWminCjbRN8t27LbTSKcu5afwezkndiqQYEi8JJJjW058cvzZ_s5nQt4qzVNXacOUzhXDWEYGdsNZWWgjytxEWdWyfE_F8Jx_nGWzHTLoYmGQVhl8v_fprbcOKf3wNftXy2X_C0APUeTFDEA0GGnKd8ktQAMRmvZo9qFzxwKjKf3WsmCYPUTOeJLXhfk2f48niLfCnXjo-Z9Hp90F0iT_hkHbsejkHtkPIJIe-nbeJzu2fkBuT8I2-UPyYxREIGBcosfg4EzLOvXi1HSqkJCFqpr067JZUKThhRiqtkqvKUFHv4h1UoC29Eg1ih2t0T3SweUGFRaw_pWjUy9ZQSdLXDehn-18s54H8W86Xdh6hSu914_I-cnx2WDIwgEMzABKahj0b4IIRLk8sbHLhUnjSiS6ApCjSrg7XnJns0JlxjoF1yg1Ca9ynYlcc5U-Jnv1qrZPCY1cWUQ6Ti1MrzCQWmeQJXYK7CKOdJX0SNx9eGlCA_GQjEvZ0dAuJHaWxM6SUSIhqUfebctc-Re9MXfa9afsok7BT0oYOm4slW1L_WaX_yz3Bkxm2ywU8R4ejiWm4RY6Bzv9HvfI686iJPzVuFWjarvaXMukiAEICpic9sgTb2rbulKYgReADA_-s2mvyJ3h2WQsx6PTT8_IXXzi2YnPyV6z3tgXgLIa_bL9i34CIG4lGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Echocardiography+Parameters+With+Explainable+Artificial+Intelligence+for+Data-Driven+Clustering+of+Primary+Mitral+Regurgitation+Phenotypes&rft.jtitle=JACC.+Cardiovascular+imaging&rft.au=Bernard%2C+J%C3%A9r%C3%A9my&rft.au=Yanamala%2C+Naveena&rft.au=Shah%2C+Rohan&rft.au=Seetharam%2C+Karthik&rft.date=2023-10-01&rft.pub=Elsevier%2FAmerican+College+of+Cardiology&rft.issn=1936-878X&rft.eissn=1876-7591&rft.volume=16&rft.issue=10&rft.spage=1253&rft.epage=1267&rft_id=info:doi/10.1016%2Fj.jcmg.2023.02.016&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04464609v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-878X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-878X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-878X&client=summon