Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response

In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinas...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 66; no. 1; pp. 117 - 128.e5
Main Authors Liu, Ziyan, Jia, Yuxin, Ding, Yanglin, Shi, Yiting, Li, Zhen, Guo, Yan, Gong, Zhizhong, Yang, Shuhua
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.04.2017
Subjects
Online AccessGet full text
ISSN1097-2765
1097-4164
1097-4164
DOI10.1016/j.molcel.2017.02.016

Cover

Abstract In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. [Display omitted] •Cold activates the plasma membrane-localized protein kinase CRPK1•CRPK1 interacts with and phosphorylates 14-3-3 proteins•Phosphorylated 14-3-3 proteins translocate from the cytosol to the nucleus•In the nucleus, 14-3-3 proteins interact with CBFs and promote their degradation How the plasma membrane senses and transduces cold signals remains unknown. Liu et al. demonstrate that the cold-activated plasma membrane CRPK1 phosphorylates 14-3-3 proteins, which are imported from the cytosol to the nucleus and interact with CBF proteins to promote their destabilization, thus fine-tuning CBF-dependent cold signaling.
AbstractList In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants. [Display omitted] •Cold activates the plasma membrane-localized protein kinase CRPK1•CRPK1 interacts with and phosphorylates 14-3-3 proteins•Phosphorylated 14-3-3 proteins translocate from the cytosol to the nucleus•In the nucleus, 14-3-3 proteins interact with CBFs and promote their degradation How the plasma membrane senses and transduces cold signals remains unknown. Liu et al. demonstrate that the cold-activated plasma membrane CRPK1 phosphorylates 14-3-3 proteins, which are imported from the cytosol to the nucleus and interact with CBF proteins to promote their destabilization, thus fine-tuning CBF-dependent cold signaling.
Author Liu, Ziyan
Li, Zhen
Jia, Yuxin
Shi, Yiting
Guo, Yan
Yang, Shuhua
Gong, Zhizhong
Ding, Yanglin
Author_xml – sequence: 1
  givenname: Ziyan
  surname: Liu
  fullname: Liu, Ziyan
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 2
  givenname: Yuxin
  surname: Jia
  fullname: Jia, Yuxin
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 3
  givenname: Yanglin
  surname: Ding
  fullname: Ding, Yanglin
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 4
  givenname: Yiting
  surname: Shi
  fullname: Shi, Yiting
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 5
  givenname: Zhen
  surname: Li
  fullname: Li, Zhen
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 6
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 7
  givenname: Zhizhong
  surname: Gong
  fullname: Gong, Zhizhong
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
– sequence: 8
  givenname: Shuhua
  surname: Yang
  fullname: Yang, Shuhua
  email: yangshuhua@cau.edu.cn
  organization: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28344081$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2O1DAQhCO0iP2BN0DIRy4Jbsf544AEIwZG7MJoGc6WY3d2PErsYCdI-xI8Mw4zcODAnrrV-qqkrrpMzqyzmCTPgWZAoXx1yAbXK-wzRqHKKMvi8VFyAbSpUg4lPzvtrCqL8-QyhAOlwIu6eZKcszrnnNZwkfzc9jIMktzg0Hppkaxut58gvUFt5ISabPcujHvn73s5GWeJ6wjwNE9zsvVuQmMD2Vg9Kwxkt0fjyedZ9Sg92Qyj8xOZHFkbi-luXrzfrclXc2dlb-wd0bNfxsr1mtxiGJ0N-DR53Mk-4LPTvEq-rd_vVh_T6y8fNqu316niHKaU14zSusk5VMCaQkEpWdtpxXSHMj5WaYBWFkXZ8koC5WVZVqwFlasSmEKVXyUvj76jd99nDJMYTIhh9jECNwcR7SmHIm-aB1Goa-C8yYsFfXFC53ZALUZvBunvxZ-4I8CPgPIuBI_dXwSoWFoVB3FsVSytCspEPEbZ639kyky_-5i8NP1D4jdHMcY8fxj0IiiDVsWGPapJaGf-b_ALPHS93w
CitedBy_id crossref_primary_10_1038_s41467_019_09181_2
crossref_primary_10_1007_s00299_023_03035_4
crossref_primary_10_1146_annurev_arplant_050718_100016
crossref_primary_10_2478_gsr_2021_0002
crossref_primary_10_1016_j_molp_2023_04_002
crossref_primary_10_1016_j_devcel_2024_11_005
crossref_primary_10_1126_sciadv_abn7901
crossref_primary_10_3389_fgene_2022_833406
crossref_primary_10_1093_jxb_erad385
crossref_primary_10_1038_s41467_020_14746_7
crossref_primary_10_1111_pce_14669
crossref_primary_10_1007_s44154_022_00045_2
crossref_primary_10_1093_hr_uhae297
crossref_primary_10_3390_plants11101355
crossref_primary_10_1073_pnas_1815425116
crossref_primary_10_1093_plphys_kiac508
crossref_primary_10_1021_acs_jafc_2c06222
crossref_primary_10_7554_eLife_84594
crossref_primary_10_3390_pr10071388
crossref_primary_10_1038_nrm_2017_38
crossref_primary_10_1016_j_plaphy_2025_109603
crossref_primary_10_1146_annurev_arplant_042817_040540
crossref_primary_10_1016_j_molp_2020_02_001
crossref_primary_10_1111_jipb_13769
crossref_primary_10_1038_s41467_021_25001_y
crossref_primary_10_1016_j_molp_2020_02_004
crossref_primary_10_1111_nph_19072
crossref_primary_10_7554_eLife_88604
crossref_primary_10_1007_s00425_023_04276_z
crossref_primary_10_1007_s11274_023_03579_3
crossref_primary_10_3389_fpls_2022_1059804
crossref_primary_10_1007_s10725_024_01253_8
crossref_primary_10_1093_hr_uhaf010
crossref_primary_10_3390_ijms18102040
crossref_primary_10_1016_j_cpb_2024_100342
crossref_primary_10_1016_j_plantsci_2019_110318
crossref_primary_10_1111_jipb_13403
crossref_primary_10_3390_plants10102228
crossref_primary_10_1038_s41477_025_01933_x
crossref_primary_10_1007_s00299_019_02376_3
crossref_primary_10_15252_embj_201899819
crossref_primary_10_1016_j_pbi_2022_102269
crossref_primary_10_1111_jipb_13761
crossref_primary_10_1016_j_plaphy_2019_12_035
crossref_primary_10_1016_j_scienta_2024_113556
crossref_primary_10_3390_molecules26082294
crossref_primary_10_1093_plcell_koae217
crossref_primary_10_1111_pbi_13202
crossref_primary_10_3389_fgene_2020_591806
crossref_primary_10_1016_j_cell_2024_12_018
crossref_primary_10_1038_s41467_022_28395_5
crossref_primary_10_1093_plcell_koac273
crossref_primary_10_1126_sciadv_ado4788
crossref_primary_10_1134_S1021443724606086
crossref_primary_10_1016_j_plaphy_2025_109829
crossref_primary_10_1093_plcell_koad119
crossref_primary_10_3390_ijms252111569
crossref_primary_10_1016_j_envexpbot_2020_104371
crossref_primary_10_1111_ele_13502
crossref_primary_10_3390_ijms231710049
crossref_primary_10_1111_eva_13480
crossref_primary_10_3389_fpls_2018_01394
crossref_primary_10_1007_s00299_022_02890_x
crossref_primary_10_15252_embj_2019103630
crossref_primary_10_3389_fbioe_2020_00685
crossref_primary_10_3390_ijms241914976
crossref_primary_10_3389_fpls_2024_1431835
crossref_primary_10_1038_s41477_019_0400_5
crossref_primary_10_3390_ijms26030896
crossref_primary_10_3389_fpls_2025_1560204
crossref_primary_10_1016_j_plantsci_2019_110219
crossref_primary_10_1093_treephys_tpz133
crossref_primary_10_1016_j_molp_2022_06_003
crossref_primary_10_1111_plb_13268
crossref_primary_10_1016_j_plantsci_2019_110215
crossref_primary_10_1016_j_mce_2018_02_011
crossref_primary_10_3390_ijms222312856
crossref_primary_10_1111_ppl_13740
crossref_primary_10_54097_xm3m5y47
crossref_primary_10_1016_j_sajb_2023_10_047
crossref_primary_10_1038_s41438_021_00622_y
crossref_primary_10_1111_tpj_17131
crossref_primary_10_3390_plants13141907
crossref_primary_10_1126_sciadv_adp5541
crossref_primary_10_15252_embj_201798228
crossref_primary_10_1097_CCM_0000000000003767
crossref_primary_10_3390_ijms19123896
crossref_primary_10_3390_plants12020305
crossref_primary_10_1016_j_stress_2024_100598
crossref_primary_10_3389_fpls_2023_1127532
crossref_primary_10_1016_j_envexpbot_2024_105763
crossref_primary_10_3389_fpls_2021_712257
crossref_primary_10_1016_j_devcel_2019_08_008
crossref_primary_10_3390_genes9020110
crossref_primary_10_1016_j_celrep_2024_114524
crossref_primary_10_1038_s41467_024_49102_6
crossref_primary_10_1016_j_bbrc_2018_12_092
crossref_primary_10_1111_tpj_15072
crossref_primary_10_3389_fpls_2020_00921
crossref_primary_10_1186_s12870_022_03797_1
crossref_primary_10_3390_plants10122724
crossref_primary_10_7554_eLife_88604_3
crossref_primary_10_1016_j_devcel_2017_11_016
crossref_primary_10_1080_17429145_2022_2045370
crossref_primary_10_1093_plcell_koaa001
crossref_primary_10_1016_j_stress_2022_100081
crossref_primary_10_1016_j_molp_2023_07_005
crossref_primary_10_1186_s12870_021_03377_9
crossref_primary_10_15252_embj_2020104559
crossref_primary_10_3389_fpls_2022_1075279
crossref_primary_10_1016_j_envexpbot_2022_105190
crossref_primary_10_1111_pce_14520
crossref_primary_10_1186_s12870_021_03157_5
crossref_primary_10_1093_plphys_kiad621
crossref_primary_10_3390_f15111870
crossref_primary_10_1186_s12284_023_00637_0
crossref_primary_10_1126_sciadv_abg2286
crossref_primary_10_3390_ijms231911417
crossref_primary_10_1111_nph_14890
crossref_primary_10_3389_fpls_2022_857745
crossref_primary_10_3390_ijms242115778
crossref_primary_10_1111_pbi_13640
crossref_primary_10_3390_plants10091864
crossref_primary_10_1007_s00299_023_03099_2
crossref_primary_10_1016_j_celrep_2023_112729
crossref_primary_10_1093_plcell_koac073
crossref_primary_10_1111_pce_14611
crossref_primary_10_1016_j_plantsci_2022_111451
crossref_primary_10_3389_fpls_2020_607878
crossref_primary_10_1007_s00344_023_11000_4
crossref_primary_10_1016_j_devcel_2017_09_025
crossref_primary_10_3389_fpls_2021_674031
crossref_primary_10_1016_j_plaphy_2023_107646
crossref_primary_10_1080_15592324_2020_1785668
crossref_primary_10_1038_s41576_021_00413_0
crossref_primary_10_1186_s12870_023_04577_1
crossref_primary_10_1093_jxb_ery278
crossref_primary_10_1111_nph_18568
crossref_primary_10_1111_jipb_12657
crossref_primary_10_1016_j_devcel_2022_03_010
crossref_primary_10_1007_s00299_021_02803_4
crossref_primary_10_1093_hr_uhae181
crossref_primary_10_1016_j_envexpbot_2018_11_011
crossref_primary_10_1111_tpj_14899
crossref_primary_10_1111_jipb_13061
crossref_primary_10_1093_jxb_eraa249
crossref_primary_10_1111_jipb_13622
crossref_primary_10_1038_s41467_023_38860_4
crossref_primary_10_1111_nph_16945
crossref_primary_10_1016_j_gene_2020_145278
crossref_primary_10_1093_aob_mcac041
crossref_primary_10_1016_j_envexpbot_2021_104581
crossref_primary_10_1186_s12870_020_2301_1
crossref_primary_10_1111_nph_16774
crossref_primary_10_3389_fpls_2022_894710
crossref_primary_10_48130_GR_2023_0025
crossref_primary_10_1016_j_tplants_2023_03_001
crossref_primary_10_1016_j_molp_2020_04_006
crossref_primary_10_3389_fpls_2022_1106164
crossref_primary_10_1016_j_plantsci_2025_112403
crossref_primary_10_1111_pce_14278
crossref_primary_10_7717_peerj_10977
crossref_primary_10_1073_pnas_1708087114
crossref_primary_10_1111_nph_17745
crossref_primary_10_3389_fpls_2019_00414
crossref_primary_10_1016_j_jplph_2018_03_022
crossref_primary_10_1111_nph_17628
crossref_primary_10_3390_ijms20205089
crossref_primary_10_1016_j_compbiolchem_2022_107622
crossref_primary_10_1093_jxb_erad414
crossref_primary_10_3390_life12101633
crossref_primary_10_1007_s44154_024_00195_5
crossref_primary_10_1016_j_molp_2022_08_009
crossref_primary_10_3390_plants12233975
crossref_primary_10_1007_s11427_020_1683_x
crossref_primary_10_1016_j_plantsci_2023_111782
crossref_primary_10_3389_fpls_2022_991983
crossref_primary_10_3389_fpls_2017_01462
crossref_primary_10_1186_s12870_018_1276_7
crossref_primary_10_1016_j_bbrc_2020_05_033
crossref_primary_10_1093_pcp_pcz196
crossref_primary_10_1016_j_plaphy_2019_10_041
crossref_primary_10_1016_j_jprot_2018_07_014
crossref_primary_10_1016_j_plaphy_2025_109541
crossref_primary_10_1093_plphys_kiad650
crossref_primary_10_3390_ijms23031549
crossref_primary_10_1093_jxb_erac239
crossref_primary_10_1186_s12870_020_02467_4
crossref_primary_10_1007_s12298_021_01061_8
crossref_primary_10_1016_j_plantsci_2018_11_008
crossref_primary_10_3390_ijms241311211
crossref_primary_10_1038_s41477_024_01679_y
crossref_primary_10_1093_plcell_koae177
crossref_primary_10_1111_nph_18494
crossref_primary_10_1093_plcell_koad088
crossref_primary_10_1111_pbi_13290
crossref_primary_10_1016_j_indcrop_2023_118004
crossref_primary_10_1093_plcell_koaa007
crossref_primary_10_1016_j_plantsci_2024_112020
crossref_primary_10_1186_s12870_024_05854_3
crossref_primary_10_1016_j_molcel_2024_09_031
crossref_primary_10_1371_journal_pone_0299825
crossref_primary_10_3389_fpls_2021_664311
crossref_primary_10_3390_ijms21228631
crossref_primary_10_1016_j_tplants_2022_01_008
crossref_primary_10_3389_fpls_2022_984163
crossref_primary_10_1080_21541264_2020_1820299
crossref_primary_10_1071_FP20059
crossref_primary_10_1016_j_tplants_2018_04_002
crossref_primary_10_1007_s00425_018_2887_9
crossref_primary_10_3389_fpls_2024_1420431
crossref_primary_10_1016_j_plantsci_2022_111261
crossref_primary_10_1080_15592324_2021_2004035
crossref_primary_10_1016_j_indcrop_2024_118775
crossref_primary_10_1007_s10725_024_01248_5
crossref_primary_10_1093_jxb_erz532
crossref_primary_10_1093_plcell_koac137
crossref_primary_10_1093_plphys_kiad353
crossref_primary_10_1111_nph_19049
crossref_primary_10_3390_ijms20215411
crossref_primary_10_1093_jxb_erz419
crossref_primary_10_1016_j_cell_2024_04_040
crossref_primary_10_3390_ijms23116291
crossref_primary_10_1146_annurev_arplant_102820_102235
crossref_primary_10_3389_fpls_2022_872839
crossref_primary_10_1111_pbi_70017
crossref_primary_10_1007_s10681_024_03311_8
crossref_primary_10_1016_j_devcel_2022_06_012
crossref_primary_10_1016_j_envexpbot_2021_104416
crossref_primary_10_1186_s12864_021_07369_9
crossref_primary_10_3390_f14050911
crossref_primary_10_1111_nph_17413
crossref_primary_10_1093_plcell_koad117
crossref_primary_10_1186_s12870_020_02450_z
crossref_primary_10_1186_s12284_019_0339_1
crossref_primary_10_1093_treephys_tpaa065
crossref_primary_10_1111_ppl_13888
crossref_primary_10_1016_j_jprot_2023_104994
crossref_primary_10_1111_pbr_13057
crossref_primary_10_3389_fpls_2023_1276649
crossref_primary_10_1016_j_tplants_2024_04_006
crossref_primary_10_1093_hr_uhad158
crossref_primary_10_3389_fpls_2020_00632
crossref_primary_10_1016_j_gene_2025_149235
crossref_primary_10_1111_jipb_12706
crossref_primary_10_1038_s41477_023_01443_8
crossref_primary_10_1016_j_plaphy_2021_08_046
crossref_primary_10_1016_j_jplph_2021_153373
crossref_primary_10_1016_j_envexpbot_2019_04_009
crossref_primary_10_1016_j_molcel_2017_03_010
crossref_primary_10_1016_j_ijbiomac_2025_139979
crossref_primary_10_1016_j_jare_2024_01_007
crossref_primary_10_1146_annurev_genet_111523_102226
crossref_primary_10_1080_13102818_2022_2108339
crossref_primary_10_1093_plcell_koad211
crossref_primary_10_1111_jipb_12937
crossref_primary_10_1016_j_hpj_2024_01_014
crossref_primary_10_1093_plphys_kiac111
crossref_primary_10_1111_nph_16786
crossref_primary_10_1007_s10725_021_00763_z
crossref_primary_10_1111_jipb_13228
crossref_primary_10_1111_nph_15696
crossref_primary_10_1016_j_molp_2019_03_012
crossref_primary_10_1038_s41598_023_38571_2
crossref_primary_10_1016_j_molp_2019_07_001
crossref_primary_10_1111_nph_18040
crossref_primary_10_1007_s11103_020_01111_x
crossref_primary_10_1111_nph_19372
crossref_primary_10_1186_s12870_020_2247_3
crossref_primary_10_3390_ijms23094667
crossref_primary_10_3389_fpls_2019_00807
crossref_primary_10_1360_TB_2023_1135
crossref_primary_10_3389_fpls_2021_749581
crossref_primary_10_1007_s00253_024_13142_1
crossref_primary_10_1093_hr_uhad017
crossref_primary_10_12677_HJAS_2019_912167
crossref_primary_10_3389_fcell_2021_635533
crossref_primary_10_3389_fphys_2020_591073
crossref_primary_10_3390_ijms24076202
crossref_primary_10_1111_jipb_13100
Cites_doi 10.1046/j.1365-313X.1995.7040661.x
10.1126/science.280.5360.104
10.1111/j.1365-313X.2005.02599.x
10.3389/fpls.2012.00190
10.1074/jbc.M004892200
10.1111/nph.14088
10.1105/tpc.105.035626
10.1101/gad.918101
10.1093/emboj/19.12.2869
10.1111/j.1365-313X.2010.04241.x
10.1073/pnas.94.3.1035
10.1016/j.semcdb.2011.09.008
10.1105/tpc.006858
10.1093/pcp/pcu115
10.1042/bj3450297
10.1128/MCB.23.15.5376-5387.2003
10.1126/stke.2001.113.re22
10.1007/s00709-012-0437-z
10.1126/science.1065769
10.1039/C1MB05216K
10.1104/pp.124.4.1854
10.1105/tpc.114.127605
10.1016/j.devcel.2014.12.023
10.1105/tpc.108.063958
10.1074/jbc.M605895200
10.1038/nprot.2007.199
10.1105/tpc.113.110106
10.1105/tpc.112.098640
10.1126/science.1127593
10.1016/j.devcel.2011.08.018
10.1016/S0092-8674(00)80487-0
10.1111/nph.12760
10.1016/j.semcdb.2011.08.006
10.1073/pnas.0610208104
10.1105/tpc.113.117069
10.1046/j.1365-313x.1998.00343.x
10.1101/gad.366506
10.1038/7036
10.1111/j.1365-313X.2004.02219.x
10.1104/pp.16.00533
10.1021/bi991353h
10.1016/j.devcel.2007.06.009
10.1046/j.1365-313x.2000.00845.x
10.1073/pnas.1423481112
10.1016/j.molcel.2004.06.023
10.1146/annurev.arplant.50.1.571
10.1105/tpc.111.084996
10.1046/j.1365-313X.2003.01739.x
10.1105/tpc.10.8.1391
10.1101/gad.1077503
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.molcel.2017.02.016
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 128.e5
ExternalDocumentID 28344081
10_1016_j_molcel_2017_02_016
S1097276517301314
Genre Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c441t-482008934171295c16a2bfdc2dfea4087d11ba556b47a10466672b1c3c612cec3
IEDL.DBID IXB
ISSN 1097-2765
1097-4164
IngestDate Sun Sep 28 07:27:55 EDT 2025
Sun Sep 28 09:16:10 EDT 2025
Thu Apr 03 06:59:01 EDT 2025
Tue Jul 01 03:40:49 EDT 2025
Thu Apr 24 22:59:55 EDT 2025
Fri Feb 23 02:30:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords protein kinase CRPK1
14-3-3 proteins
cold stress
CBF proteins
Arabidopsis
phosphorylation
Language English
License This article is made available under the Elsevier license.
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-482008934171295c16a2bfdc2dfea4087d11ba556b47a10466672b1c3c612cec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276517301314
PMID 28344081
PQID 1881449359
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000415399
proquest_miscellaneous_1881449359
pubmed_primary_28344081
crossref_primary_10_1016_j_molcel_2017_02_016
crossref_citationtrail_10_1016_j_molcel_2017_02_016
elsevier_sciencedirect_doi_10_1016_j_molcel_2017_02_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-06
PublicationDateYYYYMMDD 2017-04-06
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Liu, Kasuga, Sakuma, Abe, Miura, Yamaguchi-Shinozaki, Shinozaki (bib24) 1998; 10
Shin, Alvarez, Burch, Jez, Schachtman (bib34) 2007; 104
Bustos (bib3) 2012; 8
Agarwal, Hao, Kapoor, Dong, Fujii, Zheng, Zhu (bib1) 2006; 281
Jaglo-Ottosen, Gilmour, Zarka, Schabenberger, Thomashow (bib18) 1998; 280
Wang, Chory (bib42) 2006; 313
Bao, Huang, Zhu, Zhang, Li, Yang (bib2) 2014; 202
Hua, Grisafi, Cheng, Fink (bib16) 2001; 15
Kim, Cheong, Grant, Pandey, Luan (bib21) 2003; 15
Robatzek, Chinchilla, Boller (bib30) 2006; 20
Denison, Paul, Zupanska, Ferl (bib9) 2011; 22
Thomashow (bib39) 1999; 50
Shi, Ding, Yang (bib33) 2015; 56
Catalá, López-Cobollo, Mar Castellano, Angosto, Alonso, Ecker, Salinas (bib4) 2014; 26
Clough, Bent (bib6) 1998; 16
Sinnige, Roobeek, Bunney, Visser, Mol, de Boer (bib36) 2005; 44
Cotelle, Meek, Provan, Milne, Morrice, MacKintosh (bib7) 2000; 19
Powell, Rane, Joughin, Kalmukova, Hong, Tidor, Dean, Pierce, Klein, Yaffe, McLeish (bib29) 2003; 23
Teige, Scheikl, Eulgem, Dóczi, Ichimura, Shinozaki, Dangl, Hirt (bib38) 2004; 15
Yoo, Cho, Sheen (bib48) 2007; 2
Orvar, Sangwan, Omann, Dhindsa (bib27) 2000; 23
Zhao, Zhang, Xie, Si, Li, Zhu (bib50) 2016; 171
Yang, Shi, Liu, Guo, Zhang, Yang (bib47) 2010; 63
Wang, Yang, Liu, Jelinek, Zhang, Ruoslahti, Fu (bib43) 1999; 38
Shen, Clark, Huber (bib31) 2003; 34
Paul, Denison, Schultz, Zupanska, Ferl (bib28) 2012; 3
Chinnusamy, Ohta, Kanrar, Lee, Hong, Agarwal, Zhu (bib5) 2003; 17
Wang, Yang, Zhang, Wang, Lu, Wang, Zhang, Wang, Ma, Wang (bib44) 2011; 21
Mao, Meng, Liu, Zheng, Chen, Zhang (bib25) 2011; 23
Ni, Cui, Einstein, Narasimhulu, Vergara, Gelvin (bib26) 1995; 7
Doherty, Van Buskirk, Myers, Thomashow (bib11) 2009; 21
Li, Nam (bib22) 2002; 295
Wang, Du, Hou, Zhao, Hsu, Yuan, Zhu, Tao, Song, Zhu (bib45) 2015; 112
Gampala, Kim, He, Tang, Deng, Bai, Guan, Lalonde, Sun, Gendron (bib13) 2007; 13
Fuglsang, Guo, Cuin, Qiu, Song, Kristiansen, Bych, Schulz, Shabala, Schumaker (bib12) 2007; 19
Shi, Tian, Hou, Huang, Zhang, Guo, Yang (bib32) 2012; 24
Jia, Ding, Shi, Zhang, Gong, Yang (bib19) 2016; 212
Ikeda, Koizumi, Kusano, Sano (bib17) 2000; 275
Stockinger, Gilmour, Thomashow (bib37) 1997; 94
Van Der Hoeven, Van Der Wal, Ruurs, Van Dijk, Van Blitterswijk (bib40) 2000; 345
Zhou, Lin, Chen, Becker, Yang, Zhao, Kudla, Schumaker, Guo (bib51) 2014; 26
Walter, Chaban, Schütze, Batistic, Weckermann, Näke, Blazevic, Grefen, Schumacher, Oecking (bib41) 2004; 40
Gilmour, Sebolt, Salazar, Everard, Thomashow (bib15) 2000; 124
Kasuga, Liu, Miura, Yamaguchi-Shinozaki, Shinozaki (bib20) 1999; 17
Shiu, Bleecker (bib35) 2001; 2001
Yaffe, Rittinger, Volinia, Caron, Aitken, Leffers, Gamblin, Smerdon, Cantley (bib46) 1997; 91
Yoon, Kieber (bib49) 2013; 25
Ding, Li, Zhang, Xie, Gong, Yang (bib10) 2015; 32
Gardino, Yaffe (bib14) 2011; 22
Li, Ye, Shi, Cheng, Zhang, Yang (bib23) 2017
de Boer, van Kleeff, Gao (bib8) 2013; 250
Catalá (10.1016/j.molcel.2017.02.016_bib4) 2014; 26
Fuglsang (10.1016/j.molcel.2017.02.016_bib12) 2007; 19
Van Der Hoeven (10.1016/j.molcel.2017.02.016_bib40) 2000; 345
Jia (10.1016/j.molcel.2017.02.016_bib19) 2016; 212
Orvar (10.1016/j.molcel.2017.02.016_bib27) 2000; 23
Paul (10.1016/j.molcel.2017.02.016_bib28) 2012; 3
Bustos (10.1016/j.molcel.2017.02.016_bib3) 2012; 8
Stockinger (10.1016/j.molcel.2017.02.016_bib37) 1997; 94
Yoo (10.1016/j.molcel.2017.02.016_bib48) 2007; 2
Jaglo-Ottosen (10.1016/j.molcel.2017.02.016_bib18) 1998; 280
Shi (10.1016/j.molcel.2017.02.016_bib32) 2012; 24
Yang (10.1016/j.molcel.2017.02.016_bib47) 2010; 63
Doherty (10.1016/j.molcel.2017.02.016_bib11) 2009; 21
Bao (10.1016/j.molcel.2017.02.016_bib2) 2014; 202
Hua (10.1016/j.molcel.2017.02.016_bib16) 2001; 15
Shin (10.1016/j.molcel.2017.02.016_bib34) 2007; 104
Wang (10.1016/j.molcel.2017.02.016_bib44) 2011; 21
Yaffe (10.1016/j.molcel.2017.02.016_bib46) 1997; 91
Gampala (10.1016/j.molcel.2017.02.016_bib13) 2007; 13
Ding (10.1016/j.molcel.2017.02.016_bib10) 2015; 32
Kim (10.1016/j.molcel.2017.02.016_bib21) 2003; 15
Shi (10.1016/j.molcel.2017.02.016_bib33) 2015; 56
Denison (10.1016/j.molcel.2017.02.016_bib9) 2011; 22
de Boer (10.1016/j.molcel.2017.02.016_bib8) 2013; 250
Wang (10.1016/j.molcel.2017.02.016_bib42) 2006; 313
Wang (10.1016/j.molcel.2017.02.016_bib43) 1999; 38
Shiu (10.1016/j.molcel.2017.02.016_bib35) 2001; 2001
Wang (10.1016/j.molcel.2017.02.016_bib45) 2015; 112
Thomashow (10.1016/j.molcel.2017.02.016_bib39) 1999; 50
Sinnige (10.1016/j.molcel.2017.02.016_bib36) 2005; 44
Cotelle (10.1016/j.molcel.2017.02.016_bib7) 2000; 19
Gilmour (10.1016/j.molcel.2017.02.016_bib15) 2000; 124
Clough (10.1016/j.molcel.2017.02.016_bib6) 1998; 16
Gardino (10.1016/j.molcel.2017.02.016_bib14) 2011; 22
Teige (10.1016/j.molcel.2017.02.016_bib38) 2004; 15
Walter (10.1016/j.molcel.2017.02.016_bib41) 2004; 40
Zhao (10.1016/j.molcel.2017.02.016_bib50) 2016; 171
Shen (10.1016/j.molcel.2017.02.016_bib31) 2003; 34
Ikeda (10.1016/j.molcel.2017.02.016_bib17) 2000; 275
Li (10.1016/j.molcel.2017.02.016_bib22) 2002; 295
Mao (10.1016/j.molcel.2017.02.016_bib25) 2011; 23
Robatzek (10.1016/j.molcel.2017.02.016_bib30) 2006; 20
Liu (10.1016/j.molcel.2017.02.016_bib24) 1998; 10
Kasuga (10.1016/j.molcel.2017.02.016_bib20) 1999; 17
Chinnusamy (10.1016/j.molcel.2017.02.016_bib5) 2003; 17
Powell (10.1016/j.molcel.2017.02.016_bib29) 2003; 23
Yoon (10.1016/j.molcel.2017.02.016_bib49) 2013; 25
Zhou (10.1016/j.molcel.2017.02.016_bib51) 2014; 26
Ni (10.1016/j.molcel.2017.02.016_bib26) 1995; 7
Li (10.1016/j.molcel.2017.02.016_bib23) 2017
Agarwal (10.1016/j.molcel.2017.02.016_bib1) 2006; 281
28377618 - Nat Rev Mol Cell Biol. 2017 May;18(5):276-277
References_xml – volume: 10
  start-page: 1391
  year: 1998
  end-page: 1406
  ident: bib24
  article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in
  publication-title: Plant Cell
– volume: 2001
  start-page: re22
  year: 2001
  ident: bib35
  article-title: Plant receptor-like kinase gene family: diversity, function, and signaling
  publication-title: Sci. STKE
– volume: 26
  start-page: 3326
  year: 2014
  end-page: 3342
  ident: bib4
  article-title: The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation
  publication-title: Plant Cell
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  ident: bib6
  article-title: Floral dip: a simplified method for
  publication-title: Plant J.
– volume: 19
  start-page: 1617
  year: 2007
  end-page: 1634
  ident: bib12
  article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H
  publication-title: Plant Cell
– volume: 7
  start-page: 661
  year: 1995
  end-page: 676
  ident: bib26
  article-title: Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes
  publication-title: Plant J.
– volume: 17
  start-page: 1043
  year: 2003
  end-page: 1054
  ident: bib5
  article-title: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in
  publication-title: Genes Dev.
– volume: 15
  start-page: 411
  year: 2003
  end-page: 423
  ident: bib21
  article-title: CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in
  publication-title: Plant Cell
– year: 2017
  ident: bib23
  article-title: BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in
  publication-title: Mol. Plant
– volume: 295
  start-page: 1299
  year: 2002
  end-page: 1301
  ident: bib22
  article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase
  publication-title: Science
– volume: 345
  start-page: 297
  year: 2000
  end-page: 306
  ident: bib40
  article-title: 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation
  publication-title: Biochem. J.
– volume: 22
  start-page: 720
  year: 2011
  end-page: 727
  ident: bib9
  article-title: 14-3-3 proteins in plant physiology
  publication-title: Semin. Cell Dev. Biol.
– volume: 212
  start-page: 345
  year: 2016
  end-page: 353
  ident: bib19
  article-title: The
  publication-title: New Phytol.
– volume: 25
  start-page: 1016
  year: 2013
  end-page: 1028
  ident: bib49
  article-title: 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis
  publication-title: Plant Cell
– volume: 23
  start-page: 785
  year: 2000
  end-page: 794
  ident: bib27
  article-title: Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity
  publication-title: Plant J.
– volume: 22
  start-page: 688
  year: 2011
  end-page: 695
  ident: bib14
  article-title: 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis
  publication-title: Semin. Cell Dev. Biol.
– volume: 21
  start-page: 825
  year: 2011
  end-page: 834
  ident: bib44
  article-title: Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors
  publication-title: Dev. Cell
– volume: 26
  start-page: 1166
  year: 2014
  end-page: 1182
  ident: bib51
  article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins
  publication-title: Plant Cell
– volume: 104
  start-page: 6460
  year: 2007
  end-page: 6465
  ident: bib34
  article-title: Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 141
  year: 2004
  end-page: 152
  ident: bib38
  article-title: The MKK2 pathway mediates cold and salt stress signaling in
  publication-title: Mol. Cell
– volume: 20
  start-page: 537
  year: 2006
  end-page: 542
  ident: bib30
  article-title: Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis
  publication-title: Genes Dev.
– volume: 2
  start-page: 1565
  year: 2007
  end-page: 1572
  ident: bib48
  article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nat. Protoc.
– volume: 94
  start-page: 1035
  year: 1997
  end-page: 1040
  ident: bib37
  article-title: encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 44
  start-page: 1001
  year: 2005
  end-page: 1009
  ident: bib36
  article-title: Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase
  publication-title: Plant J.
– volume: 63
  start-page: 283
  year: 2010
  end-page: 296
  ident: bib47
  article-title: A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis
  publication-title: Plant J.
– volume: 34
  start-page: 473
  year: 2003
  end-page: 484
  ident: bib31
  article-title: The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix
  publication-title: Plant J.
– volume: 21
  start-page: 972
  year: 2009
  end-page: 984
  ident: bib11
  article-title: Roles for
  publication-title: Plant Cell
– volume: 15
  start-page: 2263
  year: 2001
  end-page: 2272
  ident: bib16
  article-title: Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes
  publication-title: Genes Dev.
– volume: 313
  start-page: 1118
  year: 2006
  end-page: 1122
  ident: bib42
  article-title: Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane
  publication-title: Science
– volume: 250
  start-page: 425
  year: 2013
  end-page: 440
  ident: bib8
  article-title: Plant 14-3-3 proteins as spiders in a web of phosphorylation
  publication-title: Protoplasma
– volume: 275
  start-page: 31695
  year: 2000
  end-page: 31700
  ident: bib17
  article-title: Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 1639
  year: 2011
  end-page: 1653
  ident: bib25
  article-title: Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in
  publication-title: Plant Cell
– volume: 56
  start-page: 7
  year: 2015
  end-page: 15
  ident: bib33
  article-title: Cold signal transduction and its interplay with phytohormones during cold acclimation
  publication-title: Plant Cell Physiol.
– volume: 202
  start-page: 1320
  year: 2014
  end-page: 1334
  ident: bib2
  article-title: Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses
  publication-title: New Phytol.
– volume: 13
  start-page: 177
  year: 2007
  end-page: 189
  ident: bib13
  article-title: An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis
  publication-title: Dev. Cell
– volume: 19
  start-page: 2869
  year: 2000
  end-page: 2876
  ident: bib7
  article-title: 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells
  publication-title: EMBO J.
– volume: 112
  start-page: 613
  year: 2015
  end-page: 618
  ident: bib45
  article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 124
  start-page: 1854
  year: 2000
  end-page: 1865
  ident: bib15
  article-title: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation
  publication-title: Plant Physiol.
– volume: 23
  start-page: 5376
  year: 2003
  end-page: 5387
  ident: bib29
  article-title: Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding
  publication-title: Mol. Cell. Biol.
– volume: 32
  start-page: 278
  year: 2015
  end-page: 289
  ident: bib10
  article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis
  publication-title: Dev. Cell
– volume: 24
  start-page: 2578
  year: 2012
  end-page: 2595
  ident: bib32
  article-title: Ethylene signaling negatively regulates freezing tolerance by repressing expression of
  publication-title: Plant Cell
– volume: 50
  start-page: 571
  year: 1999
  end-page: 599
  ident: bib39
  article-title: PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 8
  start-page: 178
  year: 2012
  end-page: 184
  ident: bib3
  article-title: The role of protein disorder in the 14-3-3 interaction network
  publication-title: Mol. Biosyst.
– volume: 40
  start-page: 428
  year: 2004
  end-page: 438
  ident: bib41
  article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation
  publication-title: Plant J.
– volume: 17
  start-page: 287
  year: 1999
  end-page: 291
  ident: bib20
  article-title: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor
  publication-title: Nat. Biotechnol.
– volume: 171
  start-page: 2744
  year: 2016
  end-page: 2759
  ident: bib50
  article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in
  publication-title: Plant Physiol.
– volume: 280
  start-page: 104
  year: 1998
  end-page: 106
  ident: bib18
  article-title: Arabidopsis
  publication-title: Science
– volume: 3
  start-page: 190
  year: 2012
  ident: bib28
  article-title: 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?
  publication-title: Front. Plant Sci.
– volume: 38
  start-page: 12499
  year: 1999
  end-page: 12504
  ident: bib43
  article-title: Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display
  publication-title: Biochemistry
– volume: 91
  start-page: 961
  year: 1997
  end-page: 971
  ident: bib46
  article-title: The structural basis for 14-3-3:phosphopeptide binding specificity
  publication-title: Cell
– volume: 281
  start-page: 37636
  year: 2006
  end-page: 37645
  ident: bib1
  article-title: A R2R3 type MYB transcription factor is involved in the cold regulation of
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 661
  year: 1995
  ident: 10.1016/j.molcel.2017.02.016_bib26
  article-title: Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1995.7040661.x
– volume: 280
  start-page: 104
  year: 1998
  ident: 10.1016/j.molcel.2017.02.016_bib18
  article-title: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance
  publication-title: Science
  doi: 10.1126/science.280.5360.104
– volume: 44
  start-page: 1001
  year: 2005
  ident: 10.1016/j.molcel.2017.02.016_bib36
  article-title: Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02599.x
– volume: 3
  start-page: 190
  year: 2012
  ident: 10.1016/j.molcel.2017.02.016_bib28
  article-title: 14-3-3 phosphoprotein interaction networks - does isoform diversity present functional interaction specification?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00190
– volume: 275
  start-page: 31695
  year: 2000
  ident: 10.1016/j.molcel.2017.02.016_bib17
  article-title: Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M004892200
– volume: 212
  start-page: 345
  year: 2016
  ident: 10.1016/j.molcel.2017.02.016_bib19
  article-title: The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/nph.14088
– volume: 19
  start-page: 1617
  year: 2007
  ident: 10.1016/j.molcel.2017.02.016_bib12
  article-title: Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.035626
– volume: 15
  start-page: 2263
  year: 2001
  ident: 10.1016/j.molcel.2017.02.016_bib16
  article-title: Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes
  publication-title: Genes Dev.
  doi: 10.1101/gad.918101
– volume: 19
  start-page: 2869
  year: 2000
  ident: 10.1016/j.molcel.2017.02.016_bib7
  article-title: 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.12.2869
– volume: 63
  start-page: 283
  year: 2010
  ident: 10.1016/j.molcel.2017.02.016_bib47
  article-title: A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04241.x
– volume: 94
  start-page: 1035
  year: 1997
  ident: 10.1016/j.molcel.2017.02.016_bib37
  article-title: Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.3.1035
– volume: 22
  start-page: 688
  year: 2011
  ident: 10.1016/j.molcel.2017.02.016_bib14
  article-title: 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2011.09.008
– volume: 15
  start-page: 411
  year: 2003
  ident: 10.1016/j.molcel.2017.02.016_bib21
  article-title: CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.006858
– volume: 56
  start-page: 7
  year: 2015
  ident: 10.1016/j.molcel.2017.02.016_bib33
  article-title: Cold signal transduction and its interplay with phytohormones during cold acclimation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcu115
– volume: 345
  start-page: 297
  year: 2000
  ident: 10.1016/j.molcel.2017.02.016_bib40
  article-title: 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation
  publication-title: Biochem. J.
  doi: 10.1042/bj3450297
– volume: 23
  start-page: 5376
  year: 2003
  ident: 10.1016/j.molcel.2017.02.016_bib29
  article-title: Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.15.5376-5387.2003
– volume: 2001
  start-page: re22
  year: 2001
  ident: 10.1016/j.molcel.2017.02.016_bib35
  article-title: Plant receptor-like kinase gene family: diversity, function, and signaling
  publication-title: Sci. STKE
  doi: 10.1126/stke.2001.113.re22
– volume: 250
  start-page: 425
  year: 2013
  ident: 10.1016/j.molcel.2017.02.016_bib8
  article-title: Plant 14-3-3 proteins as spiders in a web of phosphorylation
  publication-title: Protoplasma
  doi: 10.1007/s00709-012-0437-z
– volume: 295
  start-page: 1299
  year: 2002
  ident: 10.1016/j.molcel.2017.02.016_bib22
  article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase
  publication-title: Science
  doi: 10.1126/science.1065769
– volume: 8
  start-page: 178
  year: 2012
  ident: 10.1016/j.molcel.2017.02.016_bib3
  article-title: The role of protein disorder in the 14-3-3 interaction network
  publication-title: Mol. Biosyst.
  doi: 10.1039/C1MB05216K
– volume: 124
  start-page: 1854
  year: 2000
  ident: 10.1016/j.molcel.2017.02.016_bib15
  article-title: Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.4.1854
– volume: 26
  start-page: 3326
  year: 2014
  ident: 10.1016/j.molcel.2017.02.016_bib4
  article-title: The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.127605
– volume: 32
  start-page: 278
  year: 2015
  ident: 10.1016/j.molcel.2017.02.016_bib10
  article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.12.023
– volume: 21
  start-page: 972
  year: 2009
  ident: 10.1016/j.molcel.2017.02.016_bib11
  article-title: Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.063958
– volume: 281
  start-page: 37636
  year: 2006
  ident: 10.1016/j.molcel.2017.02.016_bib1
  article-title: A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M605895200
– volume: 2
  start-page: 1565
  year: 2007
  ident: 10.1016/j.molcel.2017.02.016_bib48
  article-title: Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.199
– volume: 25
  start-page: 1016
  year: 2013
  ident: 10.1016/j.molcel.2017.02.016_bib49
  article-title: 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.110106
– volume: 24
  start-page: 2578
  year: 2012
  ident: 10.1016/j.molcel.2017.02.016_bib32
  article-title: Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.098640
– volume: 313
  start-page: 1118
  year: 2006
  ident: 10.1016/j.molcel.2017.02.016_bib42
  article-title: Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane
  publication-title: Science
  doi: 10.1126/science.1127593
– volume: 21
  start-page: 825
  year: 2011
  ident: 10.1016/j.molcel.2017.02.016_bib44
  article-title: Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2011.08.018
– volume: 91
  start-page: 961
  year: 1997
  ident: 10.1016/j.molcel.2017.02.016_bib46
  article-title: The structural basis for 14-3-3:phosphopeptide binding specificity
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80487-0
– volume: 202
  start-page: 1320
  year: 2014
  ident: 10.1016/j.molcel.2017.02.016_bib2
  article-title: Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses
  publication-title: New Phytol.
  doi: 10.1111/nph.12760
– volume: 22
  start-page: 720
  year: 2011
  ident: 10.1016/j.molcel.2017.02.016_bib9
  article-title: 14-3-3 proteins in plant physiology
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2011.08.006
– year: 2017
  ident: 10.1016/j.molcel.2017.02.016_bib23
  article-title: BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis
  publication-title: Mol. Plant
– volume: 104
  start-page: 6460
  year: 2007
  ident: 10.1016/j.molcel.2017.02.016_bib34
  article-title: Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610208104
– volume: 26
  start-page: 1166
  year: 2014
  ident: 10.1016/j.molcel.2017.02.016_bib51
  article-title: Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117069
– volume: 16
  start-page: 735
  year: 1998
  ident: 10.1016/j.molcel.2017.02.016_bib6
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 20
  start-page: 537
  year: 2006
  ident: 10.1016/j.molcel.2017.02.016_bib30
  article-title: Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis
  publication-title: Genes Dev.
  doi: 10.1101/gad.366506
– volume: 17
  start-page: 287
  year: 1999
  ident: 10.1016/j.molcel.2017.02.016_bib20
  article-title: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor
  publication-title: Nat. Biotechnol.
  doi: 10.1038/7036
– volume: 40
  start-page: 428
  year: 2004
  ident: 10.1016/j.molcel.2017.02.016_bib41
  article-title: Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02219.x
– volume: 171
  start-page: 2744
  year: 2016
  ident: 10.1016/j.molcel.2017.02.016_bib50
  article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.16.00533
– volume: 38
  start-page: 12499
  year: 1999
  ident: 10.1016/j.molcel.2017.02.016_bib43
  article-title: Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display
  publication-title: Biochemistry
  doi: 10.1021/bi991353h
– volume: 13
  start-page: 177
  year: 2007
  ident: 10.1016/j.molcel.2017.02.016_bib13
  article-title: An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.06.009
– volume: 23
  start-page: 785
  year: 2000
  ident: 10.1016/j.molcel.2017.02.016_bib27
  article-title: Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00845.x
– volume: 112
  start-page: 613
  year: 2015
  ident: 10.1016/j.molcel.2017.02.016_bib45
  article-title: Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1423481112
– volume: 15
  start-page: 141
  year: 2004
  ident: 10.1016/j.molcel.2017.02.016_bib38
  article-title: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.06.023
– volume: 50
  start-page: 571
  year: 1999
  ident: 10.1016/j.molcel.2017.02.016_bib39
  article-title: PLANT COLD ACCLIMATION: Freezing tolerance genes and regulatory mechanisms
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
  doi: 10.1146/annurev.arplant.50.1.571
– volume: 23
  start-page: 1639
  year: 2011
  ident: 10.1016/j.molcel.2017.02.016_bib25
  article-title: Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084996
– volume: 34
  start-page: 473
  year: 2003
  ident: 10.1016/j.molcel.2017.02.016_bib31
  article-title: The C-terminal tail of Arabidopsis 14-3-3omega functions as an autoinhibitor and may contain a tenth alpha-helix
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01739.x
– volume: 10
  start-page: 1391
  year: 1998
  ident: 10.1016/j.molcel.2017.02.016_bib24
  article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.10.8.1391
– volume: 17
  start-page: 1043
  year: 2003
  ident: 10.1016/j.molcel.2017.02.016_bib5
  article-title: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1077503
– reference: 28377618 - Nat Rev Mol Cell Biol. 2017 May;18(5):276-277
SSID ssj0014589
Score 2.643993
Snippet In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the...
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117
SubjectTerms 14-3-3 proteins
14-3-3 Proteins - genetics
14-3-3 Proteins - metabolism
Active Transport, Cell Nucleus
Adaptation, Physiological
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
CBF proteins
Cell Membrane - enzymology
Cell Nucleus - enzymology
cold stress
Cold Temperature
cold tolerance
Cold-Shock Response
cytosol
Enzyme Activation
freezing
gene overexpression
Genotype
Membrane Fluidity
membrane proteins
mutants
Mutation
Phenotype
Phosphorylation
physiological transport
Plants, Genetically Modified
plasma membrane
Proteasome Endopeptidase Complex - metabolism
protein kinase CRPK1
protein kinases
Protein Kinases - genetics
Protein Kinases - metabolism
Protein Stability
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proteolysis
Signal Transduction
Thermosensing
Time Factors
Transcription Factors - genetics
Transcription Factors - metabolism
transgenic plants
Title Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response
URI https://dx.doi.org/10.1016/j.molcel.2017.02.016
https://www.ncbi.nlm.nih.gov/pubmed/28344081
https://www.proquest.com/docview/1881449359
https://www.proquest.com/docview/2000415399
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbLQqGX0nezfaBCryKWrYd97IaGbUuWsJuF3IQsybspiR0S57B_or-5M7IdKHRZ6NFiZIRnPPOJeXyEfJEFWK6qNCuqkDKhVWCl9XBZsV6oTMjCRZrO2aW6uBE_lnJ5QiZDLwyWVfa-v_Pp0Vv3K-P-a463q9X4GnOnqVaSo5Fmkcwau0qxiW95fswkCBlp8FCYofTQPhdrvDbN2gVMQHAdJ3ci6_m_w9ND8DOGoelz8qzHj_Rrd8QX5CTUL8mTjlHy_hX5PQc0vLF0FjZwDa4DnVzNf3I2i4QcwdP5XbPf3jW7-64EjjYV5YJlLKNzHNiwqvcUyTzAedAFphDoJc47tjv6HSdYtbRt6BRwKVsc8N3nU3q9ukUoX9_SruGRTpq1p1dd5W14TW6m3xaTC9ZTLjAHuKhlIsd6iAJCmwYgIB1XNi0r71JfBSuSXHvOSyulKoW2mB5WSqcld5kDpOSCy96Q07qpwztCLWANL7X2lbWg9rTgsqq8yENipU5sMiLZ8KWN6-eRIy3G2gyFZ79Mpx-D-jFJamBxRNhx17abx_GIvB6UaP6yKwMh45GdnwedG_jlMI8CamsOe8PzHK6h2NL8sAx2QAE2Avg3Im87gzmeN0VuE4BiZ_99tvfkKT7FCiL1gZy2u0P4COCoLT9F6_8D02MKyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhpbSX0nfdpwq9Cq929fAeG1NjN7ExiQO-Ca2kTVzsXWOvD_kT_c2d2Yeh0BDoVSstQjOa-cQ8PkK-yRQ0V-WapXmImdAqsMx6eKxYL1QiZOpqms7pTI2vxc-lXJ6QYVcLg2mVre1vbHptrduRfnua_e1q1b_C2GmsleSopAmSWT8CNBChak-WZ8dQgpA1Dx7OZji9q5-rk7w25doFjEBwXbfuRNrzf_un-_Bn7YdGz8mzFkDS780eX5CTULwkjxtKybtX5Pcc4PDG0mnYwDu4CHR4OT_nbFozcgRP57flfntb7u6aHDha5pQLlrCEzrFjw6rYU2TzAOtBFxhDoDNseGx3dIItrCpalXQEwJQtDvjvsxG9Wt0gli9uaFPxSIfl2tPLJvU2vCbXox-L4Zi1nAvMATCqmBhgQkQKvk0DEpCOKxtnuXexz4MV0UB7zjMrpcqEthgfVkrHGXeJA6jkgkvekNOiLMI7Qi2ADS-19rm1IPc45TLPvRiEyEod2ahHku6kjWsbkiMvxtp0mWe_TCMfg_IxUWxgsEfYcdW2acjxwHzdCdH8pVgGfMYDK792Mjdw5zCQAmIrD3vDBwN4h2JN8_1zsAQKwBHgvx552yjMcb8xkpsAFnv_33v7Qp6MF9MLczGZnX8gT_FLnU6kPpLTancInwApVdnn-ib8AUfGDew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+Membrane+CRPK1-Mediated+Phosphorylation+of+14-3-3+Proteins+Induces+Their+Nuclear+Import+to+Fine-Tune+CBF+Signaling+during+Cold+Response&rft.jtitle=Molecular+cell&rft.au=Liu%2C+Ziyan&rft.au=Jia%2C+Yuxin&rft.au=Ding%2C+Yanglin&rft.au=Shi%2C+Yiting&rft.date=2017-04-06&rft.issn=1097-2765&rft.volume=66&rft.issue=1&rft.spage=117&rft.epage=128.e5&rft_id=info:doi/10.1016%2Fj.molcel.2017.02.016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_molcel_2017_02_016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon