Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model

The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 56; no. 8; pp. 3123 - 3128
Main Authors Kwon, Soon Woo, Jang, Won Il, Kim, Mi-Sook, Seong, Ki Moon, Lee, Yang Hee, Yoon, Hyo Jin, Yang, Susan, Lee, Younghyun, Shim, Hyung Jin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2024.03.011

Cover

Abstract The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.
AbstractList The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997.
The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997. KCI Citation Count: 0
Author Lee, Yang Hee
Kim, Mi-Sook
Yang, Susan
Lee, Younghyun
Kwon, Soon Woo
Jang, Won Il
Seong, Ki Moon
Shim, Hyung Jin
Yoon, Hyo Jin
Author_xml – sequence: 1
  givenname: Soon Woo
  surname: Kwon
  fullname: Kwon, Soon Woo
  email: gold0827@kirams.re.kr
  organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 2
  givenname: Won Il
  orcidid: 0000-0002-5279-3087
  surname: Jang
  fullname: Jang, Won Il
  email: zzang11@kirams.re.kr
  organization: Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 3
  givenname: Mi-Sook
  surname: Kim
  fullname: Kim, Mi-Sook
  email: mskim@kirams.re.kr
  organization: Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 4
  givenname: Ki Moon
  orcidid: 0000-0003-3530-5587
  surname: Seong
  fullname: Seong, Ki Moon
  email: skmhanul@kirams.re.kr
  organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 5
  givenname: Yang Hee
  surname: Lee
  fullname: Lee, Yang Hee
  email: highfive1313@kirams.re.kr
  organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 6
  givenname: Hyo Jin
  surname: Yoon
  fullname: Yoon, Hyo Jin
  email: peachpupp@kirams.re.kr
  organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 7
  givenname: Susan
  surname: Yang
  fullname: Yang, Susan
  email: ssussan725@kirams.re.kr
  organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea
– sequence: 8
  givenname: Younghyun
  orcidid: 0000-0003-0633-7248
  surname: Lee
  fullname: Lee, Younghyun
  email: ylee0123@sch.ac.kr
  organization: Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea
– sequence: 9
  givenname: Hyung Jin
  orcidid: 0000-0001-5745-1919
  surname: Shim
  fullname: Shim, Hyung Jin
  email: shimhj@snu.ac.kr
  organization: Department of Nuclear Engineering, Seoul National University, Republic of Korea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003103733$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1r3DAQhkVJoZu0P6A3nQveSpZsWfQU0q-FQKGk0JuQR6OtNl7JSE5p_n216_aSQ06jj_eZGd73klzEFJGQt5xtOeP9-8M24rJtWSu3TGwZ5y_Ipm2FbEQ3_LwgG67E0HRKiFfkspQDY72Uim1I_hgK5HAM0S4hRZo8dQEwLjkAhV85HVNJR6S-nmi2Lqwy_DOn8pCRzvVe1dTZxdKHEuKeWjpnXLINER11iDOd0OZ4-jomh9Nr8tLbqeCbf_WK_Pj86e7ma3P77cvu5vq2ASn50ozSD7JXACPnFqyEEbV3TA-9qwLoGReD6_WofauFd6hxHPWgAWzLhUUhrsi7tW_M3txDMMmGc90nc5_N9fe7neGs6zRXQxXvVrFL9mDm6ojNj2fi_JDy3ti8BJjQyIEJ23YMFVeyBaH56IUewat2UMhs7aXWXpBTKRm9gbCcfTu5MtWh5pSZOZiamTllZpgwNbNK8ifk_02eYz6sDFYvfwfMpkCNBNCFjLDU_cMz9F_5ibO5
CitedBy_id crossref_primary_10_1080_09553002_2024_2447506
Cites_doi 10.1109/ACCESS.2020.3019937
10.1109/ACCESS.2019.2951723
10.1093/rpd/ncu133
10.1002/jemt.22642
10.1667/RR15266.1
10.1109/TPAMI.2007.59
10.1269/jrr.33.SUPPLEMENT_159
10.1016/j.mrgentox.2013.05.013
10.1159/000077520
10.1038/s41598-019-38614-7
10.1038/s41598-023-28456-9
10.1140/epjp/s13360-021-01447-3
10.12688/f1000research.12226.1
10.1109/TCBB.2020.3003445
ContentType Journal Article
Copyright 2024 Korean Nuclear Society
Copyright_xml – notice: 2024 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2024.03.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 3128
ExternalDocumentID oai_kci_go_kr_ARTI_10559178
oai_doaj_org_article_4803a250e71742c391bf39bcf7287e0a
10_1016_j_net_2024_03_011
S1738573324001293
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
ADVLN
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c441t-b4f8467ccb11aca4cbe9fd0986dc44c60138d69b9f293fde9ebb989cca213ae33
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Thu Aug 01 06:07:45 EDT 2024
Mon Sep 08 19:52:14 EDT 2025
Tue Jul 01 01:28:34 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Sat Jul 20 16:35:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Dicentric chromosome assay
VGG19
Biological dosimetry
Convolutional neural network
Patient with radiation exposure
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-b4f8467ccb11aca4cbe9fd0986dc44c60138d69b9f293fde9ebb989cca213ae33
ORCID 0000-0003-3530-5587
0000-0002-5279-3087
0000-0001-5745-1919
0000-0003-0633-7248
OpenAccessLink https://doaj.org/article/4803a250e71742c391bf39bcf7287e0a
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10559178
doaj_primary_oai_doaj_org_article_4803a250e71742c391bf39bcf7287e0a
crossref_citationtrail_10_1016_j_net_2024_03_011
crossref_primary_10_1016_j_net_2024_03_011
elsevier_sciencedirect_doi_10_1016_j_net_2024_03_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
2024-08-01
2024-08
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Jang, Shin, Lee, Han, Choi, Kim, Cho, Kim, Kang, Jo, Jeong, Oh (bib8) 2021; 195
Schunck, Johannes, Varga, Lörch, Plesch (bib2) 2004; 104
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib33) 2017
Li, Shirley, Wilkins, Norton, Knoll, Rogan (bib9) 2019; 186
Li, Knoll, Wilkins, Flegal, Rogan (bib17) 2016; 79
Liu, Li, Wilkins, Flegal, Knoll, Rogan (bib5) 2017; 6
Romm, Ainsbury, Barnard, Barrios, Barquinero, Beinke, Deperas, Gregoire, Koivistoinen, Lindholm, Moquet, Oestreicher, Puig, Rothkamm, Sommer, Thierens, Vandersickel, Vral, Wojcik (bib14) 2013; 756
Sharma, Vig (bib30) 2018
S, Samarabandu, Knoll, Khan, Rogan (bib15) 2010
Al-Kharraz, Elrefaei, Fadel (bib25) 2020; 8
Hinton, Roweis (bib38) 2002; 15
Shen, Ma, Li, Wen, Zheng, Zhou (bib10) 2023; 13
Xie, Li, Li, Yang, Shen (bib28) 2019; 7
Ludovici, Cascone, Huber, Chierici, Gaudio, de Souza, d'Errico, Malizia (bib11) 2021; 136
Krizhevsky, Sutskever, Hinton (bib20) 2012
Arachchige, Samarabandu, Knoll, Khan, Rogan (bib18) 2010
Tan, Le (bib24) 2019
Zhang, Song, Bai, Zhao, Ma, Su, Yu (bib26) 2018
Shirley, Li, Knoll, Rogan (bib4) 2017; 127
Arachchige, Samarabandu, Knoll, Rogan (bib16) 2013; 60
O'Malley, Bursztein, Long, Chollet, Jin, Invernizzi (bib37) 2019
Simonyan, Zisserman (bib21) 2014
Huang, Liu, Van Der Maaten, Weinberger (bib23) 2017
Deng, Dong, Socher, Li, Li, Fei-Fei (bib35) 2009
Wu, Yue, Tan, Wang, Lu (bib27) 2018
Piper, Sprey (bib13) 1992; 33
Lorch, Bille, Frieben, Stephan (bib12) 1986
Martín, Ashish, Paul, Eugene, Zhifeng, Craig, Greg, Andy, Jeffrey, Matthieu, Sanjay, Ian, Andrew, Geoffrey, Michael, Jia, Rafal, Lukasz, Manjunath, Josh, Dandelion, Rajat, Sherry, Derek, Chris, Mike, Jonathon, Benoit, Ilya, Kunal, Paul, Vincent, Vijay, Fernanda, Oriol, Pete, Martin, Martin, Yuan, Xiaoqiang (bib36) 2015
(bib1) 2011
Swati, Yadav, Sharma, Vig (bib31) 2017
Bai, Latecki, Liu (bib19) 2007; 29
He, Zhang, Ren, Sun (bib22) 2016
Ren, He, Girshick, Sun (bib32) 2015; 28
Royba, Repin, Pampou, Karan, Brenner, Garty (bib6) 2019; 192
Lin, Zhao, Yang, Yin, Wang, Guo, Chen, Ma, Zhao, Luo, Wang, Ding, Pang, Chen (bib29) 2022; 19
Rogan, Li, Wickramasinghe, Subasinghe, Caminsky, Khan, Samarabandu, Wilkins, Flegal, Knoll (bib3) 2014; 159
Chollet (bib34) 2015
Shen, Qi, Ma, Zhou (bib7) 2019; 9
Lin (10.1016/j.net.2024.03.011_bib29) 2022; 19
(10.1016/j.net.2024.03.011_bib1) 2011
Royba (10.1016/j.net.2024.03.011_bib6) 2019; 192
Piper (10.1016/j.net.2024.03.011_bib13) 1992; 33
Hinton (10.1016/j.net.2024.03.011_bib38) 2002; 15
Tan (10.1016/j.net.2024.03.011_bib24) 2019
Huang (10.1016/j.net.2024.03.011_bib23) 2017
Martín (10.1016/j.net.2024.03.011_bib36) 2015
Liu (10.1016/j.net.2024.03.011_bib5) 2017; 6
O'Malley (10.1016/j.net.2024.03.011_bib37) 2019
S (10.1016/j.net.2024.03.011_bib15) 2010
Arachchige (10.1016/j.net.2024.03.011_bib16) 2013; 60
Bai (10.1016/j.net.2024.03.011_bib19) 2007; 29
Shirley (10.1016/j.net.2024.03.011_bib4) 2017; 127
Deng (10.1016/j.net.2024.03.011_bib35) 2009
He (10.1016/j.net.2024.03.011_bib22) 2016
Chollet (10.1016/j.net.2024.03.011_bib34) 2015
Jang (10.1016/j.net.2024.03.011_bib8) 2021; 195
Wu (10.1016/j.net.2024.03.011_bib27) 2018
Shen (10.1016/j.net.2024.03.011_bib10) 2023; 13
Rogan (10.1016/j.net.2024.03.011_bib3) 2014; 159
Zhang (10.1016/j.net.2024.03.011_bib26) 2018
Ren (10.1016/j.net.2024.03.011_bib32) 2015; 28
Lorch (10.1016/j.net.2024.03.011_bib12) 1986
Li (10.1016/j.net.2024.03.011_bib9) 2019; 186
Krizhevsky (10.1016/j.net.2024.03.011_bib20) 2012
Ludovici (10.1016/j.net.2024.03.011_bib11) 2021; 136
Li (10.1016/j.net.2024.03.011_bib17) 2016; 79
Romm (10.1016/j.net.2024.03.011_bib14) 2013; 756
Simonyan (10.1016/j.net.2024.03.011_bib21) 2014
Al-Kharraz (10.1016/j.net.2024.03.011_bib25) 2020; 8
Schunck (10.1016/j.net.2024.03.011_bib2) 2004; 104
Shen (10.1016/j.net.2024.03.011_bib7) 2019; 9
Lin (10.1016/j.net.2024.03.011_bib33) 2017
Xie (10.1016/j.net.2024.03.011_bib28) 2019; 7
Swati (10.1016/j.net.2024.03.011_bib31) 2017
Arachchige (10.1016/j.net.2024.03.011_bib18) 2010
Sharma (10.1016/j.net.2024.03.011_bib30) 2018
References_xml – volume: 192
  start-page: 311
  year: 2019
  end-page: 323
  ident: bib6
  article-title: RABiT-II-DCA: a Fully-automated dicentric chromosome assay in Multiwell Plates
  publication-title: Radiat. Res.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib20
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1
– volume: 159
  start-page: 95
  year: 2014
  end-page: 104
  ident: bib3
  article-title: Automating dicentric chromosome detection from cytogenetic biodosimetry data
  publication-title: Radiat Prot Dosimetry
– volume: 186
  start-page: 42
  year: 2019
  end-page: 47
  ident: bib9
  article-title: Radiation dose estimation by completely automated Interpretation of the dicentric chromosome assay
  publication-title: Radiat Prot Dosimetry
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib35
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2015
  ident: bib36
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– year: 2011
  ident: bib1
  article-title: Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib26
  article-title: Chromosome classification with convolutional neural network based deep learning, 2018 11th international congress on image and signal processing
  publication-title: Biomedical Engineering and Informatics (CISP-BMEI)
– volume: 33
  start-page: 159
  year: 1992
  end-page: 170
  ident: bib13
  article-title: Adaptive classifiers for dicentric chromosomes
  publication-title: J. Radiat. Res.
– year: 2015
  ident: bib34
  article-title: Others, Keras
– year: 2019
  ident: bib37
  article-title: Others, KerasTuner
– volume: 7
  start-page: 179445
  year: 2019
  end-page: 179453
  ident: bib28
  article-title: Statistical Karyotype Analysis using CNN and Geometric optimization
  publication-title: IEEE Access
– volume: 29
  start-page: 449
  year: 2007
  end-page: 462
  ident: bib19
  article-title: Skeleton pruning by contour partitioning with discrete curve evolution
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 2005
  year: 2013
  end-page: 2013
  ident: bib16
  article-title: Intensity integrated Laplacian-based thickness measurement for detecting human metaphase chromosome centromere location
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 3613
  year: 2010
  end-page: 3616
  ident: bib18
  article-title: An image processing algorithm for accurate extraction of the centerline from human metaphase chromosomes
  publication-title: 2010 IEEE International Conference on Image Processing
– start-page: 4700
  year: 2017
  end-page: 4708
  ident: bib23
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 195
  start-page: 163
  year: 2021
  end-page: 172
  ident: bib8
  article-title: Feasibility study on automatic Interpretation of radiation dose using deep learning technique for dicentric chromosome assay
  publication-title: Radiat. Res.
– start-page: 223
  year: 2010
  end-page: 230
  ident: bib15
  article-title: An accurate image processing algorithm for detecting FISH Probe Locations relative to chromosome Landmarks on DAPI stained metaphase chromosome images
  publication-title: 2010 Canadian Conference on Computer and Robot Vision
– volume: 127
  year: 2017
  ident: bib4
  article-title: Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation
  publication-title: J. Vis. Exp.
– volume: 6
  start-page: 1396
  year: 2017
  ident: bib5
  article-title: Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection
  publication-title: F1000Research
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib33
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2456
  year: 2018
  end-page: 2460
  ident: bib27
  article-title: End-to-end chromosome Karyotyping with data augmentation using GAN
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– volume: 8
  start-page: 157727
  year: 2020
  end-page: 157747
  ident: bib25
  article-title: Automated system for chromosome karyotyping to Recognize the Most Common Numerical Abnormalities using deep learning
  publication-title: IEEE Access
– volume: 13
  start-page: 2124
  year: 2023
  ident: bib10
  article-title: High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network
  publication-title: Sci. Rep.
– volume: 9
  start-page: 2285
  year: 2019
  ident: bib7
  article-title: A dicentric chromosome identification method based on clustering and watershed algorithm
  publication-title: Sci. Rep.
– start-page: 199
  year: 1986
  end-page: 206
  ident: bib12
  article-title: An Automated Biological Dosimetry System, Architectures and Algorithms for Digital Image Processing III
– volume: 756
  start-page: 174
  year: 2013
  end-page: 183
  ident: bib14
  article-title: Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents
  publication-title: Mutat. Res.
– volume: 28
  year: 2015
  ident: bib32
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 1285
  year: 2022
  end-page: 1293
  ident: bib29
  article-title: CIR-net: automatic classification of human chromosome based on Inception-ResNet Architecture
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: bib24
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: International Conference on Machine Learning
– start-page: 72
  year: 2017
  end-page: 81
  ident: bib31
  article-title: Siamese networks for chromosome classification
  publication-title: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW)
– volume: 15
  year: 2002
  ident: bib38
  article-title: Stochastic neighbor embedding
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib22
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2014
  ident: bib21
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– volume: 104
  start-page: 383
  year: 2004
  end-page: 389
  ident: bib2
  article-title: New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell gel electrophoresis, and fluorescence signals
  publication-title: Cytogenet. Genome Res.
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib30
  article-title: Automatic chromosome classification using deep attention based sequence learning of chromosome bands
  publication-title: 2018 International Joint Conference on Neural Networks (IJCNN)
– volume: 136
  start-page: 482
  year: 2021
  ident: bib11
  article-title: Cytogenetic bio-dosimetry techniques in the detection of dicentric chromosomes induced by ionizing radiation: a review
  publication-title: The European Physical Journal Plus
– volume: 79
  start-page: 393
  year: 2016
  end-page: 402
  ident: bib17
  article-title: Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing
  publication-title: Microsc. Res. Tech.
– start-page: 1
  year: 2018
  ident: 10.1016/j.net.2024.03.011_bib30
  article-title: Automatic chromosome classification using deep attention based sequence learning of chromosome bands
– start-page: 6105
  year: 2019
  ident: 10.1016/j.net.2024.03.011_bib24
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 8
  start-page: 157727
  year: 2020
  ident: 10.1016/j.net.2024.03.011_bib25
  article-title: Automated system for chromosome karyotyping to Recognize the Most Common Numerical Abnormalities using deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019937
– start-page: 72
  year: 2017
  ident: 10.1016/j.net.2024.03.011_bib31
  article-title: Siamese networks for chromosome classification
– year: 2014
  ident: 10.1016/j.net.2024.03.011_bib21
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv preprint arXiv:1409.1556
– start-page: 2456
  year: 2018
  ident: 10.1016/j.net.2024.03.011_bib27
  article-title: End-to-end chromosome Karyotyping with data augmentation using GAN
– volume: 7
  start-page: 179445
  year: 2019
  ident: 10.1016/j.net.2024.03.011_bib28
  article-title: Statistical Karyotype Analysis using CNN and Geometric optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2951723
– start-page: 199
  year: 1986
  ident: 10.1016/j.net.2024.03.011_bib12
– volume: 15
  year: 2002
  ident: 10.1016/j.net.2024.03.011_bib38
  article-title: Stochastic neighbor embedding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 159
  start-page: 95
  issue: 1–4
  year: 2014
  ident: 10.1016/j.net.2024.03.011_bib3
  article-title: Automating dicentric chromosome detection from cytogenetic biodosimetry data
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/rpd/ncu133
– volume: 127
  year: 2017
  ident: 10.1016/j.net.2024.03.011_bib4
  article-title: Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation
  publication-title: J. Vis. Exp.
– volume: 79
  start-page: 393
  issue: 5
  year: 2016
  ident: 10.1016/j.net.2024.03.011_bib17
  article-title: Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.22642
– volume: 192
  start-page: 311
  issue: 3
  year: 2019
  ident: 10.1016/j.net.2024.03.011_bib6
  article-title: RABiT-II-DCA: a Fully-automated dicentric chromosome assay in Multiwell Plates
  publication-title: Radiat. Res.
  doi: 10.1667/RR15266.1
– volume: 29
  start-page: 449
  issue: 3
  year: 2007
  ident: 10.1016/j.net.2024.03.011_bib19
  article-title: Skeleton pruning by contour partitioning with discrete curve evolution
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.59
– start-page: 223
  year: 2010
  ident: 10.1016/j.net.2024.03.011_bib15
  article-title: An accurate image processing algorithm for detecting FISH Probe Locations relative to chromosome Landmarks on DAPI stained metaphase chromosome images
– volume: 33
  start-page: 159
  issue: Suppl_1
  year: 1992
  ident: 10.1016/j.net.2024.03.011_bib13
  article-title: Adaptive classifiers for dicentric chromosomes
  publication-title: J. Radiat. Res.
  doi: 10.1269/jrr.33.SUPPLEMENT_159
– volume: 756
  start-page: 174
  issue: 1–2
  year: 2013
  ident: 10.1016/j.net.2024.03.011_bib14
  article-title: Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents
  publication-title: Mutat. Res.
  doi: 10.1016/j.mrgentox.2013.05.013
– volume: 104
  start-page: 383
  issue: 1–4
  year: 2004
  ident: 10.1016/j.net.2024.03.011_bib2
  article-title: New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell gel electrophoresis, and fluorescence signals
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000077520
– year: 2011
  ident: 10.1016/j.net.2024.03.011_bib1
– volume: 60
  start-page: 2005
  issue: 7
  year: 2013
  ident: 10.1016/j.net.2024.03.011_bib16
  article-title: Intensity integrated Laplacian-based thickness measurement for detecting human metaphase chromosome centromere location
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– year: 2015
  ident: 10.1016/j.net.2024.03.011_bib34
– volume: 9
  start-page: 2285
  issue: 1
  year: 2019
  ident: 10.1016/j.net.2024.03.011_bib7
  article-title: A dicentric chromosome identification method based on clustering and watershed algorithm
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38614-7
– volume: 186
  start-page: 42
  issue: 1
  year: 2019
  ident: 10.1016/j.net.2024.03.011_bib9
  article-title: Radiation dose estimation by completely automated Interpretation of the dicentric chromosome assay
  publication-title: Radiat Prot Dosimetry
– start-page: 1097
  year: 2012
  ident: 10.1016/j.net.2024.03.011_bib20
  article-title: ImageNet classification with deep convolutional neural networks
– start-page: 4700
  year: 2017
  ident: 10.1016/j.net.2024.03.011_bib23
  article-title: Densely connected convolutional networks
– start-page: 3613
  year: 2010
  ident: 10.1016/j.net.2024.03.011_bib18
  article-title: An image processing algorithm for accurate extraction of the centerline from human metaphase chromosomes
– volume: 13
  start-page: 2124
  issue: 1
  year: 2023
  ident: 10.1016/j.net.2024.03.011_bib10
  article-title: High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28456-9
– volume: 136
  start-page: 482
  issue: 5
  year: 2021
  ident: 10.1016/j.net.2024.03.011_bib11
  article-title: Cytogenetic bio-dosimetry techniques in the detection of dicentric chromosomes induced by ionizing radiation: a review
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/s13360-021-01447-3
– start-page: 770
  year: 2016
  ident: 10.1016/j.net.2024.03.011_bib22
  article-title: Deep residual learning for image recognition
– year: 2015
  ident: 10.1016/j.net.2024.03.011_bib36
– year: 2019
  ident: 10.1016/j.net.2024.03.011_bib37
– volume: 6
  start-page: 1396
  year: 2017
  ident: 10.1016/j.net.2024.03.011_bib5
  article-title: Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection
  publication-title: F1000Research
  doi: 10.12688/f1000research.12226.1
– volume: 195
  start-page: 163
  issue: 2
  year: 2021
  ident: 10.1016/j.net.2024.03.011_bib8
  article-title: Feasibility study on automatic Interpretation of radiation dose using deep learning technique for dicentric chromosome assay
  publication-title: Radiat. Res.
– start-page: 1
  year: 2018
  ident: 10.1016/j.net.2024.03.011_bib26
  article-title: Chromosome classification with convolutional neural network based deep learning, 2018 11th international congress on image and signal processing
– volume: 19
  start-page: 1285
  issue: 3
  year: 2022
  ident: 10.1016/j.net.2024.03.011_bib29
  article-title: CIR-net: automatic classification of human chromosome based on Inception-ResNet Architecture
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
  doi: 10.1109/TCBB.2020.3003445
– volume: 28
  year: 2015
  ident: 10.1016/j.net.2024.03.011_bib32
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 248
  year: 2009
  ident: 10.1016/j.net.2024.03.011_bib35
  article-title: Imagenet: a large-scale hierarchical image database
– start-page: 2117
  year: 2017
  ident: 10.1016/j.net.2024.03.011_bib33
  article-title: Feature pyramid networks for object detection
SSID ssj0064470
Score 2.3304732
Snippet The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells....
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3123
SubjectTerms Biological dosimetry
Convolutional neural network
Dicentric chromosome assay
Patient with radiation exposure
VGG19
원자력공학
Title Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model
URI https://dx.doi.org/10.1016/j.net.2024.03.011
https://doaj.org/article/4803a250e71742c391bf39bcf7287e0a
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003103733
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2024, 56(8), , pp.3123-3128
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2234-358X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064470
  issn: 1738-5733
  databaseCode: KQ8
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2234-358X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064470
  issn: 1738-5733
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2234-358X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064470
  issn: 1738-5733
  databaseCode: AKRWK
  dateStart: 20130201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qSQ_iE9cXAT0JxbZJt83R1-IDBUHBW8hzrY_tUlfw5zuTtrJ70YuXFkrShMm080375RtCDjMWey2SLPIqSyOexiJSsc-iNFVGK8-88_hB__auf_nIr5-yp6lSX8gJa-SBG8Md8yJmCuK0g7yDp4aJRHsmtPE5YH0XB2gEYaxLppp3MAT5vNkKCY8zKv51_zMDswtyfkgMUx7UTZNkJiIF4f6ZwDQ_qv1UyBmskOUWK9KTZo6rZM6N1sjSlILgOqnPS3zukc-CFqaVp7YMhMvSUPOMXLuP6t1R3EVCa9QhCM3c17jCT4O0lVWlSBSlyIEfUkWRg4iVI5yl1rkxbStLDGkom7NBHgcXD2eXUVtGITKAdSaR5h5BhjE6SZRR3GgnvI1F0bfQwPTxX6XtCy08hH5vnXBai0LA0qYJU46xTbIwqkZui1CTAxywqbAi91zlDtBBkUFni3mi4qJH4s6U0rQa4zjhN9mRyV4kWF-i9WXMJFi_R45-uowbgY3fGp_i-vw0RG3scAE8RrYeI__ymB7h3erKFmY08AFuVf429gF4gnw1ZRgWz8NKvtYSEo8riXVGIfMttv9jhjtkEQdueIa7ZGFSf7o9wD4TvR_cHI4398U3E8YBgQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrimination+of+dicentric+chromosome+from+radiation+exposure+patient+data+using+a+pretrained+deep+learning+model&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Kwon%2C+Soon+Woo&rft.au=Jang%2C+Won+Il&rft.au=Kim%2C+Mi-Sook&rft.au=Seong%2C+Ki+Moon&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=1738-5733&rft.volume=56&rft.issue=8&rft.spage=3123&rft.epage=3128&rft_id=info:doi/10.1016%2Fj.net.2024.03.011&rft.externalDocID=S1738573324001293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon