A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure
Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration respo...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 4; p. 1059 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
15.02.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s20041059 |
Cover
Abstract | Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications. |
---|---|
AbstractList | Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications. Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications.Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications. |
Author | Cao, Maosen Ragulskis, Minvydas Ostachowicz, Wiesław Xu, Hao Liu, Tongwei |
AuthorAffiliation | 3 Department of Civil and Environmental Engineering, Northwestern University, Chicago, IL 60626, USA 1 Department of Engineering Mechanics, Hohai University, Nanjing 210098, China; twliu@hhu.edu.cn 4 Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; minvydas.ragulskis@ktu.lt 2 School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; xuhao@dlut.edu.cn 5 Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Poland; wieslaw@imp.gda.pl |
AuthorAffiliation_xml | – name: 3 Department of Civil and Environmental Engineering, Northwestern University, Chicago, IL 60626, USA – name: 1 Department of Engineering Mechanics, Hohai University, Nanjing 210098, China; twliu@hhu.edu.cn – name: 2 School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; xuhao@dlut.edu.cn – name: 4 Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; minvydas.ragulskis@ktu.lt – name: 5 Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Poland; wieslaw@imp.gda.pl |
Author_xml | – sequence: 1 givenname: Tongwei orcidid: 0000-0001-5120-815X surname: Liu fullname: Liu, Tongwei – sequence: 2 givenname: Hao surname: Xu fullname: Xu, Hao – sequence: 3 givenname: Minvydas orcidid: 0000-0003-3490-2814 surname: Ragulskis fullname: Ragulskis, Minvydas – sequence: 4 givenname: Maosen surname: Cao fullname: Cao, Maosen – sequence: 5 givenname: Wiesław surname: Ostachowicz fullname: Ostachowicz, Wiesław |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32075311$$D View this record in MEDLINE/PubMed |
BookMark | eNplUsFuEzEQtVARbQMHfgD5CIel9tqbjTkgtQmhkQo9ULhaXns2cdm1W9sb1K_kl3CSprQgWZrxzJv3xp45RgfOO0DoNSXvGRPkJJaEcEoq8QwdUV7yYlKW5OCRf4iOY7wmpGSMTV6gQ1aSumKUHqHfp3imkipmwa7BZb9XS8ALAy7Z1mqVrHd4HlQPv3z4ic9UBINz6CooF3sbo21sZ9Mdng9Ob8EbuggpYuUMvnRQzGwPLuaU6vDUu7XvhrS7fYUhbE3akMcP-AeEv6r5KPwthUGnLewcVJdW-It3Nvlg3RKfgdOrXuW-9jB4iZ63qovw6t6O0Pf5p6vpeXFx-XkxPb0oNOc0FcJMKBeqMswYbmrGaSsIUca0CoBW5cTUTaPHlCldwSY4FoYRo2nNmW7Gho3QYsdrvLqWN8HmNu6kV1ZuAz4spQrJ6g5kOanLqoGGKS4410Y0tDZQ19klbZtnMkIfd1w3Q9OD0fnv83ufkD7NOLuSS7-WNamJECwTvL0nCP52gJhknoyGrlMO_BBlySrByZiNqwx981jrQWS_ERlwsgPo4GMM0Ept03YgWdp2khK52Tn5sHO54t0_FXvS_7F_ANni3Oc |
CitedBy_id | crossref_primary_10_1364_AO_405110 crossref_primary_10_1016_j_triboint_2022_108202 crossref_primary_10_1007_s13349_023_00715_3 crossref_primary_10_3390_s22176495 crossref_primary_10_1177_14759217231158786 crossref_primary_10_3390_math10111853 crossref_primary_10_3390_s23239327 crossref_primary_10_1007_s00466_022_02231_5 crossref_primary_10_3390_s22155793 crossref_primary_10_3390_electronics11233987 crossref_primary_10_1109_JIOT_2023_3272535 crossref_primary_10_1016_j_ymssp_2024_111937 crossref_primary_10_1016_j_istruc_2024_106026 crossref_primary_10_1109_TGRS_2022_3147695 crossref_primary_10_1016_j_ymssp_2024_111713 crossref_primary_10_3390_su141912041 crossref_primary_10_3389_fmats_2020_00301 crossref_primary_10_1061__ASCE_CP_1943_5487_0001003 crossref_primary_10_1016_j_ifacol_2023_12_053 crossref_primary_10_1016_j_ymssp_2023_111091 crossref_primary_10_1007_s13349_021_00535_3 crossref_primary_10_1016_j_istruc_2020_12_036 crossref_primary_10_3390_su152014868 crossref_primary_10_3390_app13063569 crossref_primary_10_3390_electronics10141615 crossref_primary_10_3390_app132112082 crossref_primary_10_1109_JSEN_2022_3173924 crossref_primary_10_3390_s22103647 crossref_primary_10_1142_S0219455425500658 crossref_primary_10_3390_math11041019 crossref_primary_10_1016_j_istruc_2021_10_088 crossref_primary_10_3390_s22176426 crossref_primary_10_3390_buildings15050763 crossref_primary_10_3390_s20092715 crossref_primary_10_1007_s13369_024_09035_0 crossref_primary_10_1155_2020_6932463 crossref_primary_10_3390_app13095289 crossref_primary_10_1016_j_istruc_2020_11_049 crossref_primary_10_1016_j_engappai_2024_108783 crossref_primary_10_3390_s23115058 crossref_primary_10_1016_j_asoc_2024_111459 crossref_primary_10_1016_j_istruc_2024_106076 crossref_primary_10_1016_j_istruc_2023_07_021 crossref_primary_10_3390_s20133721 crossref_primary_10_1016_j_sciaf_2023_e02053 |
Cites_doi | 10.1007/s00521-009-0240-8 10.3390/s19194216 10.1111/j.1467-8667.2006.00431.x 10.1111/mice.12263 10.1016/j.sna.2008.04.008 10.1061/(ASCE)BE.1943-5592.0001199 10.1117/12.879867 10.1016/j.ymssp.2013.05.020 10.1061/(ASCE)EM.1943-7889.0000821 10.1016/j.neucom.2017.09.069 10.3390/ma10080866 10.1016/j.neucom.2016.11.066 10.20944/preprints201701.0132.v1 10.1006/mssp.2002.1543 10.1007/s10921-010-0086-0 10.1016/j.ymssp.2008.07.009 10.1109/TIE.2017.2774777 10.1088/0964-1726/15/3/009 10.1098/rsta.2006.1938 10.1016/j.ymssp.2018.12.021 10.1016/j.jsv.2007.12.022 10.1016/j.asoc.2007.10.003 10.1016/j.ymssp.2015.12.020 10.1016/j.ymssp.2006.01.007 10.1016/j.ymssp.2013.02.019 10.1162/neco.2006.18.7.1527 10.1016/j.engstruct.2004.02.008 10.1061/(ASCE)0733-9399(2004)130:1(3) 10.1016/j.jsv.2009.03.014 10.1007/s00521-015-2132-4 10.1016/j.ymssp.2015.02.007 10.1016/S1359-8368(99)00034-7 10.1016/j.ymssp.2007.02.008 10.1007/s12205-017-1518-5 10.1115/1.1500744 10.3390/app7040391 10.1006/mssp.1999.1228 10.1016/j.ymssp.2009.02.015 10.1111/mice.12334 10.2514/6.2005-7002 10.1016/j.jsv.2016.10.043 10.1088/0964-1726/11/6/301 10.1016/j.jsv.2016.05.027 10.1109/TIE.2016.2582729 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/s20041059 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_28725beb3a4944cd9b17de774cd0ff02 PMC7070993 32075311 10_3390_s20041059 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ARAPS HCIFZ KB. M7S NPM PDBOC 7X8 PJZUB PPXIY PUEGO 5PM |
ID | FETCH-LOGICAL-c441t-9d8149a5d3dd4d7341f900addfaee1528d7bbc613ac5edfae69d30dc1743cb6d3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:25:43 EDT 2025 Thu Aug 21 14:09:45 EDT 2025 Fri Sep 05 13:07:42 EDT 2025 Wed Feb 19 02:30:39 EST 2025 Thu Apr 24 22:55:45 EDT 2025 Tue Jul 01 00:42:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning structural health monitoring transmissibility function convolutional neural networks damage identification |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-9d8149a5d3dd4d7341f900addfaee1528d7bbc613ac5edfae69d30dc1743cb6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5120-815X 0000-0003-3490-2814 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20041059 |
PMID | 32075311 |
PQID | 2359406365 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_28725beb3a4944cd9b17de774cd0ff02 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070993 proquest_miscellaneous_2359406365 pubmed_primary_32075311 crossref_citationtrail_10_3390_s20041059 crossref_primary_10_3390_s20041059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200215 |
PublicationDateYYYYMMDD | 2020-02-15 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200215 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Cha (ref_26) 2018; 33 Ding (ref_19) 2014; 16 Abdeljaber (ref_34) 2018; 275 Feng (ref_43) 2015; 60 Peimani (ref_10) 2008; 8 ref_11 Hu (ref_16) 2007; 21 Devriendt (ref_37) 2009; 23 Bodeux (ref_5) 2003; 17 Devriendt (ref_36) 2008; 314 ref_31 Kong (ref_40) 2014; 141 Pan (ref_14) 2018; 23 Caccese (ref_41) 2004; 26 Cavadas (ref_2) 2013; 39 Niezrecki (ref_33) 2017; Volume 7 Lam (ref_17) 2006; 21 Ince (ref_30) 2016; 63 Johnson (ref_39) 2002; 124 Hinton (ref_24) 2006; 18 Liu (ref_15) 2016; 75 Wen (ref_27) 2017; 65 Worden (ref_3) 2006; 365 Tibaduiza (ref_4) 2013; 41 Devriendt (ref_35) 2007; 21 Abdeljaber (ref_32) 2017; 388 Meng (ref_29) 2017; 257 Ni (ref_21) 2002; 11 Chronopoulos (ref_9) 2019; 122 Gui (ref_13) 2017; 21 Cao (ref_20) 2017; 28 Maaten (ref_48) 2008; 9 ref_22 ref_44 ref_42 Kang (ref_6) 2006; 15 ref_1 Cha (ref_25) 2017; 32 Schulz (ref_46) 1999; 30 Cho (ref_8) 2008; 8 Janssens (ref_28) 2016; 377 Majumder (ref_7) 2008; 147 Johnson (ref_47) 2004; 130 Oh (ref_12) 2009; 325 Cao (ref_18) 2009; 18 Devriendt (ref_38) 2010; 24 Sambath (ref_23) 2011; 30 Zhang (ref_45) 1999; 13 |
References_xml | – volume: 18 start-page: 821 year: 2009 ident: ref_18 article-title: Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures publication-title: Neural Comput. Appl. doi: 10.1007/s00521-009-0240-8 – ident: ref_11 doi: 10.3390/s19194216 – volume: 21 start-page: 232 year: 2006 ident: ref_17 article-title: Structural health monitoring via measured Ritz vectors utilizing artificial neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2006.00431.x – volume: 32 start-page: 361 year: 2017 ident: ref_25 article-title: Deep learning-based crack damage detection using convolutional neural networks publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12263 – volume: Volume 7 start-page: 49 year: 2017 ident: ref_33 article-title: Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications publication-title: Structural Health Monitoring & Damage Detection – volume: 147 start-page: 150 year: 2008 ident: ref_7 article-title: Fibre Bragg gratings in structural health monitoring—Present status and applications publication-title: Sens. Actuators A doi: 10.1016/j.sna.2008.04.008 – volume: 23 start-page: 04018033 year: 2018 ident: ref_14 article-title: Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0001199 – ident: ref_42 doi: 10.1117/12.879867 – volume: 41 start-page: 467 year: 2013 ident: ref_4 article-title: A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2013.05.020 – volume: 16 start-page: 3595 year: 2014 ident: ref_19 article-title: Structural dynamics-guided hierarchical neural-networks scheme for locating and quantifying damage in beam-type structures publication-title: J. Vibroeng. – volume: 141 start-page: 04014102 year: 2014 ident: ref_40 article-title: Damage detection based on transmissibility of a vehicle and bridge coupled system publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0000821 – volume: 275 start-page: 1308 year: 2018 ident: ref_34 article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.069 – ident: ref_44 doi: 10.3390/ma10080866 – volume: 257 start-page: 128 year: 2017 ident: ref_29 article-title: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.066 – ident: ref_31 doi: 10.20944/preprints201701.0132.v1 – volume: 17 start-page: 83 year: 2003 ident: ref_5 article-title: Modal identification and damage detection using the data-driven stochastic subspace and ARMAV methods publication-title: Mech. Syst. Sig. Process. doi: 10.1006/mssp.2002.1543 – volume: 30 start-page: 20 year: 2011 ident: ref_23 article-title: Automatic defect classification in ultrasonic NDT using artificial intelligence publication-title: J. Nondestr. Eval. doi: 10.1007/s10921-010-0086-0 – volume: 23 start-page: 621 year: 2009 ident: ref_37 article-title: Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2008.07.009 – volume: 9 start-page: 2579 year: 2008 ident: ref_48 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 65 start-page: 5990 year: 2017 ident: ref_27 article-title: A new convolutional neural network-based data-driven fault diagnosis method publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2774777 – volume: 15 start-page: 737 year: 2006 ident: ref_6 article-title: A carbon nanotube strain sensor for structural health monitoring publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/15/3/009 – volume: 365 start-page: 515 year: 2006 ident: ref_3 article-title: The application of machine learning to structural health monitoring publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2006.1938 – volume: 122 start-page: 192 year: 2019 ident: ref_9 article-title: A robust Bayesian methodology for damage localization in plate-like structures using ultrasonic guided-waves publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2018.12.021 – volume: 314 start-page: 343 year: 2008 ident: ref_36 article-title: Identification of modal parameters from transmissibility measurements publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.12.022 – volume: 8 start-page: 1150 year: 2008 ident: ref_10 article-title: Crack detection in beam-like structures using genetic algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.10.003 – volume: 8 start-page: 267 year: 2008 ident: ref_8 article-title: Smart wireless sensor technology for structural health monitoring of civil structures publication-title: Steel Struct. – volume: 75 start-page: 345 year: 2016 ident: ref_15 article-title: Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.12.020 – volume: 21 start-page: 688 year: 2007 ident: ref_16 article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2006.01.007 – volume: 39 start-page: 409 year: 2013 ident: ref_2 article-title: Damage detection using data-driven methods applied to moving-load responses publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2013.02.019 – volume: 18 start-page: 1527 year: 2006 ident: ref_24 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 26 start-page: 895 year: 2004 ident: ref_41 article-title: Detection of bolt load loss in hybrid composite/metal bolted connections publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2004.02.008 – volume: 130 start-page: 3 year: 2004 ident: ref_47 article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2004)130:1(3) – volume: 325 start-page: 224 year: 2009 ident: ref_12 article-title: Damage diagnosis under environmental and operational variations using unsupervised support vector machine publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2009.03.014 – volume: 28 start-page: 1583 year: 2017 ident: ref_20 article-title: Neural network ensemble-based parameter sensitivity analysis in civil engineering systems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-2132-4 – volume: 60 start-page: 59 year: 2015 ident: ref_43 article-title: Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.02.007 – volume: 30 start-page: 713 year: 1999 ident: ref_46 article-title: Health monitoring and active control of composite structures using piezoceramic patches publication-title: Compos. B. Eng. doi: 10.1016/S1359-8368(99)00034-7 – volume: 21 start-page: 2689 year: 2007 ident: ref_35 article-title: The use of transmissibility measurements in output-only modal analysis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2007.02.008 – volume: 21 start-page: 523 year: 2017 ident: ref_13 article-title: Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-017-1518-5 – volume: 124 start-page: 634 year: 2002 ident: ref_39 article-title: Transmissibility as a differential indicator of structural damage publication-title: J. Vib. Acoust. doi: 10.1115/1.1500744 – ident: ref_22 doi: 10.3390/app7040391 – volume: 13 start-page: 765 year: 1999 ident: ref_45 article-title: Structural health monitoring using transmittance functions publication-title: Mech. Syst. Sig. Process. doi: 10.1006/mssp.1999.1228 – volume: 24 start-page: 1250 year: 2010 ident: ref_38 article-title: An operational modal analysis approach based on parametrically identified multivariable transmissibilities publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2009.02.015 – volume: 33 start-page: 731 year: 2018 ident: ref_26 article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types publication-title: Comput.-Aided Civ. Infrastruct. Eng. doi: 10.1111/mice.12334 – ident: ref_1 doi: 10.2514/6.2005-7002 – volume: 388 start-page: 154 year: 2017 ident: ref_32 article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.043 – volume: 11 start-page: 825 year: 2002 ident: ref_21 article-title: Constructing input vectors to neural networks for structural damage identification publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/11/6/301 – volume: 377 start-page: 331 year: 2016 ident: ref_28 article-title: Convolutional neural network based fault detection for rotating machinery publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.05.027 – volume: 63 start-page: 7067 year: 2016 ident: ref_30 article-title: Real-time motor fault detection by 1-D convolutional neural networks publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2582729 |
SSID | ssj0023338 |
Score | 2.5109086 |
Snippet | Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1059 |
SubjectTerms | convolutional neural networks damage identification deep learning structural health monitoring transmissibility function |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp-RQmvTLTVOU0kMvIrYl2XJu2WyXUGhyaFNyM7JmTAqNN8TbQn9l_1JHkm12S6CXgMFeeVgPnvHMG3v0xNj7XFnTogNB4BuFypUTJpOlcIUpUgSjU-cnOH--KM6v1Kdrfb221JfvCYv0wPHGHROiz3VDJZ9VlVIOqiYrAQm0OEjbNtJIUhobi6mh1JJUeUUeIUlF_XHvfSELhKRr2SeQ9D-ELP9tkFzLOIun7MkAFflpVHGPbWG3z3bXCASfsT-nfG5XVszvfdCi41sKDzxOvm2Ht3F8MfZf8RmlLOA0FDIUWXjojf3NF5TegrD_ux5XPbcd8MsOxdzT_0fqDn627H4Nrkq_PK9H2IVG8v6EfyOtpqvSZvmXwE4bxOJ8Jx5jiNeez-gBubm1pNcohs_Z1eLj17NzMSzRIBzhqJWowFCJZTVIAAUlpcS2SlOKma1FJGhgoGwaR5DBOo1-sKhApuB8HeSaAuQLtt0tO3zFOGBmnHUFkpmVBm0zU6gmN62WaEyrEvZhNF3tBv5yv4zGj5rqGG_lerJywt5NoneRtOMhoZm3_yTgebbDAHlfPXhf_T_vS9jR6D01Wc1_bLEdLn_2dS51RWBJFjphL6M3TZeSOQE1mWUJKzf8bEOXzTPd95vA_V1SiCZI-foxlD9gO7l_e-CXt9Fv2DbZGg8JYq2at-Fp-gvQtyz9 priority: 102 providerName: Directory of Open Access Journals |
Title | A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32075311 https://www.proquest.com/docview/2359406365 https://pubmed.ncbi.nlm.nih.gov/PMC7070993 https://doaj.org/article/28725beb3a4944cd9b17de774cd0ff02 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zb9QwEB71kFB5QJwlHCuDeOAlkPhIHCSEut2GCqkFAYv2LXJshyK1WdgsiP5K_hJj51CDFmm1m3VGiZUZz3zj2N8APKNcycpqEyL4tiGnXIcyZmmoE5lE1kgRabfB-eQ0OZ7zdwux2IK-xmb3AJuNqZ2rJzVfnb_4_ePyDQ741y7jxJT9ZeM07XDCNuxiQKLOuE_48DKBMkzDWlKhsfgeXGMUQyaL41FU8uT9mxDnvwsnr0Si_Cbc6CAkOWh1fgu2bH0brl8hFrwDfw7ITK1VOFs5Z4bHF-g2SLspt-pm6Ujer8siUwxlhmCTj1yo-W7N7CXJMex5YXe5xq4bompD3tc2nLmyAC2lBzlc1r86E8Z_ju_D__gF5s0r8gV7NdwVP4p88qy1XqzdB0Va3-J6T6Y4cM4uFParF7N3YZ4ffT48DrvSDaFGfLUOMyMx9VLCMGO4STFUVlkUoS-tlLUIGaRJy1IjlFBaWNeYZIZFRrv8SJeJYfdgp17W9j4QY2OplU5sxjkXRqhYJrykshLMSlnxAJ73qit0x2vuymucF5jfOIUXg8IDeDqIfm_JPDYJTZ3-BwHHv-0blquvRTecC8wzqShtyRTHbmmTlXFqLEJpbaKqimgAT3rrKVBr7iWMqu3yZ1NQJjIEUSwRAey31jTcqrfGANKRnY36Mj5TfzvznOApum6Emg_-e82HsEfdVIGrZSMewQ4q0D5GPLUuJ7CdLlL8lvnbCexOj04_fJz4uYmJH0d_AdX2KYA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data-Driven+Damage+Identification+Framework+Based+on+Transmissibility+Function+Datasets+and+One-Dimensional+Convolutional+Neural+Networks%3A+Verification+on+a+Structural+Health+Monitoring+Benchmark+Structure&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Tongwei&rft.au=Xu%2C+Hao&rft.au=Ragulskis%2C+Minvydas&rft.au=Cao%2C+Maosen&rft.date=2020-02-15&rft.eissn=1424-8220&rft.volume=20&rft.issue=4&rft_id=info:doi/10.3390%2Fs20041059&rft_id=info%3Apmid%2F32075311&rft.externalDocID=32075311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |