QWIP: A Quantitative Metric for Quality Control of Aquatic Reflectance Spectral Shape using the Apparent Visible Wavelength

The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simpl...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in remote sensing Vol. 3
Main Authors Dierssen, Heidi M, Vandermeulen, Ryan A, Barnes, Brian B, Castagna, Alexandre, Knaeps, Els, Vanhellemont, Quinten
Format Journal Article
LanguageEnglish
Published Goddard Space Flight Center Frontiers in Remote Sensing 27.05.2022
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN2673-6187
2673-6187
DOI10.3389/frsen.2022.869611

Cover

Abstract The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis.
AbstractList The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the water-leaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis.
The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis.
Audience PUBLIC
Author Knaeps, Els
Barnes, Brian B
Castagna, Alexandre
Vandermeulen, Ryan A
Dierssen, Heidi M
Vanhellemont, Quinten
Author_xml – sequence: 1
  givenname: Heidi M
  surname: Dierssen
  fullname: Dierssen, Heidi M
  organization: University of Connecticut
– sequence: 2
  givenname: Ryan A
  surname: Vandermeulen
  fullname: Vandermeulen, Ryan A
  organization: Science Systems and Applications (United States)
– sequence: 3
  givenname: Brian B
  surname: Barnes
  fullname: Barnes, Brian B
  organization: University of South Florida
– sequence: 4
  givenname: Alexandre
  surname: Castagna
  fullname: Castagna, Alexandre
  organization: Ghent University
– sequence: 5
  givenname: Els
  surname: Knaeps
  fullname: Knaeps, Els
  organization: Flemish Institute for Technological Research
– sequence: 6
  givenname: Quinten
  surname: Vanhellemont
  fullname: Vanhellemont, Quinten
  organization: Royal Belgian Institute of Natural Sciences
BookMark eNp9kcFuEzEQhleolShtHwCJg18gwfZ612tuUQQlUisoBXq0pt5x4srYi-1Uqnh5nKRCqIeePBrP_4_m_940RyEGbJq3jM7bdlDvbcoY5pxyPh961TP2qjnhvWxnPRvk0X_16-Y853tKKR-EatVw0vy5vl19_UAW5HoLobgCxT0gucKSnCE2pl3fu_JIljGUFD2Jlix-b-uYId_QejQFgkFyM9UqgSc3G5iQbLMLa1I2SBbTBAlDIT9ddnceyS08oMewLpuz5tiCz3j-9J42Pz59_L78PLv8crFaLi5nRghWZsLASFUrKEdoGUeURqAa70BS0cEIgiroreiZGnmHsqPK2H4ckQ2cUTva9rRZHXzHCPd6Su4XpEcdwel9I6a1hlQP8qg5s8hkXdeNdTetFrzranKdsW1NVlYvdvAyKeac0P7zY1TvYOg9DL2DoQ8wqkY-05h90LtEwfkXle8OygAZdB3P--8KUMgK8C8al5sg
CitedBy_id crossref_primary_10_3390_rs16091497
crossref_primary_10_3389_fmars_2023_1267681
crossref_primary_10_1038_s41597_023_01973_y
crossref_primary_10_3390_rs16142663
crossref_primary_10_1016_j_jag_2025_104389
crossref_primary_10_5194_essd_17_435_2025
crossref_primary_10_3390_rs16111845
crossref_primary_10_1364_JOSAB_504535
crossref_primary_10_3390_jmse13030540
crossref_primary_10_3390_rs15184443
crossref_primary_10_1016_j_isprsjprs_2024_07_011
crossref_primary_10_3389_fmars_2025_1507638
crossref_primary_10_1364_OE_472765
crossref_primary_10_34133_remotesensing_0049
crossref_primary_10_3389_fmars_2023_1129876
crossref_primary_10_3390_rs14184500
Cites_doi 10.3389/fenvs.2021.649528
10.3390/rs12040637
10.1016/j.rse.2020.112015
10.1364/OE.28.001439
10.3390/rs11192198
10.1364/oe.18.007521
10.3390/rs10010147
10.1175/2009jtecho654.1
10.1016/j.rse.2015.06.022
10.5194/essd-12-1123-2020
10.1117/1.jrs.6.063615
10.4319/lo.2006.51.2.1167
10.1093/oso/9780195068436.003.0007
10.1364/ao.378512
10.4319/lo.2003.48.1_part_2.0444
10.1364/oe.397456
10.3390/rs12101587
10.1364/ao.33.000443
10.1016/j.ecss.2006.02.016
10.1016/j.rse.2020.111768
10.1016/j.rse.2018.10.034
10.1016/j.rse.2017.10.041
10.1016/j.rse.2020.111900
10.5670/oceanog.2020.111
10.3390/rs011111360
10.1594/PANGAEA.940240
10.1038/s41597-019-0032-7
10.1002/2016jc012126
10.1016/j.rse.2017.08.024
10.1364/ao.38.007442
10.1016/j.rse.2006.01.015
10.1364/oe.25.0000a1
ContentType Journal Article
Copyright Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
Copyright_xml – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL
DBID CYE
CYI
AAYXX
CITATION
DOA
DOI 10.3389/frsen.2022.869611
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2673-6187
ExternalDocumentID oai_doaj_org_article_21fe17d095d44101822556185cf36967
10_3389_frsen_2022_869611
20220004749
GrantInformation 33
80GSFC20C0044
80NSSC20K1518
GroupedDBID 9T4
AAFWJ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CYE
CYI
GROUPED_DOAJ
M~E
OK1
AAYXX
CITATION
ID FETCH-LOGICAL-c441t-4cad093402ea312ee7c4e9dba7045ada409a6f4619d25e7509cf6dde18210fdf3
IEDL.DBID DOA
ISSN 2673-6187
IngestDate Wed Aug 27 01:22:20 EDT 2025
Tue Jul 01 02:02:53 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Fri Sep 19 16:06:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Remote Sensing Reflectance
Qa/qc – Quality Assurance / Quality Control
Ocean Color
Water-Leaving Reflectance Spectra
Hydrologic Optics
Hyperspectral Remote Sensing
Water Quality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-4cad093402ea312ee7c4e9dba7045ada409a6f4619d25e7509cf6dde18210fdf3
Notes GSFC
Goddard Space Flight Center
OpenAccessLink https://doaj.org/article/21fe17d095d44101822556185cf36967
ParticipantIDs doaj_primary_oai_doaj_org_article_21fe17d095d44101822556185cf36967
crossref_primary_10_3389_frsen_2022_869611
crossref_citationtrail_10_3389_frsen_2022_869611
nasa_ntrs_20220004749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-27
PublicationDateYYYYMMDD 2022-05-27
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-27
  day: 27
PublicationDecade 2020
PublicationPlace Goddard Space Flight Center
PublicationPlace_xml – name: Goddard Space Flight Center
PublicationTitle Frontiers in remote sensing
PublicationYear 2022
Publisher Frontiers in Remote Sensing
Frontiers Media S.A
Publisher_xml – name: Frontiers in Remote Sensing
– name: Frontiers Media S.A
References Bulgarelli (B6) 2020; 59
Garcia (B16) 2018; 10
B25
Qin (B27) 2017; 200
Voss (B38) 2017
Casey (B7) 2020; 12
Röttgers (B28) 2016
Bailey (B2) 2010; 18
Tilstone (B32) 2020; 12
Wei (B39) 2016; 121
Castagna (B9) 2020; 12
Hommersom (B19) 2012; 6
O’Reilly (B26) 1998; 103
Garcia (B15) 2020; 249
Zibordi (B42) 2009; 26
Ibrahim (B20) 2018; 204
Gordon (B17) 1994; 33
Knaeps (B21) 2015; 168
Mortelmans (B24) 2019; 6
Castagna (B8) 2022
Ruddick (B30) 2019; 11
Ruddick (B29) 2006; 51
Barnes (B5) 2019; 220
B34
Zibordi (B43) 2019
Shang (B31) 2020; 28
Balasubramanian (B4) 2020; 246
Dierssen (B13) 2003; 48
Bailey (B3) 2006; 102
Tzortziou (B33) 2006; 68
Zhang (B41) 2017; 25
B1
Vandermeulen (B35) 2020; 247
Vanhellemont (B36) 2020; 28
Craig (B10) 2020
Mobley (B23) 1999; 38
Dierssen (B11) 2020; 33
Lee (B22) 2020
Dierssen (B12) 2021; 9
Gould (B18) 2001; 17
Zaneveld (B40) 1994
Vansteenwegen (B37) 2019; 11
Gao (B14) 1997; 3118
References_xml – volume: 9
  start-page: 134
  year: 2021
  ident: B12
  article-title: Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2021.649528
– volume: 12
  start-page: 637
  year: 2020
  ident: B9
  article-title: Extending Landsat 8: Retrieval of an Orange Contra-band for Inland Water Quality Applications
  publication-title: Remote Sensing
  doi: 10.3390/rs12040637
– volume: 249
  start-page: 112015
  year: 2020
  ident: B15
  article-title: Benthic Classification and IOP Retrievals in Shallow Water Environments Using MERIS Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112015
– volume: 28
  start-page: 1439
  year: 2020
  ident: B31
  article-title: Impact of Ship on Radiometric Measurements in the Field: A Reappraisal via Monte Carlo Simulations
  publication-title: Opt. Express
  doi: 10.1364/OE.28.001439
– volume: 17
  start-page: 328
  year: 2001
  ident: B18
  article-title: Absorption, Scattering, and Remote Sensing Reflectance Relationships in Coastal Waters: Testing a New Inversion Algorithm
  publication-title: J. Coastal Res.
– volume: 11
  start-page: 2198
  year: 2019
  ident: B30
  article-title: A Review of Protocols for Fiducial Reference Measurements of WaterLeaving Radiance for Validation of Satellite Remote-Sensing Data over Water
  publication-title: Remote Sens.
  doi: 10.3390/rs11192198
– volume-title: The Water Optical Properties Processor (WOPP): Pure Water Spectral Absorption, Scattering, and Real Part of Refractive Index Model
  year: 2016
  ident: B28
– volume: 18
  start-page: 7521
  year: 2010
  ident: B2
  article-title: Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing
  publication-title: Opt. Express
  doi: 10.1364/oe.18.007521
– ident: B1
– volume-title: IOCCG Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation
  year: 2020
  ident: B22
  article-title: On-Water Radiometry Measurements: Skylight-Blocked Approach and Data Processing
– ident: B25
– volume: 10
  start-page: 147
  year: 2018
  ident: B16
  article-title: Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic Classifier
  publication-title: Remote Sens.
  doi: 10.3390/rs10010147
– volume: 26
  start-page: 1634
  year: 2009
  ident: B42
  article-title: AERONET-OC: a Network for the Validation of Ocean Color Primary Products
  publication-title: J. Atmos. Oceanic Tech.
  doi: 10.1175/2009jtecho654.1
– volume: 168
  start-page: 66
  year: 2015
  ident: B21
  article-title: A SWIR Based Algorithm to Retrieve Total Suspended Matter in Extremely Turbid Waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.022
– volume: 12
  start-page: 1123
  year: 2020
  ident: B7
  article-title: A Global Compilation of In Situ Aquatic High Spectral Resolution Inherent and Apparent Optical Property Data for Remote Sensing Applications
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-12-1123-2020
– volume: 6
  start-page: 063615
  year: 2012
  ident: B19
  article-title: Intercomparison in the Field between the New WISP-3 and Other Radiometers (TriOS Ramses, ASD FieldSpec, and TACCS)
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.jrs.6.063615
– volume: 51
  start-page: 1167
  year: 2006
  ident: B29
  article-title: Seaborne Measurements of Near Infrared Water-Leaving Reflectance: The Similarity Spectrum for Turbid Waters
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2006.51.2.1167
– volume-title: Ocean Optics
  year: 1994
  ident: B40
  article-title: Optical Closure: from Theory to Measurement
  doi: 10.1093/oso/9780195068436.003.0007
– volume: 59
  start-page: C63
  year: 2020
  ident: B6
  article-title: Adjacency Radiance Around a Small Island: Implications for System Vicarious Calibrations
  publication-title: Appl. Opt.
  doi: 10.1364/ao.378512
– volume: 48
  start-page: 444
  year: 2003
  ident: B13
  article-title: Ocean Color Remote Sensing of Seagrass and Bathymetry in the Bahamas Banks by High-Resolution Airborne Imagery
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2003.48.1_part_2.0444
– volume: 28
  start-page: 29948
  year: 2020
  ident: B36
  article-title: Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry
  publication-title: Opt. Express
  doi: 10.1364/oe.397456
– volume: 12
  start-page: 1587
  year: 2020
  ident: B32
  article-title: Field Intercomparison of Radiometer Measurements for Ocean Colour Validation
  publication-title: Remote Sens.
  doi: 10.3390/rs12101587
– volume: 33
  start-page: 443
  year: 1994
  ident: B17
  article-title: Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: a Preliminary Algorithm
  publication-title: Appl. Opt.
  doi: 10.1364/ao.33.000443
– volume: 68
  start-page: 348
  year: 2006
  ident: B33
  article-title: Bio-optics of the Chesapeake Bay from Measurements and Radiative Transfer Closure
  publication-title: Estuarine, Coastal Shelf Sci.
  doi: 10.1016/j.ecss.2006.02.016
– volume: 246
  start-page: 111768
  year: 2020
  ident: B4
  article-title: Robust Algorithm for Estimating Total Suspended Solids (TSS) in Inland and Nearshore Coastal Waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111768
– volume: 220
  start-page: 110
  year: 2019
  ident: B5
  article-title: Validation of VIIRS and MODIS Reflectance Data in Coastal and Oceanic Waters: An Assessment of Methods
  publication-title: Remote Sensing Environ.
  doi: 10.1016/j.rse.2018.10.034
– volume: 204
  start-page: 60
  year: 2018
  ident: B20
  article-title: Atmospheric Correction for Hyperspectral Ocean Color Retrieval with Application to the Hyperspectral Imager for the Coastal Ocean (HICO)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.041
– volume: 247
  start-page: 111900
  year: 2020
  ident: B35
  article-title: 150 Shades of green: Using the Full Spectrum of Remote Sensing Reflectance to Elucidate Color Shifts in the Ocean
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111900
– volume: 33
  start-page: 74
  year: 2020
  ident: B11
  article-title: Data Needs for Hyperspectral Detection of Algal Diversity across the globe
  publication-title: Oceanography
  doi: 10.5670/oceanog.2020.111
– volume: 11
  start-page: 1360
  year: 2019
  ident: B37
  article-title: The Pan-And-Tilt Hyperspectral Radiometer System (PANTHYR) for Autonomous Satellite Validation Measurements-Prototype Design and Testing
  publication-title: Remote Sens.
  doi: 10.3390/rs011111360
– volume: 103
  start-page: 937953
  year: 1998
  ident: B26
  article-title: Ocean Color Chlorophyll Algorithms for SeaWiFS
  publication-title: J. Geophys. Res.
– year: 2022
  ident: B8
  article-title: Optical and Biogeochemical Properties of Belgian Inland and Coastal Waters
  publication-title: Earth Syst. Sci. Data
  doi: 10.1594/PANGAEA.940240
– volume: 6
  start-page: 22
  year: 2019
  ident: B24
  article-title: Nutrient, Pigment, Suspended Matter and Turbidity Measurements in the Belgian Part of the North Sea
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0032-7
– volume: 121
  start-page: 8189
  year: 2016
  ident: B39
  article-title: A System to Measure the Data Quality of Spectral Remote-Sensing Reflectance of Aquatic Environments
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2016jc012126
– volume: 200
  start-page: 263
  year: 2017
  ident: B27
  article-title: Radiometric Validation of Atmospheric Correction for MERIS in the Baltic Sea Based on Continuous Observations from Ships and AERONET-OC
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.024
– volume-title: Protocols for Satellite Ocean Color Data Validation:
  year: 2019
  ident: B43
– volume: 38
  start-page: 7442
  year: 1999
  ident: B23
  article-title: Estimation of the Remote-Sensing Reflectance from Above-Surface Measurements
  publication-title: Appl. Opt.
  doi: 10.1364/ao.38.007442
– volume: 102
  start-page: 12
  year: 2006
  ident: B3
  article-title: A Multi-Sensor Approach for the On-Orbit Validation of Ocean Color Satellite Data Products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.01.015
– volume-title: Top of Atmosphere, Hyperspectral Synthetic Dataset for PACE (Phytoplankton, Aerosol, and Ocean Ecosystem) Ocean Color Algorithm Development
  year: 2020
  ident: B10
– volume: 3118
  start-page: 132
  year: 1997
  ident: B14
  article-title: Development of a Line-By-Line-Based Atmosphere Removal Algorithm for Airborne and Spaceborne Imaging Spectrometers
  publication-title: Imaging Spectrom.
– start-page: 8
  year: 2017
  ident: B38
  article-title: An Overview of the Marine Optical Buoy (MOBY): Past, Present and Future
– volume: 25
  start-page: A1
  year: 2017
  ident: B41
  article-title: Spectral Sea Surface Reflectance of Skylight
  publication-title: Opt. Express
  doi: 10.1364/oe.25.0000a1
– ident: B34
SSID ssj0002849398
Score 2.3080666
Snippet The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse...
The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the water-leaving signal are diverse...
SourceID doaj
crossref
nasa
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms Earth Resources And Remote Sensing
hydrologic optics
hyperspectral remote sensing
ocean color
QA/QC - quality assurance/quality control
remote sensing reflectance
water quality
Title QWIP: A Quantitative Metric for Quality Control of Aquatic Reflectance Spectral Shape using the Apparent Visible Wavelength
URI https://ntrs.nasa.gov/citations/20220004749
https://doaj.org/article/21fe17d095d44101822556185cf36967
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXc_AkVNs0bbfeVlFUWPGtt5ImE1eR-uoeFsHf7kxaRS968dJCSUL5Ms18k06-EWIdKVqLTVIG3USXgdKxDMpI2QAToq-SFaq8On__OD24VEc3yc23Ul-cE9bIAzfAbcnIYZRZYgKWPHdIdJhFs8jLGMel6Pw58jAPvwVT937LSOVx3m1-Y1IUlm-5l1dkvVMpN7vUL4p-OCKv10-3Sn8KW3v_sj8tplpiCL3mhWbEGFazYqKtUT4YzYm30-vDk23owelQV_5oGC1U0OeKWAaIekIjhzGC3Sb7HB4d9J5ZydvAGTrenucZBq44z9sbcD7QTwg-ZwCIBgIRUj4ZVsPVHX0nDwjXmqtSVLf1YF5c7u9d7B4EbemEwBBKdaCMJshiCg5Rx5FEzIzC3JY6IwqnraaoTqdOUfRkZYLMGoxLaaUjeKPQWRcvEBaPFS4KoFHQpVJhikhsQ5eIzigbZkjeX9moI8JPHAvT6opzeYuHguILhr7w0BcMfdFA3xEbX12eGlGN3xrv8OR8NWQ9bP-ArKRoraT4y0o6Yp6ntqA3e_WDM5fNVL70H4Mvi0keknMKZLYixuuXIa4SVanLNW-VdO2_730AUAjj_w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QWIP%3A+A+Quantitative+Metric+for+Quality+Control+of+Aquatic+Reflectance+Spectral+Shape+Using+the+Apparent+Visible+Wavelength&rft.jtitle=Frontiers+in+remote+sensing&rft.au=Heidi+M.+Dierssen&rft.au=Ryan+A.+Vandermeulen&rft.au=Ryan+A.+Vandermeulen&rft.au=Brian+B.+Barnes&rft.date=2022-05-27&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-6187&rft.volume=3&rft_id=info:doi/10.3389%2Ffrsen.2022.869611&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_21fe17d095d44101822556185cf36967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-6187&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-6187&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-6187&client=summon