Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes
Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of...
Saved in:
Published in | JACC. Cardiovascular imaging Vol. 16; no. 10; pp. 1253 - 1267 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2023
Elsevier/American College of Cardiology |
Subjects | |
Online Access | Get full text |
ISSN | 1936-878X 1876-7591 1876-7591 |
DOI | 10.1016/j.jcmg.2023.02.016 |
Cover
Abstract | Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease.
The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery.
The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups’ incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure).
High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution.
Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.
[Display omitted] |
---|---|
AbstractList | Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease.
The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery.
The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups’ incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure).
High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution.
Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.
[Display omitted] Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease.BACKGROUNDPrimary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease.The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery.OBJECTIVESThe purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery.The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure).METHODSThe authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure).High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution.RESULTSHigh-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution.Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.CONCLUSIONSNovel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery. Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 (IQR: 1.3-5.3) years and 6.8 (IQR: 4.0-8.5) years, respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.7 and P = 0.5, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery. |
Author | Dupuis, Marlène Tartar, Jean Shah, Rohan Côté, Nancy O’Connor, Kim Toubal, Oumhani Bernard, Jérémy Maréchaux, Sylvestre Seetharam, Karthik Mahjoub, Haïfa Bernier, Mathieu Yanamala, Naveena Beaudoin, Jonathan Dumortier, Hélène LeVen, Florent Sengupta, Partho P. Vincentelli, André Salaun, Erwan Altes, Alexandre Pibarot, Philippe |
Author_xml | – sequence: 1 givenname: Jérémy surname: Bernard fullname: Bernard, Jérémy organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 2 givenname: Naveena surname: Yanamala fullname: Yanamala, Naveena organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA – sequence: 3 givenname: Rohan surname: Shah fullname: Shah, Rohan organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA – sequence: 4 givenname: Karthik surname: Seetharam fullname: Seetharam, Karthik organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA – sequence: 5 givenname: Alexandre surname: Altes fullname: Altes, Alexandre organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France – sequence: 6 givenname: Marlène surname: Dupuis fullname: Dupuis, Marlène organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 7 givenname: Oumhani surname: Toubal fullname: Toubal, Oumhani organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 8 givenname: Haïfa surname: Mahjoub fullname: Mahjoub, Haïfa organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 9 givenname: Hélène surname: Dumortier fullname: Dumortier, Hélène organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France – sequence: 10 givenname: Jean surname: Tartar fullname: Tartar, Jean organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France – sequence: 11 givenname: Erwan surname: Salaun fullname: Salaun, Erwan organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 12 givenname: Kim surname: O’Connor fullname: O’Connor, Kim organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 13 givenname: Mathieu surname: Bernier fullname: Bernier, Mathieu organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 14 givenname: Jonathan surname: Beaudoin fullname: Beaudoin, Jonathan organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 15 givenname: Nancy surname: Côté fullname: Côté, Nancy organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 16 givenname: André surname: Vincentelli fullname: Vincentelli, André organization: Cardiac Surgery Department, Centre Hospitalier Régional et Universitaire de Lille, Lille, France – sequence: 17 givenname: Florent surname: LeVen fullname: LeVen, Florent organization: Department of Cardiology, Hôpital La Cavale Blanche–Centre Hospitalier Regional Universitaire de Brest, Brest, France – sequence: 18 givenname: Sylvestre surname: Maréchaux fullname: Maréchaux, Sylvestre organization: Department of Cardiology, GCS-Groupement des Hôpitaux de l’Institut Catholique de Lille, Université Catholique de Lille, Lille, France – sequence: 19 givenname: Philippe surname: Pibarot fullname: Pibarot, Philippe email: philippe.pibarot@med.ulaval.ca organization: Institut Universitaire de Cardiologie et de Pneumologie de Québec–Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada – sequence: 20 givenname: Partho P. surname: Sengupta fullname: Sengupta, Partho P. email: partho.sengupta@rutgers.edu organization: Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37178071$$D View this record in MEDLINE/PubMed https://hal.science/hal-04464609$$DView record in HAL |
BookMark | eNqFkc2O0zAUhSM0iPmBF2CBvIRFiu0kdoLYVJ3CjFREhUCwsxznJnVx7WK7FX2Red5x1A6LWQwb2zo637F97mV2Zp2FLHtN8IRgwt6vJ2u1GSYU02KC6SRJz7ILUnOW86ohZ-ncFCyvef3rPLsMYY0xw6zkL7LzghNeY04usrtbG2HwMmo7oLlaOSV9p11StqsDWkovNxDBB_RTxxWa_90aqa1sDaCpj7rXSkuDxgxj9ABWAeqdR9cyyvza6z1YNDO7kBLGfNejpdcb6Q_oi44-kd9g2PlBx3S_s2i5AuviYQvhZfa8lybAq9N-lf34NP8-u8kXXz_fzqaLXJUliXkLinKCqew5BdJzpgrSMdp2dVPIJu192ZQ9VLWsFPQyrbhQtOx4WzHelrK4yt4dc1fSiO3xbcJJLW6mCzFquCxZyXCzJ8n79ujdevdnByGKjQ4qfVxacLsgaE2KqmKMVsn65mTdtRvo_iU_9J4M9dGgvAvBQy_UqYRUizaCYDGOWKzFOGIxjlhgKpKUUPoIfUh_Evp4hCCVudfgRVB6HFenPagoOqefxj88wpXRVitpfsPhf_A9fUjWbw |
CitedBy_id | crossref_primary_10_1007_s11886_023_02005_2 crossref_primary_10_1016_j_jcmg_2024_12_001 crossref_primary_10_1016_j_jcmg_2024_05_026 crossref_primary_10_1016_j_jcmg_2023_03_003 crossref_primary_10_1016_j_jcmg_2025_01_001 crossref_primary_10_1016_j_jcmg_2023_09_001 crossref_primary_10_1136_heartjnl_2024_324739 crossref_primary_10_1007_s12055_023_01668_4 crossref_primary_10_1016_S0140_6736_23_02754_X crossref_primary_10_1016_j_jcmg_2023_07_010 crossref_primary_10_7759_cureus_66925 |
Cites_doi | 10.1038/nbt0908-1011 10.1161/01.CIR.0000028933.34260.09 10.1016/j.jacc.2019.04.065 10.1093/ehjci/jet105 10.1016/j.jcmg.2020.07.015 10.3389/fimmu.2020.611004 10.1016/j.jcmg.2021.12.014 10.1016/j.jcmg.2021.07.004 10.1093/ehjci/jev014 10.1016/j.jcmg.2018.01.009 10.1016/j.echo.2017.01.007 10.1016/j.jacc.2020.11.035 10.1016/j.jpainsymman.2020.08.008 10.1093/eurheartj/ehaa485 10.1053/j.semtcvs.2020.09.024 10.1161/CIRCULATIONAHA.116.023340 10.1016/j.jcmg.2019.12.018 10.1161/CIRCULATIONAHA.117.033173 10.1093/eurheartj/ehab395 10.1161/CIRCULATIONAHA.115.017888 10.1016/j.jcmg.2018.11.025 10.1186/s12872-017-0715-y 10.1016/j.jcmg.2021.03.020 10.1016/j.jcmg.2021.05.020 10.1002/sim.7286 |
ContentType | Journal Article |
Copyright | 2023 Copyright © 2023. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 – notice: Copyright © 2023. Published by Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7X8 1XC |
DOI | 10.1016/j.jcmg.2023.02.016 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1876-7591 |
EndPage | 1267 |
ExternalDocumentID | oai_HAL_hal_04464609v1 37178071 10_1016_j_jcmg_2023_02_016 S1936878X23001134 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 4.4 457 4G. 53G 5GY 5VS 7-5 8P~ AAEDT AAEDW AAIKJ AALRI AAOAW AAQFI AAXUO AAYWO ABBQC ABFRF ABJNI ABMAC ABMZM ABWVN ABXDB ACGFO ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEFWE AEKER AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AGCQF AGHFR AGYEJ AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BLXMC CS3 DIK E3Z EBS EFKBS EJD F5P FDB FEDTE FNPLU GBLVA H13 HVGLF HZ~ IXB J1W M41 MO0 N9A O-L O9- OAUVE OA~ OK1 OL0 P-8 P-9 P2P PC. Q38 ROL RPZ SDF SEL SES SSZ W8F Z5R 6I. AACTN AAFTH AAIAV ABVKL AFCTW AJOXV AMFUW EFLBG LCYCR NCXOZ RIG T5K AAYXX AFETI CITATION 0SF NPM 7X8 ~HD 1XC |
ID | FETCH-LOGICAL-c441t-bec27102af72e1f76c31d62bd893a92bdf494fe58a5cefaa5c03c24d7b567b4a3 |
IEDL.DBID | .~1 |
ISSN | 1936-878X 1876-7591 |
IngestDate | Fri Sep 12 12:54:16 EDT 2025 Sat Sep 27 19:22:52 EDT 2025 Wed Feb 19 02:23:37 EST 2025 Tue Jul 01 00:39:25 EDT 2025 Thu Apr 24 23:04:40 EDT 2025 Fri Feb 23 02:36:29 EST 2024 Tue Aug 26 16:33:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | PISA risk stratification MR HCA LS RVol primary mitral regurgitation LVESV MV HS MVS machine learning phenogrouping mitral valve intervention LVEDV LVESD IVSd |
Language | English |
License | Copyright © 2023. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-bec27102af72e1f76c31d62bd893a92bdf494fe58a5cefaa5c03c24d7b567b4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9687-0518 0000-0003-2356-1110 |
PMID | 37178071 |
PQID | 2813556625 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_04464609v1 proquest_miscellaneous_2813556625 pubmed_primary_37178071 crossref_citationtrail_10_1016_j_jcmg_2023_02_016 crossref_primary_10_1016_j_jcmg_2023_02_016 elsevier_sciencedirect_doi_10_1016_j_jcmg_2023_02_016 elsevier_clinicalkey_doi_10_1016_j_jcmg_2023_02_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | JACC. Cardiovascular imaging |
PublicationTitleAlternate | JACC Cardiovasc Imaging |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier/American College of Cardiology |
Publisher_xml | – name: Elsevier Inc – name: Elsevier/American College of Cardiology |
References | Myerson, d'Arcy, Christiansen (bib9) 2016; 133 Baumgartner, Iung, Otto (bib8) 2020; 41 Sosa-Hernandez, Torres-Ruiz, Cervantes-Diaz (bib16) 2020; 11 El Sabbagh, Reddy, Nishimura (bib2) 2018; 11 Sengupta, Shrestha, Kagiyama (bib13) 2021; 14 Choi, Park, Hwang (bib24) 2022; 15 Casaclang-Verzosa, Shrestha, Khalil (bib25) 2019; 12 Avierinos, Gersh, Melton (bib1) 2002; 106 Lang, Badano, Mor-Avi (bib15) 2015; 16 Lancellotti, Tribouilloy, Hagendorff (bib5) 2013; 14 van Smeden, Moons (bib19) 2017; 36 Zoghbi, Adams, Bonow (bib4) 2017; 30 Tokodi, Shrestha, Bianco (bib26) 2020; 13 Antoine, Benfari, Michelena (bib3) 2018; 138 Vahanian, Beyersdorf, Praz (bib7) 2022; 43 Otto, Nishimura, Bonow (bib6) 2021; 77 Pimor, Galli, Vitel (bib22) 2019; 20 Kobayashi, Huttin, Magnusson (bib12) 2022; 15 Tastet, Tribouilloy, Maréchaux (bib11) 2019; 74 Lazam, Vanoverschelde, Tribouilloy (bib23) 2017; 135 Rha, Lee (bib17) 2021; 61 Sengupta, Shrestha, Berthon (bib20) 2020; 13 Liu, Edwards, Neal (bib10) 2017; 17 Bartko, Heitzinger, Spinka (bib14) 2021; 14 Kingsford, Salzberg (bib18) 2008; 26 Canessa, Thamman, Americo, Soca, Dayan (bib21) 2021; 33 Casaclang-Verzosa (10.1016/j.jcmg.2023.02.016_bib25) 2019; 12 Avierinos (10.1016/j.jcmg.2023.02.016_bib1) 2002; 106 El Sabbagh (10.1016/j.jcmg.2023.02.016_bib2) 2018; 11 Liu (10.1016/j.jcmg.2023.02.016_bib10) 2017; 17 Vahanian (10.1016/j.jcmg.2023.02.016_bib7) 2022; 43 Lancellotti (10.1016/j.jcmg.2023.02.016_bib5) 2013; 14 Pimor (10.1016/j.jcmg.2023.02.016_bib22) 2019; 20 Canessa (10.1016/j.jcmg.2023.02.016_bib21) 2021; 33 Sosa-Hernandez (10.1016/j.jcmg.2023.02.016_bib16) 2020; 11 Lazam (10.1016/j.jcmg.2023.02.016_bib23) 2017; 135 Sengupta (10.1016/j.jcmg.2023.02.016_bib13) 2021; 14 Antoine (10.1016/j.jcmg.2023.02.016_bib3) 2018; 138 Otto (10.1016/j.jcmg.2023.02.016_bib6) 2021; 77 Sengupta (10.1016/j.jcmg.2023.02.016_bib20) 2020; 13 Lang (10.1016/j.jcmg.2023.02.016_bib15) 2015; 16 Bartko (10.1016/j.jcmg.2023.02.016_bib14) 2021; 14 Kobayashi (10.1016/j.jcmg.2023.02.016_bib12) 2022; 15 Rha (10.1016/j.jcmg.2023.02.016_bib17) 2021; 61 Kingsford (10.1016/j.jcmg.2023.02.016_bib18) 2008; 26 Baumgartner (10.1016/j.jcmg.2023.02.016_bib8) 2020; 41 van Smeden (10.1016/j.jcmg.2023.02.016_bib19) 2017; 36 Choi (10.1016/j.jcmg.2023.02.016_bib24) 2022; 15 Tokodi (10.1016/j.jcmg.2023.02.016_bib26) 2020; 13 Myerson (10.1016/j.jcmg.2023.02.016_bib9) 2016; 133 Zoghbi (10.1016/j.jcmg.2023.02.016_bib4) 2017; 30 Tastet (10.1016/j.jcmg.2023.02.016_bib11) 2019; 74 |
References_xml | – volume: 77 start-page: 450 year: 2021 end-page: 500 ident: bib6 article-title: 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines publication-title: J Am Coll Cardiol – volume: 61 start-page: 544 year: 2021 end-page: 554 ident: bib17 article-title: Stable symptom clusters and evolving symptom networks in relation to chemotherapy cycles publication-title: J Pain Symptom Manage – volume: 14 start-page: 611 year: 2013 end-page: 644 ident: bib5 article-title: Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imag – volume: 14 start-page: 2288 year: 2021 end-page: 2300 ident: bib14 article-title: Principal morphomic and functional components of secondary mitral regurgitation publication-title: J Am Coll Cardiol Img – volume: 41 start-page: 4349 year: 2020 end-page: 4356 ident: bib8 article-title: Timing of intervention in asymptomatic patients with valvular heart disease publication-title: Eur Heart J – volume: 20 start-page: 177 year: 2019 end-page: 184 ident: bib22 article-title: Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation publication-title: Eur Heart J Cardiovasc Imag – volume: 43 start-page: 561 year: 2022 end-page: 632 ident: bib7 article-title: 2021 ESC/EACTS guidelines for the management of valvular heart disease publication-title: Eur Heart J – volume: 11 year: 2020 ident: bib16 article-title: B cell subsets as severity-associated signatures in COVID-19 patients publication-title: Front Immunol – volume: 133 start-page: 2287 year: 2016 end-page: 2296 ident: bib9 article-title: Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification publication-title: Circulation – volume: 11 start-page: 628 year: 2018 end-page: 643 ident: bib2 article-title: Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions publication-title: J Am Coll Cardiol Img – volume: 15 start-page: 974 year: 2022 end-page: 986 ident: bib24 article-title: Network analysis of cardiac remodeling by primary mitral regurgitation emphasizes the role of diastolic function publication-title: J Am Coll Cardiol Img – volume: 12 start-page: 236 year: 2019 end-page: 248 ident: bib25 article-title: Network tomography for understanding phenotypic presentations in aortic stenosis publication-title: J Am Coll Cardiol Img – volume: 36 start-page: 4495 year: 2017 end-page: 4497 ident: bib19 article-title: Event rate net reclassification index and the integrated discrimination improvement for studying incremental value of risk markers publication-title: Stat Med – volume: 15 start-page: 193 year: 2022 end-page: 208 ident: bib12 article-title: Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals publication-title: J Am Coll Cardiol Img – volume: 26 start-page: 1011 year: 2008 end-page: 1013 ident: bib18 article-title: What are decision trees? publication-title: Nat Biotechnol – volume: 30 start-page: 303 year: 2017 end-page: 371 ident: bib4 article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance publication-title: J Am Soc Echocardiogr – volume: 74 start-page: 550 year: 2019 end-page: 563 ident: bib11 article-title: Staging cardiac damage in patients with asymptomatic aortic valve stenosis publication-title: J Am Coll Cardiol – volume: 138 start-page: 1317 year: 2018 end-page: 1326 ident: bib3 article-title: Clinical outcome of degenerative mitral regurgitation: critical importance of echocardiographic quantitative assessment in routine practice publication-title: Circulation – volume: 14 start-page: 1707 year: 2021 end-page: 1720 ident: bib13 article-title: A machine-learning framework to identify distinct phenotypes of aortic stenosis severity publication-title: J Am Coll Cardiol Img – volume: 13 start-page: 1119 year: 2020 end-page: 1132 ident: bib26 article-title: Interpatient similarities in cardiac function: a platform for personalized cardiovascular medicine publication-title: J Am Coll Cardiol Img – volume: 13 start-page: 2017 year: 2020 end-page: 2035 ident: bib20 article-title: Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council publication-title: J Am Coll Cardiol Img – volume: 33 start-page: 337 year: 2021 end-page: 342 ident: bib21 article-title: Global longitudinal strain predicts survival and left ventricular function after mitral valve surgery: a meta-analysis publication-title: Semin Thorac Cardiovasc Surg – volume: 17 start-page: 282 year: 2017 ident: bib10 article-title: A prospective study examining the role of myocardial Fibrosis in outcome following mitral valve repair IN DEgenerative mitral Regurgitation: rationale and design of the mitral FINDER study publication-title: BMC Cardiovasc Disorders – volume: 106 start-page: 1355 year: 2002 end-page: 1361 ident: bib1 article-title: Natural history of asymptomatic mitral valve prolapse in the community publication-title: Circulation – volume: 16 start-page: 233 year: 2015 end-page: 270 ident: bib15 article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imaging – volume: 135 start-page: 410 year: 2017 end-page: 422 ident: bib23 article-title: Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation: analysis of a large, prospective, multicenter, international registry publication-title: Circulation – volume: 26 start-page: 1011 year: 2008 ident: 10.1016/j.jcmg.2023.02.016_bib18 article-title: What are decision trees? publication-title: Nat Biotechnol doi: 10.1038/nbt0908-1011 – volume: 106 start-page: 1355 year: 2002 ident: 10.1016/j.jcmg.2023.02.016_bib1 article-title: Natural history of asymptomatic mitral valve prolapse in the community publication-title: Circulation doi: 10.1161/01.CIR.0000028933.34260.09 – volume: 74 start-page: 550 year: 2019 ident: 10.1016/j.jcmg.2023.02.016_bib11 article-title: Staging cardiac damage in patients with asymptomatic aortic valve stenosis publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2019.04.065 – volume: 14 start-page: 611 year: 2013 ident: 10.1016/j.jcmg.2023.02.016_bib5 article-title: Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imag doi: 10.1093/ehjci/jet105 – volume: 13 start-page: 2017 year: 2020 ident: 10.1016/j.jcmg.2023.02.016_bib20 article-title: Proposed Requirements for Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME): a checklist: reviewed by the American College of Cardiology Healthcare Innovation Council publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2020.07.015 – volume: 11 year: 2020 ident: 10.1016/j.jcmg.2023.02.016_bib16 article-title: B cell subsets as severity-associated signatures in COVID-19 patients publication-title: Front Immunol doi: 10.3389/fimmu.2020.611004 – volume: 15 start-page: 974 year: 2022 ident: 10.1016/j.jcmg.2023.02.016_bib24 article-title: Network analysis of cardiac remodeling by primary mitral regurgitation emphasizes the role of diastolic function publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2021.12.014 – volume: 15 start-page: 193 issue: 2 year: 2022 ident: 10.1016/j.jcmg.2023.02.016_bib12 article-title: Machine learning-derived echocardiographic phenotypes predict heart failure incidence in asymptomatic individuals publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2021.07.004 – volume: 16 start-page: 233 issue: 3 year: 2015 ident: 10.1016/j.jcmg.2023.02.016_bib15 article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging publication-title: Eur Heart J Cardiovasc Imaging doi: 10.1093/ehjci/jev014 – volume: 11 start-page: 628 year: 2018 ident: 10.1016/j.jcmg.2023.02.016_bib2 article-title: Mitral valve regurgitation in the contemporary era: insights into diagnosis, management, and future directions publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2018.01.009 – volume: 30 start-page: 303 year: 2017 ident: 10.1016/j.jcmg.2023.02.016_bib4 article-title: Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance publication-title: J Am Soc Echocardiogr doi: 10.1016/j.echo.2017.01.007 – volume: 77 start-page: 450 year: 2021 ident: 10.1016/j.jcmg.2023.02.016_bib6 article-title: 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2020.11.035 – volume: 61 start-page: 544 year: 2021 ident: 10.1016/j.jcmg.2023.02.016_bib17 article-title: Stable symptom clusters and evolving symptom networks in relation to chemotherapy cycles publication-title: J Pain Symptom Manage doi: 10.1016/j.jpainsymman.2020.08.008 – volume: 41 start-page: 4349 year: 2020 ident: 10.1016/j.jcmg.2023.02.016_bib8 article-title: Timing of intervention in asymptomatic patients with valvular heart disease publication-title: Eur Heart J doi: 10.1093/eurheartj/ehaa485 – volume: 33 start-page: 337 year: 2021 ident: 10.1016/j.jcmg.2023.02.016_bib21 article-title: Global longitudinal strain predicts survival and left ventricular function after mitral valve surgery: a meta-analysis publication-title: Semin Thorac Cardiovasc Surg doi: 10.1053/j.semtcvs.2020.09.024 – volume: 20 start-page: 177 year: 2019 ident: 10.1016/j.jcmg.2023.02.016_bib22 article-title: Predictors of post-operative cardiovascular events, focused on atrial fibrillation, after valve surgery for primary mitral regurgitation publication-title: Eur Heart J Cardiovasc Imag – volume: 135 start-page: 410 year: 2017 ident: 10.1016/j.jcmg.2023.02.016_bib23 article-title: Twenty-year outcome after mitral repair versus replacement for severe degenerative mitral regurgitation: analysis of a large, prospective, multicenter, international registry publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.023340 – volume: 13 start-page: 1119 year: 2020 ident: 10.1016/j.jcmg.2023.02.016_bib26 article-title: Interpatient similarities in cardiac function: a platform for personalized cardiovascular medicine publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2019.12.018 – volume: 138 start-page: 1317 year: 2018 ident: 10.1016/j.jcmg.2023.02.016_bib3 article-title: Clinical outcome of degenerative mitral regurgitation: critical importance of echocardiographic quantitative assessment in routine practice publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.033173 – volume: 43 start-page: 561 issue: 7 year: 2022 ident: 10.1016/j.jcmg.2023.02.016_bib7 article-title: 2021 ESC/EACTS guidelines for the management of valvular heart disease publication-title: Eur Heart J doi: 10.1093/eurheartj/ehab395 – volume: 133 start-page: 2287 year: 2016 ident: 10.1016/j.jcmg.2023.02.016_bib9 article-title: Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.017888 – volume: 12 start-page: 236 year: 2019 ident: 10.1016/j.jcmg.2023.02.016_bib25 article-title: Network tomography for understanding phenotypic presentations in aortic stenosis publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2018.11.025 – volume: 17 start-page: 282 year: 2017 ident: 10.1016/j.jcmg.2023.02.016_bib10 article-title: A prospective study examining the role of myocardial Fibrosis in outcome following mitral valve repair IN DEgenerative mitral Regurgitation: rationale and design of the mitral FINDER study publication-title: BMC Cardiovasc Disorders doi: 10.1186/s12872-017-0715-y – volume: 14 start-page: 1707 year: 2021 ident: 10.1016/j.jcmg.2023.02.016_bib13 article-title: A machine-learning framework to identify distinct phenotypes of aortic stenosis severity publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2021.03.020 – volume: 14 start-page: 2288 year: 2021 ident: 10.1016/j.jcmg.2023.02.016_bib14 article-title: Principal morphomic and functional components of secondary mitral regurgitation publication-title: J Am Coll Cardiol Img doi: 10.1016/j.jcmg.2021.05.020 – volume: 36 start-page: 4495 year: 2017 ident: 10.1016/j.jcmg.2023.02.016_bib19 article-title: Event rate net reclassification index and the integrated discrimination improvement for studying incremental value of risk markers publication-title: Stat Med doi: 10.1002/sim.7286 |
SSID | ssj0060647 |
Score | 2.4637206 |
Snippet | Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1253 |
SubjectTerms | Life Sciences machine learning mitral valve intervention phenogrouping primary mitral regurgitation risk stratification |
Title | Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1936878X23001134 https://dx.doi.org/10.1016/j.jcmg.2023.02.016 https://www.ncbi.nlm.nih.gov/pubmed/37178071 https://www.proquest.com/docview/2813556625 https://hal.science/hal-04464609 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGHiZe0GB8lAHyEG_Iaz4cJ3kc3aZ2YqgCJvpm2Y7ddhrp1KU88jP2e3dv7EQgwZB4SRTLtpz45vrYPveYkHdK89RV2jClc8UwlpGB3XBWFtqIMjdRVrUs309ifMHPZtlsi4y6WBikVQbf7316661DyjB8zeH1cjn8AtBDFHkxAxANRpqiJijnOdr64c-e5iEwmNLvLAuGuUPgjOd4XZrv80M8QLzV7cQzz_88OD1YIEvybxC0HYpOd8mjgCHpkW_mY7Jl6ydk5zzsku-R20nQgIBhiZ6AfzMt6dRrU9OpQj4WimrSb8tmQZGFF0Ko2iq9pASd_KLVSQHZ0mPVKHa8Ru9IR1cbFFjA-leOTr1iBT1f4rIJ_Wznm_U8aH_T6cLWK1zovXlKLk5Pvo7GLJy_wAyApIZB9yYIQJTLExu7XJg0rkSiK8A4qoS74yV3NitUZqxTcI1Sk_Aq15nINVfpM7Jdr2r7gtDIlUWk49TC7ArjqHUGWWKnwCziSFfJgMTdh5cmNBDPyLiSHQvtUmJnSewsGSUSkgbkfV_m2r_ovbnTrj9lF3QKblLCyHFvqawv9ZtZ_rPcWzCZvlmo4T0--igxDXfQuYjKH_GAHHQWJeGnxp0aVdvV5kYmRQw4UMDcdECee1Pr60phAl4AMHz5n03bJw_xyRMSX5HtZr2xrwFYNfpN--fAdTL7cAdIeSLy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2IQEvE3c6bgbxhkxzcZzkcXSbWminCjbRN8t27LbTSKcu5afwezkndiqQYEi8JJJjW058cvzZ_s5nQt4qzVNXacOUzhXDWEYGdsNZWWgjytxEWdWyfE_F8Jx_nGWzHTLoYmGQVhl8v_fprbcOKf3wNftXy2X_C0APUeTFDEA0GGnKd8ktQAMRmvZo9qFzxwKjKf3WsmCYPUTOeJLXhfk2f48niLfCnXjo-Z9Hp90F0iT_hkHbsejkHtkPIJIe-nbeJzu2fkBuT8I2-UPyYxREIGBcosfg4EzLOvXi1HSqkJCFqpr067JZUKThhRiqtkqvKUFHv4h1UoC29Eg1ih2t0T3SweUGFRaw_pWjUy9ZQSdLXDehn-18s54H8W86Xdh6hSu914_I-cnx2WDIwgEMzABKahj0b4IIRLk8sbHLhUnjSiS6ApCjSrg7XnJns0JlxjoF1yg1Ca9ynYlcc5U-Jnv1qrZPCY1cWUQ6Ti1MrzCQWmeQJXYK7CKOdJX0SNx9eGlCA_GQjEvZ0dAuJHaWxM6SUSIhqUfebctc-Re9MXfa9afsok7BT0oYOm4slW1L_WaX_yz3Bkxm2ywU8R4ejiWm4RY6Bzv9HvfI686iJPzVuFWjarvaXMukiAEICpic9sgTb2rbulKYgReADA_-s2mvyJ3h2WQsx6PTT8_IXXzi2YnPyV6z3tgXgLIa_bL9i34CIG4lGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+Echocardiography+Parameters+With+Explainable+Artificial+Intelligence+for+Data-Driven+Clustering+of+Primary+Mitral+Regurgitation+Phenotypes&rft.jtitle=JACC.+Cardiovascular+imaging&rft.au=Bernard%2C+J%C3%A9r%C3%A9my&rft.au=Yanamala%2C+Naveena&rft.au=Shah%2C+Rohan&rft.au=Seetharam%2C+Karthik&rft.date=2023-10-01&rft.pub=Elsevier%2FAmerican+College+of+Cardiology&rft.issn=1936-878X&rft.eissn=1876-7591&rft.volume=16&rft.issue=10&rft.spage=1253&rft.epage=1267&rft_id=info:doi/10.1016%2Fj.jcmg.2023.02.016&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04464609v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-878X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-878X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-878X&client=summon |