Human Occupancy Detection via Passive Cognitive Radio
Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging research area. Part of the difficulty arises from the fact that a human subject cannot easily be detected due to spectrum variation. In this paper,...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 15; p. 4248 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
30.07.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s20154248 |
Cover
Abstract | Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging research area. Part of the difficulty arises from the fact that a human subject cannot easily be detected due to spectrum variation. In this paper, we present an advanced HOD system that dynamically reconfigures a CR to collect passive radio frequency (RF) signals at different places of interest. Principal component analysis (PCA) and recursive feature elimination with logistic regression (RFE-LR) algorithms are applied to find the frequency bands sensitive to human occupancy when the baseline spectrum changes with locations. With the dynamically collected passive RF signals, four machine learning (ML) classifiers are applied to detect human occupancy, including support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), and linear SVM with stochastic gradient descent (SGD) training. The experimental results show that the proposed system can accurately detect human subjects—not only in residential rooms—but also in commercial vehicles, demonstrating that passive CR is a viable technique for HOD. More specifically, the RFE-LR with SGD achieves the best results with a limited number of frequency bands. The proposed adaptive spectrum sensing method has not only enabled robust detection performance in various environments, but also improved the efficiency of the CR system in terms of speed and power consumption. |
---|---|
AbstractList | Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging research area. Part of the difficulty arises from the fact that a human subject cannot easily be detected due to spectrum variation. In this paper, we present an advanced HOD system that dynamically reconfigures a CR to collect passive radio frequency (RF) signals at different places of interest. Principal component analysis (PCA) and recursive feature elimination with logistic regression (RFE-LR) algorithms are applied to find the frequency bands sensitive to human occupancy when the baseline spectrum changes with locations. With the dynamically collected passive RF signals, four machine learning (ML) classifiers are applied to detect human occupancy, including support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), and linear SVM with stochastic gradient descent (SGD) training. The experimental results show that the proposed system can accurately detect human subjects—not only in residential rooms—but also in commercial vehicles, demonstrating that passive CR is a viable technique for HOD. More specifically, the RFE-LR with SGD achieves the best results with a limited number of frequency bands. The proposed adaptive spectrum sensing method has not only enabled robust detection performance in various environments, but also improved the efficiency of the CR system in terms of speed and power consumption. Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging research area. Part of the difficulty arises from the fact that a human subject cannot easily be detected due to spectrum variation. In this paper, we present an advanced HOD system that dynamically reconfigures a CR to collect passive radio frequency (RF) signals at different places of interest. Principal component analysis (PCA) and recursive feature elimination with logistic regression (RFE-LR) algorithms are applied to find the frequency bands sensitive to human occupancy when the baseline spectrum changes with locations. With the dynamically collected passive RF signals, four machine learning (ML) classifiers are applied to detect human occupancy, including support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), and linear SVM with stochastic gradient descent (SGD) training. The experimental results show that the proposed system can accurately detect human subjects-not only in residential rooms-but also in commercial vehicles, demonstrating that passive CR is a viable technique for HOD. More specifically, the RFE-LR with SGD achieves the best results with a limited number of frequency bands. The proposed adaptive spectrum sensing method has not only enabled robust detection performance in various environments, but also improved the efficiency of the CR system in terms of speed and power consumption.Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging research area. Part of the difficulty arises from the fact that a human subject cannot easily be detected due to spectrum variation. In this paper, we present an advanced HOD system that dynamically reconfigures a CR to collect passive radio frequency (RF) signals at different places of interest. Principal component analysis (PCA) and recursive feature elimination with logistic regression (RFE-LR) algorithms are applied to find the frequency bands sensitive to human occupancy when the baseline spectrum changes with locations. With the dynamically collected passive RF signals, four machine learning (ML) classifiers are applied to detect human occupancy, including support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), and linear SVM with stochastic gradient descent (SGD) training. The experimental results show that the proposed system can accurately detect human subjects-not only in residential rooms-but also in commercial vehicles, demonstrating that passive CR is a viable technique for HOD. More specifically, the RFE-LR with SGD achieves the best results with a limited number of frequency bands. The proposed adaptive spectrum sensing method has not only enabled robust detection performance in various environments, but also improved the efficiency of the CR system in terms of speed and power consumption. |
Author | Li, Jia Shen, Xiaoping Liu, Jenny Vakil, Asad Blasch, Erik Ewing, Robert Mu, Huaizheng |
AuthorAffiliation | 1 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; huaizhengmu@oakland.edu (H.M.); avakil@oakland.edu (A.V.); li4@oakland.edu (J.L.) 2 Air Force Research Lab, Wright Patterson Air Force Base, Dayton, OH 45433, USA; robert.ewing.2@us.af.mil 4 Air Force Research Lab, Rome, NY 13441, USA; erik.blasch.1@us.af.mil 3 Department of Mathematics, Ohio University, Athens, OH 45701, USA; shenx@ohio.edu |
AuthorAffiliation_xml | – name: 1 Department of Electrical and Computer Engineering, Oakland University, Rochester, MI 48309, USA; huaizhengmu@oakland.edu (H.M.); avakil@oakland.edu (A.V.); li4@oakland.edu (J.L.) – name: 3 Department of Mathematics, Ohio University, Athens, OH 45701, USA; shenx@ohio.edu – name: 4 Air Force Research Lab, Rome, NY 13441, USA; erik.blasch.1@us.af.mil – name: 2 Air Force Research Lab, Wright Patterson Air Force Base, Dayton, OH 45433, USA; robert.ewing.2@us.af.mil |
Author_xml | – sequence: 1 givenname: Jenny surname: Liu fullname: Liu, Jenny – sequence: 2 givenname: Huaizheng surname: Mu fullname: Mu, Huaizheng – sequence: 3 givenname: Asad surname: Vakil fullname: Vakil, Asad – sequence: 4 givenname: Robert surname: Ewing fullname: Ewing, Robert – sequence: 5 givenname: Xiaoping surname: Shen fullname: Shen, Xiaoping – sequence: 6 givenname: Erik orcidid: 0000-0001-6894-6108 surname: Blasch fullname: Blasch, Erik – sequence: 7 givenname: Jia surname: Li fullname: Li, Jia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32751618$$D View this record in MEDLINE/PubMed |
BookMark | eNplkU1P3DAQhq2Kiu9D_wDKkR62O_5I7FwqoS0tSEhUCM7W-COLV1l7Gycr8e9JuoCgPc1o_M7zemaOyF5M0RPyhcI3zmuYZwa0FEyoT-SQjnGmGIO9d_kBOcp5BcA452qfHHAmS1pRdUjKq2GNsbi1dthgtE_FD99724cUi23A4jfmHLa-WKRlDP2U3aEL6YR8brDN_vQlHpOHn5f3i6vZze2v68XFzcwKQfuZNM4zlIpxR8HImknwzljZKCV4xcEa0SAz4wgcuVG1kpJyA2iVYLUAwY_J9Y7rEq70pgtr7J50wqD_FlK31Nj1wbZeYwkCnVPKSScUClMBLxtV1w4YbezE-r5jbQaz9s762HfYfoB-fInhUS_TVsvxr6yqR8D5C6BLfwafe70O2fq2xejTkDUTHCoJkk5eZ--93kxe9z4K5juB7VLOnW-0DT1Oax-tQ6sp6Omy-u2yY8fXfzpeof9rnwGaSaDf |
CitedBy_id | crossref_primary_10_1109_OJIM_2023_3311053 crossref_primary_10_3390_su15021332 crossref_primary_10_3390_electronics12071616 crossref_primary_10_3390_s22155787 crossref_primary_10_1016_j_iot_2024_101466 crossref_primary_10_3233_RFT_240006 crossref_primary_10_3390_electronics12163423 crossref_primary_10_3390_s23031489 crossref_primary_10_1109_JIOT_2023_3263476 crossref_primary_10_3390_s21196455 crossref_primary_10_3390_s23094469 crossref_primary_10_1109_ACCESS_2023_3269843 crossref_primary_10_3390_s24113276 |
Cites_doi | 10.1109/EAIS.2015.7368797 10.1109/WAMICON.2014.6857806 10.1049/iet-rsn.2013.0207 10.1109/NAECON46414.2019.9058116 10.1016/j.enbuild.2018.08.010 10.1109/DySPAN.2019.8935684 10.1109/RADAR.2008.4721059 10.1109/CEWS.2015.7867145 10.1109/RADAR.2013.6651988 10.1109/MILCOM.2015.7357450 10.1016/j.enbuild.2014.03.069 10.1007/s10950-012-9274-y 10.3390/s16101675 10.1109/ICSMC.2011.6083650 10.1155/2011/502087 10.1109/RFID.2019.8719103 10.1109/JSTSP.2011.2176916 10.1016/j.applthermaleng.2012.06.019 10.1109/SICE.2008.4655242 10.1109/JSAC.2014.1411RP05 10.1109/JRFID.2018.2880457 10.1109/TII.2019.2947435 10.1109/RADAR.2009.4976999 10.1109/THMS.2017.2693242 10.1109/JSTSP.2010.2093210 10.1186/s13638-017-1018-9 10.1109/ROBIO.2011.6181529 10.1186/s13638-019-1544-8 10.3390/s130911196 10.1007/BF02351000 10.1109/ACCESS.2019.2940386 10.3390/s140611001 10.3390/s140813778 10.1117/1.1766300 10.1109/LGRS.2014.2330764 10.1109/ICIP.2011.6115810 10.1002/wcm.1017 10.1080/00401706.1984.10487939 10.1145/279232.279236 10.1016/j.eswa.2018.02.019 10.1109/MCOM.2018.1800153 10.1162/089976699300016728 10.1155/WCN.2005.275 10.1109/APPEEC.2016.7779696 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/s20154248 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_a504add88d7d48a4b6035f899d021fc4 PMC7436269 32751618 10_3390_s20154248 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-18-1-0287 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c441t-7bde2a7823d10b79270edbc7f8843630cb4fa2b3903a3b8987713b0ac84294043 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Tue Sep 30 16:55:03 EDT 2025 Thu Sep 04 23:09:05 EDT 2025 Mon Jul 21 05:57:41 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Wed Oct 01 04:36:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | human occupancy detection adaptive spectrum sensing passive cognitive radio reconfigurable software defined radio feature selection |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-7bde2a7823d10b79270edbc7f8843630cb4fa2b3903a3b8987713b0ac84294043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6894-6108 |
OpenAccessLink | https://doaj.org/article/a504add88d7d48a4b6035f899d021fc4 |
PMID | 32751618 |
PQID | 2430670714 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a504add88d7d48a4b6035f899d021fc4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7436269 proquest_miscellaneous_2430670714 pubmed_primary_32751618 crossref_citationtrail_10_3390_s20154248 crossref_primary_10_3390_s20154248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200730 |
PublicationDateYYYYMMDD | 2020-07-30 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200730 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Liu (ref_32) 2020; 16 Brena (ref_41) 2014; 14 Bonior (ref_27) 2015; 12 Song (ref_43) 2014; 32 Youssef (ref_25) 2018; 2 Pan (ref_22) 2014; 9061 Tipping (ref_47) 1999; 11 ref_17 ref_16 ref_15 McCabe (ref_48) 1984; 26 (ref_13) 2012; 16 Falcone (ref_14) 2014; 8 ref_21 Zhang (ref_28) 2019; 7 Shih (ref_24) 2014; 77 Ranganathan (ref_36) 2011; 2011 ref_26 Kahler (ref_45) 2011; 6 Berndt (ref_10) 2018; 102 Wang (ref_11) 2013; 50 Wu (ref_42) 2018; 2018 Maby (ref_50) 2004; 42 ref_35 Zhu (ref_51) 1997; 23 ref_33 Tumuluru (ref_34) 2012; 12 ref_31 Birch (ref_23) 2004; 43 Lv (ref_18) 2017; 47 ref_39 ref_38 Wang (ref_40) 2019; 2019 Joshi (ref_37) 2013; 13 ref_46 Xu (ref_44) 2012; 6 Wang (ref_30) 2011; 5 Jondral (ref_29) 2005; 2005 ref_1 Riyaz (ref_19) 2018; 56 ref_3 ref_2 Christiansen (ref_12) 2014; 14 Zou (ref_20) 2018; 177 ref_49 ref_9 ref_8 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_9 doi: 10.1109/EAIS.2015.7368797 – ident: ref_26 doi: 10.1109/WAMICON.2014.6857806 – volume: 6 start-page: 101 year: 2011 ident: ref_45 article-title: Decision-Level Fusion Performance Improvement From Enhanced HRR Radar Clutter Suppression publication-title: J. Adv. Inf. Fusion – volume: 8 start-page: 123 year: 2014 ident: ref_14 article-title: Two-dimensional location of moving targets within local areas using WiFi-based multistatic passive radar publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2013.0207 – ident: ref_39 – ident: ref_15 doi: 10.1109/NAECON46414.2019.9058116 – volume: 177 start-page: 12 year: 2018 ident: ref_20 article-title: Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.08.010 – ident: ref_1 – ident: ref_33 doi: 10.1109/DySPAN.2019.8935684 – ident: ref_6 doi: 10.1109/RADAR.2008.4721059 – ident: ref_16 doi: 10.1109/CEWS.2015.7867145 – ident: ref_21 doi: 10.1109/RADAR.2013.6651988 – volume: 9061 start-page: 90611O year: 2014 ident: ref_22 article-title: Building Occupancy Estimation System using sparse ambient vibration monitoring publication-title: Int. Soc. Opt. Photonics – ident: ref_31 doi: 10.1109/MILCOM.2015.7357450 – ident: ref_8 – volume: 77 start-page: 270 year: 2014 ident: ref_24 article-title: A robust occupancy detection and tracking algorithm for the automatic monitoring and commissioning of a building publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.03.069 – volume: 16 start-page: 603 year: 2012 ident: ref_13 article-title: Rotaphone, a mechanical seismic sensor system for field rotation rate measurements and its in situ calibration publication-title: J. Seismolog. doi: 10.1007/s10950-012-9274-y – ident: ref_35 doi: 10.3390/s16101675 – ident: ref_38 – ident: ref_2 doi: 10.1109/ICSMC.2011.6083650 – volume: 2011 start-page: 502087 year: 2011 ident: ref_36 article-title: Cognitive Radio for Smart Grid: Theory, Algorithms, and Security publication-title: Int. J. Digital Multimedia Broadcast. doi: 10.1155/2011/502087 – ident: ref_17 doi: 10.1109/RFID.2019.8719103 – volume: 6 start-page: 180 year: 2012 ident: ref_44 article-title: Opportunistic Spectrum Access in Cognitive Radio Networks: Global Optimization Using Local Interaction Games publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2011.2176916 – volume: 50 start-page: 177 year: 2013 ident: ref_11 article-title: Characteristics of an air source heat pump with novel photoelectric sensors during periodic frost–defrost cycles publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.06.019 – ident: ref_3 doi: 10.1109/SICE.2008.4655242 – volume: 32 start-page: 2190 year: 2014 ident: ref_43 article-title: Spatial Throughput Characterization in Cognitive Radio Networks with Threshold-Based Opportunistic Spectrum Access publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2014.1411RP05 – volume: 2 start-page: 197 year: 2018 ident: ref_25 article-title: Machine Learning Approach to RF Transmitter Identification publication-title: IEEE J. Radio Freq. Ident. doi: 10.1109/JRFID.2018.2880457 – volume: 16 start-page: 5379 year: 2020 ident: ref_32 article-title: NOMA-Based Resource Allocation for Cluster-Based Cognitive Industrial Internet of Things publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2019.2947435 – ident: ref_7 doi: 10.1109/RADAR.2009.4976999 – volume: 47 start-page: 789 year: 2017 ident: ref_18 article-title: Qualitative Action Recognition by Wireless Radio Signals in Human–Machine Systems publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2017.2693242 – volume: 5 start-page: 5 year: 2011 ident: ref_30 article-title: Advances in cognitive radio networks: A survey publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2093210 – volume: 2018 start-page: 13 year: 2018 ident: ref_42 article-title: Energy-efficiency opportunistic spectrum allocation in cognitive wireless sensor network publication-title: EURASIP J. Wireless Commun. Network. doi: 10.1186/s13638-017-1018-9 – ident: ref_5 doi: 10.1109/ROBIO.2011.6181529 – volume: 2019 start-page: 230 year: 2019 ident: ref_40 article-title: Identification and authentication for wireless transmission security based on RF-DNA fingerprint publication-title: EURASIP J. Wireless Commun. Network. doi: 10.1186/s13638-019-1544-8 – volume: 13 start-page: 11196 year: 2013 ident: ref_37 article-title: Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends publication-title: Sensors doi: 10.3390/s130911196 – volume: 42 start-page: 562 year: 2004 ident: ref_50 article-title: Analysis of auditory evoked potential parameters in the presence of radiofrequency fields using a support vector machines method publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02351000 – volume: 7 start-page: 131102 year: 2019 ident: ref_28 article-title: A Wifi-Based Gesture Recognition System Using Software-Defined Radio publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2940386 – volume: 14 start-page: 11001 year: 2014 ident: ref_41 article-title: Magnetic Field Feature Extraction and Selection for Indoor Location Estimation publication-title: Sensors doi: 10.3390/s140611001 – volume: 14 start-page: 13778 year: 2014 ident: ref_12 article-title: Automated Detection and Recognition of Wildlife Using Thermal Cameras publication-title: Sensors doi: 10.3390/s140813778 – volume: 43 start-page: 1828 year: 2004 ident: ref_23 article-title: Automated vehicle occupancy monitoring publication-title: Opt. Eng. doi: 10.1117/1.1766300 – ident: ref_46 – volume: 12 start-page: 175 year: 2015 ident: ref_27 article-title: Software-Defined-Radio-Based Wireless Tomography: Experimental Demonstration and Verification publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2330764 – ident: ref_4 doi: 10.1109/ICIP.2011.6115810 – volume: 12 start-page: 862 year: 2012 ident: ref_34 article-title: Channel Status Prediction for Cognitive Radio Networks publication-title: Wirel. Commun. Mob. Comput. doi: 10.1002/wcm.1017 – volume: 26 start-page: 137 year: 1984 ident: ref_48 article-title: Principal Variables publication-title: Technometrics doi: 10.1080/00401706.1984.10487939 – volume: 23 start-page: 550 year: 1997 ident: ref_51 article-title: Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization publication-title: ACM Trans. Math. Softw. doi: 10.1145/279232.279236 – volume: 102 start-page: 1 year: 2018 ident: ref_10 article-title: Micro-Doppler radar classification of humans and animals in an operational environment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.02.019 – volume: 56 start-page: 146 year: 2018 ident: ref_19 article-title: Deep Learning Convolutional Neural Networks for Radio Identification publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1800153 – volume: 11 start-page: 443 year: 1999 ident: ref_47 article-title: Mixtures of Probabilistic Principal Component Analyzers publication-title: Neural Comput. doi: 10.1162/089976699300016728 – volume: 2005 start-page: 652784 year: 2005 ident: ref_29 article-title: Software-Defined Radio—Basics and Evolution to Cognitive Radio publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1155/WCN.2005.275 – ident: ref_49 doi: 10.1109/APPEEC.2016.7779696 |
SSID | ssj0023338 |
Score | 2.4244647 |
Snippet | Human occupancy detection (HOD) in an enclosed space, such as indoors or inside of a vehicle, via passive cognitive radio (CR) is a new and challenging... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4248 |
SubjectTerms | adaptive spectrum sensing Algorithms Cognition feature selection human occupancy detection Humans Logistic Models Machine Learning Motor Vehicles Non-Medical Public and Private Facilities passive cognitive radio Radio Waves reconfigurable software defined radio Support Vector Machine |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (Open Access) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2Ib-OLKB68hG73kd0ctVqKoIhY6C3sI4sFScWm_n5n8yKVghevyUI2Mzs735fMfoPQNSeOAA6GQJLERMxpGWmX8IhqY2PiMmy4P-_89ByPJ-xxyqedVl--JqySB64M11ccM4hBKa2wTCqmY0y5A5ZgITs5UyqBQhpryFRNtSgwr0pHiAKp7y-IhwrEN_npZJ9SpH8dsvxdINnJOKMdtF1DxfC2muIu2sjyPbTVERDcR7z8Bh9WUsGwTYb3WVHWVuXh90yFL4CMYTcLh02NUPiq7Gx-gCajh7fhOKobIUQG0EoRCW0zoiCXUzvAWiRE4MxqI5yUjMYUG82cIhrelCqqZSIFUE-NlZGQbbx8ziHq5fM8O0YhALyYQ0pPDFbMQEBbYwdcAetxEmKdBOimMVBqapVw36ziIwW24G2ZtrYM0FU79LOSxlg36M5buR3g1azLC-DjtPZx-pePA3TZ-CiF1e9_aag8my8XKWGe8vhDWAE6qnzWPooSwX07gACJFW-uzGX1Tj57LxW2AVYB0UtO_mPyp2iTeI7uvwfjM9QrvpbZOQCZQl-Ua_YHlEjv4Q priority: 102 providerName: Directory of Open Access Journals |
Title | Human Occupancy Detection via Passive Cognitive Radio |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32751618 https://www.proquest.com/docview/2430670714 https://pubmed.ncbi.nlm.nih.gov/PMC7436269 https://doaj.org/article/a504add88d7d48a4b6035f899d021fc4 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT9wwEB7xkBA9IAptCaWrFHHgktb4ETuHqiqULUICIcRKe4v8iMtKKNvuLhX8-47zEqm2lxwSK05mPJ7v8-MzwJGgniIOxkBS1CbcG5UYn4mEGetS6gtiRdjvfHWdXoz45ViMV6A9Y7Mx4HwptQvnSY1mD5-efj9_xYD_EhgnUvbPcxqAAFa5CuuYkGho3Fe8m0ygDGlYLSrUL74JG4xKESTje1mpEu9fhjj_XTj5IhMNt2GrgZDxt9rnr2GlKHfg1QthwV0Q1dh8XEsIY_cZfy8W1ZqrMv4z0fENImbs5eKzdu1QfKvdZPoGRsPzu7OLpDkgIbGIYhaJNK6gGnM8cyfEyIxKUjhjpVeKs5QRa7jX1OBPM82MypRESmqItgqzUJDVeQtr5bQs9iBGI6QCU31mieYWA91ZdyI0siGvsA-gERy3Bsptox4eDrF4yJFFBLPmnVkjOOyK_qolM5YVOg1W7goElevqxnT2M2-CJteCcOx_lXLScaW5SQkTHhmiQ2TiLY_gY-ujHKMiTHXospg-znPKAxUKm7MieFf7rKuq9XkEsufN3rf0n5ST-0p5G-EWEsBs_7_vfA-bNBDyMPhLDmBtMXssPiBqWZgBrMqxxKsa_hjA-un59c3toBoBGFSt9S_XbuzZ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Occupancy+Detection+via+Passive+Cognitive+Radio&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jenny&rft.au=Mu%2C+Huaizheng&rft.au=Vakil%2C+Asad&rft.au=Ewing%2C+Robert&rft.date=2020-07-30&rft.eissn=1424-8220&rft.volume=20&rft.issue=15&rft_id=info:doi/10.3390%2Fs20154248&rft_id=info%3Apmid%2F32751618&rft.externalDocID=32751618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |