A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure

Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration respo...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 20; no. 4; p. 1059
Main Authors Liu, Tongwei, Xu, Hao, Ragulskis, Minvydas, Cao, Maosen, Ostachowicz, Wiesław
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 15.02.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s20041059

Cover

Abstract Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications.
AbstractList Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications.
Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications.Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of target systems. However, the effectiveness of existing methods is constrained by critical shortcomings. For example, the measured vibration responses may contain insufficient damage-sensitive features and suffer from high instability under the interference of random excitations. Moreover, the capability of conventional intelligent algorithms in damage feature extraction and noise influence suppression is limited. To address the above issues, a novel damage identification framework was established in this study by integrating massive datasets constructed by structural transmissibility functions (TFs) and a deep learning strategy based on one-dimensional convolutional neural networks (1D CNNs). The effectiveness and efficiency of the TF-1D CNN framework were verified using an American Society of Civil Engineers (ASCE) structural health monitoring benchmark structure, from which dynamic responses were captured, subject to white noise random excitations and a number of different damage scenarios. The damage identification accuracy of the framework was examined and compared with others by using different dataset types and intelligent algorithms. Specifically, compared with time series (TS) and fast Fourier transform (FFT)-based frequency-domain signals, the TF signals exhibited more significant damage-sensitive features and stronger stability under excitation interference. The utilization of 1D CNN, on the other hand, exhibited some unique advantages over other machine learning algorithms (e.g., traditional artificial neural networks (ANNs)), particularly in aspects of computation efficiency, generalization ability, and noise immunity when treating massive, high-dimensional datasets. The developed TF-1D CNN damage identification framework was demonstrated to have practical value in future applications.
Author Cao, Maosen
Ragulskis, Minvydas
Ostachowicz, Wiesław
Xu, Hao
Liu, Tongwei
AuthorAffiliation 3 Department of Civil and Environmental Engineering, Northwestern University, Chicago, IL 60626, USA
1 Department of Engineering Mechanics, Hohai University, Nanjing 210098, China; twliu@hhu.edu.cn
4 Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; minvydas.ragulskis@ktu.lt
2 School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; xuhao@dlut.edu.cn
5 Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Poland; wieslaw@imp.gda.pl
AuthorAffiliation_xml – name: 3 Department of Civil and Environmental Engineering, Northwestern University, Chicago, IL 60626, USA
– name: 1 Department of Engineering Mechanics, Hohai University, Nanjing 210098, China; twliu@hhu.edu.cn
– name: 2 School of Aeronautics and Astronautics, Faculty of Vehicle Engineering and Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China; xuhao@dlut.edu.cn
– name: 4 Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania; minvydas.ragulskis@ktu.lt
– name: 5 Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Poland; wieslaw@imp.gda.pl
Author_xml – sequence: 1
  givenname: Tongwei
  orcidid: 0000-0001-5120-815X
  surname: Liu
  fullname: Liu, Tongwei
– sequence: 2
  givenname: Hao
  surname: Xu
  fullname: Xu, Hao
– sequence: 3
  givenname: Minvydas
  orcidid: 0000-0003-3490-2814
  surname: Ragulskis
  fullname: Ragulskis, Minvydas
– sequence: 4
  givenname: Maosen
  surname: Cao
  fullname: Cao, Maosen
– sequence: 5
  givenname: Wiesław
  surname: Ostachowicz
  fullname: Ostachowicz, Wiesław
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32075311$$D View this record in MEDLINE/PubMed
BookMark eNplUsFuEzEQtVARbQMHfgD5CIel9tqbjTkgtQmhkQo9ULhaXns2cdm1W9sb1K_kl3CSprQgWZrxzJv3xp45RgfOO0DoNSXvGRPkJJaEcEoq8QwdUV7yYlKW5OCRf4iOY7wmpGSMTV6gQ1aSumKUHqHfp3imkipmwa7BZb9XS8ALAy7Z1mqVrHd4HlQPv3z4ic9UBINz6CooF3sbo21sZ9Mdng9Ob8EbuggpYuUMvnRQzGwPLuaU6vDUu7XvhrS7fYUhbE3akMcP-AeEv6r5KPwthUGnLewcVJdW-It3Nvlg3RKfgdOrXuW-9jB4iZ63qovw6t6O0Pf5p6vpeXFx-XkxPb0oNOc0FcJMKBeqMswYbmrGaSsIUca0CoBW5cTUTaPHlCldwSY4FoYRo2nNmW7Gho3QYsdrvLqWN8HmNu6kV1ZuAz4spQrJ6g5kOanLqoGGKS4410Y0tDZQ19klbZtnMkIfd1w3Q9OD0fnv83ufkD7NOLuSS7-WNamJECwTvL0nCP52gJhknoyGrlMO_BBlySrByZiNqwx981jrQWS_ERlwsgPo4GMM0Ept03YgWdp2khK52Tn5sHO54t0_FXvS_7F_ANni3Oc
CitedBy_id crossref_primary_10_1364_AO_405110
crossref_primary_10_1016_j_triboint_2022_108202
crossref_primary_10_1007_s13349_023_00715_3
crossref_primary_10_3390_s22176495
crossref_primary_10_1177_14759217231158786
crossref_primary_10_3390_math10111853
crossref_primary_10_3390_s23239327
crossref_primary_10_1007_s00466_022_02231_5
crossref_primary_10_3390_s22155793
crossref_primary_10_3390_electronics11233987
crossref_primary_10_1109_JIOT_2023_3272535
crossref_primary_10_1016_j_ymssp_2024_111937
crossref_primary_10_1016_j_istruc_2024_106026
crossref_primary_10_1109_TGRS_2022_3147695
crossref_primary_10_1016_j_ymssp_2024_111713
crossref_primary_10_3390_su141912041
crossref_primary_10_3389_fmats_2020_00301
crossref_primary_10_1061__ASCE_CP_1943_5487_0001003
crossref_primary_10_1016_j_ifacol_2023_12_053
crossref_primary_10_1016_j_ymssp_2023_111091
crossref_primary_10_1007_s13349_021_00535_3
crossref_primary_10_1016_j_istruc_2020_12_036
crossref_primary_10_3390_su152014868
crossref_primary_10_3390_app13063569
crossref_primary_10_3390_electronics10141615
crossref_primary_10_3390_app132112082
crossref_primary_10_1109_JSEN_2022_3173924
crossref_primary_10_3390_s22103647
crossref_primary_10_1142_S0219455425500658
crossref_primary_10_3390_math11041019
crossref_primary_10_1016_j_istruc_2021_10_088
crossref_primary_10_3390_s22176426
crossref_primary_10_3390_buildings15050763
crossref_primary_10_3390_s20092715
crossref_primary_10_1007_s13369_024_09035_0
crossref_primary_10_1155_2020_6932463
crossref_primary_10_3390_app13095289
crossref_primary_10_1016_j_istruc_2020_11_049
crossref_primary_10_1016_j_engappai_2024_108783
crossref_primary_10_3390_s23115058
crossref_primary_10_1016_j_asoc_2024_111459
crossref_primary_10_1016_j_istruc_2024_106076
crossref_primary_10_1016_j_istruc_2023_07_021
crossref_primary_10_3390_s20133721
crossref_primary_10_1016_j_sciaf_2023_e02053
Cites_doi 10.1007/s00521-009-0240-8
10.3390/s19194216
10.1111/j.1467-8667.2006.00431.x
10.1111/mice.12263
10.1016/j.sna.2008.04.008
10.1061/(ASCE)BE.1943-5592.0001199
10.1117/12.879867
10.1016/j.ymssp.2013.05.020
10.1061/(ASCE)EM.1943-7889.0000821
10.1016/j.neucom.2017.09.069
10.3390/ma10080866
10.1016/j.neucom.2016.11.066
10.20944/preprints201701.0132.v1
10.1006/mssp.2002.1543
10.1007/s10921-010-0086-0
10.1016/j.ymssp.2008.07.009
10.1109/TIE.2017.2774777
10.1088/0964-1726/15/3/009
10.1098/rsta.2006.1938
10.1016/j.ymssp.2018.12.021
10.1016/j.jsv.2007.12.022
10.1016/j.asoc.2007.10.003
10.1016/j.ymssp.2015.12.020
10.1016/j.ymssp.2006.01.007
10.1016/j.ymssp.2013.02.019
10.1162/neco.2006.18.7.1527
10.1016/j.engstruct.2004.02.008
10.1061/(ASCE)0733-9399(2004)130:1(3)
10.1016/j.jsv.2009.03.014
10.1007/s00521-015-2132-4
10.1016/j.ymssp.2015.02.007
10.1016/S1359-8368(99)00034-7
10.1016/j.ymssp.2007.02.008
10.1007/s12205-017-1518-5
10.1115/1.1500744
10.3390/app7040391
10.1006/mssp.1999.1228
10.1016/j.ymssp.2009.02.015
10.1111/mice.12334
10.2514/6.2005-7002
10.1016/j.jsv.2016.10.043
10.1088/0964-1726/11/6/301
10.1016/j.jsv.2016.05.027
10.1109/TIE.2016.2582729
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/s20041059
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_28725beb3a4944cd9b17de774cd0ff02
PMC7070993
32075311
10_3390_s20041059
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7X8
PJZUB
PPXIY
PUEGO
5PM
ID FETCH-LOGICAL-c441t-9d8149a5d3dd4d7341f900addfaee1528d7bbc613ac5edfae69d30dc1743cb6d3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:25:43 EDT 2025
Thu Aug 21 14:09:45 EDT 2025
Fri Sep 05 13:07:42 EDT 2025
Wed Feb 19 02:30:39 EST 2025
Thu Apr 24 22:55:45 EDT 2025
Tue Jul 01 00:42:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
structural health monitoring
transmissibility function
convolutional neural networks
damage identification
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-9d8149a5d3dd4d7341f900addfaee1528d7bbc613ac5edfae69d30dc1743cb6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5120-815X
0000-0003-3490-2814
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s20041059
PMID 32075311
PQID 2359406365
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_28725beb3a4944cd9b17de774cd0ff02
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7070993
proquest_miscellaneous_2359406365
pubmed_primary_32075311
crossref_citationtrail_10_3390_s20041059
crossref_primary_10_3390_s20041059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200215
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 2
  year: 2020
  text: 20200215
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Cha (ref_26) 2018; 33
Ding (ref_19) 2014; 16
Abdeljaber (ref_34) 2018; 275
Feng (ref_43) 2015; 60
Peimani (ref_10) 2008; 8
ref_11
Hu (ref_16) 2007; 21
Devriendt (ref_37) 2009; 23
Bodeux (ref_5) 2003; 17
Devriendt (ref_36) 2008; 314
ref_31
Kong (ref_40) 2014; 141
Pan (ref_14) 2018; 23
Caccese (ref_41) 2004; 26
Cavadas (ref_2) 2013; 39
Niezrecki (ref_33) 2017; Volume 7
Lam (ref_17) 2006; 21
Ince (ref_30) 2016; 63
Johnson (ref_39) 2002; 124
Hinton (ref_24) 2006; 18
Liu (ref_15) 2016; 75
Wen (ref_27) 2017; 65
Worden (ref_3) 2006; 365
Tibaduiza (ref_4) 2013; 41
Devriendt (ref_35) 2007; 21
Abdeljaber (ref_32) 2017; 388
Meng (ref_29) 2017; 257
Ni (ref_21) 2002; 11
Chronopoulos (ref_9) 2019; 122
Gui (ref_13) 2017; 21
Cao (ref_20) 2017; 28
Maaten (ref_48) 2008; 9
ref_22
ref_44
ref_42
Kang (ref_6) 2006; 15
ref_1
Cha (ref_25) 2017; 32
Schulz (ref_46) 1999; 30
Cho (ref_8) 2008; 8
Janssens (ref_28) 2016; 377
Majumder (ref_7) 2008; 147
Johnson (ref_47) 2004; 130
Oh (ref_12) 2009; 325
Cao (ref_18) 2009; 18
Devriendt (ref_38) 2010; 24
Sambath (ref_23) 2011; 30
Zhang (ref_45) 1999; 13
References_xml – volume: 18
  start-page: 821
  year: 2009
  ident: ref_18
  article-title: Improved hybrid wavelet neural network methodology for time-varying behavior prediction of engineering structures
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-009-0240-8
– ident: ref_11
  doi: 10.3390/s19194216
– volume: 21
  start-page: 232
  year: 2006
  ident: ref_17
  article-title: Structural health monitoring via measured Ritz vectors utilizing artificial neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2006.00431.x
– volume: 32
  start-page: 361
  year: 2017
  ident: ref_25
  article-title: Deep learning-based crack damage detection using convolutional neural networks
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: Volume 7
  start-page: 49
  year: 2017
  ident: ref_33
  article-title: Structural damage detection in real time: Implementation of 1D convolutional neural networks for SHM applications
  publication-title: Structural Health Monitoring & Damage Detection
– volume: 147
  start-page: 150
  year: 2008
  ident: ref_7
  article-title: Fibre Bragg gratings in structural health monitoring—Present status and applications
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2008.04.008
– volume: 23
  start-page: 04018033
  year: 2018
  ident: ref_14
  article-title: Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001199
– ident: ref_42
  doi: 10.1117/12.879867
– volume: 41
  start-page: 467
  year: 2013
  ident: ref_4
  article-title: A study of two unsupervised data driven statistical methodologies for detecting and classifying damages in structural health monitoring
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.05.020
– volume: 16
  start-page: 3595
  year: 2014
  ident: ref_19
  article-title: Structural dynamics-guided hierarchical neural-networks scheme for locating and quantifying damage in beam-type structures
  publication-title: J. Vibroeng.
– volume: 141
  start-page: 04014102
  year: 2014
  ident: ref_40
  article-title: Damage detection based on transmissibility of a vehicle and bridge coupled system
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000821
– volume: 275
  start-page: 1308
  year: 2018
  ident: ref_34
  article-title: 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
– ident: ref_44
  doi: 10.3390/ma10080866
– volume: 257
  start-page: 128
  year: 2017
  ident: ref_29
  article-title: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.066
– ident: ref_31
  doi: 10.20944/preprints201701.0132.v1
– volume: 17
  start-page: 83
  year: 2003
  ident: ref_5
  article-title: Modal identification and damage detection using the data-driven stochastic subspace and ARMAV methods
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1006/mssp.2002.1543
– volume: 30
  start-page: 20
  year: 2011
  ident: ref_23
  article-title: Automatic defect classification in ultrasonic NDT using artificial intelligence
  publication-title: J. Nondestr. Eval.
  doi: 10.1007/s10921-010-0086-0
– volume: 23
  start-page: 621
  year: 2009
  ident: ref_37
  article-title: Operational modal analysis in the presence of harmonic excitations by the use of transmissibility measurements
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2008.07.009
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_48
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 65
  start-page: 5990
  year: 2017
  ident: ref_27
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 15
  start-page: 737
  year: 2006
  ident: ref_6
  article-title: A carbon nanotube strain sensor for structural health monitoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/15/3/009
– volume: 365
  start-page: 515
  year: 2006
  ident: ref_3
  article-title: The application of machine learning to structural health monitoring
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2006.1938
– volume: 122
  start-page: 192
  year: 2019
  ident: ref_9
  article-title: A robust Bayesian methodology for damage localization in plate-like structures using ultrasonic guided-waves
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.12.021
– volume: 314
  start-page: 343
  year: 2008
  ident: ref_36
  article-title: Identification of modal parameters from transmissibility measurements
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.12.022
– volume: 8
  start-page: 1150
  year: 2008
  ident: ref_10
  article-title: Crack detection in beam-like structures using genetic algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.10.003
– volume: 8
  start-page: 267
  year: 2008
  ident: ref_8
  article-title: Smart wireless sensor technology for structural health monitoring of civil structures
  publication-title: Steel Struct.
– volume: 75
  start-page: 345
  year: 2016
  ident: ref_15
  article-title: Time-frequency atoms-driven support vector machine method for bearings incipient fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.12.020
– volume: 21
  start-page: 688
  year: 2007
  ident: ref_16
  article-title: Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2006.01.007
– volume: 39
  start-page: 409
  year: 2013
  ident: ref_2
  article-title: Damage detection using data-driven methods applied to moving-load responses
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2013.02.019
– volume: 18
  start-page: 1527
  year: 2006
  ident: ref_24
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 26
  start-page: 895
  year: 2004
  ident: ref_41
  article-title: Detection of bolt load loss in hybrid composite/metal bolted connections
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2004.02.008
– volume: 130
  start-page: 3
  year: 2004
  ident: ref_47
  article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2004)130:1(3)
– volume: 325
  start-page: 224
  year: 2009
  ident: ref_12
  article-title: Damage diagnosis under environmental and operational variations using unsupervised support vector machine
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2009.03.014
– volume: 28
  start-page: 1583
  year: 2017
  ident: ref_20
  article-title: Neural network ensemble-based parameter sensitivity analysis in civil engineering systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2132-4
– volume: 60
  start-page: 59
  year: 2015
  ident: ref_43
  article-title: Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.02.007
– volume: 30
  start-page: 713
  year: 1999
  ident: ref_46
  article-title: Health monitoring and active control of composite structures using piezoceramic patches
  publication-title: Compos. B. Eng.
  doi: 10.1016/S1359-8368(99)00034-7
– volume: 21
  start-page: 2689
  year: 2007
  ident: ref_35
  article-title: The use of transmissibility measurements in output-only modal analysis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2007.02.008
– volume: 21
  start-page: 523
  year: 2017
  ident: ref_13
  article-title: Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1518-5
– volume: 124
  start-page: 634
  year: 2002
  ident: ref_39
  article-title: Transmissibility as a differential indicator of structural damage
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.1500744
– ident: ref_22
  doi: 10.3390/app7040391
– volume: 13
  start-page: 765
  year: 1999
  ident: ref_45
  article-title: Structural health monitoring using transmittance functions
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1006/mssp.1999.1228
– volume: 24
  start-page: 1250
  year: 2010
  ident: ref_38
  article-title: An operational modal analysis approach based on parametrically identified multivariable transmissibilities
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2009.02.015
– volume: 33
  start-page: 731
  year: 2018
  ident: ref_26
  article-title: Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12334
– ident: ref_1
  doi: 10.2514/6.2005-7002
– volume: 388
  start-page: 154
  year: 2017
  ident: ref_32
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
– volume: 11
  start-page: 825
  year: 2002
  ident: ref_21
  article-title: Constructing input vectors to neural networks for structural damage identification
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/11/6/301
– volume: 377
  start-page: 331
  year: 2016
  ident: ref_28
  article-title: Convolutional neural network based fault detection for rotating machinery
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.05.027
– volume: 63
  start-page: 7067
  year: 2016
  ident: ref_30
  article-title: Real-time motor fault detection by 1-D convolutional neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2582729
SSID ssj0023338
Score 2.5109086
Snippet Vibration-based data-driven structural damage identification methods have gained large popularity because of their independence of high-fidelity models of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1059
SubjectTerms convolutional neural networks
damage identification
deep learning
structural health monitoring
transmissibility function
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUhp-RQmvTLTVOU0kMvIrYl2XJu2WyXUGhyaFNyM7JmTAqNN8TbQn9l_1JHkm12S6CXgMFeeVgPnvHMG3v0xNj7XFnTogNB4BuFypUTJpOlcIUpUgSjU-cnOH--KM6v1Kdrfb221JfvCYv0wPHGHROiz3VDJZ9VlVIOqiYrAQm0OEjbNtJIUhobi6mh1JJUeUUeIUlF_XHvfSELhKRr2SeQ9D-ELP9tkFzLOIun7MkAFflpVHGPbWG3z3bXCASfsT-nfG5XVszvfdCi41sKDzxOvm2Ht3F8MfZf8RmlLOA0FDIUWXjojf3NF5TegrD_ux5XPbcd8MsOxdzT_0fqDn627H4Nrkq_PK9H2IVG8v6EfyOtpqvSZvmXwE4bxOJ8Jx5jiNeez-gBubm1pNcohs_Z1eLj17NzMSzRIBzhqJWowFCJZTVIAAUlpcS2SlOKma1FJGhgoGwaR5DBOo1-sKhApuB8HeSaAuQLtt0tO3zFOGBmnHUFkpmVBm0zU6gmN62WaEyrEvZhNF3tBv5yv4zGj5rqGG_lerJywt5NoneRtOMhoZm3_yTgebbDAHlfPXhf_T_vS9jR6D01Wc1_bLEdLn_2dS51RWBJFjphL6M3TZeSOQE1mWUJKzf8bEOXzTPd95vA_V1SiCZI-foxlD9gO7l_e-CXt9Fv2DbZGg8JYq2at-Fp-gvQtyz9
  priority: 102
  providerName: Directory of Open Access Journals
Title A Data-Driven Damage Identification Framework Based on Transmissibility Function Datasets and One-Dimensional Convolutional Neural Networks: Verification on a Structural Health Monitoring Benchmark Structure
URI https://www.ncbi.nlm.nih.gov/pubmed/32075311
https://www.proquest.com/docview/2359406365
https://pubmed.ncbi.nlm.nih.gov/PMC7070993
https://doaj.org/article/28725beb3a4944cd9b17de774cd0ff02
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zb9QwEB71kFB5QJwlHCuDeOAlkPhIHCSEut2GCqkFAYv2LXJshyK1WdgsiP5K_hJj51CDFmm1m3VGiZUZz3zj2N8APKNcycpqEyL4tiGnXIcyZmmoE5lE1kgRabfB-eQ0OZ7zdwux2IK-xmb3AJuNqZ2rJzVfnb_4_ePyDQ741y7jxJT9ZeM07XDCNuxiQKLOuE_48DKBMkzDWlKhsfgeXGMUQyaL41FU8uT9mxDnvwsnr0Si_Cbc6CAkOWh1fgu2bH0brl8hFrwDfw7ITK1VOFs5Z4bHF-g2SLspt-pm6Ujer8siUwxlhmCTj1yo-W7N7CXJMex5YXe5xq4bompD3tc2nLmyAC2lBzlc1r86E8Z_ju_D__gF5s0r8gV7NdwVP4p88qy1XqzdB0Va3-J6T6Y4cM4uFParF7N3YZ4ffT48DrvSDaFGfLUOMyMx9VLCMGO4STFUVlkUoS-tlLUIGaRJy1IjlFBaWNeYZIZFRrv8SJeJYfdgp17W9j4QY2OplU5sxjkXRqhYJrykshLMSlnxAJ73qit0x2vuymucF5jfOIUXg8IDeDqIfm_JPDYJTZ3-BwHHv-0blquvRTecC8wzqShtyRTHbmmTlXFqLEJpbaKqimgAT3rrKVBr7iWMqu3yZ1NQJjIEUSwRAey31jTcqrfGANKRnY36Mj5TfzvznOApum6Emg_-e82HsEfdVIGrZSMewQ4q0D5GPLUuJ7CdLlL8lvnbCexOj04_fJz4uYmJH0d_AdX2KYA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Data-Driven+Damage+Identification+Framework+Based+on+Transmissibility+Function+Datasets+and+One-Dimensional+Convolutional+Neural+Networks%3A+Verification+on+a+Structural+Health+Monitoring+Benchmark+Structure&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Tongwei&rft.au=Xu%2C+Hao&rft.au=Ragulskis%2C+Minvydas&rft.au=Cao%2C+Maosen&rft.date=2020-02-15&rft.eissn=1424-8220&rft.volume=20&rft.issue=4&rft_id=info:doi/10.3390%2Fs20041059&rft_id=info%3Apmid%2F32075311&rft.externalDocID=32075311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon