Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model
The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks...
Saved in:
Published in | Nuclear engineering and technology Vol. 56; no. 8; pp. 3123 - 3128 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2024
Elsevier 한국원자력학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1738-5733 2234-358X |
DOI | 10.1016/j.net.2024.03.011 |
Cover
Abstract | The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997. |
---|---|
AbstractList | The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997. The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells. The objective of this study was to propose an automatic dicentric chromosome discrimination method based on deep convolutional neural networks using radiation exposure patient data. From 45 patients with radiation exposure, conventional Giemsa-stained images of 116,258 normal and 2800 dicentric chromosomes were confirmed. ImageNet was used to pre-train VGG19, which was modified and fine-tuned. The proposed modified VGG19 demonstrated dicentric chromosome discrimination performance, with a true positive rate of 0.927, a true negative rate of 0.997, a positive predictive value of 0.882, a negative predictive value of 0.998, and an area under the receiver operating characteristic curve of 0.997. KCI Citation Count: 0 |
Author | Lee, Yang Hee Kim, Mi-Sook Yang, Susan Lee, Younghyun Kwon, Soon Woo Jang, Won Il Seong, Ki Moon Shim, Hyung Jin Yoon, Hyo Jin |
Author_xml | – sequence: 1 givenname: Soon Woo surname: Kwon fullname: Kwon, Soon Woo email: gold0827@kirams.re.kr organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 2 givenname: Won Il orcidid: 0000-0002-5279-3087 surname: Jang fullname: Jang, Won Il email: zzang11@kirams.re.kr organization: Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 3 givenname: Mi-Sook surname: Kim fullname: Kim, Mi-Sook email: mskim@kirams.re.kr organization: Radiation Oncology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 4 givenname: Ki Moon orcidid: 0000-0003-3530-5587 surname: Seong fullname: Seong, Ki Moon email: skmhanul@kirams.re.kr organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 5 givenname: Yang Hee surname: Lee fullname: Lee, Yang Hee email: highfive1313@kirams.re.kr organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 6 givenname: Hyo Jin surname: Yoon fullname: Yoon, Hyo Jin email: peachpupp@kirams.re.kr organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 7 givenname: Susan surname: Yang fullname: Yang, Susan email: ssussan725@kirams.re.kr organization: Lab of Biological Dosimetry, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, Republic of Korea – sequence: 8 givenname: Younghyun orcidid: 0000-0003-0633-7248 surname: Lee fullname: Lee, Younghyun email: ylee0123@sch.ac.kr organization: Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Republic of Korea – sequence: 9 givenname: Hyung Jin orcidid: 0000-0001-5745-1919 surname: Shim fullname: Shim, Hyung Jin email: shimhj@snu.ac.kr organization: Department of Nuclear Engineering, Seoul National University, Republic of Korea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003103733$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1r3DAQhkVJoZu0P6A3nQveSpZsWfQU0q-FQKGk0JuQR6OtNl7JSE5p_n216_aSQ06jj_eZGd73klzEFJGQt5xtOeP9-8M24rJtWSu3TGwZ5y_Ipm2FbEQ3_LwgG67E0HRKiFfkspQDY72Uim1I_hgK5HAM0S4hRZo8dQEwLjkAhV85HVNJR6S-nmi2Lqwy_DOn8pCRzvVe1dTZxdKHEuKeWjpnXLINER11iDOd0OZ4-jomh9Nr8tLbqeCbf_WK_Pj86e7ma3P77cvu5vq2ASn50ozSD7JXACPnFqyEEbV3TA-9qwLoGReD6_WofauFd6hxHPWgAWzLhUUhrsi7tW_M3txDMMmGc90nc5_N9fe7neGs6zRXQxXvVrFL9mDm6ojNj2fi_JDy3ti8BJjQyIEJ23YMFVeyBaH56IUewat2UMhs7aXWXpBTKRm9gbCcfTu5MtWh5pSZOZiamTllZpgwNbNK8ifk_02eYz6sDFYvfwfMpkCNBNCFjLDU_cMz9F_5ibO5 |
CitedBy_id | crossref_primary_10_1080_09553002_2024_2447506 |
Cites_doi | 10.1109/ACCESS.2020.3019937 10.1109/ACCESS.2019.2951723 10.1093/rpd/ncu133 10.1002/jemt.22642 10.1667/RR15266.1 10.1109/TPAMI.2007.59 10.1269/jrr.33.SUPPLEMENT_159 10.1016/j.mrgentox.2013.05.013 10.1159/000077520 10.1038/s41598-019-38614-7 10.1038/s41598-023-28456-9 10.1140/epjp/s13360-021-01447-3 10.12688/f1000research.12226.1 10.1109/TCBB.2020.3003445 |
ContentType | Journal Article |
Copyright | 2024 Korean Nuclear Society |
Copyright_xml | – notice: 2024 Korean Nuclear Society |
DBID | 6I. AAFTH AAYXX CITATION DOA ACYCR |
DOI | 10.1016/j.net.2024.03.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2234-358X |
EndPage | 3128 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10559178 oai_doaj_org_article_4803a250e71742c391bf39bcf7287e0a 10_1016_j_net_2024_03_011 S1738573324001293 |
GroupedDBID | .UV 0R~ 0SF 123 4.4 457 5VS 6I. 9ZL AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ACYCR ADBBV ADEZE ADVLN AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ JDI KQ8 KVFHK M41 NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c441t-b4f8467ccb11aca4cbe9fd0986dc44c60138d69b9f293fde9ebb989cca213ae33 |
IEDL.DBID | DOA |
ISSN | 1738-5733 |
IngestDate | Thu Aug 01 06:07:45 EDT 2024 Mon Sep 08 19:52:14 EDT 2025 Tue Jul 01 01:28:34 EDT 2025 Thu Apr 24 22:55:15 EDT 2025 Sat Jul 20 16:35:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Dicentric chromosome assay VGG19 Biological dosimetry Convolutional neural network Patient with radiation exposure |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-b4f8467ccb11aca4cbe9fd0986dc44c60138d69b9f293fde9ebb989cca213ae33 |
ORCID | 0000-0003-3530-5587 0000-0002-5279-3087 0000-0001-5745-1919 0000-0003-0633-7248 |
OpenAccessLink | https://doaj.org/article/4803a250e71742c391bf39bcf7287e0a |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10559178 doaj_primary_oai_doaj_org_article_4803a250e71742c391bf39bcf7287e0a crossref_citationtrail_10_1016_j_net_2024_03_011 crossref_primary_10_1016_j_net_2024_03_011 elsevier_sciencedirect_doi_10_1016_j_net_2024_03_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 2024-08-00 2024-08-01 2024-08 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Nuclear engineering and technology |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier 한국원자력학회 |
Publisher_xml | – name: Elsevier B.V – name: Elsevier – name: 한국원자력학회 |
References | Jang, Shin, Lee, Han, Choi, Kim, Cho, Kim, Kang, Jo, Jeong, Oh (bib8) 2021; 195 Schunck, Johannes, Varga, Lörch, Plesch (bib2) 2004; 104 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib33) 2017 Li, Shirley, Wilkins, Norton, Knoll, Rogan (bib9) 2019; 186 Li, Knoll, Wilkins, Flegal, Rogan (bib17) 2016; 79 Liu, Li, Wilkins, Flegal, Knoll, Rogan (bib5) 2017; 6 Romm, Ainsbury, Barnard, Barrios, Barquinero, Beinke, Deperas, Gregoire, Koivistoinen, Lindholm, Moquet, Oestreicher, Puig, Rothkamm, Sommer, Thierens, Vandersickel, Vral, Wojcik (bib14) 2013; 756 Sharma, Vig (bib30) 2018 S, Samarabandu, Knoll, Khan, Rogan (bib15) 2010 Al-Kharraz, Elrefaei, Fadel (bib25) 2020; 8 Hinton, Roweis (bib38) 2002; 15 Shen, Ma, Li, Wen, Zheng, Zhou (bib10) 2023; 13 Xie, Li, Li, Yang, Shen (bib28) 2019; 7 Ludovici, Cascone, Huber, Chierici, Gaudio, de Souza, d'Errico, Malizia (bib11) 2021; 136 Krizhevsky, Sutskever, Hinton (bib20) 2012 Arachchige, Samarabandu, Knoll, Khan, Rogan (bib18) 2010 Tan, Le (bib24) 2019 Zhang, Song, Bai, Zhao, Ma, Su, Yu (bib26) 2018 Shirley, Li, Knoll, Rogan (bib4) 2017; 127 Arachchige, Samarabandu, Knoll, Rogan (bib16) 2013; 60 O'Malley, Bursztein, Long, Chollet, Jin, Invernizzi (bib37) 2019 Simonyan, Zisserman (bib21) 2014 Huang, Liu, Van Der Maaten, Weinberger (bib23) 2017 Deng, Dong, Socher, Li, Li, Fei-Fei (bib35) 2009 Wu, Yue, Tan, Wang, Lu (bib27) 2018 Piper, Sprey (bib13) 1992; 33 Lorch, Bille, Frieben, Stephan (bib12) 1986 Martín, Ashish, Paul, Eugene, Zhifeng, Craig, Greg, Andy, Jeffrey, Matthieu, Sanjay, Ian, Andrew, Geoffrey, Michael, Jia, Rafal, Lukasz, Manjunath, Josh, Dandelion, Rajat, Sherry, Derek, Chris, Mike, Jonathon, Benoit, Ilya, Kunal, Paul, Vincent, Vijay, Fernanda, Oriol, Pete, Martin, Martin, Yuan, Xiaoqiang (bib36) 2015 (bib1) 2011 Swati, Yadav, Sharma, Vig (bib31) 2017 Bai, Latecki, Liu (bib19) 2007; 29 He, Zhang, Ren, Sun (bib22) 2016 Ren, He, Girshick, Sun (bib32) 2015; 28 Royba, Repin, Pampou, Karan, Brenner, Garty (bib6) 2019; 192 Lin, Zhao, Yang, Yin, Wang, Guo, Chen, Ma, Zhao, Luo, Wang, Ding, Pang, Chen (bib29) 2022; 19 Rogan, Li, Wickramasinghe, Subasinghe, Caminsky, Khan, Samarabandu, Wilkins, Flegal, Knoll (bib3) 2014; 159 Chollet (bib34) 2015 Shen, Qi, Ma, Zhou (bib7) 2019; 9 Lin (10.1016/j.net.2024.03.011_bib29) 2022; 19 (10.1016/j.net.2024.03.011_bib1) 2011 Royba (10.1016/j.net.2024.03.011_bib6) 2019; 192 Piper (10.1016/j.net.2024.03.011_bib13) 1992; 33 Hinton (10.1016/j.net.2024.03.011_bib38) 2002; 15 Tan (10.1016/j.net.2024.03.011_bib24) 2019 Huang (10.1016/j.net.2024.03.011_bib23) 2017 Martín (10.1016/j.net.2024.03.011_bib36) 2015 Liu (10.1016/j.net.2024.03.011_bib5) 2017; 6 O'Malley (10.1016/j.net.2024.03.011_bib37) 2019 S (10.1016/j.net.2024.03.011_bib15) 2010 Arachchige (10.1016/j.net.2024.03.011_bib16) 2013; 60 Bai (10.1016/j.net.2024.03.011_bib19) 2007; 29 Shirley (10.1016/j.net.2024.03.011_bib4) 2017; 127 Deng (10.1016/j.net.2024.03.011_bib35) 2009 He (10.1016/j.net.2024.03.011_bib22) 2016 Chollet (10.1016/j.net.2024.03.011_bib34) 2015 Jang (10.1016/j.net.2024.03.011_bib8) 2021; 195 Wu (10.1016/j.net.2024.03.011_bib27) 2018 Shen (10.1016/j.net.2024.03.011_bib10) 2023; 13 Rogan (10.1016/j.net.2024.03.011_bib3) 2014; 159 Zhang (10.1016/j.net.2024.03.011_bib26) 2018 Ren (10.1016/j.net.2024.03.011_bib32) 2015; 28 Lorch (10.1016/j.net.2024.03.011_bib12) 1986 Li (10.1016/j.net.2024.03.011_bib9) 2019; 186 Krizhevsky (10.1016/j.net.2024.03.011_bib20) 2012 Ludovici (10.1016/j.net.2024.03.011_bib11) 2021; 136 Li (10.1016/j.net.2024.03.011_bib17) 2016; 79 Romm (10.1016/j.net.2024.03.011_bib14) 2013; 756 Simonyan (10.1016/j.net.2024.03.011_bib21) 2014 Al-Kharraz (10.1016/j.net.2024.03.011_bib25) 2020; 8 Schunck (10.1016/j.net.2024.03.011_bib2) 2004; 104 Shen (10.1016/j.net.2024.03.011_bib7) 2019; 9 Lin (10.1016/j.net.2024.03.011_bib33) 2017 Xie (10.1016/j.net.2024.03.011_bib28) 2019; 7 Swati (10.1016/j.net.2024.03.011_bib31) 2017 Arachchige (10.1016/j.net.2024.03.011_bib18) 2010 Sharma (10.1016/j.net.2024.03.011_bib30) 2018 |
References_xml | – volume: 192 start-page: 311 year: 2019 end-page: 323 ident: bib6 article-title: RABiT-II-DCA: a Fully-automated dicentric chromosome assay in Multiwell Plates publication-title: Radiat. Res. – start-page: 1097 year: 2012 end-page: 1105 ident: bib20 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 – volume: 159 start-page: 95 year: 2014 end-page: 104 ident: bib3 article-title: Automating dicentric chromosome detection from cytogenetic biodosimetry data publication-title: Radiat Prot Dosimetry – volume: 186 start-page: 42 year: 2019 end-page: 47 ident: bib9 article-title: Radiation dose estimation by completely automated Interpretation of the dicentric chromosome assay publication-title: Radiat Prot Dosimetry – start-page: 248 year: 2009 end-page: 255 ident: bib35 article-title: Imagenet: a large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – year: 2015 ident: bib36 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – year: 2011 ident: bib1 article-title: Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies – start-page: 1 year: 2018 end-page: 5 ident: bib26 article-title: Chromosome classification with convolutional neural network based deep learning, 2018 11th international congress on image and signal processing publication-title: Biomedical Engineering and Informatics (CISP-BMEI) – volume: 33 start-page: 159 year: 1992 end-page: 170 ident: bib13 article-title: Adaptive classifiers for dicentric chromosomes publication-title: J. Radiat. Res. – year: 2015 ident: bib34 article-title: Others, Keras – year: 2019 ident: bib37 article-title: Others, KerasTuner – volume: 7 start-page: 179445 year: 2019 end-page: 179453 ident: bib28 article-title: Statistical Karyotype Analysis using CNN and Geometric optimization publication-title: IEEE Access – volume: 29 start-page: 449 year: 2007 end-page: 462 ident: bib19 article-title: Skeleton pruning by contour partitioning with discrete curve evolution publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 60 start-page: 2005 year: 2013 end-page: 2013 ident: bib16 article-title: Intensity integrated Laplacian-based thickness measurement for detecting human metaphase chromosome centromere location publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – start-page: 3613 year: 2010 end-page: 3616 ident: bib18 article-title: An image processing algorithm for accurate extraction of the centerline from human metaphase chromosomes publication-title: 2010 IEEE International Conference on Image Processing – start-page: 4700 year: 2017 end-page: 4708 ident: bib23 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 195 start-page: 163 year: 2021 end-page: 172 ident: bib8 article-title: Feasibility study on automatic Interpretation of radiation dose using deep learning technique for dicentric chromosome assay publication-title: Radiat. Res. – start-page: 223 year: 2010 end-page: 230 ident: bib15 article-title: An accurate image processing algorithm for detecting FISH Probe Locations relative to chromosome Landmarks on DAPI stained metaphase chromosome images publication-title: 2010 Canadian Conference on Computer and Robot Vision – volume: 127 year: 2017 ident: bib4 article-title: Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation publication-title: J. Vis. Exp. – volume: 6 start-page: 1396 year: 2017 ident: bib5 article-title: Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection publication-title: F1000Research – start-page: 2117 year: 2017 end-page: 2125 ident: bib33 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2456 year: 2018 end-page: 2460 ident: bib27 article-title: End-to-end chromosome Karyotyping with data augmentation using GAN publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – volume: 8 start-page: 157727 year: 2020 end-page: 157747 ident: bib25 article-title: Automated system for chromosome karyotyping to Recognize the Most Common Numerical Abnormalities using deep learning publication-title: IEEE Access – volume: 13 start-page: 2124 year: 2023 ident: bib10 article-title: High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network publication-title: Sci. Rep. – volume: 9 start-page: 2285 year: 2019 ident: bib7 article-title: A dicentric chromosome identification method based on clustering and watershed algorithm publication-title: Sci. Rep. – start-page: 199 year: 1986 end-page: 206 ident: bib12 article-title: An Automated Biological Dosimetry System, Architectures and Algorithms for Digital Image Processing III – volume: 756 start-page: 174 year: 2013 end-page: 183 ident: bib14 article-title: Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents publication-title: Mutat. Res. – volume: 28 year: 2015 ident: bib32 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 19 start-page: 1285 year: 2022 end-page: 1293 ident: bib29 article-title: CIR-net: automatic classification of human chromosome based on Inception-ResNet Architecture publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – start-page: 6105 year: 2019 end-page: 6114 ident: bib24 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks publication-title: International Conference on Machine Learning – start-page: 72 year: 2017 end-page: 81 ident: bib31 article-title: Siamese networks for chromosome classification publication-title: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) – volume: 15 year: 2002 ident: bib38 article-title: Stochastic neighbor embedding publication-title: Adv. Neural Inf. Process. Syst. – start-page: 770 year: 2016 end-page: 778 ident: bib22 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2014 ident: bib21 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – volume: 104 start-page: 383 year: 2004 end-page: 389 ident: bib2 article-title: New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell gel electrophoresis, and fluorescence signals publication-title: Cytogenet. Genome Res. – start-page: 1 year: 2018 end-page: 8 ident: bib30 article-title: Automatic chromosome classification using deep attention based sequence learning of chromosome bands publication-title: 2018 International Joint Conference on Neural Networks (IJCNN) – volume: 136 start-page: 482 year: 2021 ident: bib11 article-title: Cytogenetic bio-dosimetry techniques in the detection of dicentric chromosomes induced by ionizing radiation: a review publication-title: The European Physical Journal Plus – volume: 79 start-page: 393 year: 2016 end-page: 402 ident: bib17 article-title: Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing publication-title: Microsc. Res. Tech. – start-page: 1 year: 2018 ident: 10.1016/j.net.2024.03.011_bib30 article-title: Automatic chromosome classification using deep attention based sequence learning of chromosome bands – start-page: 6105 year: 2019 ident: 10.1016/j.net.2024.03.011_bib24 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 8 start-page: 157727 year: 2020 ident: 10.1016/j.net.2024.03.011_bib25 article-title: Automated system for chromosome karyotyping to Recognize the Most Common Numerical Abnormalities using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3019937 – start-page: 72 year: 2017 ident: 10.1016/j.net.2024.03.011_bib31 article-title: Siamese networks for chromosome classification – year: 2014 ident: 10.1016/j.net.2024.03.011_bib21 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv preprint arXiv:1409.1556 – start-page: 2456 year: 2018 ident: 10.1016/j.net.2024.03.011_bib27 article-title: End-to-end chromosome Karyotyping with data augmentation using GAN – volume: 7 start-page: 179445 year: 2019 ident: 10.1016/j.net.2024.03.011_bib28 article-title: Statistical Karyotype Analysis using CNN and Geometric optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2951723 – start-page: 199 year: 1986 ident: 10.1016/j.net.2024.03.011_bib12 – volume: 15 year: 2002 ident: 10.1016/j.net.2024.03.011_bib38 article-title: Stochastic neighbor embedding publication-title: Adv. Neural Inf. Process. Syst. – volume: 159 start-page: 95 issue: 1–4 year: 2014 ident: 10.1016/j.net.2024.03.011_bib3 article-title: Automating dicentric chromosome detection from cytogenetic biodosimetry data publication-title: Radiat Prot Dosimetry doi: 10.1093/rpd/ncu133 – volume: 127 year: 2017 ident: 10.1016/j.net.2024.03.011_bib4 article-title: Expedited radiation biodosimetry by automated dicentric chromosome identification (ADCI) and dose estimation publication-title: J. Vis. Exp. – volume: 79 start-page: 393 issue: 5 year: 2016 ident: 10.1016/j.net.2024.03.011_bib17 article-title: Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.22642 – volume: 192 start-page: 311 issue: 3 year: 2019 ident: 10.1016/j.net.2024.03.011_bib6 article-title: RABiT-II-DCA: a Fully-automated dicentric chromosome assay in Multiwell Plates publication-title: Radiat. Res. doi: 10.1667/RR15266.1 – volume: 29 start-page: 449 issue: 3 year: 2007 ident: 10.1016/j.net.2024.03.011_bib19 article-title: Skeleton pruning by contour partitioning with discrete curve evolution publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.59 – start-page: 223 year: 2010 ident: 10.1016/j.net.2024.03.011_bib15 article-title: An accurate image processing algorithm for detecting FISH Probe Locations relative to chromosome Landmarks on DAPI stained metaphase chromosome images – volume: 33 start-page: 159 issue: Suppl_1 year: 1992 ident: 10.1016/j.net.2024.03.011_bib13 article-title: Adaptive classifiers for dicentric chromosomes publication-title: J. Radiat. Res. doi: 10.1269/jrr.33.SUPPLEMENT_159 – volume: 756 start-page: 174 issue: 1–2 year: 2013 ident: 10.1016/j.net.2024.03.011_bib14 article-title: Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents publication-title: Mutat. Res. doi: 10.1016/j.mrgentox.2013.05.013 – volume: 104 start-page: 383 issue: 1–4 year: 2004 ident: 10.1016/j.net.2024.03.011_bib2 article-title: New developments in automated cytogenetic imaging: unattended scoring of dicentric chromosomes, micronuclei, single cell gel electrophoresis, and fluorescence signals publication-title: Cytogenet. Genome Res. doi: 10.1159/000077520 – year: 2011 ident: 10.1016/j.net.2024.03.011_bib1 – volume: 60 start-page: 2005 issue: 7 year: 2013 ident: 10.1016/j.net.2024.03.011_bib16 article-title: Intensity integrated Laplacian-based thickness measurement for detecting human metaphase chromosome centromere location publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – year: 2015 ident: 10.1016/j.net.2024.03.011_bib34 – volume: 9 start-page: 2285 issue: 1 year: 2019 ident: 10.1016/j.net.2024.03.011_bib7 article-title: A dicentric chromosome identification method based on clustering and watershed algorithm publication-title: Sci. Rep. doi: 10.1038/s41598-019-38614-7 – volume: 186 start-page: 42 issue: 1 year: 2019 ident: 10.1016/j.net.2024.03.011_bib9 article-title: Radiation dose estimation by completely automated Interpretation of the dicentric chromosome assay publication-title: Radiat Prot Dosimetry – start-page: 1097 year: 2012 ident: 10.1016/j.net.2024.03.011_bib20 article-title: ImageNet classification with deep convolutional neural networks – start-page: 4700 year: 2017 ident: 10.1016/j.net.2024.03.011_bib23 article-title: Densely connected convolutional networks – start-page: 3613 year: 2010 ident: 10.1016/j.net.2024.03.011_bib18 article-title: An image processing algorithm for accurate extraction of the centerline from human metaphase chromosomes – volume: 13 start-page: 2124 issue: 1 year: 2023 ident: 10.1016/j.net.2024.03.011_bib10 article-title: High-precision automatic identification method for dicentric chromosome images using two-stage convolutional neural network publication-title: Sci. Rep. doi: 10.1038/s41598-023-28456-9 – volume: 136 start-page: 482 issue: 5 year: 2021 ident: 10.1016/j.net.2024.03.011_bib11 article-title: Cytogenetic bio-dosimetry techniques in the detection of dicentric chromosomes induced by ionizing radiation: a review publication-title: The European Physical Journal Plus doi: 10.1140/epjp/s13360-021-01447-3 – start-page: 770 year: 2016 ident: 10.1016/j.net.2024.03.011_bib22 article-title: Deep residual learning for image recognition – year: 2015 ident: 10.1016/j.net.2024.03.011_bib36 – year: 2019 ident: 10.1016/j.net.2024.03.011_bib37 – volume: 6 start-page: 1396 year: 2017 ident: 10.1016/j.net.2024.03.011_bib5 article-title: Accurate cytogenetic biodosimetry through automated dicentric chromosome curation and metaphase cell selection publication-title: F1000Research doi: 10.12688/f1000research.12226.1 – volume: 195 start-page: 163 issue: 2 year: 2021 ident: 10.1016/j.net.2024.03.011_bib8 article-title: Feasibility study on automatic Interpretation of radiation dose using deep learning technique for dicentric chromosome assay publication-title: Radiat. Res. – start-page: 1 year: 2018 ident: 10.1016/j.net.2024.03.011_bib26 article-title: Chromosome classification with convolutional neural network based deep learning, 2018 11th international congress on image and signal processing – volume: 19 start-page: 1285 issue: 3 year: 2022 ident: 10.1016/j.net.2024.03.011_bib29 article-title: CIR-net: automatic classification of human chromosome based on Inception-ResNet Architecture publication-title: IEEE ACM Trans. Comput. Biol. Bioinf doi: 10.1109/TCBB.2020.3003445 – volume: 28 year: 2015 ident: 10.1016/j.net.2024.03.011_bib32 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. – start-page: 248 year: 2009 ident: 10.1016/j.net.2024.03.011_bib35 article-title: Imagenet: a large-scale hierarchical image database – start-page: 2117 year: 2017 ident: 10.1016/j.net.2024.03.011_bib33 article-title: Feature pyramid networks for object detection |
SSID | ssj0064470 |
Score | 2.3304732 |
Snippet | The dicentric chromosome assay is a gold standard method to estimate radiation exposure by calculating the ratio of dicentric chromosomes existing in cells.... |
SourceID | nrf doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 3123 |
SubjectTerms | Biological dosimetry Convolutional neural network Dicentric chromosome assay Patient with radiation exposure VGG19 원자력공학 |
Title | Discrimination of dicentric chromosome from radiation exposure patient data using a pretrained deep learning model |
URI | https://dx.doi.org/10.1016/j.net.2024.03.011 https://doaj.org/article/4803a250e71742c391bf39bcf7287e0a https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003103733 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nuclear Engineering and Technology, 2024, 56(8), , pp.3123-3128 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2234-358X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064470 issn: 1738-5733 databaseCode: KQ8 dateStart: 20130201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2234-358X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064470 issn: 1738-5733 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2234-358X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064470 issn: 1738-5733 databaseCode: AKRWK dateStart: 20130201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7qSQ_iE9cXAT0JxbZJt83R1-IDBUHBW8hzrY_tUlfw5zuTtrJ70YuXFkrShMm080375RtCDjMWey2SLPIqSyOexiJSsc-iNFVGK8-88_hB__auf_nIr5-yp6lSX8gJa-SBG8Md8yJmCuK0g7yDp4aJRHsmtPE5YH0XB2gEYaxLppp3MAT5vNkKCY8zKv51_zMDswtyfkgMUx7UTZNkJiIF4f6ZwDQ_qv1UyBmskOUWK9KTZo6rZM6N1sjSlILgOqnPS3zukc-CFqaVp7YMhMvSUPOMXLuP6t1R3EVCa9QhCM3c17jCT4O0lVWlSBSlyIEfUkWRg4iVI5yl1rkxbStLDGkom7NBHgcXD2eXUVtGITKAdSaR5h5BhjE6SZRR3GgnvI1F0bfQwPTxX6XtCy08hH5vnXBai0LA0qYJU46xTbIwqkZui1CTAxywqbAi91zlDtBBkUFni3mi4qJH4s6U0rQa4zjhN9mRyV4kWF-i9WXMJFi_R45-uowbgY3fGp_i-vw0RG3scAE8RrYeI__ymB7h3erKFmY08AFuVf429gF4gnw1ZRgWz8NKvtYSEo8riXVGIfMttv9jhjtkEQdueIa7ZGFSf7o9wD4TvR_cHI4398U3E8YBgQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrimination+of+dicentric+chromosome+from+radiation+exposure+patient+data+using+a+pretrained+deep+learning+model&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Kwon%2C+Soon+Woo&rft.au=Jang%2C+Won+Il&rft.au=Kim%2C+Mi-Sook&rft.au=Seong%2C+Ki+Moon&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=1738-5733&rft.volume=56&rft.issue=8&rft.spage=3123&rft.epage=3128&rft_id=info:doi/10.1016%2Fj.net.2024.03.011&rft.externalDocID=S1738573324001293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon |