Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinas...
Saved in:
Published in | Molecular cell Vol. 66; no. 1; pp. 117 - 128.e5 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1097-2765 1097-4164 1097-4164 |
DOI | 10.1016/j.molcel.2017.02.016 |
Cover
Abstract | In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.
[Display omitted]
•Cold activates the plasma membrane-localized protein kinase CRPK1•CRPK1 interacts with and phosphorylates 14-3-3 proteins•Phosphorylated 14-3-3 proteins translocate from the cytosol to the nucleus•In the nucleus, 14-3-3 proteins interact with CBFs and promote their degradation
How the plasma membrane senses and transduces cold signals remains unknown. Liu et al. demonstrate that the cold-activated plasma membrane CRPK1 phosphorylates 14-3-3 proteins, which are imported from the cytosol to the nucleus and interact with CBF proteins to promote their destabilization, thus fine-tuning CBF-dependent cold signaling. |
---|---|
AbstractList | In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. [Display omitted] •Cold activates the plasma membrane-localized protein kinase CRPK1•CRPK1 interacts with and phosphorylates 14-3-3 proteins•Phosphorylated 14-3-3 proteins translocate from the cytosol to the nucleus•In the nucleus, 14-3-3 proteins interact with CBFs and promote their degradation How the plasma membrane senses and transduces cold signals remains unknown. Liu et al. demonstrate that the cold-activated plasma membrane CRPK1 phosphorylates 14-3-3 proteins, which are imported from the cytosol to the nucleus and interact with CBF proteins to promote their destabilization, thus fine-tuning CBF-dependent cold signaling. |
Author | Liu, Ziyan Li, Zhen Jia, Yuxin Shi, Yiting Guo, Yan Yang, Shuhua Gong, Zhizhong Ding, Yanglin |
Author_xml | – sequence: 1 givenname: Ziyan surname: Liu fullname: Liu, Ziyan organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 2 givenname: Yuxin surname: Jia fullname: Jia, Yuxin organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 3 givenname: Yanglin surname: Ding fullname: Ding, Yanglin organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 4 givenname: Yiting surname: Shi fullname: Shi, Yiting organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 5 givenname: Zhen surname: Li fullname: Li, Zhen organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 6 givenname: Yan surname: Guo fullname: Guo, Yan organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 7 givenname: Zhizhong surname: Gong fullname: Gong, Zhizhong organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China – sequence: 8 givenname: Shuhua surname: Yang fullname: Yang, Shuhua email: yangshuhua@cau.edu.cn organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28344081$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2O1DAQhCO0iP2BN0DIRy4Jbsf544AEIwZG7MJoGc6WY3d2PErsYCdI-xI8Mw4zcODAnrrV-qqkrrpMzqyzmCTPgWZAoXx1yAbXK-wzRqHKKMvi8VFyAbSpUg4lPzvtrCqL8-QyhAOlwIu6eZKcszrnnNZwkfzc9jIMktzg0Hppkaxut58gvUFt5ISabPcujHvn73s5GWeJ6wjwNE9zsvVuQmMD2Vg9Kwxkt0fjyedZ9Sg92Qyj8xOZHFkbi-luXrzfrclXc2dlb-wd0bNfxsr1mtxiGJ0N-DR53Mk-4LPTvEq-rd_vVh_T6y8fNqu316niHKaU14zSusk5VMCaQkEpWdtpxXSHMj5WaYBWFkXZ8koC5WVZVqwFlasSmEKVXyUvj76jd99nDJMYTIhh9jECNwcR7SmHIm-aB1Goa-C8yYsFfXFC53ZALUZvBunvxZ-4I8CPgPIuBI_dXwSoWFoVB3FsVSytCspEPEbZ639kyky_-5i8NP1D4jdHMcY8fxj0IiiDVsWGPapJaGf-b_ALPHS93w |
CitedBy_id | crossref_primary_10_1038_s41467_019_09181_2 crossref_primary_10_1007_s00299_023_03035_4 crossref_primary_10_1146_annurev_arplant_050718_100016 crossref_primary_10_2478_gsr_2021_0002 crossref_primary_10_1016_j_molp_2023_04_002 crossref_primary_10_1016_j_devcel_2024_11_005 crossref_primary_10_1126_sciadv_abn7901 crossref_primary_10_3389_fgene_2022_833406 crossref_primary_10_1093_jxb_erad385 crossref_primary_10_1038_s41467_020_14746_7 crossref_primary_10_1111_pce_14669 crossref_primary_10_1007_s44154_022_00045_2 crossref_primary_10_1093_hr_uhae297 crossref_primary_10_3390_plants11101355 crossref_primary_10_1073_pnas_1815425116 crossref_primary_10_1093_plphys_kiac508 crossref_primary_10_1021_acs_jafc_2c06222 crossref_primary_10_7554_eLife_84594 crossref_primary_10_3390_pr10071388 crossref_primary_10_1038_nrm_2017_38 crossref_primary_10_1016_j_plaphy_2025_109603 crossref_primary_10_1146_annurev_arplant_042817_040540 crossref_primary_10_1016_j_molp_2020_02_001 crossref_primary_10_1111_jipb_13769 crossref_primary_10_1038_s41467_021_25001_y crossref_primary_10_1016_j_molp_2020_02_004 crossref_primary_10_1111_nph_19072 crossref_primary_10_7554_eLife_88604 crossref_primary_10_1007_s00425_023_04276_z crossref_primary_10_1007_s11274_023_03579_3 crossref_primary_10_3389_fpls_2022_1059804 crossref_primary_10_1007_s10725_024_01253_8 crossref_primary_10_1093_hr_uhaf010 crossref_primary_10_3390_ijms18102040 crossref_primary_10_1016_j_cpb_2024_100342 crossref_primary_10_1016_j_plantsci_2019_110318 crossref_primary_10_1111_jipb_13403 crossref_primary_10_3390_plants10102228 crossref_primary_10_1038_s41477_025_01933_x crossref_primary_10_1007_s00299_019_02376_3 crossref_primary_10_15252_embj_201899819 crossref_primary_10_1016_j_pbi_2022_102269 crossref_primary_10_1111_jipb_13761 crossref_primary_10_1016_j_plaphy_2019_12_035 crossref_primary_10_1016_j_scienta_2024_113556 crossref_primary_10_3390_molecules26082294 crossref_primary_10_1093_plcell_koae217 crossref_primary_10_1111_pbi_13202 crossref_primary_10_3389_fgene_2020_591806 crossref_primary_10_1016_j_cell_2024_12_018 crossref_primary_10_1038_s41467_022_28395_5 crossref_primary_10_1093_plcell_koac273 crossref_primary_10_1126_sciadv_ado4788 crossref_primary_10_1134_S1021443724606086 crossref_primary_10_1016_j_plaphy_2025_109829 crossref_primary_10_1093_plcell_koad119 crossref_primary_10_3390_ijms252111569 crossref_primary_10_1016_j_envexpbot_2020_104371 crossref_primary_10_1111_ele_13502 crossref_primary_10_3390_ijms231710049 crossref_primary_10_1111_eva_13480 crossref_primary_10_3389_fpls_2018_01394 crossref_primary_10_1007_s00299_022_02890_x crossref_primary_10_15252_embj_2019103630 crossref_primary_10_3389_fbioe_2020_00685 crossref_primary_10_3390_ijms241914976 crossref_primary_10_3389_fpls_2024_1431835 crossref_primary_10_1038_s41477_019_0400_5 crossref_primary_10_3390_ijms26030896 crossref_primary_10_3389_fpls_2025_1560204 crossref_primary_10_1016_j_plantsci_2019_110219 crossref_primary_10_1093_treephys_tpz133 crossref_primary_10_1016_j_molp_2022_06_003 crossref_primary_10_1111_plb_13268 crossref_primary_10_1016_j_plantsci_2019_110215 crossref_primary_10_1016_j_mce_2018_02_011 crossref_primary_10_3390_ijms222312856 crossref_primary_10_1111_ppl_13740 crossref_primary_10_54097_xm3m5y47 crossref_primary_10_1016_j_sajb_2023_10_047 crossref_primary_10_1038_s41438_021_00622_y crossref_primary_10_1111_tpj_17131 crossref_primary_10_3390_plants13141907 crossref_primary_10_1126_sciadv_adp5541 crossref_primary_10_15252_embj_201798228 crossref_primary_10_1097_CCM_0000000000003767 crossref_primary_10_3390_ijms19123896 crossref_primary_10_3390_plants12020305 crossref_primary_10_1016_j_stress_2024_100598 crossref_primary_10_3389_fpls_2023_1127532 crossref_primary_10_1016_j_envexpbot_2024_105763 crossref_primary_10_3389_fpls_2021_712257 crossref_primary_10_1016_j_devcel_2019_08_008 crossref_primary_10_3390_genes9020110 crossref_primary_10_1016_j_celrep_2024_114524 crossref_primary_10_1038_s41467_024_49102_6 crossref_primary_10_1016_j_bbrc_2018_12_092 crossref_primary_10_1111_tpj_15072 crossref_primary_10_3389_fpls_2020_00921 crossref_primary_10_1186_s12870_022_03797_1 crossref_primary_10_3390_plants10122724 crossref_primary_10_7554_eLife_88604_3 crossref_primary_10_1016_j_devcel_2017_11_016 crossref_primary_10_1080_17429145_2022_2045370 crossref_primary_10_1093_plcell_koaa001 crossref_primary_10_1016_j_stress_2022_100081 crossref_primary_10_1016_j_molp_2023_07_005 crossref_primary_10_1186_s12870_021_03377_9 crossref_primary_10_15252_embj_2020104559 crossref_primary_10_3389_fpls_2022_1075279 crossref_primary_10_1016_j_envexpbot_2022_105190 crossref_primary_10_1111_pce_14520 crossref_primary_10_1186_s12870_021_03157_5 crossref_primary_10_1093_plphys_kiad621 crossref_primary_10_3390_f15111870 crossref_primary_10_1186_s12284_023_00637_0 crossref_primary_10_1126_sciadv_abg2286 crossref_primary_10_3390_ijms231911417 crossref_primary_10_1111_nph_14890 crossref_primary_10_3389_fpls_2022_857745 crossref_primary_10_3390_ijms242115778 crossref_primary_10_1111_pbi_13640 crossref_primary_10_3390_plants10091864 crossref_primary_10_1007_s00299_023_03099_2 crossref_primary_10_1016_j_celrep_2023_112729 crossref_primary_10_1093_plcell_koac073 crossref_primary_10_1111_pce_14611 crossref_primary_10_1016_j_plantsci_2022_111451 crossref_primary_10_3389_fpls_2020_607878 crossref_primary_10_1007_s00344_023_11000_4 crossref_primary_10_1016_j_devcel_2017_09_025 crossref_primary_10_3389_fpls_2021_674031 crossref_primary_10_1016_j_plaphy_2023_107646 crossref_primary_10_1080_15592324_2020_1785668 crossref_primary_10_1038_s41576_021_00413_0 crossref_primary_10_1186_s12870_023_04577_1 crossref_primary_10_1093_jxb_ery278 crossref_primary_10_1111_nph_18568 crossref_primary_10_1111_jipb_12657 crossref_primary_10_1016_j_devcel_2022_03_010 crossref_primary_10_1007_s00299_021_02803_4 crossref_primary_10_1093_hr_uhae181 crossref_primary_10_1016_j_envexpbot_2018_11_011 crossref_primary_10_1111_tpj_14899 crossref_primary_10_1111_jipb_13061 crossref_primary_10_1093_jxb_eraa249 crossref_primary_10_1111_jipb_13622 crossref_primary_10_1038_s41467_023_38860_4 crossref_primary_10_1111_nph_16945 crossref_primary_10_1016_j_gene_2020_145278 crossref_primary_10_1093_aob_mcac041 crossref_primary_10_1016_j_envexpbot_2021_104581 crossref_primary_10_1186_s12870_020_2301_1 crossref_primary_10_1111_nph_16774 crossref_primary_10_3389_fpls_2022_894710 crossref_primary_10_48130_GR_2023_0025 crossref_primary_10_1016_j_tplants_2023_03_001 crossref_primary_10_1016_j_molp_2020_04_006 crossref_primary_10_3389_fpls_2022_1106164 crossref_primary_10_1016_j_plantsci_2025_112403 crossref_primary_10_1111_pce_14278 crossref_primary_10_7717_peerj_10977 crossref_primary_10_1073_pnas_1708087114 crossref_primary_10_1111_nph_17745 crossref_primary_10_3389_fpls_2019_00414 crossref_primary_10_1016_j_jplph_2018_03_022 crossref_primary_10_1111_nph_17628 crossref_primary_10_3390_ijms20205089 crossref_primary_10_1016_j_compbiolchem_2022_107622 crossref_primary_10_1093_jxb_erad414 crossref_primary_10_3390_life12101633 crossref_primary_10_1007_s44154_024_00195_5 crossref_primary_10_1016_j_molp_2022_08_009 crossref_primary_10_3390_plants12233975 crossref_primary_10_1007_s11427_020_1683_x crossref_primary_10_1016_j_plantsci_2023_111782 crossref_primary_10_3389_fpls_2022_991983 crossref_primary_10_3389_fpls_2017_01462 crossref_primary_10_1186_s12870_018_1276_7 crossref_primary_10_1016_j_bbrc_2020_05_033 crossref_primary_10_1093_pcp_pcz196 crossref_primary_10_1016_j_plaphy_2019_10_041 crossref_primary_10_1016_j_jprot_2018_07_014 crossref_primary_10_1016_j_plaphy_2025_109541 crossref_primary_10_1093_plphys_kiad650 crossref_primary_10_3390_ijms23031549 crossref_primary_10_1093_jxb_erac239 crossref_primary_10_1186_s12870_020_02467_4 crossref_primary_10_1007_s12298_021_01061_8 crossref_primary_10_1016_j_plantsci_2018_11_008 crossref_primary_10_3390_ijms241311211 crossref_primary_10_1038_s41477_024_01679_y crossref_primary_10_1093_plcell_koae177 crossref_primary_10_1111_nph_18494 crossref_primary_10_1093_plcell_koad088 crossref_primary_10_1111_pbi_13290 crossref_primary_10_1016_j_indcrop_2023_118004 crossref_primary_10_1093_plcell_koaa007 crossref_primary_10_1016_j_plantsci_2024_112020 crossref_primary_10_1186_s12870_024_05854_3 crossref_primary_10_1016_j_molcel_2024_09_031 crossref_primary_10_1371_journal_pone_0299825 crossref_primary_10_3389_fpls_2021_664311 crossref_primary_10_3390_ijms21228631 crossref_primary_10_1016_j_tplants_2022_01_008 crossref_primary_10_3389_fpls_2022_984163 crossref_primary_10_1080_21541264_2020_1820299 crossref_primary_10_1071_FP20059 crossref_primary_10_1016_j_tplants_2018_04_002 crossref_primary_10_1007_s00425_018_2887_9 crossref_primary_10_3389_fpls_2024_1420431 crossref_primary_10_1016_j_plantsci_2022_111261 crossref_primary_10_1080_15592324_2021_2004035 crossref_primary_10_1016_j_indcrop_2024_118775 crossref_primary_10_1007_s10725_024_01248_5 crossref_primary_10_1093_jxb_erz532 crossref_primary_10_1093_plcell_koac137 crossref_primary_10_1093_plphys_kiad353 crossref_primary_10_1111_nph_19049 crossref_primary_10_3390_ijms20215411 crossref_primary_10_1093_jxb_erz419 crossref_primary_10_1016_j_cell_2024_04_040 crossref_primary_10_3390_ijms23116291 crossref_primary_10_1146_annurev_arplant_102820_102235 crossref_primary_10_3389_fpls_2022_872839 crossref_primary_10_1111_pbi_70017 crossref_primary_10_1007_s10681_024_03311_8 crossref_primary_10_1016_j_devcel_2022_06_012 crossref_primary_10_1016_j_envexpbot_2021_104416 crossref_primary_10_1186_s12864_021_07369_9 crossref_primary_10_3390_f14050911 crossref_primary_10_1111_nph_17413 crossref_primary_10_1093_plcell_koad117 crossref_primary_10_1186_s12870_020_02450_z crossref_primary_10_1186_s12284_019_0339_1 crossref_primary_10_1093_treephys_tpaa065 crossref_primary_10_1111_ppl_13888 crossref_primary_10_1016_j_jprot_2023_104994 crossref_primary_10_1111_pbr_13057 crossref_primary_10_3389_fpls_2023_1276649 crossref_primary_10_1016_j_tplants_2024_04_006 crossref_primary_10_1093_hr_uhad158 crossref_primary_10_3389_fpls_2020_00632 crossref_primary_10_1016_j_gene_2025_149235 crossref_primary_10_1111_jipb_12706 crossref_primary_10_1038_s41477_023_01443_8 crossref_primary_10_1016_j_plaphy_2021_08_046 crossref_primary_10_1016_j_jplph_2021_153373 crossref_primary_10_1016_j_envexpbot_2019_04_009 crossref_primary_10_1016_j_molcel_2017_03_010 crossref_primary_10_1016_j_ijbiomac_2025_139979 crossref_primary_10_1016_j_jare_2024_01_007 crossref_primary_10_1146_annurev_genet_111523_102226 crossref_primary_10_1080_13102818_2022_2108339 crossref_primary_10_1093_plcell_koad211 crossref_primary_10_1111_jipb_12937 crossref_primary_10_1016_j_hpj_2024_01_014 crossref_primary_10_1093_plphys_kiac111 crossref_primary_10_1111_nph_16786 crossref_primary_10_1007_s10725_021_00763_z crossref_primary_10_1111_jipb_13228 crossref_primary_10_1111_nph_15696 crossref_primary_10_1016_j_molp_2019_03_012 crossref_primary_10_1038_s41598_023_38571_2 crossref_primary_10_1016_j_molp_2019_07_001 crossref_primary_10_1111_nph_18040 crossref_primary_10_1007_s11103_020_01111_x crossref_primary_10_1111_nph_19372 crossref_primary_10_1186_s12870_020_2247_3 crossref_primary_10_3390_ijms23094667 crossref_primary_10_3389_fpls_2019_00807 crossref_primary_10_1360_TB_2023_1135 crossref_primary_10_3389_fpls_2021_749581 crossref_primary_10_1007_s00253_024_13142_1 crossref_primary_10_1093_hr_uhad017 crossref_primary_10_12677_HJAS_2019_912167 crossref_primary_10_3389_fcell_2021_635533 crossref_primary_10_3389_fphys_2020_591073 crossref_primary_10_3390_ijms24076202 crossref_primary_10_1111_jipb_13100 |
Cites_doi | 10.1046/j.1365-313X.1995.7040661.x 10.1126/science.280.5360.104 10.1111/j.1365-313X.2005.02599.x 10.3389/fpls.2012.00190 10.1074/jbc.M004892200 10.1111/nph.14088 10.1105/tpc.105.035626 10.1101/gad.918101 10.1093/emboj/19.12.2869 10.1111/j.1365-313X.2010.04241.x 10.1073/pnas.94.3.1035 10.1016/j.semcdb.2011.09.008 10.1105/tpc.006858 10.1093/pcp/pcu115 10.1042/bj3450297 10.1128/MCB.23.15.5376-5387.2003 10.1126/stke.2001.113.re22 10.1007/s00709-012-0437-z 10.1126/science.1065769 10.1039/C1MB05216K 10.1104/pp.124.4.1854 10.1105/tpc.114.127605 10.1016/j.devcel.2014.12.023 10.1105/tpc.108.063958 10.1074/jbc.M605895200 10.1038/nprot.2007.199 10.1105/tpc.113.110106 10.1105/tpc.112.098640 10.1126/science.1127593 10.1016/j.devcel.2011.08.018 10.1016/S0092-8674(00)80487-0 10.1111/nph.12760 10.1016/j.semcdb.2011.08.006 10.1073/pnas.0610208104 10.1105/tpc.113.117069 10.1046/j.1365-313x.1998.00343.x 10.1101/gad.366506 10.1038/7036 10.1111/j.1365-313X.2004.02219.x 10.1104/pp.16.00533 10.1021/bi991353h 10.1016/j.devcel.2007.06.009 10.1046/j.1365-313x.2000.00845.x 10.1073/pnas.1423481112 10.1016/j.molcel.2004.06.023 10.1146/annurev.arplant.50.1.571 10.1105/tpc.111.084996 10.1046/j.1365-313X.2003.01739.x 10.1105/tpc.10.8.1391 10.1101/gad.1077503 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.molcel.2017.02.016 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 128.e5 |
ExternalDocumentID | 28344081 10_1016_j_molcel_2017_02_016 S1097276517301314 |
Genre | Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c441t-482008934171295c16a2bfdc2dfea4087d11ba556b47a10466672b1c3c612cec3 |
IEDL.DBID | IXB |
ISSN | 1097-2765 1097-4164 |
IngestDate | Sun Sep 28 07:27:55 EDT 2025 Sun Sep 28 09:16:10 EDT 2025 Thu Apr 03 06:59:01 EDT 2025 Tue Jul 01 03:40:49 EDT 2025 Thu Apr 24 22:59:55 EDT 2025 Fri Feb 23 02:30:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | protein kinase CRPK1 14-3-3 proteins cold stress CBF proteins Arabidopsis phosphorylation |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-482008934171295c16a2bfdc2dfea4087d11ba556b47a10466672b1c3c612cec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276517301314 |
PMID | 28344081 |
PQID | 1881449359 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000415399 proquest_miscellaneous_1881449359 pubmed_primary_28344081 crossref_primary_10_1016_j_molcel_2017_02_016 crossref_citationtrail_10_1016_j_molcel_2017_02_016 elsevier_sciencedirect_doi_10_1016_j_molcel_2017_02_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-06 |
PublicationDateYYYYMMDD | 2017-04-06 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Liu, Kasuga, Sakuma, Abe, Miura, Yamaguchi-Shinozaki, Shinozaki (bib24) 1998; 10 Shin, Alvarez, Burch, Jez, Schachtman (bib34) 2007; 104 Bustos (bib3) 2012; 8 Agarwal, Hao, Kapoor, Dong, Fujii, Zheng, Zhu (bib1) 2006; 281 Jaglo-Ottosen, Gilmour, Zarka, Schabenberger, Thomashow (bib18) 1998; 280 Wang, Chory (bib42) 2006; 313 Bao, Huang, Zhu, Zhang, Li, Yang (bib2) 2014; 202 Hua, Grisafi, Cheng, Fink (bib16) 2001; 15 Kim, Cheong, Grant, Pandey, Luan (bib21) 2003; 15 Robatzek, Chinchilla, Boller (bib30) 2006; 20 Denison, Paul, Zupanska, Ferl (bib9) 2011; 22 Thomashow (bib39) 1999; 50 Shi, Ding, Yang (bib33) 2015; 56 Catalá, López-Cobollo, Mar Castellano, Angosto, Alonso, Ecker, Salinas (bib4) 2014; 26 Clough, Bent (bib6) 1998; 16 Sinnige, Roobeek, Bunney, Visser, Mol, de Boer (bib36) 2005; 44 Cotelle, Meek, Provan, Milne, Morrice, MacKintosh (bib7) 2000; 19 Powell, Rane, Joughin, Kalmukova, Hong, Tidor, Dean, Pierce, Klein, Yaffe, McLeish (bib29) 2003; 23 Teige, Scheikl, Eulgem, Dóczi, Ichimura, Shinozaki, Dangl, Hirt (bib38) 2004; 15 Yoo, Cho, Sheen (bib48) 2007; 2 Orvar, Sangwan, Omann, Dhindsa (bib27) 2000; 23 Zhao, Zhang, Xie, Si, Li, Zhu (bib50) 2016; 171 Yang, Shi, Liu, Guo, Zhang, Yang (bib47) 2010; 63 Wang, Yang, Liu, Jelinek, Zhang, Ruoslahti, Fu (bib43) 1999; 38 Shen, Clark, Huber (bib31) 2003; 34 Paul, Denison, Schultz, Zupanska, Ferl (bib28) 2012; 3 Chinnusamy, Ohta, Kanrar, Lee, Hong, Agarwal, Zhu (bib5) 2003; 17 Wang, Yang, Zhang, Wang, Lu, Wang, Zhang, Wang, Ma, Wang (bib44) 2011; 21 Mao, Meng, Liu, Zheng, Chen, Zhang (bib25) 2011; 23 Ni, Cui, Einstein, Narasimhulu, Vergara, Gelvin (bib26) 1995; 7 Doherty, Van Buskirk, Myers, Thomashow (bib11) 2009; 21 Li, Nam (bib22) 2002; 295 Wang, Du, Hou, Zhao, Hsu, Yuan, Zhu, Tao, Song, Zhu (bib45) 2015; 112 Gampala, Kim, He, Tang, Deng, Bai, Guan, Lalonde, Sun, Gendron (bib13) 2007; 13 Fuglsang, Guo, Cuin, Qiu, Song, Kristiansen, Bych, Schulz, Shabala, Schumaker (bib12) 2007; 19 Shi, Tian, Hou, Huang, Zhang, Guo, Yang (bib32) 2012; 24 Jia, Ding, Shi, Zhang, Gong, Yang (bib19) 2016; 212 Ikeda, Koizumi, Kusano, Sano (bib17) 2000; 275 Stockinger, Gilmour, Thomashow (bib37) 1997; 94 Van Der Hoeven, Van Der Wal, Ruurs, Van Dijk, Van Blitterswijk (bib40) 2000; 345 Zhou, Lin, Chen, Becker, Yang, Zhao, Kudla, Schumaker, Guo (bib51) 2014; 26 Walter, Chaban, Schütze, Batistic, Weckermann, Näke, Blazevic, Grefen, Schumacher, Oecking (bib41) 2004; 40 Gilmour, Sebolt, Salazar, Everard, Thomashow (bib15) 2000; 124 Kasuga, Liu, Miura, Yamaguchi-Shinozaki, Shinozaki (bib20) 1999; 17 Shiu, Bleecker (bib35) 2001; 2001 Yaffe, Rittinger, Volinia, Caron, Aitken, Leffers, Gamblin, Smerdon, Cantley (bib46) 1997; 91 Yoon, Kieber (bib49) 2013; 25 Ding, Li, Zhang, Xie, Gong, Yang (bib10) 2015; 32 Gardino, Yaffe (bib14) 2011; 22 Li, Ye, Shi, Cheng, Zhang, Yang (bib23) 2017 de Boer, van Kleeff, Gao (bib8) 2013; 250 Catalá (10.1016/j.molcel.2017.02.016_bib4) 2014; 26 Fuglsang (10.1016/j.molcel.2017.02.016_bib12) 2007; 19 Van Der Hoeven (10.1016/j.molcel.2017.02.016_bib40) 2000; 345 Jia (10.1016/j.molcel.2017.02.016_bib19) 2016; 212 Orvar (10.1016/j.molcel.2017.02.016_bib27) 2000; 23 Paul (10.1016/j.molcel.2017.02.016_bib28) 2012; 3 Bustos (10.1016/j.molcel.2017.02.016_bib3) 2012; 8 Stockinger (10.1016/j.molcel.2017.02.016_bib37) 1997; 94 Yoo (10.1016/j.molcel.2017.02.016_bib48) 2007; 2 Jaglo-Ottosen (10.1016/j.molcel.2017.02.016_bib18) 1998; 280 Shi (10.1016/j.molcel.2017.02.016_bib32) 2012; 24 Yang (10.1016/j.molcel.2017.02.016_bib47) 2010; 63 Doherty (10.1016/j.molcel.2017.02.016_bib11) 2009; 21 Bao (10.1016/j.molcel.2017.02.016_bib2) 2014; 202 Hua (10.1016/j.molcel.2017.02.016_bib16) 2001; 15 Shin (10.1016/j.molcel.2017.02.016_bib34) 2007; 104 Wang (10.1016/j.molcel.2017.02.016_bib44) 2011; 21 Yaffe (10.1016/j.molcel.2017.02.016_bib46) 1997; 91 Gampala (10.1016/j.molcel.2017.02.016_bib13) 2007; 13 Ding (10.1016/j.molcel.2017.02.016_bib10) 2015; 32 Kim (10.1016/j.molcel.2017.02.016_bib21) 2003; 15 Shi (10.1016/j.molcel.2017.02.016_bib33) 2015; 56 Denison (10.1016/j.molcel.2017.02.016_bib9) 2011; 22 de Boer (10.1016/j.molcel.2017.02.016_bib8) 2013; 250 Wang (10.1016/j.molcel.2017.02.016_bib42) 2006; 313 Wang (10.1016/j.molcel.2017.02.016_bib43) 1999; 38 Shiu (10.1016/j.molcel.2017.02.016_bib35) 2001; 2001 Wang (10.1016/j.molcel.2017.02.016_bib45) 2015; 112 Thomashow (10.1016/j.molcel.2017.02.016_bib39) 1999; 50 Sinnige (10.1016/j.molcel.2017.02.016_bib36) 2005; 44 Cotelle (10.1016/j.molcel.2017.02.016_bib7) 2000; 19 Gilmour (10.1016/j.molcel.2017.02.016_bib15) 2000; 124 Clough (10.1016/j.molcel.2017.02.016_bib6) 1998; 16 Gardino (10.1016/j.molcel.2017.02.016_bib14) 2011; 22 Teige (10.1016/j.molcel.2017.02.016_bib38) 2004; 15 Walter (10.1016/j.molcel.2017.02.016_bib41) 2004; 40 Zhao (10.1016/j.molcel.2017.02.016_bib50) 2016; 171 Shen (10.1016/j.molcel.2017.02.016_bib31) 2003; 34 Ikeda (10.1016/j.molcel.2017.02.016_bib17) 2000; 275 Li (10.1016/j.molcel.2017.02.016_bib22) 2002; 295 Mao (10.1016/j.molcel.2017.02.016_bib25) 2011; 23 Robatzek (10.1016/j.molcel.2017.02.016_bib30) 2006; 20 Liu (10.1016/j.molcel.2017.02.016_bib24) 1998; 10 Kasuga (10.1016/j.molcel.2017.02.016_bib20) 1999; 17 Chinnusamy (10.1016/j.molcel.2017.02.016_bib5) 2003; 17 Powell (10.1016/j.molcel.2017.02.016_bib29) 2003; 23 Yoon (10.1016/j.molcel.2017.02.016_bib49) 2013; 25 Zhou (10.1016/j.molcel.2017.02.016_bib51) 2014; 26 Ni (10.1016/j.molcel.2017.02.016_bib26) 1995; 7 Li (10.1016/j.molcel.2017.02.016_bib23) 2017 Agarwal (10.1016/j.molcel.2017.02.016_bib1) 2006; 281 28377618 - Nat Rev Mol Cell Biol. 2017 May;18(5):276-277 |
References_xml | – volume: 10 start-page: 1391 year: 1998 end-page: 1406 ident: bib24 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in publication-title: Plant Cell – volume: 2001 start-page: re22 year: 2001 ident: bib35 article-title: Plant receptor-like kinase gene family: diversity, function, and signaling publication-title: Sci. STKE – volume: 26 start-page: 3326 year: 2014 end-page: 3342 ident: bib4 article-title: The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation publication-title: Plant Cell – volume: 16 start-page: 735 year: 1998 end-page: 743 ident: bib6 article-title: Floral dip: a simplified method for publication-title: Plant J. – volume: 19 start-page: 1617 year: 2007 end-page: 1634 ident: bib12 article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H publication-title: Plant Cell – volume: 7 start-page: 661 year: 1995 end-page: 676 ident: bib26 article-title: Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes publication-title: Plant J. – volume: 17 start-page: 1043 year: 2003 end-page: 1054 ident: bib5 article-title: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in publication-title: Genes Dev. – volume: 15 start-page: 411 year: 2003 end-page: 423 ident: bib21 article-title: CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in publication-title: Plant Cell – year: 2017 ident: bib23 article-title: BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in publication-title: Mol. Plant – volume: 295 start-page: 1299 year: 2002 end-page: 1301 ident: bib22 article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase publication-title: Science – volume: 345 start-page: 297 year: 2000 end-page: 306 ident: bib40 article-title: 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation publication-title: Biochem. J. – volume: 22 start-page: 720 year: 2011 end-page: 727 ident: bib9 article-title: 14-3-3 proteins in plant physiology publication-title: Semin. Cell Dev. Biol. – volume: 212 start-page: 345 year: 2016 end-page: 353 ident: bib19 article-title: The publication-title: New Phytol. – volume: 25 start-page: 1016 year: 2013 end-page: 1028 ident: bib49 article-title: 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis publication-title: Plant Cell – volume: 23 start-page: 785 year: 2000 end-page: 794 ident: bib27 article-title: Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity publication-title: Plant J. – volume: 22 start-page: 688 year: 2011 end-page: 695 ident: bib14 article-title: 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis publication-title: Semin. Cell Dev. Biol. – volume: 21 start-page: 825 year: 2011 end-page: 834 ident: bib44 article-title: Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors publication-title: Dev. Cell – volume: 26 start-page: 1166 year: 2014 end-page: 1182 ident: bib51 article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins publication-title: Plant Cell – volume: 104 start-page: 6460 year: 2007 end-page: 6465 ident: bib34 article-title: Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 141 year: 2004 end-page: 152 ident: bib38 article-title: The MKK2 pathway mediates cold and salt stress signaling in publication-title: Mol. Cell – volume: 20 start-page: 537 year: 2006 end-page: 542 ident: bib30 article-title: Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis publication-title: Genes Dev. – volume: 2 start-page: 1565 year: 2007 end-page: 1572 ident: bib48 article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nat. Protoc. – volume: 94 start-page: 1035 year: 1997 end-page: 1040 ident: bib37 article-title: encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit publication-title: Proc. Natl. Acad. Sci. USA – volume: 44 start-page: 1001 year: 2005 end-page: 1009 ident: bib36 article-title: Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase publication-title: Plant J. – volume: 63 start-page: 283 year: 2010 end-page: 296 ident: bib47 article-title: A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis publication-title: Plant J. – volume: 34 start-page: 473 year: 2003 end-page: 484 ident: bib31 article-title: The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix publication-title: Plant J. – volume: 21 start-page: 972 year: 2009 end-page: 984 ident: bib11 article-title: Roles for publication-title: Plant Cell – volume: 15 start-page: 2263 year: 2001 end-page: 2272 ident: bib16 article-title: Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes publication-title: Genes Dev. – volume: 313 start-page: 1118 year: 2006 end-page: 1122 ident: bib42 article-title: Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane publication-title: Science – volume: 250 start-page: 425 year: 2013 end-page: 440 ident: bib8 article-title: Plant 14-3-3 proteins as spiders in a web of phosphorylation publication-title: Protoplasma – volume: 275 start-page: 31695 year: 2000 end-page: 31700 ident: bib17 article-title: Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase publication-title: J. Biol. Chem. – volume: 23 start-page: 1639 year: 2011 end-page: 1653 ident: bib25 article-title: Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in publication-title: Plant Cell – volume: 56 start-page: 7 year: 2015 end-page: 15 ident: bib33 article-title: Cold signal transduction and its interplay with phytohormones during cold acclimation publication-title: Plant Cell Physiol. – volume: 202 start-page: 1320 year: 2014 end-page: 1334 ident: bib2 article-title: Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses publication-title: New Phytol. – volume: 13 start-page: 177 year: 2007 end-page: 189 ident: bib13 article-title: An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis publication-title: Dev. Cell – volume: 19 start-page: 2869 year: 2000 end-page: 2876 ident: bib7 article-title: 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells publication-title: EMBO J. – volume: 112 start-page: 613 year: 2015 end-page: 618 ident: bib45 article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1 publication-title: Proc. Natl. Acad. Sci. USA – volume: 124 start-page: 1854 year: 2000 end-page: 1865 ident: bib15 article-title: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation publication-title: Plant Physiol. – volume: 23 start-page: 5376 year: 2003 end-page: 5387 ident: bib29 article-title: Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding publication-title: Mol. Cell. Biol. – volume: 32 start-page: 278 year: 2015 end-page: 289 ident: bib10 article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis publication-title: Dev. Cell – volume: 24 start-page: 2578 year: 2012 end-page: 2595 ident: bib32 article-title: Ethylene signaling negatively regulates freezing tolerance by repressing expression of publication-title: Plant Cell – volume: 50 start-page: 571 year: 1999 end-page: 599 ident: bib39 article-title: PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. – volume: 8 start-page: 178 year: 2012 end-page: 184 ident: bib3 article-title: The role of protein disorder in the 14-3-3 interaction network publication-title: Mol. Biosyst. – volume: 40 start-page: 428 year: 2004 end-page: 438 ident: bib41 article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation publication-title: Plant J. – volume: 17 start-page: 287 year: 1999 end-page: 291 ident: bib20 article-title: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor publication-title: Nat. Biotechnol. – volume: 171 start-page: 2744 year: 2016 end-page: 2759 ident: bib50 article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in publication-title: Plant Physiol. – volume: 280 start-page: 104 year: 1998 end-page: 106 ident: bib18 article-title: Arabidopsis publication-title: Science – volume: 3 start-page: 190 year: 2012 ident: bib28 article-title: 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? publication-title: Front. Plant Sci. – volume: 38 start-page: 12499 year: 1999 end-page: 12504 ident: bib43 article-title: Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display publication-title: Biochemistry – volume: 91 start-page: 961 year: 1997 end-page: 971 ident: bib46 article-title: The structural basis for 14-3-3:phosphopeptide binding specificity publication-title: Cell – volume: 281 start-page: 37636 year: 2006 end-page: 37645 ident: bib1 article-title: A R2R3 type MYB transcription factor is involved in the cold regulation of publication-title: J. Biol. Chem. – volume: 7 start-page: 661 year: 1995 ident: 10.1016/j.molcel.2017.02.016_bib26 article-title: Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes publication-title: Plant J. doi: 10.1046/j.1365-313X.1995.7040661.x – volume: 280 start-page: 104 year: 1998 ident: 10.1016/j.molcel.2017.02.016_bib18 article-title: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance publication-title: Science doi: 10.1126/science.280.5360.104 – volume: 44 start-page: 1001 year: 2005 ident: 10.1016/j.molcel.2017.02.016_bib36 article-title: Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02599.x – volume: 3 start-page: 190 year: 2012 ident: 10.1016/j.molcel.2017.02.016_bib28 article-title: 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2012.00190 – volume: 275 start-page: 31695 year: 2000 ident: 10.1016/j.molcel.2017.02.016_bib17 article-title: Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M004892200 – volume: 212 start-page: 345 year: 2016 ident: 10.1016/j.molcel.2017.02.016_bib19 article-title: The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis publication-title: New Phytol. doi: 10.1111/nph.14088 – volume: 19 start-page: 1617 year: 2007 ident: 10.1016/j.molcel.2017.02.016_bib12 article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein publication-title: Plant Cell doi: 10.1105/tpc.105.035626 – volume: 15 start-page: 2263 year: 2001 ident: 10.1016/j.molcel.2017.02.016_bib16 article-title: Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes publication-title: Genes Dev. doi: 10.1101/gad.918101 – volume: 19 start-page: 2869 year: 2000 ident: 10.1016/j.molcel.2017.02.016_bib7 article-title: 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells publication-title: EMBO J. doi: 10.1093/emboj/19.12.2869 – volume: 63 start-page: 283 year: 2010 ident: 10.1016/j.molcel.2017.02.016_bib47 article-title: A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04241.x – volume: 94 start-page: 1035 year: 1997 ident: 10.1016/j.molcel.2017.02.016_bib37 article-title: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.3.1035 – volume: 22 start-page: 688 year: 2011 ident: 10.1016/j.molcel.2017.02.016_bib14 article-title: 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.09.008 – volume: 15 start-page: 411 year: 2003 ident: 10.1016/j.molcel.2017.02.016_bib21 article-title: CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.006858 – volume: 56 start-page: 7 year: 2015 ident: 10.1016/j.molcel.2017.02.016_bib33 article-title: Cold signal transduction and its interplay with phytohormones during cold acclimation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcu115 – volume: 345 start-page: 297 year: 2000 ident: 10.1016/j.molcel.2017.02.016_bib40 article-title: 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation publication-title: Biochem. J. doi: 10.1042/bj3450297 – volume: 23 start-page: 5376 year: 2003 ident: 10.1016/j.molcel.2017.02.016_bib29 article-title: Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.15.5376-5387.2003 – volume: 2001 start-page: re22 year: 2001 ident: 10.1016/j.molcel.2017.02.016_bib35 article-title: Plant receptor-like kinase gene family: diversity, function, and signaling publication-title: Sci. STKE doi: 10.1126/stke.2001.113.re22 – volume: 250 start-page: 425 year: 2013 ident: 10.1016/j.molcel.2017.02.016_bib8 article-title: Plant 14-3-3 proteins as spiders in a web of phosphorylation publication-title: Protoplasma doi: 10.1007/s00709-012-0437-z – volume: 295 start-page: 1299 year: 2002 ident: 10.1016/j.molcel.2017.02.016_bib22 article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase publication-title: Science doi: 10.1126/science.1065769 – volume: 8 start-page: 178 year: 2012 ident: 10.1016/j.molcel.2017.02.016_bib3 article-title: The role of protein disorder in the 14-3-3 interaction network publication-title: Mol. Biosyst. doi: 10.1039/C1MB05216K – volume: 124 start-page: 1854 year: 2000 ident: 10.1016/j.molcel.2017.02.016_bib15 article-title: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1854 – volume: 26 start-page: 3326 year: 2014 ident: 10.1016/j.molcel.2017.02.016_bib4 article-title: The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation publication-title: Plant Cell doi: 10.1105/tpc.114.127605 – volume: 32 start-page: 278 year: 2015 ident: 10.1016/j.molcel.2017.02.016_bib10 article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.12.023 – volume: 21 start-page: 972 year: 2009 ident: 10.1016/j.molcel.2017.02.016_bib11 article-title: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance publication-title: Plant Cell doi: 10.1105/tpc.108.063958 – volume: 281 start-page: 37636 year: 2006 ident: 10.1016/j.molcel.2017.02.016_bib1 article-title: A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M605895200 – volume: 2 start-page: 1565 year: 2007 ident: 10.1016/j.molcel.2017.02.016_bib48 article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.199 – volume: 25 start-page: 1016 year: 2013 ident: 10.1016/j.molcel.2017.02.016_bib49 article-title: 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.110106 – volume: 24 start-page: 2578 year: 2012 ident: 10.1016/j.molcel.2017.02.016_bib32 article-title: Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.098640 – volume: 313 start-page: 1118 year: 2006 ident: 10.1016/j.molcel.2017.02.016_bib42 article-title: Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane publication-title: Science doi: 10.1126/science.1127593 – volume: 21 start-page: 825 year: 2011 ident: 10.1016/j.molcel.2017.02.016_bib44 article-title: Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.08.018 – volume: 91 start-page: 961 year: 1997 ident: 10.1016/j.molcel.2017.02.016_bib46 article-title: The structural basis for 14-3-3:phosphopeptide binding specificity publication-title: Cell doi: 10.1016/S0092-8674(00)80487-0 – volume: 202 start-page: 1320 year: 2014 ident: 10.1016/j.molcel.2017.02.016_bib2 article-title: Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses publication-title: New Phytol. doi: 10.1111/nph.12760 – volume: 22 start-page: 720 year: 2011 ident: 10.1016/j.molcel.2017.02.016_bib9 article-title: 14-3-3 proteins in plant physiology publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.08.006 – year: 2017 ident: 10.1016/j.molcel.2017.02.016_bib23 article-title: BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis publication-title: Mol. Plant – volume: 104 start-page: 6460 year: 2007 ident: 10.1016/j.molcel.2017.02.016_bib34 article-title: Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610208104 – volume: 26 start-page: 1166 year: 2014 ident: 10.1016/j.molcel.2017.02.016_bib51 article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins publication-title: Plant Cell doi: 10.1105/tpc.113.117069 – volume: 16 start-page: 735 year: 1998 ident: 10.1016/j.molcel.2017.02.016_bib6 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: Plant J. doi: 10.1046/j.1365-313x.1998.00343.x – volume: 20 start-page: 537 year: 2006 ident: 10.1016/j.molcel.2017.02.016_bib30 article-title: Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis publication-title: Genes Dev. doi: 10.1101/gad.366506 – volume: 17 start-page: 287 year: 1999 ident: 10.1016/j.molcel.2017.02.016_bib20 article-title: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor publication-title: Nat. Biotechnol. doi: 10.1038/7036 – volume: 40 start-page: 428 year: 2004 ident: 10.1016/j.molcel.2017.02.016_bib41 article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02219.x – volume: 171 start-page: 2744 year: 2016 ident: 10.1016/j.molcel.2017.02.016_bib50 article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.16.00533 – volume: 38 start-page: 12499 year: 1999 ident: 10.1016/j.molcel.2017.02.016_bib43 article-title: Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display publication-title: Biochemistry doi: 10.1021/bi991353h – volume: 13 start-page: 177 year: 2007 ident: 10.1016/j.molcel.2017.02.016_bib13 article-title: An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.06.009 – volume: 23 start-page: 785 year: 2000 ident: 10.1016/j.molcel.2017.02.016_bib27 article-title: Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00845.x – volume: 112 start-page: 613 year: 2015 ident: 10.1016/j.molcel.2017.02.016_bib45 article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1423481112 – volume: 15 start-page: 141 year: 2004 ident: 10.1016/j.molcel.2017.02.016_bib38 article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.06.023 – volume: 50 start-page: 571 year: 1999 ident: 10.1016/j.molcel.2017.02.016_bib39 article-title: PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. doi: 10.1146/annurev.arplant.50.1.571 – volume: 23 start-page: 1639 year: 2011 ident: 10.1016/j.molcel.2017.02.016_bib25 article-title: Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.111.084996 – volume: 34 start-page: 473 year: 2003 ident: 10.1016/j.molcel.2017.02.016_bib31 article-title: The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01739.x – volume: 10 start-page: 1391 year: 1998 ident: 10.1016/j.molcel.2017.02.016_bib24 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.10.8.1391 – volume: 17 start-page: 1043 year: 2003 ident: 10.1016/j.molcel.2017.02.016_bib5 article-title: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis publication-title: Genes Dev. doi: 10.1101/gad.1077503 – reference: 28377618 - Nat Rev Mol Cell Biol. 2017 May;18(5):276-277 |
SSID | ssj0014589 |
Score | 2.643993 |
Snippet | In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the... In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117 |
SubjectTerms | 14-3-3 proteins 14-3-3 Proteins - genetics 14-3-3 Proteins - metabolism Active Transport, Cell Nucleus Adaptation, Physiological Arabidopsis Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism CBF proteins Cell Membrane - enzymology Cell Nucleus - enzymology cold stress Cold Temperature cold tolerance Cold-Shock Response cytosol Enzyme Activation freezing gene overexpression Genotype Membrane Fluidity membrane proteins mutants Mutation Phenotype Phosphorylation physiological transport Plants, Genetically Modified plasma membrane Proteasome Endopeptidase Complex - metabolism protein kinase CRPK1 protein kinases Protein Kinases - genetics Protein Kinases - metabolism Protein Stability Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Proteolysis Signal Transduction Thermosensing Time Factors Transcription Factors - genetics Transcription Factors - metabolism transgenic plants |
Title | Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response |
URI | https://dx.doi.org/10.1016/j.molcel.2017.02.016 https://www.ncbi.nlm.nih.gov/pubmed/28344081 https://www.proquest.com/docview/1881449359 https://www.proquest.com/docview/2000415399 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nezfaBCryKWrYd97IaGbUuWsJuF3IQsybspiR0S57B_or-5M7IdKHRZ6NFiZIRnPPOJeXyEfJEFWK6qNCuqkDKhVWCl9XBZsV6oTMjCRZrO2aW6uBE_lnJ5QiZDLwyWVfa-v_Pp0Vv3K-P-a463q9X4GnOnqVaSo5Fmkcwau0qxiW95fswkCBlp8FCYofTQPhdrvDbN2gVMQHAdJ3ci6_m_w9ND8DOGoelz8qzHj_Rrd8QX5CTUL8mTjlHy_hX5PQc0vLF0FjZwDa4DnVzNf3I2i4QcwdP5XbPf3jW7-64EjjYV5YJlLKNzHNiwqvcUyTzAedAFphDoJc47tjv6HSdYtbRt6BRwKVsc8N3nU3q9ukUoX9_SruGRTpq1p1dd5W14TW6m3xaTC9ZTLjAHuKhlIsd6iAJCmwYgIB1XNi0r71JfBSuSXHvOSyulKoW2mB5WSqcld5kDpOSCy96Q07qpwztCLWANL7X2lbWg9rTgsqq8yENipU5sMiLZ8KWN6-eRIy3G2gyFZ79Mpx-D-jFJamBxRNhx17abx_GIvB6UaP6yKwMh45GdnwedG_jlMI8CamsOe8PzHK6h2NL8sAx2QAE2Avg3Im87gzmeN0VuE4BiZ_99tvfkKT7FCiL1gZy2u0P4COCoLT9F6_8D02MKyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhpbSX0nfdpwq9Cq929fAeG1NjN7ExiQO-Ca2kTVzsXWOvD_kT_c2d2Yeh0BDoVSstQjOa-cQ8PkK-yRQ0V-WapXmImdAqsMx6eKxYL1QiZOpqms7pTI2vxc-lXJ6QYVcLg2mVre1vbHptrduRfnua_e1q1b_C2GmsleSopAmSWT8CNBChak-WZ8dQgpA1Dx7OZji9q5-rk7w25doFjEBwXbfuRNrzf_un-_Bn7YdGz8mzFkDS780eX5CTULwkjxtKybtX5Pcc4PDG0mnYwDu4CHR4OT_nbFozcgRP57flfntb7u6aHDha5pQLlrCEzrFjw6rYU2TzAOtBFxhDoDNseGx3dIItrCpalXQEwJQtDvjvsxG9Wt0gli9uaFPxSIfl2tPLJvU2vCbXox-L4Zi1nAvMATCqmBhgQkQKvk0DEpCOKxtnuXexz4MV0UB7zjMrpcqEthgfVkrHGXeJA6jkgkvekNOiLMI7Qi2ADS-19rm1IPc45TLPvRiEyEod2ahHku6kjWsbkiMvxtp0mWe_TCMfg_IxUWxgsEfYcdW2acjxwHzdCdH8pVgGfMYDK792Mjdw5zCQAmIrD3vDBwN4h2JN8_1zsAQKwBHgvx552yjMcb8xkpsAFnv_33v7Qp6MF9MLczGZnX8gT_FLnU6kPpLTancInwApVdnn-ib8AUfGDew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+Membrane+CRPK1-Mediated+Phosphorylation+of+14-3-3+Proteins+Induces+Their+Nuclear+Import+to+Fine-Tune+CBF+Signaling+during+Cold+Response&rft.jtitle=Molecular+cell&rft.au=Liu%2C+Ziyan&rft.au=Jia%2C+Yuxin&rft.au=Ding%2C+Yanglin&rft.au=Shi%2C+Yiting&rft.date=2017-04-06&rft.issn=1097-2765&rft.volume=66&rft.issue=1&rft.spage=117&rft.epage=128.e5&rft_id=info:doi/10.1016%2Fj.molcel.2017.02.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2017_02_016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |