Suppression of Tak1 Promotes Prostate Tumorigenesis
More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In thi...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 72; no. 11; pp. 2833 - 2843 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-11-2724 |
Cover
Abstract | More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In this study, we investigated the role of Tak1 in human and murine prostate cancers. In 50 well-characterized human cancer specimens, we found that Tak1 expression was progressively lost with increasing Gleason grade, both within each cancer and across all cancers. In murine prostate stem cells and Tak1-deficient prostatic epithelial cells, Tak1 loss increased proliferation, migration, and invasion. When prostate stem cells attenuated for Tak1 were engrafted with fetal urogenital mesenchyme, the histopathology of the grafts reflected the natural history of prostate cancer leading from prostatic intraepithelial neoplasia to invasive carcinoma. In the grafts containing Tak1-suppressed prostate stem cells, p38 and c-jun-NH2-kinase activity was attenuated and proliferation was increased. Together, our findings functionally validate the proposed tumor suppressor role of Tak1 in prostate cancer. Cancer Res; 72(11); 2833–43. ©2012 AACR. |
---|---|
AbstractList | More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In this study, we investigated the role of Tak1 in human and murine prostate cancers. In 50 well-characterized human cancer specimens, we found that Tak1 expression was progressively lost with increasing Gleason grade, both within each cancer and across all cancers. In murine prostate stem cells and Tak1-deficient prostatic epithelial cells, Tak1 loss increased proliferation, migration, and invasion. When prostate stem cells attenuated for Tak1 were engrafted with fetal urogenital mesenchyme, the histopathology of the grafts reflected the natural history of prostate cancer leading from prostatic intraepithelial neoplasia to invasive carcinoma. In the grafts containing Tak1-suppressed prostate stem cells, p38 and c-jun-NH(2)-kinase activity was attenuated and proliferation was increased. Together, our findings functionally validate the proposed tumor suppressor role of Tak1 in prostate cancer. More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In this study, we investigated the role of Tak1 in human and murine prostate cancers. In 50 well-characterized human cancer specimens, we found that Tak1 expression was progressively lost with increasing Gleason grade, both within each cancer and across all cancers. In murine prostate stem cells and Tak1-deficient prostatic epithelial cells, Tak1 loss increased proliferation, migration, and invasion. When prostate stem cells attenuated for Tak1 were engrafted with fetal urogenital mesenchyme, the histopathology of the grafts reflected the natural history of prostate cancer leading from prostatic intraepithelial neoplasia to invasive carcinoma. In the grafts containing Tak1-suppressed prostate stem cells, p38 and c-jun-NH(2)-kinase activity was attenuated and proliferation was increased. Together, our findings functionally validate the proposed tumor suppressor role of Tak1 in prostate cancer.More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In this study, we investigated the role of Tak1 in human and murine prostate cancers. In 50 well-characterized human cancer specimens, we found that Tak1 expression was progressively lost with increasing Gleason grade, both within each cancer and across all cancers. In murine prostate stem cells and Tak1-deficient prostatic epithelial cells, Tak1 loss increased proliferation, migration, and invasion. When prostate stem cells attenuated for Tak1 were engrafted with fetal urogenital mesenchyme, the histopathology of the grafts reflected the natural history of prostate cancer leading from prostatic intraepithelial neoplasia to invasive carcinoma. In the grafts containing Tak1-suppressed prostate stem cells, p38 and c-jun-NH(2)-kinase activity was attenuated and proliferation was increased. Together, our findings functionally validate the proposed tumor suppressor role of Tak1 in prostate cancer. More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β activated kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In this study, we investigated the role of Tak1 in human and murine prostate cancers. In 50 well-characterized human cancer specimens, we found that Tak1 expression was progressively lost with increasing Gleason grade, both within each cancer and across all cancers. In murine prostate stem cells and Tak1-deficient prostatic epithelial cells, Tak1 loss increased proliferation, migration, and invasion. When prostate stem cells attenuated for Tak1 were engrafted with fetal urogenital mesenchyme, the histopathology of the grafts reflected the natural history of prostate cancer leading from prostatic intraepithelial neoplasia to invasive carcinoma. In the grafts containing Tak1-suppressed prostate stem cells, p38 and c-jun-NH2-kinase activity was attenuated and proliferation was increased. Together, our findings functionally validate the proposed tumor suppressor role of Tak1 in prostate cancer. Cancer Res; 72(11); 2833–43. ©2012 AACR. Over 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β Activated Kinase-1 (Tak1), is a putative prostate tumor suppressor gene within this region whose precise function remains obscure. In this study, we investigated the role of Tak1 in human and murine prostate cancers. In 50 well-characterized human cancer specimens, we found that Tak1 expression was progressively lost with increasing Gleason grade, both within each cancer and across all cancers. In murine prostate stem cells and Tak1-deficient prostatic epithelial cells, Tak1 loss increased proliferation, migration, and invasion. When prostate stem cells attenuated for Tak1 were engrafted with fetal urogenital mesenchyme, the histopathology of the grafts reflected the natural history of prostate cancer leading from prostatic intraepithelial neoplasia to invasive carcinoma. In the grafts containing Tak1-suppressed prostate stem cells, p38 and JNK activity was attenuated and proliferation was increased. Together, our findings functionally validate the proposed tumor suppressor role of Tak1 in prostate cancer. |
Author | Wu, Min Sirintrapun, Joseph S. Cimic, Adela Hawkins, Gregory A. Lees, Cynthia J. Shi, Lihong Liu, Wennuan Sui, Guangchao Cline, J. Mark McCoy, Thomas P. Xu, Jianfeng Peehl, Donna M. Cramer, Scott D. Romero, Lina Kim, Jin Woo Seals, Darren F. |
AuthorAffiliation | 6 Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA 7 Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA 3 Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA 1 Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA 4 Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA 5 Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA 2 Molecular Genetics & Genomics Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA 8 Department of Urology, Stanford University School of Medicine, Stanford CA, 94305, USA |
AuthorAffiliation_xml | – name: 3 Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA – name: 5 Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA – name: 6 Center for Genomics and Personalized Medicine Research, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA – name: 7 Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA – name: 8 Department of Urology, Stanford University School of Medicine, Stanford CA, 94305, USA – name: 1 Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA – name: 4 Department of Biostatistical Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA – name: 2 Molecular Genetics & Genomics Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA |
Author_xml | – sequence: 1 givenname: Min surname: Wu fullname: Wu, Min – sequence: 2 givenname: Lihong surname: Shi fullname: Shi, Lihong – sequence: 3 givenname: Adela surname: Cimic fullname: Cimic, Adela – sequence: 4 givenname: Lina surname: Romero fullname: Romero, Lina – sequence: 5 givenname: Guangchao surname: Sui fullname: Sui, Guangchao – sequence: 6 givenname: Cynthia J. surname: Lees fullname: Lees, Cynthia J. – sequence: 7 givenname: J. Mark surname: Cline fullname: Cline, J. Mark – sequence: 8 givenname: Darren F. surname: Seals fullname: Seals, Darren F. – sequence: 9 givenname: Joseph S. surname: Sirintrapun fullname: Sirintrapun, Joseph S. – sequence: 10 givenname: Thomas P. surname: McCoy fullname: McCoy, Thomas P. – sequence: 11 givenname: Wennuan surname: Liu fullname: Liu, Wennuan – sequence: 12 givenname: Jin Woo surname: Kim fullname: Kim, Jin Woo – sequence: 13 givenname: Gregory A. surname: Hawkins fullname: Hawkins, Gregory A. – sequence: 14 givenname: Donna M. surname: Peehl fullname: Peehl, Donna M. – sequence: 15 givenname: Jianfeng surname: Xu fullname: Xu, Jianfeng – sequence: 16 givenname: Scott D. surname: Cramer fullname: Cramer, Scott D. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25944775$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22467172$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHDEUhoMoun78hJa9KXgzmpOPSYZCQRa_QFRwvQ6ZTGLTzky2yYzgvzeD61Z706skJ895D-d999F2H3qL0BfAJwBcnmKMZcGZICeLs9sCoCCCsC00A05lIRjj22i2YfbQfkq_8pMD5rtojxBWChBkhujDuFpFm5IP_Ty4-VL_hvl9DF0YbJouadCDnS_HLkT_ZHubfDpEO063yR6tzwP0eHG-XFwVN3eX14uzm8IwBkNREVoKwYyTmAgNTVlB1di6oVQ6WjfaOdow6oSV3FRNLR3GujK1rKioLQNCD9CPN93VWHe2MbYfom7VKvpOxxcVtFeff3r_Uz2FZ0VLnvdjWeB4LRDDn9GmQXU-Gdu2urdhTAowyJIyTCGjXz_O2gx5dyoD39aATka3Lure-PSX4xVjQvDM8TfOZO9StG6DAFZTcmpKRU2pqJxcLqkpudz3_Z8-47P1OZa8mm__0_0KOOyeQg |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1038_s41597_023_02335_4 crossref_primary_10_1158_1541_7786_MCR_20_0913 crossref_primary_10_1111_febs_70042 crossref_primary_10_18632_oncotarget_6597 crossref_primary_10_1371_journal_pone_0051228 crossref_primary_10_1038_nrurol_2016_272 crossref_primary_10_7554_eLife_47678 crossref_primary_10_18632_oncotarget_2273 crossref_primary_10_3390_medicines6030082 crossref_primary_10_1016_j_canlet_2013_03_014 crossref_primary_10_1158_0008_5472_CAN_14_1596 crossref_primary_10_1158_1541_7786_MCR_18_1335 crossref_primary_10_1111_jcmm_16660 crossref_primary_10_1038_modpathol_2012_236 crossref_primary_10_1186_s12885_018_4525_0 crossref_primary_10_3390_cancers13133272 crossref_primary_10_1517_14728222_2015_1005603 crossref_primary_10_1002_advs_202001575 crossref_primary_10_1016_j_canlet_2017_09_047 crossref_primary_10_1172_JCI74068 crossref_primary_10_18632_oncotarget_2406 crossref_primary_10_3390_ijms21124507 crossref_primary_10_1590_1414_431x20175891 crossref_primary_10_1186_s12943_015_0338_9 crossref_primary_10_1016_j_omto_2020_05_004 crossref_primary_10_1186_s13256_017_1251_1 crossref_primary_10_1021_acs_jnatprod_2c00434 crossref_primary_10_1158_0008_5472_CAN_20_4194 crossref_primary_10_3389_fimmu_2024_1437570 crossref_primary_10_1007_s10620_017_4472_7 crossref_primary_10_1016_j_it_2013_03_007 crossref_primary_10_1016_j_devcel_2016_04_018 crossref_primary_10_1016_j_humpath_2017_04_015 crossref_primary_10_1007_s00535_013_0931_x crossref_primary_10_1016_j_athoracsur_2012_09_050 crossref_primary_10_1038_s41388_019_1088_8 crossref_primary_10_1038_srep07158 crossref_primary_10_3892_mmr_2017_6998 crossref_primary_10_7554_eLife_11760 crossref_primary_10_3390_microarrays4020270 crossref_primary_10_1016_j_jhepr_2023_100695 crossref_primary_10_1007_s12282_021_01301_5 crossref_primary_10_1016_j_yexcr_2024_114231 crossref_primary_10_3389_fphar_2024_1360352 |
Cites_doi | 10.1139/o86-084 10.1097/01.MP.0000073526.59270.6E 10.1634/stemcells.2007-0309 10.1074/jbc.M604399200 10.1038/21674 10.1016/S1535-6108(03)00215-0 10.1038/sj.onc.1203716 10.1073/pnas.0604225103 10.1038/emboj.2009.8 10.1016/j.ccr.2010.03.021 10.1158/1078-0432.CCR-07-0300 10.1073/pnas.0604227103 10.1186/1471-2164-3-18 10.1126/science.270.5244.2008 10.1073/pnas.0913873107 10.1002/pros.20543 10.1073/pnas.201415498 10.1038/18465 10.1210/en.2010-1377 10.1038/ni1255 10.1038/ng1117 10.1038/44317 10.1073/pnas.0909781107 10.1016/S0022-2836(02)01404-3 10.1073/pnas.0604708103 10.1073/pnas.0502320102 10.1073/pnas.0510652103 10.1016/j.stem.2010.11.013 10.1146/annurev.immunol.16.1.225 10.1128/MCB.01761-06 10.1126/science.1067081 10.1038/19709 10.1016/S1535-6108(03)00197-1 10.1083/jcb.96.6.1662 10.1038/84879 10.1111/j.0953-816X.2004.03360.x 10.1038/sj.onc.1208186 10.1002/pros.20193 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2012 AACR |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2012 AACR |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1158/0008-5472.CAN-11-2724 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 2843 |
ExternalDocumentID | PMC3654674 22467172 25944775 10_1158_0008_5472_CAN_11_2724 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01-CA129418 – fundername: NCI NIH HHS grantid: R01 CA129418 – fundername: National Cancer Institute : NCI grantid: R01 CA129418 || CA |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 3O- 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS W2D W8F WH7 WOQ YKV YZZ .55 .GJ 8WZ A6W ADNWM AFFNX AI. C1A D0S IQODW J5H MVM OHT VH1 WHG X7M XJT ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c441t-9236774cf8027a1d6919debd338f3bdaff3d43f7e85c9db8f00a9cb8937be4123 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Thu Aug 21 14:34:27 EDT 2025 Thu Sep 04 20:47:12 EDT 2025 Thu Apr 03 06:55:13 EDT 2025 Mon Jul 21 09:15:02 EDT 2025 Tue Jul 01 02:08:18 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Tumorigenicity Urogenital system Carcinogenesis Prostate |
Language | English |
License | CC BY 4.0 2012 AACR |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c441t-9236774cf8027a1d6919debd338f3bdaff3d43f7e85c9db8f00a9cb8937be4123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/72/11/2833.full.pdf |
PMID | 22467172 |
PQID | 1018634031 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3654674 proquest_miscellaneous_1018634031 pubmed_primary_22467172 pascalfrancis_primary_25944775 crossref_primary_10_1158_0008_5472_CAN_11_2724 crossref_citationtrail_10_1158_0008_5472_CAN_11_2724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2012 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Ninomiya-Tsuji (2022061703535395400_bib9) 1999; 398 Sui (2022061703535395400_bib20) 2005; 309 Di Cristofano (2022061703535395400_bib37) 2001; 27 Deng (2022061703535395400_bib21) 2007; 27 Jun (2022061703535395400_bib31) 2005; 24 Barcaroli (2022061703535395400_bib5) 2006; 103 Cunha (2022061703535395400_bib26) 1983; 96 Ghosh (2022061703535395400_bib13) 1998; 16 Hombach (2022061703535395400_bib6) 2004; 19 Imai (2022061703535395400_bib29) 1999; 398 Bettermann (2022061703535395400_bib33) 2010; 17 Yamaguchi (2022061703535395400_bib8) 1995; 270 Garbarino (2022061703535395400_bib3) 2002; 3 Momcilovic (2022061703535395400_bib15) 2006; 281 Barcaroli (2022061703535395400_bib4) 2006; 103 Lois (2022061703535395400_bib23) 2002; 295 Xin (2022061703535395400_bib38) 2005; 102 Lawson (2022061703535395400_bib39) 2010; 107 Herrero-Martin (2022061703535395400_bib14) 2009; 28 Ishitani (2022061703535395400_bib11) 1999; 399 Wang (2022061703535395400_bib35) 2003; 4 Cunha (2022061703535395400_bib24) 1987; 239 Inokuchi (2022061703535395400_bib32) 2010; 107 Koonin (2022061703535395400_bib30) 1999; 401 Sasaki (2022061703535395400_bib7) 2000; 19 Kim (2022061703535395400_bib36) 2002; 62 Lukacs (2022061703535395400_bib40) 2010; 7 Hu (2022061703535395400_bib27) 2011; 152 Takaesu (2022061703535395400_bib10) 2003; 326 Rubinson (2022061703535395400_bib22) 2003; 33 Xie (2022061703535395400_bib16) 2006; 103 Barclay (2022061703535395400_bib17) 2008; 26 Wang (2022061703535395400_bib41) 2006; 103 Ellwood-Yen (2022061703535395400_bib34) 2003; 4 Barclay (2022061703535395400_bib18) 2005; 63 Pfeifer (2022061703535395400_bib19) 2001; 98 Sato (2022061703535395400_bib12) 2005; 6 Sun (2022061703535395400_bib1) 2007; 67 Cunha (2022061703535395400_bib25) 1986; 64 Thorson (2022061703535395400_bib28) 2003; 16 Liu (2022061703535395400_bib2) 2007; 13 20478530 - Cancer Cell. 2010 May 18;17(5):481-96 20133806 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2610-5 12547194 - J Mol Biol. 2003 Feb 7;326(1):105-15 21112563 - Cell Stem Cell. 2010 Dec 3;7(6):682-93 10949928 - Oncogene. 2000 Aug 3;19(33):3739-49 10094049 - Nature. 1999 Mar 18;398(6724):252-6 16835226 - J Biol Chem. 2006 Sep 1;281(35):25336-43 10391247 - Nature. 1999 Jun 24;399(6738):798-802 20080763 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):844-9 15990402 - Methods Mol Biol. 2005;309:205-18 17785553 - Clin Cancer Res. 2007 Sep 1;13(17):5028-33 6853597 - J Cell Biol. 1983 Jun;96(6):1662-70 15599944 - Prostate. 2005 May 15;63(3):291-8 16432235 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1480-5 10235259 - Nature. 1999 Apr 29;398(6730):777-85 8533096 - Science. 1995 Dec 22;270(5244):2008-11 10537104 - Nature. 1999 Oct 14;401(6754):662; discussion 662-3 14522255 - Cancer Cell. 2003 Sep;4(3):209-21 11175795 - Nat Genet. 2001 Feb;27(2):222-4 12102729 - BMC Genomics. 2002 Jul 8;3:18 12808066 - Mod Pathol. 2003 Jun;16(6):598-606 17003126 - Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14802-7 17353273 - Mol Cell Biol. 2007 May;27(10):3780-92 18055450 - Stem Cells. 2008 Mar;26(3):600-10 3741678 - Biochem Cell Biol. 1986 Jun;64(6):608-14 14522256 - Cancer Cell. 2003 Sep;4(3):223-38 3309958 - Prog Clin Biol Res. 1987;239:273-82 11786607 - Science. 2002 Feb 1;295(5556):868-72 15592525 - Oncogene. 2005 Jan 20;24(4):688-96 21427218 - Endocrinology. 2011 Jun;152(6):2150-63 17003125 - Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14808-12 17085580 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17378-83 9597130 - Annu Rev Immunol. 1998;16:225-60 17342750 - Prostate. 2007 May 15;67(7):692-700 16186825 - Nat Immunol. 2005 Nov;6(11):1087-95 12036903 - Cancer Res. 2002 Jun 1;62(11):2999-3004 15147297 - Eur J Neurosci. 2004 May;19(10):2633-40 12590264 - Nat Genet. 2003 Mar;33(3):401-6 19197243 - EMBO J. 2009 Mar 18;28(6):677-85 11553794 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11450-5 15860580 - Proc Natl Acad Sci U S A. 2005 May 10;102(19):6942-7 |
References_xml | – volume: 64 start-page: 608 year: 1986 ident: 2022061703535395400_bib25 article-title: Stromal-epithelial interactions and heterogeneity of proliferative activity within the prostate publication-title: Biochem Cell Biol doi: 10.1139/o86-084 – volume: 16 start-page: 598 year: 2003 ident: 2022061703535395400_bib28 article-title: Basal cell hyperplasia in the peripheral zone of the prostate publication-title: Mod Pathol doi: 10.1097/01.MP.0000073526.59270.6E – volume: 26 start-page: 600 year: 2008 ident: 2022061703535395400_bib17 article-title: Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation publication-title: Stem Cells doi: 10.1634/stemcells.2007-0309 – volume: 281 start-page: 25336 year: 2006 ident: 2022061703535395400_bib15 article-title: Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro publication-title: J Biol Chem doi: 10.1074/jbc.M604399200 – volume: 399 start-page: 798 year: 1999 ident: 2022061703535395400_bib11 article-title: The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF publication-title: Nature doi: 10.1038/21674 – volume: 4 start-page: 209 year: 2003 ident: 2022061703535395400_bib35 article-title: Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00215-0 – volume: 19 start-page: 3739 year: 2000 ident: 2022061703535395400_bib7 article-title: Cloning and expression of human B cell-specific transcription factor BACH2 mapped to chromosome 6q15 publication-title: Oncogene doi: 10.1038/sj.onc.1203716 – volume: 103 start-page: 14802 year: 2006 ident: 2022061703535395400_bib5 article-title: FLASH is an essential component of Cajal bodies publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0604225103 – volume: 28 start-page: 677 year: 2009 ident: 2022061703535395400_bib14 article-title: TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells publication-title: EMBO J doi: 10.1038/emboj.2009.8 – volume: 17 start-page: 481 year: 2010 ident: 2022061703535395400_bib33 article-title: TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.03.021 – volume: 13 start-page: 5028 year: 2007 ident: 2022061703535395400_bib2 article-title: Deletion of a small consensus region at 6q15, including the MAP3K7 gene, is significantly associated with high-grade prostate cancers publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-0300 – volume: 103 start-page: 14808 year: 2006 ident: 2022061703535395400_bib4 article-title: FLASH is required for histone transcription and S-phase progression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0604227103 – volume: 3 start-page: 18 year: 2002 ident: 2022061703535395400_bib3 article-title: Expression and genomic analysis of midasin, a novel and highly conserved AAA protein distantly related to dynein publication-title: BMC Genomics doi: 10.1186/1471-2164-3-18 – volume: 270 start-page: 2008 year: 1995 ident: 2022061703535395400_bib8 article-title: Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction publication-title: Science doi: 10.1126/science.270.5244.2008 – volume: 107 start-page: 2610 year: 2010 ident: 2022061703535395400_bib39 article-title: Basal epithelial stem cells are efficient targets for prostate cancer initiation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0913873107 – volume: 67 start-page: 692 year: 2007 ident: 2022061703535395400_bib1 article-title: DNA copy number alterations in prostate cancers: a combined analysis of published CGH studies publication-title: Prostate doi: 10.1002/pros.20543 – volume: 98 start-page: 11450 year: 2001 ident: 2022061703535395400_bib19 article-title: Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.201415498 – volume: 398 start-page: 252 year: 1999 ident: 2022061703535395400_bib9 article-title: The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway publication-title: Nature doi: 10.1038/18465 – volume: 152 start-page: 2150 year: 2011 ident: 2022061703535395400_bib27 article-title: Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells publication-title: Endocrinology doi: 10.1210/en.2010-1377 – volume: 6 start-page: 1087 year: 2005 ident: 2022061703535395400_bib12 article-title: Essential function for the kinase TAK1 in innate and adaptive immune responses publication-title: Nat Immunol doi: 10.1038/ni1255 – volume: 33 start-page: 401 year: 2003 ident: 2022061703535395400_bib22 article-title: A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference publication-title: Nat Genet doi: 10.1038/ng1117 – volume: 239 start-page: 273 year: 1987 ident: 2022061703535395400_bib24 article-title: Mesenchymal-epithelial interactions: technical considerations publication-title: Prog Clin Biol Res – volume: 401 start-page: 662 year: 1999 ident: 2022061703535395400_bib30 article-title: Apoptosis. Searching for FLASH domains publication-title: Nature doi: 10.1038/44317 – volume: 107 start-page: 844 year: 2010 ident: 2022061703535395400_bib32 article-title: Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0909781107 – volume: 62 start-page: 2999 year: 2002 ident: 2022061703535395400_bib36 article-title: Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis publication-title: Cancer Res – volume: 326 start-page: 105 year: 2003 ident: 2022061703535395400_bib10 article-title: TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway publication-title: J Mol Biol doi: 10.1016/S0022-2836(02)01404-3 – volume: 103 start-page: 17378 year: 2006 ident: 2022061703535395400_bib16 article-title: A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0604708103 – volume: 102 start-page: 6942 year: 2005 ident: 2022061703535395400_bib38 article-title: The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0502320102 – volume: 103 start-page: 1480 year: 2006 ident: 2022061703535395400_bib41 article-title: Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0510652103 – volume: 7 start-page: 682 year: 2010 ident: 2022061703535395400_bib40 article-title: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.11.013 – volume: 16 start-page: 225 year: 1998 ident: 2022061703535395400_bib13 article-title: NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.16.1.225 – volume: 309 start-page: 205 year: 2005 ident: 2022061703535395400_bib20 article-title: Gene silencing by a DNA vector-based RNAi technology publication-title: Methods Mol Biol – volume: 27 start-page: 3780 year: 2007 ident: 2022061703535395400_bib21 article-title: PIASy-mediated sumoylation of Yin Yang 1 depends on their interaction but not the RING finger publication-title: Mol Cell Biol doi: 10.1128/MCB.01761-06 – volume: 295 start-page: 868 year: 2002 ident: 2022061703535395400_bib23 article-title: Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors publication-title: Science doi: 10.1126/science.1067081 – volume: 398 start-page: 777 year: 1999 ident: 2022061703535395400_bib29 article-title: The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis publication-title: Nature doi: 10.1038/19709 – volume: 4 start-page: 223 year: 2003 ident: 2022061703535395400_bib34 article-title: Myc-driven murine prostate cancer shares molecular features with human prostate tumors publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00197-1 – volume: 96 start-page: 1662 year: 1983 ident: 2022061703535395400_bib26 article-title: Epithelial-mesenchymal interactions in prostatic development. I. morphological observations of prostatic induction by urogenital sinus mesenchyme in epithelium of the adult rodent urinary bladder publication-title: J Cell Biol doi: 10.1083/jcb.96.6.1662 – volume: 27 start-page: 222 year: 2001 ident: 2022061703535395400_bib37 article-title: Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse publication-title: Nat Genet doi: 10.1038/84879 – volume: 19 start-page: 2633 year: 2004 ident: 2022061703535395400_bib6 article-title: Functional expression of connexin57 in horizontal cells of the mouse retina publication-title: Eur J Neurosci doi: 10.1111/j.0953-816X.2004.03360.x – volume: 24 start-page: 688 year: 2005 ident: 2022061703535395400_bib31 article-title: Role of FLASH in caspase-8-mediated activation of NF-kappaB: dominant-negative function of FLASH mutant in NF-kappaB signaling pathway publication-title: Oncogene doi: 10.1038/sj.onc.1208186 – volume: 63 start-page: 291 year: 2005 ident: 2022061703535395400_bib18 article-title: Culture of mouse prostatic epithelial cells from genetically engineered mice publication-title: Prostate doi: 10.1002/pros.20193 – reference: 8533096 - Science. 1995 Dec 22;270(5244):2008-11 – reference: 20133806 - Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2610-5 – reference: 15860580 - Proc Natl Acad Sci U S A. 2005 May 10;102(19):6942-7 – reference: 15990402 - Methods Mol Biol. 2005;309:205-18 – reference: 18055450 - Stem Cells. 2008 Mar;26(3):600-10 – reference: 16186825 - Nat Immunol. 2005 Nov;6(11):1087-95 – reference: 14522255 - Cancer Cell. 2003 Sep;4(3):209-21 – reference: 11553794 - Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11450-5 – reference: 21427218 - Endocrinology. 2011 Jun;152(6):2150-63 – reference: 15147297 - Eur J Neurosci. 2004 May;19(10):2633-40 – reference: 15599944 - Prostate. 2005 May 15;63(3):291-8 – reference: 3741678 - Biochem Cell Biol. 1986 Jun;64(6):608-14 – reference: 10537104 - Nature. 1999 Oct 14;401(6754):662; discussion 662-3 – reference: 20080763 - Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):844-9 – reference: 10949928 - Oncogene. 2000 Aug 3;19(33):3739-49 – reference: 16432235 - Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1480-5 – reference: 19197243 - EMBO J. 2009 Mar 18;28(6):677-85 – reference: 11786607 - Science. 2002 Feb 1;295(5556):868-72 – reference: 11175795 - Nat Genet. 2001 Feb;27(2):222-4 – reference: 17085580 - Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17378-83 – reference: 12808066 - Mod Pathol. 2003 Jun;16(6):598-606 – reference: 12590264 - Nat Genet. 2003 Mar;33(3):401-6 – reference: 17003125 - Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14808-12 – reference: 10235259 - Nature. 1999 Apr 29;398(6730):777-85 – reference: 3309958 - Prog Clin Biol Res. 1987;239:273-82 – reference: 12102729 - BMC Genomics. 2002 Jul 8;3:18 – reference: 10094049 - Nature. 1999 Mar 18;398(6724):252-6 – reference: 17342750 - Prostate. 2007 May 15;67(7):692-700 – reference: 6853597 - J Cell Biol. 1983 Jun;96(6):1662-70 – reference: 16835226 - J Biol Chem. 2006 Sep 1;281(35):25336-43 – reference: 10391247 - Nature. 1999 Jun 24;399(6738):798-802 – reference: 17785553 - Clin Cancer Res. 2007 Sep 1;13(17):5028-33 – reference: 15592525 - Oncogene. 2005 Jan 20;24(4):688-96 – reference: 20478530 - Cancer Cell. 2010 May 18;17(5):481-96 – reference: 17003126 - Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14802-7 – reference: 9597130 - Annu Rev Immunol. 1998;16:225-60 – reference: 17353273 - Mol Cell Biol. 2007 May;27(10):3780-92 – reference: 12036903 - Cancer Res. 2002 Jun 1;62(11):2999-3004 – reference: 14522256 - Cancer Cell. 2003 Sep;4(3):223-38 – reference: 12547194 - J Mol Biol. 2003 Feb 7;326(1):105-15 – reference: 21112563 - Cell Stem Cell. 2010 Dec 3;7(6):682-93 |
SSID | ssj0005105 |
Score | 2.2905219 |
Snippet | More than 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes... Over 30% of primary prostate cancers contain a consensus deletion of an approximately 800 kb locus on chromosome 6q15.1. The MAP3K7 gene, which encodes TGF-β... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2833 |
SubjectTerms | Animals Antineoplastic agents Biological and medical sciences Cell Line Cell Movement Cell Proliferation Humans Male MAP Kinase Kinase Kinases - analysis MAP Kinase Kinase Kinases - antagonists & inhibitors MAP Kinase Kinase Kinases - physiology Medical sciences Mice Neoplasm Invasiveness Pharmacology. Drug treatments Prostatic Neoplasms - etiology Prostatic Neoplasms - pathology Prostatic Neoplasms - prevention & control Tumor Suppressor Proteins - physiology Tumors |
Title | Suppression of Tak1 Promotes Prostate Tumorigenesis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22467172 https://www.proquest.com/docview/1018634031 https://pubmed.ncbi.nlm.nih.gov/PMC3654674 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZB2Mwxr7nbise7K3Ysy0pkh9D2ChjLYylrG_GsiVimjihiV_21_fO8mcJ27oXY5RITvw7nU66390R8ilSQajSIPC0SDOPcRl6sTBTLxPc6Gwah7nCc8jzi-nZJft2xa8mk-2AtVTtlZ_9PhhX8j-oQhvgilGy90C2GxQa4B7whSsgDNd_whhLcloea230LdLrEJn_8Pb1Dm_qaKHTRbXG8leo1Ird0BidI-I3p02-n2Xt0LXMjFpzrFb-4JzgV2VZ9p0w_VzawOpiuWlWP3RlFOuirpk-w-yTvTdnrW08zfemWnd70ICMjZYQ1SlP6XFmK-34uteXgtmMkK1CFdFQcMKhepQ260Wz1MLSSA-rcS4t79E-0J_PLjD-LxI23nqcNvvOctaRDOvtDZfoXpcJDpPAMNCU4DAPyMNIgLWFbvwffX553pBe2yc3MV8wzOeDv2ZkzTzZpjuYWMZWRDm0ZbnLvB2YMotn5GmzB3FnVqCek4kuX5BH5w3L4iWhA7lyN8ZFuXJbuXJbuXJHcvWKXH79spifeU1xDS8DC3jvxZi6T7DMyCASaZjDtIxzrXJKpaEqT42hOaNGaMmzOFfSBEEaZwrNW6UZ2DuvyVG5KfVb4sZUc61EhAccTKWZFDSn6DHXKYytQoew9iUlWZN5HgugrJI_QuQQv-u2talX_tbhZIRA1wu2-IwJwR3ysYUkAS2KrrG01Jtqh0RHOaUMVjiHvLEQ9b0jMCbAzneIGIHXfQEztI8_KYtlnamdYqigYMf3_SfvyON-Br4nR_ubSn8A43evTmp5vQUZDKTZ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppression+of+Tak1+Promotes+Prostate+Tumorigenesis&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Wu%2C+Min&rft.au=Shi%2C+Lihong&rft.au=Cimic%2C+Adela&rft.au=Romero%2C+Lina&rft.date=2012-06-01&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=72&rft.issue=11&rft.spage=2833&rft.epage=2843&rft_id=info:doi/10.1158%2F0008-5472.CAN-11-2724&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_0008_5472_CAN_11_2724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |