QWIP: A Quantitative Metric for Quality Control of Aquatic Reflectance Spectral Shape using the Apparent Visible Wavelength
The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simpl...
Saved in:
Published in | Frontiers in remote sensing Vol. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
Frontiers in Remote Sensing
27.05.2022
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 2673-6187 2673-6187 |
DOI | 10.3389/frsen.2022.869611 |
Cover
Abstract | The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score
represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of
uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis. |
---|---|
AbstractList | The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the water-leaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis. The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse depending on the various types and concentrations of phytoplankton, sediment, detritus and colored dissolved organic matter. Here we present a simple metric developed from a global dataset spanning blue, green and brown water types to assess the quality of a measured or derived aquatic spectrum. The Quality Water Index Polynomial (QWIP) is founded on the Apparent Visible Wavelength (AVW), a one-dimensional geophysical metric of color that is inherently correlated to spectral shape calculated as a weighted harmonic mean across visible wavelengths. The QWIP represents a polynomial relationship between the hyperspectral AVW and a Normalized Difference Index (NDI) using red and green wavelengths. The QWIP score represents the difference between a spectrum’s AVW and NDI and the QWIP polynomial. The approach is tested extensively with both raw and quality controlled field data to identify spectra that fall outside the general trends observed in aquatic optics. For example, QWIP scores less than or greater than 0.2 would fail an initial screening and be subject to additional quality control. Common outliers tend to have spectral features related to: 1) incorrect removal of surface reflected skylight or 2) optically shallow water. The approach was applied to hyperspectral imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), as well as to multispectral imagery from the Visual Infrared Imaging Radiometer Suite (VIIRS) using sensor-specific extrapolations to approximate AVW. This simple approach can be rapidly implemented in ocean color processing chains to provide a level of uncertainty about a measured or retrieved spectrum and flag questionable or unusual spectra for further analysis. |
Audience | PUBLIC |
Author | Knaeps, Els Barnes, Brian B Castagna, Alexandre Vandermeulen, Ryan A Dierssen, Heidi M Vanhellemont, Quinten |
Author_xml | – sequence: 1 givenname: Heidi M surname: Dierssen fullname: Dierssen, Heidi M organization: University of Connecticut – sequence: 2 givenname: Ryan A surname: Vandermeulen fullname: Vandermeulen, Ryan A organization: Science Systems and Applications (United States) – sequence: 3 givenname: Brian B surname: Barnes fullname: Barnes, Brian B organization: University of South Florida – sequence: 4 givenname: Alexandre surname: Castagna fullname: Castagna, Alexandre organization: Ghent University – sequence: 5 givenname: Els surname: Knaeps fullname: Knaeps, Els organization: Flemish Institute for Technological Research – sequence: 6 givenname: Quinten surname: Vanhellemont fullname: Vanhellemont, Quinten organization: Royal Belgian Institute of Natural Sciences |
BookMark | eNp9kcFuEzEQhleolShtHwCJg18gwfZ612tuUQQlUisoBXq0pt5x4srYi-1Uqnh5nKRCqIeePBrP_4_m_940RyEGbJq3jM7bdlDvbcoY5pxyPh961TP2qjnhvWxnPRvk0X_16-Y853tKKR-EatVw0vy5vl19_UAW5HoLobgCxT0gucKSnCE2pl3fu_JIljGUFD2Jlix-b-uYId_QejQFgkFyM9UqgSc3G5iQbLMLa1I2SBbTBAlDIT9ddnceyS08oMewLpuz5tiCz3j-9J42Pz59_L78PLv8crFaLi5nRghWZsLASFUrKEdoGUeURqAa70BS0cEIgiroreiZGnmHsqPK2H4ckQ2cUTva9rRZHXzHCPd6Su4XpEcdwel9I6a1hlQP8qg5s8hkXdeNdTetFrzranKdsW1NVlYvdvAyKeac0P7zY1TvYOg9DL2DoQ8wqkY-05h90LtEwfkXle8OygAZdB3P--8KUMgK8C8al5sg |
CitedBy_id | crossref_primary_10_3390_rs16091497 crossref_primary_10_3389_fmars_2023_1267681 crossref_primary_10_1038_s41597_023_01973_y crossref_primary_10_3390_rs16142663 crossref_primary_10_1016_j_jag_2025_104389 crossref_primary_10_5194_essd_17_435_2025 crossref_primary_10_3390_rs16111845 crossref_primary_10_1364_JOSAB_504535 crossref_primary_10_3390_jmse13030540 crossref_primary_10_3390_rs15184443 crossref_primary_10_1016_j_isprsjprs_2024_07_011 crossref_primary_10_3389_fmars_2025_1507638 crossref_primary_10_1364_OE_472765 crossref_primary_10_34133_remotesensing_0049 crossref_primary_10_3389_fmars_2023_1129876 crossref_primary_10_3390_rs14184500 |
Cites_doi | 10.3389/fenvs.2021.649528 10.3390/rs12040637 10.1016/j.rse.2020.112015 10.1364/OE.28.001439 10.3390/rs11192198 10.1364/oe.18.007521 10.3390/rs10010147 10.1175/2009jtecho654.1 10.1016/j.rse.2015.06.022 10.5194/essd-12-1123-2020 10.1117/1.jrs.6.063615 10.4319/lo.2006.51.2.1167 10.1093/oso/9780195068436.003.0007 10.1364/ao.378512 10.4319/lo.2003.48.1_part_2.0444 10.1364/oe.397456 10.3390/rs12101587 10.1364/ao.33.000443 10.1016/j.ecss.2006.02.016 10.1016/j.rse.2020.111768 10.1016/j.rse.2018.10.034 10.1016/j.rse.2017.10.041 10.1016/j.rse.2020.111900 10.5670/oceanog.2020.111 10.3390/rs011111360 10.1594/PANGAEA.940240 10.1038/s41597-019-0032-7 10.1002/2016jc012126 10.1016/j.rse.2017.08.024 10.1364/ao.38.007442 10.1016/j.rse.2006.01.015 10.1364/oe.25.0000a1 |
ContentType | Journal Article |
Copyright | Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL |
Copyright_xml | – notice: Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL |
DBID | CYE CYI AAYXX CITATION DOA |
DOI | 10.3389/frsen.2022.869611 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2673-6187 |
ExternalDocumentID | oai_doaj_org_article_21fe17d095d44101822556185cf36967 10_3389_frsen_2022_869611 20220004749 |
GrantInformation | 33 80GSFC20C0044 80NSSC20K1518 |
GroupedDBID | 9T4 AAFWJ AFPKN ALMA_UNASSIGNED_HOLDINGS CYE CYI GROUPED_DOAJ M~E OK1 AAYXX CITATION |
ID | FETCH-LOGICAL-c441t-4cad093402ea312ee7c4e9dba7045ada409a6f4619d25e7509cf6dde18210fdf3 |
IEDL.DBID | DOA |
ISSN | 2673-6187 |
IngestDate | Wed Aug 27 01:22:20 EDT 2025 Tue Jul 01 02:02:53 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Fri Sep 19 16:06:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Remote Sensing Reflectance Qa/qc – Quality Assurance / Quality Control Ocean Color Water-Leaving Reflectance Spectra Hydrologic Optics Hyperspectral Remote Sensing Water Quality |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-4cad093402ea312ee7c4e9dba7045ada409a6f4619d25e7509cf6dde18210fdf3 |
Notes | GSFC Goddard Space Flight Center |
OpenAccessLink | https://doaj.org/article/21fe17d095d44101822556185cf36967 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21fe17d095d44101822556185cf36967 crossref_primary_10_3389_frsen_2022_869611 crossref_citationtrail_10_3389_frsen_2022_869611 nasa_ntrs_20220004749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-27 |
PublicationDateYYYYMMDD | 2022-05-27 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center |
PublicationTitle | Frontiers in remote sensing |
PublicationYear | 2022 |
Publisher | Frontiers in Remote Sensing Frontiers Media S.A |
Publisher_xml | – name: Frontiers in Remote Sensing – name: Frontiers Media S.A |
References | Bulgarelli (B6) 2020; 59 Garcia (B16) 2018; 10 B25 Qin (B27) 2017; 200 Voss (B38) 2017 Casey (B7) 2020; 12 Röttgers (B28) 2016 Bailey (B2) 2010; 18 Tilstone (B32) 2020; 12 Wei (B39) 2016; 121 Castagna (B9) 2020; 12 Hommersom (B19) 2012; 6 O’Reilly (B26) 1998; 103 Garcia (B15) 2020; 249 Zibordi (B42) 2009; 26 Ibrahim (B20) 2018; 204 Gordon (B17) 1994; 33 Knaeps (B21) 2015; 168 Mortelmans (B24) 2019; 6 Castagna (B8) 2022 Ruddick (B30) 2019; 11 Ruddick (B29) 2006; 51 Barnes (B5) 2019; 220 B34 Zibordi (B43) 2019 Shang (B31) 2020; 28 Balasubramanian (B4) 2020; 246 Dierssen (B13) 2003; 48 Bailey (B3) 2006; 102 Tzortziou (B33) 2006; 68 Zhang (B41) 2017; 25 B1 Vandermeulen (B35) 2020; 247 Vanhellemont (B36) 2020; 28 Craig (B10) 2020 Mobley (B23) 1999; 38 Dierssen (B11) 2020; 33 Lee (B22) 2020 Dierssen (B12) 2021; 9 Gould (B18) 2001; 17 Zaneveld (B40) 1994 Vansteenwegen (B37) 2019; 11 Gao (B14) 1997; 3118 |
References_xml | – volume: 9 start-page: 134 year: 2021 ident: B12 article-title: Living up to the Hype of Hyperspectral Aquatic Remote Sensing: Science, Resources and Outlook publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2021.649528 – volume: 12 start-page: 637 year: 2020 ident: B9 article-title: Extending Landsat 8: Retrieval of an Orange Contra-band for Inland Water Quality Applications publication-title: Remote Sensing doi: 10.3390/rs12040637 – volume: 249 start-page: 112015 year: 2020 ident: B15 article-title: Benthic Classification and IOP Retrievals in Shallow Water Environments Using MERIS Imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112015 – volume: 28 start-page: 1439 year: 2020 ident: B31 article-title: Impact of Ship on Radiometric Measurements in the Field: A Reappraisal via Monte Carlo Simulations publication-title: Opt. Express doi: 10.1364/OE.28.001439 – volume: 17 start-page: 328 year: 2001 ident: B18 article-title: Absorption, Scattering, and Remote Sensing Reflectance Relationships in Coastal Waters: Testing a New Inversion Algorithm publication-title: J. Coastal Res. – volume: 11 start-page: 2198 year: 2019 ident: B30 article-title: A Review of Protocols for Fiducial Reference Measurements of WaterLeaving Radiance for Validation of Satellite Remote-Sensing Data over Water publication-title: Remote Sens. doi: 10.3390/rs11192198 – volume-title: The Water Optical Properties Processor (WOPP): Pure Water Spectral Absorption, Scattering, and Real Part of Refractive Index Model year: 2016 ident: B28 – volume: 18 start-page: 7521 year: 2010 ident: B2 article-title: Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing publication-title: Opt. Express doi: 10.1364/oe.18.007521 – ident: B1 – volume-title: IOCCG Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation year: 2020 ident: B22 article-title: On-Water Radiometry Measurements: Skylight-Blocked Approach and Data Processing – ident: B25 – volume: 10 start-page: 147 year: 2018 ident: B16 article-title: Hyperspectral Shallow-Water Remote Sensing with an Enhanced Benthic Classifier publication-title: Remote Sens. doi: 10.3390/rs10010147 – volume: 26 start-page: 1634 year: 2009 ident: B42 article-title: AERONET-OC: a Network for the Validation of Ocean Color Primary Products publication-title: J. Atmos. Oceanic Tech. doi: 10.1175/2009jtecho654.1 – volume: 168 start-page: 66 year: 2015 ident: B21 article-title: A SWIR Based Algorithm to Retrieve Total Suspended Matter in Extremely Turbid Waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.06.022 – volume: 12 start-page: 1123 year: 2020 ident: B7 article-title: A Global Compilation of In Situ Aquatic High Spectral Resolution Inherent and Apparent Optical Property Data for Remote Sensing Applications publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-12-1123-2020 – volume: 6 start-page: 063615 year: 2012 ident: B19 article-title: Intercomparison in the Field between the New WISP-3 and Other Radiometers (TriOS Ramses, ASD FieldSpec, and TACCS) publication-title: J. Appl. Remote Sens. doi: 10.1117/1.jrs.6.063615 – volume: 51 start-page: 1167 year: 2006 ident: B29 article-title: Seaborne Measurements of Near Infrared Water-Leaving Reflectance: The Similarity Spectrum for Turbid Waters publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2006.51.2.1167 – volume-title: Ocean Optics year: 1994 ident: B40 article-title: Optical Closure: from Theory to Measurement doi: 10.1093/oso/9780195068436.003.0007 – volume: 59 start-page: C63 year: 2020 ident: B6 article-title: Adjacency Radiance Around a Small Island: Implications for System Vicarious Calibrations publication-title: Appl. Opt. doi: 10.1364/ao.378512 – volume: 48 start-page: 444 year: 2003 ident: B13 article-title: Ocean Color Remote Sensing of Seagrass and Bathymetry in the Bahamas Banks by High-Resolution Airborne Imagery publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.1_part_2.0444 – volume: 28 start-page: 29948 year: 2020 ident: B36 article-title: Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry publication-title: Opt. Express doi: 10.1364/oe.397456 – volume: 12 start-page: 1587 year: 2020 ident: B32 article-title: Field Intercomparison of Radiometer Measurements for Ocean Colour Validation publication-title: Remote Sens. doi: 10.3390/rs12101587 – volume: 33 start-page: 443 year: 1994 ident: B17 article-title: Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: a Preliminary Algorithm publication-title: Appl. Opt. doi: 10.1364/ao.33.000443 – volume: 68 start-page: 348 year: 2006 ident: B33 article-title: Bio-optics of the Chesapeake Bay from Measurements and Radiative Transfer Closure publication-title: Estuarine, Coastal Shelf Sci. doi: 10.1016/j.ecss.2006.02.016 – volume: 246 start-page: 111768 year: 2020 ident: B4 article-title: Robust Algorithm for Estimating Total Suspended Solids (TSS) in Inland and Nearshore Coastal Waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111768 – volume: 220 start-page: 110 year: 2019 ident: B5 article-title: Validation of VIIRS and MODIS Reflectance Data in Coastal and Oceanic Waters: An Assessment of Methods publication-title: Remote Sensing Environ. doi: 10.1016/j.rse.2018.10.034 – volume: 204 start-page: 60 year: 2018 ident: B20 article-title: Atmospheric Correction for Hyperspectral Ocean Color Retrieval with Application to the Hyperspectral Imager for the Coastal Ocean (HICO) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.041 – volume: 247 start-page: 111900 year: 2020 ident: B35 article-title: 150 Shades of green: Using the Full Spectrum of Remote Sensing Reflectance to Elucidate Color Shifts in the Ocean publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111900 – volume: 33 start-page: 74 year: 2020 ident: B11 article-title: Data Needs for Hyperspectral Detection of Algal Diversity across the globe publication-title: Oceanography doi: 10.5670/oceanog.2020.111 – volume: 11 start-page: 1360 year: 2019 ident: B37 article-title: The Pan-And-Tilt Hyperspectral Radiometer System (PANTHYR) for Autonomous Satellite Validation Measurements-Prototype Design and Testing publication-title: Remote Sens. doi: 10.3390/rs011111360 – volume: 103 start-page: 937953 year: 1998 ident: B26 article-title: Ocean Color Chlorophyll Algorithms for SeaWiFS publication-title: J. Geophys. Res. – year: 2022 ident: B8 article-title: Optical and Biogeochemical Properties of Belgian Inland and Coastal Waters publication-title: Earth Syst. Sci. Data doi: 10.1594/PANGAEA.940240 – volume: 6 start-page: 22 year: 2019 ident: B24 article-title: Nutrient, Pigment, Suspended Matter and Turbidity Measurements in the Belgian Part of the North Sea publication-title: Sci. Data doi: 10.1038/s41597-019-0032-7 – volume: 121 start-page: 8189 year: 2016 ident: B39 article-title: A System to Measure the Data Quality of Spectral Remote-Sensing Reflectance of Aquatic Environments publication-title: J. Geophys. Res. Oceans doi: 10.1002/2016jc012126 – volume: 200 start-page: 263 year: 2017 ident: B27 article-title: Radiometric Validation of Atmospheric Correction for MERIS in the Baltic Sea Based on Continuous Observations from Ships and AERONET-OC publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.024 – volume-title: Protocols for Satellite Ocean Color Data Validation: year: 2019 ident: B43 – volume: 38 start-page: 7442 year: 1999 ident: B23 article-title: Estimation of the Remote-Sensing Reflectance from Above-Surface Measurements publication-title: Appl. Opt. doi: 10.1364/ao.38.007442 – volume: 102 start-page: 12 year: 2006 ident: B3 article-title: A Multi-Sensor Approach for the On-Orbit Validation of Ocean Color Satellite Data Products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.01.015 – volume-title: Top of Atmosphere, Hyperspectral Synthetic Dataset for PACE (Phytoplankton, Aerosol, and Ocean Ecosystem) Ocean Color Algorithm Development year: 2020 ident: B10 – volume: 3118 start-page: 132 year: 1997 ident: B14 article-title: Development of a Line-By-Line-Based Atmosphere Removal Algorithm for Airborne and Spaceborne Imaging Spectrometers publication-title: Imaging Spectrom. – start-page: 8 year: 2017 ident: B38 article-title: An Overview of the Marine Optical Buoy (MOBY): Past, Present and Future – volume: 25 start-page: A1 year: 2017 ident: B41 article-title: Spectral Sea Surface Reflectance of Skylight publication-title: Opt. Express doi: 10.1364/oe.25.0000a1 – ident: B34 |
SSID | ssj0002849398 |
Score | 2.3080666 |
Snippet | The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the waterleaving signal are diverse... The colors of the ocean and inland waters span clear blue to turbid brown, and the corresponding spectral shapes of the water-leaving signal are diverse... |
SourceID | doaj crossref nasa |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | Earth Resources And Remote Sensing hydrologic optics hyperspectral remote sensing ocean color QA/QC - quality assurance/quality control remote sensing reflectance water quality |
Title | QWIP: A Quantitative Metric for Quality Control of Aquatic Reflectance Spectral Shape using the Apparent Visible Wavelength |
URI | https://ntrs.nasa.gov/citations/20220004749 https://doaj.org/article/21fe17d095d44101822556185cf36967 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXc_AkVNs0bbfeVlFUWPGtt5ImE1eR-uoeFsHf7kxaRS968dJCSUL5Ms18k06-EWIdKVqLTVIG3USXgdKxDMpI2QAToq-SFaq8On__OD24VEc3yc23Ul-cE9bIAzfAbcnIYZRZYgKWPHdIdJhFs8jLGMel6Pw58jAPvwVT937LSOVx3m1-Y1IUlm-5l1dkvVMpN7vUL4p-OCKv10-3Sn8KW3v_sj8tplpiCL3mhWbEGFazYqKtUT4YzYm30-vDk23owelQV_5oGC1U0OeKWAaIekIjhzGC3Sb7HB4d9J5ZydvAGTrenucZBq44z9sbcD7QTwg-ZwCIBgIRUj4ZVsPVHX0nDwjXmqtSVLf1YF5c7u9d7B4EbemEwBBKdaCMJshiCg5Rx5FEzIzC3JY6IwqnraaoTqdOUfRkZYLMGoxLaaUjeKPQWRcvEBaPFS4KoFHQpVJhikhsQ5eIzigbZkjeX9moI8JPHAvT6opzeYuHguILhr7w0BcMfdFA3xEbX12eGlGN3xrv8OR8NWQ9bP-ArKRoraT4y0o6Yp6ntqA3e_WDM5fNVL70H4Mvi0keknMKZLYixuuXIa4SVanLNW-VdO2_730AUAjj_w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QWIP%3A+A+Quantitative+Metric+for+Quality+Control+of+Aquatic+Reflectance+Spectral+Shape+Using+the+Apparent+Visible+Wavelength&rft.jtitle=Frontiers+in+remote+sensing&rft.au=Heidi+M.+Dierssen&rft.au=Ryan+A.+Vandermeulen&rft.au=Ryan+A.+Vandermeulen&rft.au=Brian+B.+Barnes&rft.date=2022-05-27&rft.pub=Frontiers+Media+S.A&rft.eissn=2673-6187&rft.volume=3&rft_id=info:doi/10.3389%2Ffrsen.2022.869611&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_21fe17d095d44101822556185cf36967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-6187&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-6187&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-6187&client=summon |