The crystal chemistry of pumpellyite from Sugashima and julgoldite from Kouragahana, Japan: Toward a comprehensive understanding of the crystal chemistry of pumpellyite-group minerals

Single-crystal X-ray crystal-structure refinements and electron-microprobe analyses of julgoldite from Kouragahana, Shimane Peninsula, and pumpellyite from Sugashima, Mie, Japan yielded the compositions of WCa2.00X(Fe0.69Mg0.20Al0.11)Σ1.00Y(Fe3+1.46Al0.54)Σ2.00Si3.00O14−n(OH)n and WCa2.00X(Al0.56Mg0...

Full description

Saved in:
Bibliographic Details
Published inJournal of Mineralogical and Petrological Sciences Vol. 120; no. 1; p. 250401
Main Authors Daisuke NISHIO-HAMANE, Mariko NAGASHIMA
Format Journal Article
LanguageEnglish
Published Sendai Japan Association of Mineralogical Sciences 2025
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1345-6296
1349-3825
1349-3825
DOI10.2465/jmps.250401

Cover

Abstract Single-crystal X-ray crystal-structure refinements and electron-microprobe analyses of julgoldite from Kouragahana, Shimane Peninsula, and pumpellyite from Sugashima, Mie, Japan yielded the compositions of WCa2.00X(Fe0.69Mg0.20Al0.11)Σ1.00Y(Fe3+1.46Al0.54)Σ2.00Si3.00O14−n(OH)n and WCa2.00X(Al0.56Mg0.35Fe0.09)Σ1.00YAl2.00Si3.00O14−n(OH)n (4 ≥ n ≥ 3), respectively. The latter was classified as pumpellyite-(Al), while the former can only be concluded to be either julgoldite-(Fe3+) or julgoldite-(Fe2+). The hydroxyl groups determined by structure refinement are consistent with those known for pumpellyite. The length of the b-axis most accurately reflects the average size of ionic radii at the Y site based on structural and chemical data for pumpellyite-group minerals. In contrast, the lengths of the a- and c-axes demonstrate a favorable correlation with the mean ionic radius of the Y site; however, they exhibit greater dispersion compared to the b-axis. This is attributed to the lateral expansion or shrinkage of the (010) plane caused by variation in the size of the X site. Therefore, the pumpellyite group minerals with longer a- and c-axes may be rich in divalent cations at the X site. The well-defined, intense Raman peak around 695 cm−1 is characteristic of pumpellyite-group minerals and is likely attributed to the Si-O-Si bending mode. The six to seven Raman peaks resulting from O-H bond stretching reflect the complex hydrogen bond system in the pumpellyite group structure, arising from the presence of multiple hydroxyl groups and variations in the local chemical environment due to compositional differences.
AbstractList Single-crystal X-ray crystal-structure refinements and electron-microprobe analyses of julgoldite from Kouragahana, Shimane Peninsula, and pumpellyite from Sugashima, Mie, Japan yielded the compositions of WCa2.00X(Fe0.69Mg0.20Al0.11)Σ1.00Y(Fe3+1.46Al0.54)Σ2.00Si3.00O14−n(OH)n and WCa2.00X(Al0.56Mg0.35Fe0.09)Σ1.00YAl2.00Si3.00O14−n(OH)n (4 ≥ n ≥ 3), respectively. The latter was classified as pumpellyite-(Al), while the former can only be concluded to be either julgoldite-(Fe3+) or julgoldite-(Fe2+). The hydroxyl groups determined by structure refinement are consistent with those known for pumpellyite. The length of the b-axis most accurately reflects the average size of ionic radii at the Y site based on structural and chemical data for pumpellyite-group minerals. In contrast, the lengths of the a- and c-axes demonstrate a favorable correlation with the mean ionic radius of the Y site; however, they exhibit greater dispersion compared to the b-axis. This is attributed to the lateral expansion or shrinkage of the (010) plane caused by variation in the size of the X site. Therefore, the pumpellyite group minerals with longer a- and c-axes may be rich in divalent cations at the X site. The well-defined, intense Raman peak around 695 cm−1 is characteristic of pumpellyite-group minerals and is likely attributed to the Si-O-Si bending mode. The six to seven Raman peaks resulting from O-H bond stretching reflect the complex hydrogen bond system in the pumpellyite group structure, arising from the presence of multiple hydroxyl groups and variations in the local chemical environment due to compositional differences.
ArticleNumber 250401
Author Mariko NAGASHIMA
Daisuke NISHIO-HAMANE
Author_xml – sequence: 1
  fullname: Daisuke NISHIO-HAMANE
  organization: The Institute for Solid State Physics, the University of Tokyo
– sequence: 1
  fullname: Mariko NAGASHIMA
  organization: Division of Earth Science, Graduate School of Science and Technology for Innovation, Yamaguchi University
BookMark eNqNkMtu1TAQhi1UJNrCihewxJKm2HF8krBDR1x6kbroYW1NnMlNiW3shCpPxuvh06CzpRuPpflm5td3Qc6MNUjIe86u02wnPw2TC9epZBnjr8g5F1mZiCKVZ89_mezScveGXIQwMCZyUbBz8ufQIdV-DTOMVHc49WH2K7UNdcvkcBzXfkbaeDvRx6WF0PUTUDA1HZaxtWN96t7ZxUMLHRi4orfgwHymB_sEvqZAtZ2cxw5N6H8jXUyNPh40dW_a46n5BRmS1tvF0ak36GEMb8nrJhZ8969ekp_fvh72P5L7h-83-y_3ic4yPidQSHb0UfBdXWe8lDwHDqLMKpBNU2ldlllTpTmvuETUKKEpWcogZwIrWQhxSa62vYtxsD7BOCrnowO_Ks7UUbo6Sleb9Ih_2HDn7a8Fw6yG6MXEhEqkUuZCxBCR-rhR2tsQPDb_2bnf6CEKavHEgp97PeLG8pQp_vxuU6eu7sArNOIvqOGvXA
Cites_doi 10.1180/mgm.2023.80
10.1007/BF01128619
10.1127/ejm/2018/0030-2747
10.1007/BF00203213
10.2138/am-2003-0717
10.1107/S0021889811038970
10.2138/am.2010.3376
10.2465/jmps.98.31
10.1107/S0567739476001551
10.1107/S0567740874004560
10.2465/jmps.180613
10.1180/minmag.1976.040.315.10
10.2113/gscanmin.45.4.837
10.1127/0935-1221/2007/0019-1720
10.2465/jmps.210127
10.1127/0935-1221/2010/0022-2033
10.1515/9783110417104-003
10.1016/0024-4937(71)90101-0
10.1007/s00269-006-0066-1
10.1180/minmag.1973.039.303.03
10.2138/am.2006.2033
10.15080/agcjchikyukagaku.64.5_193
10.1126/science.172.3983.567
10.1111/jmg.12682
10.2465/ganko1941.81.51
10.1007/BF01172483
10.1107/S0567740871005016
10.1107/S0108768185002063
ContentType Journal Article
Copyright 2025 Japan Association of Mineralogical Sciences
2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 Japan Association of Mineralogical Sciences
– notice: 2025. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8BQ
8FD
F1W
FR3
H8D
H96
JG9
KR7
L.G
L7M
ADTOC
UNPAY
DOI 10.2465/jmps.250401
DatabaseName CrossRef
METADEX
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Materials Research Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1349-3825
ExternalDocumentID 10.2465/jmps.250401
10_2465_jmps_250401
article_jmps_120_1_120_250401_article_char_en
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID 2WC
5GY
ACGFO
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
HH5
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TKC
~02
AAYXX
CITATION
8BQ
8FD
F1W
FR3
H8D
H96
JG9
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c441t-a8502504816dd419517a1a394ba5ffbcc994fb271b15eece5af9020a703eb5833
IEDL.DBID UNPAY
ISSN 1345-6296
1349-3825
IngestDate Tue Aug 19 09:31:10 EDT 2025
Tue Sep 30 19:58:29 EDT 2025
Wed Oct 01 05:43:56 EDT 2025
Wed Sep 03 06:30:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-a8502504816dd419517a1a394ba5ffbcc994fb271b15eece5af9020a703eb5833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.jstage.jst.go.jp/article/jmps/advpub/0/advpub_250401/_pdf
PQID 3255733419
PQPubID 1976374
ParticipantIDs unpaywall_primary_10_2465_jmps_250401
proquest_journals_3255733419
crossref_primary_10_2465_jmps_250401
jstage_primary_article_jmps_120_1_120_250401_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationPlace Sendai
PublicationPlace_xml – name: Sendai
PublicationTitle Journal of Mineralogical and Petrological Sciences
PublicationYear 2025
Publisher Japan Association of Mineralogical Sciences
Japan Science and Technology Agency
Publisher_xml – name: Japan Association of Mineralogical Sciences
– name: Japan Science and Technology Agency
References Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
Kasatkin, A.V., Zubkova, N.V., Chukanov, N.V., Ksenofontov, D.A., et al (2021) Unusually iron-rich julgoldite-(Fe3+) from the Karadag volcanic massif (Crimea Peninsula). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 150, 96-112 (in Russian with English abstract).
Kováčik, M. (2011) Pumpellyite-prehnite mineral assemblage in Tatric basement and its relation to the Central Western Carpathian units. Mineralia Slovaca, 43, 263-272.
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
Akasaka, M., Goishi (Imaizumi), Y., Sakakibara, M. and Nakamuta, Y. (2023) The oxidation state and distribution of Fe in pumpellyite from the Northern Chichibu Belt in the Hijikawa district, western Shikoku, Japan. Mineralogical Magazine, 87, 916-934.
Allmann, R. and Donnay, G. (1971) Structural relations between pumpellyite and ardennite. Acta Crystallographica, B27, 1871-1875.
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.
Nagashima, M., Ishida, T. and Akasaka, M. (2006) Distribution of Fe among octahedral sites and its effect on the crystal structure of pumpellyite. Physics and Chemistry of Minerals, 33, 178-191.
Artioli, G., Geiger, C.A. and Dapiaggi, M. (2003) The crystal chemistry of julgoldite-Fe3+ from Bombay, India, studied using synchrotron X-ray powder diffraction and 57Fe Mössbauer spectroscopy. American Mineralogist, 88, 1084-1090.
Nagashima, M., Nishio-Hamane, D., Ito, S. and Tanaka, T. (2021) Ferriprehnite, Ca2Fe3+(AlSi3)O10(OH)2, an Fe3+ analogue of prehnite, from Kouragahana, Shimane Peninsula, Japan. Journal of Mineralogical and Petrological Sciences, 116, 129-139.
Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 3-8.
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The powder of databases: the RRUFF project. In Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M. Eds.). W. De Gruyter, Berlin, Germany, 1-30.
Brigatti, M.F., Caprilli, E. and Marchesini, M. (2006) Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure. American Mineralogist, 91, 584-588.
Muñoz, M., Aguirre, L., Vergara, M., Demant, A., et al (2010) Prehnite-pumpellyite facies metamorphism in the Cenozoic Abanico Formation, Andes of central Chile (33°50′S): chemical and scale controls on mineral assemblages, reaction progress and the equilibrium state. Andean Geology, 37, 54-77.
Franks, F., Ed. (1973) Water: A comprehensive treatise, vol. 2. pp. 684, Plenum, New York.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
Nagashima, M. and Akasaka, M. (2007) Distribution of chromium in Cr-rich pumpellyite from Sarani, Urals, Russia: a TOF neutron and X-ray Rietveld study. The Canadian Mineralogist, 45, 837-846.
Tomiyoshi, S. and Takasu, A. (2010) K-Ar ages of lawsonite-bearing pelitic schists from the Sambagawa metamorphic belt in the Ise district, eastern Kii Peninsula, southeast Japan. Earth Science (Chikyu Kagaku), 64, 193-200.
Gottardi, G. (1965) Die Kristallstruktur von Pumpellyit. Tschermaks Mineralogische und Petrographische Mitteilungen, 10, 115-119 (in German).
Livingstone, A. (1976) Julgoldite, new data and occurrences; a second recording. Mineralogical Magazine, 40, 761-763.
Nakamura, Y. (1971) Petrology of the Toba ultramafic complex, Mie Prefecture, Central Japan. Journal of Faculty of Science, University of Tokyo, Section II, 18, 1-51.
Akasaka, M., Hashimoto, H., Makino, K. and Hino, R. (2003) 57Fe Mossbauer and X-ray Rietveld studies of ferrian prehnite from Kouragahana, Shimane Peninsula, Japan. Journal of Mineralogical and Petrological Sciences, 98, 31-40.
Brastad, K. (1984) Julgoldite from Tafjord, Sunnmøre. Contribution to the Mineralogy of Norway, No. 67. Norsk Geologisk Tidsskrift, 3, 251-255.
Hamada, M., Akasaka, M., Seto, S. and Makino, K. (2010) Crystal chemistry of chromian pumpellyite from Osayama, Okayama Prefecture, Japan. American Mineralogist, 95, 1294-1304.
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567-570.
Nagashima, M., Armbruster, T. and Libowitzky, E. (2010) The hydrogen-bond system in pumpellyite. European Journal of Mineralogy, 22, 333-342.
Austrheim, H., Engvik, A.N., Ganerød, M., Dunkel, K.G. and Velo, M.R. (2022) Low-grade prehnite-pumpellyite facies metamorphism and metasomatism in basement rocks adjacent to the Permian Oslo rift: The importance of displacive reactions. Journal of Metamorphic Geology, 40, 1467-1492.
Passaglia, E. and Gottardi, G. (1973) Crystal chemistry and nomenclature of pumpellyites and julgoldites. The Canadian Mineralogist, 12, 219-223.
Seki, Y. (1958) Glaucophanic regional metamorphism in the Kanto Mountains, Central Japan. Japanese Journal of Geology and Geography, 29, 233-258.
Moore, P.B. (1971) Julgoldite, the Fe2+-Fe3+ dominant pumpellyite. A new mineral from Långban, Sweden. Lithos, 4, 93-99.
Artioli, G. and Geiger, C.A. (1994) The crystal chemistry of pumpellyite: an X-ray Rietveld refinement and 57Fe Mössbauer study. Physics and Chemistry of Minerals, 20, 443-453.
Hatert, F., Pasero, M., Perchiazzi, N. and Theye, T. (2007) Pumpellyite-(Al), a new mineral from Bertrix, Belgian Ardennes. European Journal of Mineralogy, 19, 247-253.
Nagashima, M., Cametti, G. and Armbruster, T. (2018a) Crystal chemistry of julgoldite, a mineral of the pumpellyite group: Re-investigation of Fe distribution and hydrogen-bonding. European Journal of Mineralogy, 30, 721-731.
Allmann, R. and Donnay, G. (1973) The crystal structure of julgoldite. Mineralogical Magazine, 39, 271-281.
Kano, K., Satoh, H. and Bunno, M. (1986) Iron-rich pumpellyite and prehnite from the Miocene gabbroic sills of the Shimane Peninsula, Southwest Japan. Journal of Japanese Association of Mineralogy, Petrology and Economic Geology, 81, 51-58.
Nagashima, M., Iwasa, K. and Akasaka, M. (2016) Relation between occurrence and chemical compositions of prehnite in hydrothermally altered dolerite from Mitsu, Shimane Peninsula, Japan. Geoscience Reports of Shimane University, 34, 1-8 (in Japanese with English abstract).
Matsubara, M., Kato, A. and Kamiya, T. (1992) Julgoldite-(Fe2+) from Kouragahana, Shimane Prefecture. 1992 Annual meeting abstract Mineralogical Society of Japan, 161 (in Japanese, title is translated by MN).
Baur, H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 1195-1215.
Deer, W.A., Howie, R.A. and Zussman, J. (1986) Rock-forming minerals. 1B (Second edition), Disilicates and ring silicates. pp. 629, Geological Society Publishing House, UK.
Yoshiasa, A. and Matsumoto, T. (1985) Crystal structure refinement and crystal chemistry of pumpellyite. American Mineralogist, 70, 1011-1019.
Akasaka, M., Kimura, Y., Omori, Y., Sakakibara, M., et al (1997) 57Fe Mössbauer study of pumpellyite-okhotskite-julgoldite series minerals. Mineralogy and Petrology, 61, 181-198.
Uchino, T., Nakae, S. and Nakashima, R. (2017) Geology of the Toba District. Quadrangle Series, 1:50,000. pp. 141, Geological Survey of Japan, AIST (in Japanese with English abstract).
Nagashima, M., Matsumoto, T., Yamada, T., Takizawa, M. and Momma, K. (2018b) Crystal chemistry of poppiite, V-analogue of pumpellyite, from the Komatsu mine, Saitama Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 113, 251-262.
22
23
24
G. Artioli (7) 1994; 20
25
26
28
29
A. Yoshiasa (42) 1985; 70
E. Passaglia (36) 1973; 12
30
31
10
32
11
33
12
34
13
35
14
15
37
16
38
17
39
18
19
M. Kováčik (21) 2011; 43
M. Muñoz (27) 2010; 37
1
2
3
4
5
6
8
9
40
41
20
References_xml – reference: Franks, F., Ed. (1973) Water: A comprehensive treatise, vol. 2. pp. 684, Plenum, New York.
– reference: Nagashima, M., Iwasa, K. and Akasaka, M. (2016) Relation between occurrence and chemical compositions of prehnite in hydrothermally altered dolerite from Mitsu, Shimane Peninsula, Japan. Geoscience Reports of Shimane University, 34, 1-8 (in Japanese with English abstract).
– reference: Uchino, T., Nakae, S. and Nakashima, R. (2017) Geology of the Toba District. Quadrangle Series, 1:50,000. pp. 141, Geological Survey of Japan, AIST (in Japanese with English abstract).
– reference: Akasaka, M., Kimura, Y., Omori, Y., Sakakibara, M., et al (1997) 57Fe Mössbauer study of pumpellyite-okhotskite-julgoldite series minerals. Mineralogy and Petrology, 61, 181-198.
– reference: Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
– reference: Muñoz, M., Aguirre, L., Vergara, M., Demant, A., et al (2010) Prehnite-pumpellyite facies metamorphism in the Cenozoic Abanico Formation, Andes of central Chile (33°50′S): chemical and scale controls on mineral assemblages, reaction progress and the equilibrium state. Andean Geology, 37, 54-77.
– reference: Nagashima, M., Cametti, G. and Armbruster, T. (2018a) Crystal chemistry of julgoldite, a mineral of the pumpellyite group: Re-investigation of Fe distribution and hydrogen-bonding. European Journal of Mineralogy, 30, 721-731.
– reference: Brastad, K. (1984) Julgoldite from Tafjord, Sunnmøre. Contribution to the Mineralogy of Norway, No. 67. Norsk Geologisk Tidsskrift, 3, 251-255.
– reference: Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
– reference: Nagashima, M., Matsumoto, T., Yamada, T., Takizawa, M. and Momma, K. (2018b) Crystal chemistry of poppiite, V-analogue of pumpellyite, from the Komatsu mine, Saitama Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 113, 251-262.
– reference: Passaglia, E. and Gottardi, G. (1973) Crystal chemistry and nomenclature of pumpellyites and julgoldites. The Canadian Mineralogist, 12, 219-223.
– reference: Hamada, M., Akasaka, M., Seto, S. and Makino, K. (2010) Crystal chemistry of chromian pumpellyite from Osayama, Okayama Prefecture, Japan. American Mineralogist, 95, 1294-1304.
– reference: Kováčik, M. (2011) Pumpellyite-prehnite mineral assemblage in Tatric basement and its relation to the Central Western Carpathian units. Mineralia Slovaca, 43, 263-272.
– reference: Nakamura, Y. (1971) Petrology of the Toba ultramafic complex, Mie Prefecture, Central Japan. Journal of Faculty of Science, University of Tokyo, Section II, 18, 1-51.
– reference: Akasaka, M., Goishi (Imaizumi), Y., Sakakibara, M. and Nakamuta, Y. (2023) The oxidation state and distribution of Fe in pumpellyite from the Northern Chichibu Belt in the Hijikawa district, western Shikoku, Japan. Mineralogical Magazine, 87, 916-934.
– reference: Moore, P.B. (1971) Julgoldite, the Fe2+-Fe3+ dominant pumpellyite. A new mineral from Långban, Sweden. Lithos, 4, 93-99.
– reference: Austrheim, H., Engvik, A.N., Ganerød, M., Dunkel, K.G. and Velo, M.R. (2022) Low-grade prehnite-pumpellyite facies metamorphism and metasomatism in basement rocks adjacent to the Permian Oslo rift: The importance of displacive reactions. Journal of Metamorphic Geology, 40, 1467-1492.
– reference: Nagashima, M. and Akasaka, M. (2007) Distribution of chromium in Cr-rich pumpellyite from Sarani, Urals, Russia: a TOF neutron and X-ray Rietveld study. The Canadian Mineralogist, 45, 837-846.
– reference: Nagashima, M., Armbruster, T. and Libowitzky, E. (2010) The hydrogen-bond system in pumpellyite. European Journal of Mineralogy, 22, 333-342.
– reference: Kano, K., Satoh, H. and Bunno, M. (1986) Iron-rich pumpellyite and prehnite from the Miocene gabbroic sills of the Shimane Peninsula, Southwest Japan. Journal of Japanese Association of Mineralogy, Petrology and Economic Geology, 81, 51-58.
– reference: Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The powder of databases: the RRUFF project. In Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M. Eds.). W. De Gruyter, Berlin, Germany, 1-30.
– reference: Livingstone, A. (1976) Julgoldite, new data and occurrences; a second recording. Mineralogical Magazine, 40, 761-763.
– reference: Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567-570.
– reference: Kasatkin, A.V., Zubkova, N.V., Chukanov, N.V., Ksenofontov, D.A., et al (2021) Unusually iron-rich julgoldite-(Fe3+) from the Karadag volcanic massif (Crimea Peninsula). Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 150, 96-112 (in Russian with English abstract).
– reference: Deer, W.A., Howie, R.A. and Zussman, J. (1986) Rock-forming minerals. 1B (Second edition), Disilicates and ring silicates. pp. 629, Geological Society Publishing House, UK.
– reference: Yoshiasa, A. and Matsumoto, T. (1985) Crystal structure refinement and crystal chemistry of pumpellyite. American Mineralogist, 70, 1011-1019.
– reference: Sheldrick, G.M. (2015) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 3-8.
– reference: Artioli, G. and Geiger, C.A. (1994) The crystal chemistry of pumpellyite: an X-ray Rietveld refinement and 57Fe Mössbauer study. Physics and Chemistry of Minerals, 20, 443-453.
– reference: Artioli, G., Geiger, C.A. and Dapiaggi, M. (2003) The crystal chemistry of julgoldite-Fe3+ from Bombay, India, studied using synchrotron X-ray powder diffraction and 57Fe Mössbauer spectroscopy. American Mineralogist, 88, 1084-1090.
– reference: Hatert, F., Pasero, M., Perchiazzi, N. and Theye, T. (2007) Pumpellyite-(Al), a new mineral from Bertrix, Belgian Ardennes. European Journal of Mineralogy, 19, 247-253.
– reference: Baur, H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 1195-1215.
– reference: Allmann, R. and Donnay, G. (1973) The crystal structure of julgoldite. Mineralogical Magazine, 39, 271-281.
– reference: Brigatti, M.F., Caprilli, E. and Marchesini, M. (2006) Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure. American Mineralogist, 91, 584-588.
– reference: Gottardi, G. (1965) Die Kristallstruktur von Pumpellyit. Tschermaks Mineralogische und Petrographische Mitteilungen, 10, 115-119 (in German).
– reference: Seki, Y. (1958) Glaucophanic regional metamorphism in the Kanto Mountains, Central Japan. Japanese Journal of Geology and Geography, 29, 233-258.
– reference: Akasaka, M., Hashimoto, H., Makino, K. and Hino, R. (2003) 57Fe Mossbauer and X-ray Rietveld studies of ferrian prehnite from Kouragahana, Shimane Peninsula, Japan. Journal of Mineralogical and Petrological Sciences, 98, 31-40.
– reference: Matsubara, M., Kato, A. and Kamiya, T. (1992) Julgoldite-(Fe2+) from Kouragahana, Shimane Prefecture. 1992 Annual meeting abstract Mineralogical Society of Japan, 161 (in Japanese, title is translated by MN).
– reference: Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272-1276.
– reference: Tomiyoshi, S. and Takasu, A. (2010) K-Ar ages of lawsonite-bearing pelitic schists from the Sambagawa metamorphic belt in the Ise district, eastern Kii Peninsula, southeast Japan. Earth Science (Chikyu Kagaku), 64, 193-200.
– reference: Allmann, R. and Donnay, G. (1971) Structural relations between pumpellyite and ardennite. Acta Crystallographica, B27, 1871-1875.
– reference: Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
– reference: Nagashima, M., Ishida, T. and Akasaka, M. (2006) Distribution of Fe among octahedral sites and its effect on the crystal structure of pumpellyite. Physics and Chemistry of Minerals, 33, 178-191.
– reference: Nagashima, M., Nishio-Hamane, D., Ito, S. and Tanaka, T. (2021) Ferriprehnite, Ca2Fe3+(AlSi3)O10(OH)2, an Fe3+ analogue of prehnite, from Kouragahana, Shimane Peninsula, Japan. Journal of Mineralogical and Petrological Sciences, 116, 129-139.
– ident: 39
– ident: 4
  doi: 10.1180/mgm.2023.80
– ident: 16
  doi: 10.1007/BF01128619
– ident: 32
  doi: 10.1127/ejm/2018/0030-2747
– volume: 20
  start-page: 443
  issn: 0342-1791
  year: 1994
  ident: 7
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/BF00203213
– ident: 8
  doi: 10.2138/am-2003-0717
– ident: 25
  doi: 10.1107/S0021889811038970
– ident: 35
– ident: 17
  doi: 10.2138/am.2010.3376
– ident: 3
  doi: 10.2465/jmps.98.31
– ident: 38
  doi: 10.1107/S0567739476001551
– ident: 14
– ident: 31
– ident: 10
  doi: 10.1107/S0567740874004560
– ident: 33
  doi: 10.2465/jmps.180613
– ident: 23
  doi: 10.1180/minmag.1976.040.315.10
– ident: 24
– ident: 29
  doi: 10.2113/gscanmin.45.4.837
– ident: 18
  doi: 10.1127/0935-1221/2007/0019-1720
– ident: 34
  doi: 10.2465/jmps.210127
– volume: 37
  start-page: 54
  issn: 0718-7092
  year: 2010
  ident: 27
  publication-title: Andean geology
– ident: 20
– ident: 30
  doi: 10.1127/0935-1221/2010/0022-2033
– ident: 41
– volume: 43
  start-page: 263
  issn: 0369-2086
  year: 2011
  ident: 21
  publication-title: Mineralia Slovaca
– ident: 22
  doi: 10.1515/9783110417104-003
– ident: 26
  doi: 10.1016/0024-4937(71)90101-0
– ident: 28
  doi: 10.1007/s00269-006-0066-1
– ident: 1
– ident: 6
  doi: 10.1180/minmag.1973.039.303.03
– ident: 12
  doi: 10.2138/am.2006.2033
– ident: 11
– ident: 40
  doi: 10.15080/agcjchikyukagaku.64.5_193
– ident: 37
  doi: 10.1126/science.172.3983.567
– ident: 15
– ident: 9
  doi: 10.1111/jmg.12682
– ident: 19
  doi: 10.2465/ganko1941.81.51
– volume: 12
  start-page: 219
  issn: 0008-4476
  year: 1973
  ident: 36
  publication-title: The Canadian Mineralogist
– ident: 2
  doi: 10.1007/BF01172483
– ident: 5
  doi: 10.1107/S0567740871005016
– ident: 13
  doi: 10.1107/S0108768185002063
– volume: 70
  start-page: 1011
  issn: 0003-004X
  year: 1985
  ident: 42
  publication-title: American Mineralogist
SSID ssj0037380
Score 2.3369653
Snippet Single-crystal X-ray crystal-structure refinements and electron-microprobe analyses of julgoldite from Kouragahana, Shimane Peninsula, and pumpellyite from...
SourceID unpaywall
proquest
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 250401
SubjectTerms Cations
Crystal structure
Deformation
Divalent cations
Hydrogen bond
Hydroxyl groups
Julgoldite
Minerals
Pumpellyite
Raman
Single crystals
Yttrium
Title The crystal chemistry of pumpellyite from Sugashima and julgoldite from Kouragahana, Japan: Toward a comprehensive understanding of the crystal chemistry of pumpellyite-group minerals
URI https://www.jstage.jst.go.jp/article/jmps/120/1/120_250401/_article/-char/en
https://www.proquest.com/docview/3255733419
https://www.jstage.jst.go.jp/article/jmps/advpub/0/advpub_250401/_pdf
UnpaywallVersion publishedVersion
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Mineralogical and Petrological Sciences, 2025, Vol.120(1), pp.250401
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1349-3825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037380
  issn: 1345-6296
  databaseCode: HH5
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1349-3825
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037380
  issn: 1345-6296
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKFsSJ8hSLSuVDueFsvInzQFwq1IeKqJDoSuUUTWwnZclmo90EtPwx_h5jO1m1HFAlLkkkT-xJZuL5RpkHIYcBxGjVeMKiUCcsLPycpVFRMIX6kyacK2Gj3T9dRGez8PxKXO2Q4yEXxoRVzhEXldqcvHLpzZtJ_xIn80WznoD6gZyiK-8uMlODy-eTrFHFPbIbCYTkI7I7u_h89NU6W6Fg0dT26TKV-FiALpHL05uGkbBTem6KW5bpvmPiFu582NUNbH5CVd0wQSd7LlRkbSsXmsiT717X5p789Vddx_9-usfkUQ9S6ZG75QnZ0fVT8uDUNgHePCO_UbeoXG1wiYrKoWMcXRa0QeXQVbVBHEtN4gr90pWmW9MCKNSKzruqNH-7htGPuBCUcA01vKXnaLbrd_TSxvFSoCbYfaWvXYA97W4m4Zil2jvwwGzOCl18s6W118_J7OT48sMZ6xtAMIkorWWQCFtiLeGRUiFHMBgDhyANcxBFkUuZpmGRT2Oec6G11AKKFOEv4C6mc5NO9oKM6mWtX5rUdKt3UgUS7XEOqa_Q0YsgTJQfS1-OyeEg_KxxdT4y9I-MjmRGML0gxuS9k9-WqJeeI-JTdKns0ZFvR00KHe5DY7I_qFPW7xXrLECvLg5MXb0xebNVsX9x8eqOdPtk1K46_RphU5sfGKMlDvpP4w-ryCH5
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKFsSJN2KrgnwoN5yNN2_EpUItVREVEl2pnKKJH2mXbDbaTYqWP8bfY2wnq5YDqsQlieSJPclMPN8o8yDkIIAErRpPWRyqlIXaL1gWa80k6k-Wci4jG-3-5Sw-mYWnF9HFDjkacmFMWOUccVGpzMkrl968mfQvcTJfNOsJyGvkFF15d5GbGlw-n-SN1PfIbhwhJB-R3dnZ18Pv1tkKIxZPbZ8uU4mPBegSuTy9aRhHdkrPTXHLMt13TNzCnQ-7uoHNT6iqGybo-LELFVnbyoUm8uSH17WFJ379Vdfxv5_uCXnUg1R66G55SnZU_Yw8-GSbAG-ek9-oW1SsNrhERcXQMY4uNW1QOVRVbRDHUpO4Qr91penWtAAKtaTzrirN365h9DMuBCVcQg3v6Cma7fo9PbdxvBSoCXZfqUsXYE-7m0k4Zqn2Djwwm7NCF1e2tPb6BZkdH51_PGF9AwgmEKW1DNLIllhLeSxlyBEMJsAhyMICIq0LIbIs1MU04QWPlBIqAp0h_AXcxVRh0sleklG9rNUrk5pu9U7IQKA9LiDzJTp6MYSp9BPhizE5GISfN67OR47-kdGR3AimF8SYfHDy2xL10nNEfIoulT068u2oSaHDfWhM9gd1yvu9Yp0H6NUlgamrNyZvtyr2Ly727ki3T0btqlOvETa1xZv-o_gD5dohEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+crystal+chemistry+of+pumpellyite+from+Sugashima+and+julgoldite+from+Kouragahana%2C+Japan%3A+Toward+a+comprehensive+understanding+of+the+crystal+chemistry+of+pumpellyite-group+minerals&rft.jtitle=Journal+of+mineralogical+and+petrological+sciences&rft.au=NAGASHIMA%2C+Mariko&rft.au=NISHIO-HAMANE%2C+Daisuke&rft.date=2025&rft.issn=1345-6296&rft.eissn=1349-3825&rft.volume=120&rft.issue=1&rft_id=info:doi/10.2465%2Fjmps.250401&rft.externalDBID=n%2Fa&rft.externalDocID=10_2465_jmps_250401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-6296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-6296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-6296&client=summon