Model-Based Electroencephalogram Instantaneous Frequency Tracking: Application in Automated Sleep–Wake Stage Classification

Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these d...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 24; p. 7881
Main Authors Nateghi, Masoud, Rahbar Alam, Mahdi, Amiri, Hossein, Nasiri, Samaneh, Sameni, Reza
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s24247881

Cover

Abstract Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep’s effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen’s kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set.
AbstractList Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep’s effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen’s kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set.
Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep's effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen's kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set.Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep's effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen's kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set.
Audience Academic
Author Amiri, Hossein
Rahbar Alam, Mahdi
Sameni, Reza
Nateghi, Masoud
Nasiri, Samaneh
Author_xml – sequence: 1
  givenname: Masoud
  orcidid: 0009-0002-4263-2092
  surname: Nateghi
  fullname: Nateghi, Masoud
– sequence: 2
  givenname: Mahdi
  surname: Rahbar Alam
  fullname: Rahbar Alam, Mahdi
– sequence: 3
  givenname: Hossein
  orcidid: 0000-0003-0926-7679
  surname: Amiri
  fullname: Amiri, Hossein
– sequence: 4
  givenname: Samaneh
  orcidid: 0000-0002-4216-026X
  surname: Nasiri
  fullname: Nasiri, Samaneh
– sequence: 5
  givenname: Reza
  orcidid: 0000-0003-4913-6825
  surname: Sameni
  fullname: Sameni, Reza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39771620$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1qFDEUxwep2A-98AVkwBsrbM3HZGbWu3VpdaHiRSteDmeSkzXbTDJNZpC9KPgOvqFPYra7LlVEEsjh8Ms_Of9zjrMD5x1m2XNKzjifkjeRFayo6po-yo5oCic1Y-TgQXyYHce4IoRxzusn2SGfVhUtGTnK7j56hXbyDiKq_NyiHIJHJ7H_CtYvA3T5wsUBXNrox5hfBLwdE7DOrwPIG-OWb_NZ31sjYTDe5cbls3HwHQxJ78oi9j-___gCN5hfDbDEfG4hRqN3-NPssQYb8dnuPMk-X5xfzz9MLj-9X8xnlxNZFHSYcKkJKqGw1EIVQmlJqBKcAaGaCJyiZm2ruQaVQCG4Kqt6ipVsS6wKyig_yRZbXeVh1fTBdBDWjQfT3Cd8WDYQBiMtNkrollVQyFaKoiSq1boiLYc6JUuKbdJ6vdUaXQ_rb2DtXpCSZtOPZt-PBL_awn3wybc4NJ2JEq3d2tlwKnhdMVJu0Jd_oSs_BpdsSVQxrQQT7AG1hPRZ47QfUh82os2sZvQeKxJ19g8qLYWdkWl4tEn5Py682D0-th2qfUW_ByUBp1tABh9jQP2fon8BYUHNhg
Cites_doi 10.1016/0149-7634(95)00010-C
10.1109/TSP.2015.7296292
10.1038/nmeth.2855
10.1007/s10916-008-9134-z
10.1002/0470099720
10.1007/978-1-4757-3261-0
10.1186/1475-925X-11-52
10.1002/acs.1147
10.1016/j.jneumeth.2014.01.024
10.1016/j.bpa.2007.04.003
10.1109/78.558469
10.1111/j.1532-5415.1982.tb01279.x
10.1007/s10916-009-9286-5
10.1016/j.compbiomed.2012.09.012
10.1093/sleep/zsx152
10.1016/j.eswa.2006.02.005
10.1016/j.artmed.2004.04.004
10.1016/j.artmed.2008.07.005
10.1109/IEMBS.2008.4649365
10.5665/sleep.6230
10.1016/j.bbe.2020.02.002
10.1109/78.330368
10.1109/78.205752
10.1016/j.jneumeth.2015.01.022
10.1088/1741-2560/11/3/036012
10.1111/jsr.12780
10.1016/j.bspc.2013.12.003
10.1093/sleep/13.3.279
10.1111/jsr.12672
10.1007/s10916-014-0018-0
10.1088/1361-6579/aa93a1
10.1038/s41598-023-27528-0
10.1109/78.869059
10.1109/TASSP.1983.1164152
10.1016/j.bspc.2007.05.005
10.1109/TNSRE.2017.2775058
10.1109/TBME.2022.3147187
10.1016/j.cmpb.2011.11.005
10.1109/5.135376
10.1093/sleep/32.2.139
10.1109/10.668741
10.1152/jappl.1959.14.2.247
10.1109/AISP.2012.6313817
10.1016/j.ssci.2008.01.007
10.1007/BF00335153
10.1007/s00521-004-0441-0
10.1007/s11818-008-0327-y
10.1109/10.867928
10.1007/s00521-012-1065-4
10.1109/TBME.2003.821029
10.1007/s10527-007-0006-5
10.1016/j.jneumeth.2009.08.012
10.1109/TBME.2005.851465
10.1088/1361-6579/aa5bba
10.1088/1741-2560/12/3/031001
10.1109/BIBE.2009.68
10.1016/j.sleep.2017.11.1141
10.1038/s41467-018-07229-3
10.1109/5.135378
10.1109/TBME.2007.897817
10.1016/j.smrv.2011.06.003
10.1093/sleep/18.5.334
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
ADTOC
UNPAY
DOA
DOI 10.3390/s24247881
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d5fb27a4cbc5460dbff70b3a827a61eb
10.3390/s24247881
A821975254
39771620
10_3390_s24247881
Genre Journal Article
GeographicLocations United States
Arkansas
New Jersey
GeographicLocations_xml – name: New Jersey
– name: Arkansas
– name: United States
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ADRAZ
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c441t-3cf0ed5de6f5d45dfc01d532a01f05e9ef2bbf3fadcf0553d6789e7cb6e741213
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:53:55 EDT 2025
Sun Oct 26 04:16:30 EDT 2025
Thu Sep 04 17:19:29 EDT 2025
Tue Oct 07 08:00:43 EDT 2025
Mon Oct 20 22:45:51 EDT 2025
Mon Oct 20 16:56:30 EDT 2025
Mon Jul 21 05:46:55 EDT 2025
Thu Oct 16 04:40:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords automatic sleep staging
Kalman filter
instantaneous frequency tracking
electroencephalogram
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-3cf0ed5de6f5d45dfc01d532a01f05e9ef2bbf3fadcf0553d6789e7cb6e741213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0002-4263-2092
0000-0003-0926-7679
0000-0003-4913-6825
0000-0002-4216-026X
OpenAccessLink https://doaj.org/article/d5fb27a4cbc5460dbff70b3a827a61eb
PMID 39771620
PQID 3149752521
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d5fb27a4cbc5460dbff70b3a827a61eb
unpaywall_primary_10_3390_s24247881
proquest_miscellaneous_3153872061
proquest_journals_3149752521
gale_infotracmisc_A821975254
gale_infotracacademiconefile_A821975254
pubmed_primary_39771620
crossref_primary_10_3390_s24247881
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Arnold (ref_54) 1998; 45
Warby (ref_3) 2014; 11
(ref_76) 2015; 12
Ronzhina (ref_26) 2012; 16
ref_58
Khosla (ref_41) 2020; 40
Nguyen (ref_45) 2009; 184
ref_56
Almeida (ref_47) 1994; 42
ref_53
ref_52
Moser (ref_67) 2009; 32
Koley (ref_29) 2012; 42
Baandrup (ref_7) 2019; 28
ref_15
ref_59
Hill (ref_33) 2014; 10
Miller (ref_6) 2016; 39
Rogowski (ref_37) 1981; 42
ref_60
Tagluk (ref_25) 2010; 34
Lajnef (ref_32) 2015; 250
Phan (ref_71) 2022; 69
ref_68
Zoubek (ref_13) 2007; 2
ref_66
ref_21
ref_64
ref_63
Yeo (ref_30) 2009; 47
ref_62
Subasi (ref_24) 2005; 14
Sameni (ref_77) 2014; 225
Armington (ref_78) 1959; 14
(ref_22) 2013; 23
Chapotot (ref_23) 2010; 24
Dahal (ref_38) 2014; 11
Sameni (ref_61) 2007; 54
ref_72
Fraiwan (ref_18) 2012; 108
Sinha (ref_16) 2008; 32
Subasi (ref_14) 2007; 32
Olesen (ref_9) 2018; 44
ref_36
Coenen (ref_35) 1995; 19
ref_34
Kemp (ref_69) 1990; 13
Prinz (ref_10) 1982; 30
ref_31
Boashash (ref_50) 1993; 41
ref_75
Stephansen (ref_4) 2018; 9
Kwok (ref_48) 2000; 48
ref_74
Boashash (ref_46) 1992; 80
(ref_19) 2008; 44
ref_39
Basner (ref_5) 2008; 12
Kemp (ref_65) 2000; 47
Koch (ref_8) 2019; 28
Sameni (ref_42) 2017; 38
Grenier (ref_51) 1983; 31
Armitage (ref_73) 1995; 18
Boashash (ref_49) 1992; 80
Peker (ref_27) 2014; 38
Tarvainen (ref_57) 2004; 51
Koch (ref_11) 2017; 40
Gudmundsson (ref_28) 2005; Volume 2
Picinbono (ref_40) 1997; 45
(ref_1) 2004; 4
Voss (ref_70) 2007; 21
ref_2
Karimzadeh (ref_44) 2018; 26
Doroshenkov (ref_12) 2007; 41
Seraj (ref_43) 2017; 38
Oropesa (ref_17) 1999; 2
Flexer (ref_20) 2005; 33
Aboy (ref_55) 2005; 52
References_xml – volume: 19
  start-page: 447
  year: 1995
  ident: ref_35
  article-title: Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: Implications for information processing
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/0149-7634(95)00010-C
– ident: ref_39
  doi: 10.1109/TSP.2015.7296292
– volume: 11
  start-page: 385
  year: 2014
  ident: ref_3
  article-title: Sleep-spindle detection: Crowdsourcing and evaluating performance of experts, non-experts and automated methods
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2855
– volume: 32
  start-page: 291
  year: 2008
  ident: ref_16
  article-title: Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states
  publication-title: J. Med Syst.
  doi: 10.1007/s10916-008-9134-z
– ident: ref_64
  doi: 10.1002/0470099720
– ident: ref_53
  doi: 10.1007/978-1-4757-3261-0
– ident: ref_68
– ident: ref_21
  doi: 10.1186/1475-925X-11-52
– volume: 24
  start-page: 409
  year: 2010
  ident: ref_23
  article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.1147
– volume: 225
  start-page: 97
  year: 2014
  ident: ref_77
  article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.01.024
– volume: 21
  start-page: 313
  year: 2007
  ident: ref_70
  article-title: Monitoring consciousness: The current status of EEG-based depth of anaesthesia monitors
  publication-title: Best Pract. Res. Clin. Anaesthesiol.
  doi: 10.1016/j.bpa.2007.04.003
– volume: 45
  start-page: 552
  year: 1997
  ident: ref_40
  article-title: On instantaneous amplitude and phase of signals
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.558469
– volume: 30
  start-page: 86
  year: 1982
  ident: ref_10
  article-title: Changes in the sleep and waking EEGs of nondemented and demented elderly subjects
  publication-title: J. Am. Geriatr. Soc.
  doi: 10.1111/j.1532-5415.1982.tb01279.x
– volume: 34
  start-page: 717
  year: 2010
  ident: ref_25
  article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9286-5
– ident: ref_58
– volume: 42
  start-page: 1186
  year: 2012
  ident: ref_29
  article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2012.09.012
– volume: 40
  start-page: zsx152
  year: 2017
  ident: ref_11
  article-title: Breathing disturbances without hypoxia are associated with objective sleepiness in sleep apnea
  publication-title: Sleep
  doi: 10.1093/sleep/zsx152
– volume: 32
  start-page: 1084
  year: 2007
  ident: ref_14
  article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2006.02.005
– volume: 33
  start-page: 199
  year: 2005
  ident: ref_20
  article-title: A reliable probabilistic sleep stager based on a single EEG signal
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2004.04.004
– volume: 44
  start-page: 261
  year: 2008
  ident: ref_19
  article-title: Discrimination ability of individual measures used in sleep stages classification
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2008.07.005
– ident: ref_56
– ident: ref_15
  doi: 10.1109/IEMBS.2008.4649365
– ident: ref_52
– volume: 39
  start-page: 1993
  year: 2016
  ident: ref_6
  article-title: Clusters of insomnia disorder: An exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability
  publication-title: Sleep
  doi: 10.5665/sleep.6230
– volume: 40
  start-page: 649
  year: 2020
  ident: ref_41
  article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2020.02.002
– volume: 42
  start-page: 3084
  year: 1994
  ident: ref_47
  article-title: The fractional Fourier transform and time-frequency representations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.330368
– volume: 41
  start-page: 1439
  year: 1993
  ident: ref_50
  article-title: Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.205752
– volume: Volume 2
  start-page: 366
  year: 2005
  ident: ref_28
  article-title: Automatic sleep staging using support vector machines with posterior probability estimates
  publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06)
– volume: 250
  start-page: 94
  year: 2015
  ident: ref_32
  article-title: Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.022
– ident: ref_66
– volume: 11
  start-page: 036012
  year: 2014
  ident: ref_38
  article-title: TVAR modeling of EEG to detect audio distraction during simulated driving
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/036012
– volume: 28
  start-page: e12780
  year: 2019
  ident: ref_8
  article-title: Automatic sleep classification using adaptive segmentation reveals an increased number of rapid eye movement sleep transitions
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12780
– volume: 10
  start-page: 21
  year: 2014
  ident: ref_33
  article-title: Signal processing techniques applied to human sleep EEG signals—A review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.12.003
– ident: ref_72
– volume: 13
  start-page: 279
  year: 1990
  ident: ref_69
  article-title: Alternative electrode placement in (automatic) sleep scoring
  publication-title: Sleep
  doi: 10.1093/sleep/13.3.279
– volume: 28
  start-page: e12672
  year: 2019
  ident: ref_7
  article-title: Investigation of sleep spindle activity and morphology as predictors of neurocognitive functioning in medicated patients with schizophrenia
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12672
– ident: ref_59
– volume: 38
  start-page: 18
  year: 2014
  ident: ref_27
  article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0018-0
– volume: 38
  start-page: 2141
  year: 2017
  ident: ref_42
  article-title: A robust statistical framework for instantaneous electroencephalogram phase and frequency estimation and analysis
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa93a1
– ident: ref_74
  doi: 10.1038/s41598-023-27528-0
– volume: 48
  start-page: 2964
  year: 2000
  ident: ref_48
  article-title: Improved instantaneous frequency estimation using an adaptive short-time Fourier transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.869059
– volume: 31
  start-page: 899
  year: 1983
  ident: ref_51
  article-title: Time-dependent ARMA modeling of nonstationary signals
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1983.1164152
– volume: 2
  start-page: 171
  year: 2007
  ident: ref_13
  article-title: Feature selection for sleep/wake stages classification using data driven methods
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.05.005
– volume: 26
  start-page: 362
  year: 2018
  ident: ref_44
  article-title: A Distributed Classification Procedure for Automatic Sleep Stage Scoring Based on Instantaneous Electroencephalogram Phase and Envelope Features
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2775058
– volume: 2
  start-page: 1
  year: 1999
  ident: ref_17
  article-title: Sleep stage classification using wavelet transform and neural network
  publication-title: Int. Comput. Sci. Inst.
– volume: 69
  start-page: 2456
  year: 2022
  ident: ref_71
  article-title: SleepTransformer: Automatic Sleep Staging With Interpretability and Uncertainty Quantification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2022.3147187
– ident: ref_34
– volume: 108
  start-page: 10
  year: 2012
  ident: ref_18
  article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2011.11.005
– volume: 80
  start-page: 520
  year: 1992
  ident: ref_49
  article-title: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals
  publication-title: Proc. IEEE
  doi: 10.1109/5.135376
– volume: 32
  start-page: 139
  year: 2009
  ident: ref_67
  article-title: Sleep classification according to AASM and Rechtschaffen & Kales: Effects on sleep scoring parameters
  publication-title: Sleep
  doi: 10.1093/sleep/32.2.139
– volume: 45
  start-page: 553
  year: 1998
  ident: ref_54
  article-title: Adaptive AR modeling of nonstationary time series by means of Kalman filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.668741
– volume: 14
  start-page: 247
  year: 1959
  ident: ref_78
  article-title: Electroencephalogram and sleep deprivation
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1959.14.2.247
– ident: ref_62
  doi: 10.1109/AISP.2012.6313817
– volume: 47
  start-page: 115
  year: 2009
  ident: ref_30
  article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving?
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2008.01.007
– volume: 42
  start-page: 9
  year: 1981
  ident: ref_37
  article-title: On the prediction of epileptic seizures
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00335153
– ident: ref_63
– volume: 14
  start-page: 45
  year: 2005
  ident: ref_24
  article-title: Automatic recognition of vigilance state by using a wavelet-based artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-004-0441-0
– volume: 12
  start-page: 75
  year: 2008
  ident: ref_5
  article-title: Inter-rater agreement in sleep stage classification between centers with different backgrounds
  publication-title: Somnologie
  doi: 10.1007/s11818-008-0327-y
– volume: 47
  start-page: 1185
  year: 2000
  ident: ref_65
  article-title: Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.867928
– volume: 23
  start-page: 1239
  year: 2013
  ident: ref_22
  article-title: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1065-4
– volume: 51
  start-page: 516
  year: 2004
  ident: ref_57
  article-title: Estimation of nonstationary EEG with Kalman smoother approach: An application to event-related synchronization (ERS)
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.821029
– ident: ref_75
– ident: ref_2
– volume: 4
  start-page: 59
  year: 2004
  ident: ref_1
  article-title: Human sleep and sleep EEG
  publication-title: Meas. Sci. Rev.
– volume: 41
  start-page: 25
  year: 2007
  ident: ref_12
  article-title: Classification of human sleep stages based on EEG processing using hidden Markov models
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-007-0006-5
– volume: 184
  start-page: 365
  year: 2009
  ident: ref_45
  article-title: Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.08.012
– volume: 52
  start-page: 1485
  year: 2005
  ident: ref_55
  article-title: Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.851465
– volume: 38
  start-page: 501
  year: 2017
  ident: ref_43
  article-title: Robust electroencephalogram phase estimation with applications in brain-computer interface systems
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/aa5bba
– volume: 12
  start-page: 031001
  year: 2015
  ident: ref_76
  article-title: EEG artifact removal—State-of-the-art and guidelines
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/031001
– ident: ref_31
  doi: 10.1109/BIBE.2009.68
– volume: 44
  start-page: 97
  year: 2018
  ident: ref_9
  article-title: A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2017.11.1141
– ident: ref_36
– ident: ref_60
– volume: 9
  start-page: 5229
  year: 2018
  ident: ref_4
  article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07229-3
– volume: 80
  start-page: 540
  year: 1992
  ident: ref_46
  article-title: Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications
  publication-title: Proc. IEEE
  doi: 10.1109/5.135378
– volume: 54
  start-page: 2172
  year: 2007
  ident: ref_61
  article-title: A nonlinear Bayesian filtering framework for ECG denoising
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.897817
– volume: 16
  start-page: 251
  year: 2012
  ident: ref_26
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– volume: 18
  start-page: 334
  year: 1995
  ident: ref_73
  article-title: The distribution of EEG frequencies in REM and NREM sleep stages in healthy young adults
  publication-title: Sleep
  doi: 10.1093/sleep/18.5.334
SSID ssj0023338
Score 2.4551275
Snippet Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing...
Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7881
SubjectTerms Adult
Algorithms
automatic sleep staging
Automation
Brain - physiology
Classification
electroencephalogram
Electroencephalography
Electroencephalography - methods
Female
Fourier transforms
Humans
Insomnia
instantaneous frequency tracking
Kalman filter
Male
Medical research
Medicine, Experimental
Methods
Physiology
Signal Processing, Computer-Assisted
Sleep
Sleep - physiology
Sleep apnea
Sleep disorders
Sleep Stages - physiology
Wakefulness - physiology
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL4UD4s1CqcxD4rSq188Nt7RqVJDgAhW9WX5SRNhG7UaoByT-Q_8hv4SxvVkSIcQFKcphPYmceXi-yc5-g9AL6X0k3Jqaq5bAG5yDkxib2lPiHeRf2ebbBW_fyaNj_uZEnKyN-ko9YYUeuChuz4toqTLcWSe4JN7GqIhlpoWLsgk2nb6knayKqaHUYlB5FR4hBkX93kV6CCIRp29kn0zS_-dRvJaLtpfdwlx-M_P5WtKZ3UI3B7SIp2WXt9G10N1BN9Y4BO-i72ma2bzeh2zk8WEZapOidXFqMh31V_w6I0B4Bajy8ey8NE9fYkhTLv1R_gpPf9_Fxp87PF32ZwBk4fvez0NY_Pxx9dF8CRhw6aeA8xTN1F-Uxe-h49nhh4OjepipUDsAPn3NXCTBCx9kFJ4LHx1pvGDUkCYSESYhUmsji8aDoBDMQzKbBOWsDIA9aMPuo63urAsPEZZGKekawBeG88gCYDfmuFHUGw8wkVbo2UrXelGoMzSUHMkgejRIhfaTFUaBxHadL4AP6MEH9L98oEIvkw11iskedGeGRwtgn4ndSk9bOJeVgFq4QjsbkhBLbnN55QV6iOULzaCITKsUNvt0XE6fTP1p2XYgA4lDUQBHFXpQvGf8SQliN5KSCj0f3envCnn0PxTyGF2nAL5K280O2urPl-EJgKfe7uY4-QU81hpT
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9NAFD6s3QfdB_FudJXxAj6FncxkklYQaaVlFSyiLu5bmMxlla1p7KbIPgj-B_-hv8RzctsWUSh5SE5KMuf2nczMdwCeJtZ6Huc6jNMhxwPGwZH3UWgFtwbzbzKspwvezpPDo_jNsTregXm3F4aWVXYxsQ7UdmnoG_mBRCifKoHZ5mX5LaSuUTS72rXQ0G1rBfuiphi7BLuCmLEGsDuZzt-970swiRVZwy8ksdg_OKPNEUSovpWVavL-v0P0Ro66vC5Kff5dLxYbyWh2Da62KJKNG7Vfhx1X3IC9DW7Bm_CDupwtwglmKcumTbMb8uLys65pqr-y1zUyxJ_D6p_NVs2i6nOG6cvQB_TnbHwxu82-FGy8rpYIcPH_PiycK3___PVJnzqGePXEsbq7Jq07qsVvwdFs-vHVYdj2WggNAqIqlMZzZ5V1iVc2VtYbHlklheaR58qNnBd57qXXFgWVkhaT3MilJk8cYhIRydswKJaFuwss0WmamAhxh45jLx1iOmlinQqrLcJHEcDjbqyzsqHUyLAUIYVkvUICmJAWegFiwa5PLFcnWetUmVU-F6mOTW5UnHCbe5_yXOohnkwilwfwjHSYka9WOHa63XKAz0msV9l4iPGajCoOYH9LEn3MbF_urCBrffwsu7DIAB71l-lOWrdW6w5lMKGkAkFTAHca6-lfiaB3lAgewJPenP49IPf-_wj34YpAuNUstNmHQbVauwcIl6r8YesDfwB6oBbQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-096A--H0aPWX9AJ9y3exmN60vkpMrp-AhaPF8Cvt5Hlfb0ibKCYL_g_-hf4kzSRpbRRCEkIfsJGyys_P7TXZmlpDHyrnAUqPjNBswOIEdHIaQxI4zZwF_1aBeLnh1qA7G6csjebSWxY9hleCKn9RGGrOwYkAw1ucpHlj6vD934dmn9l9SkglcZwMOcZ5sKQlsvEe2xoev8_d1UlF7d1NQSIB3319iNgQ-ZgOG6mr9f9rkNVC6UE3n-uyznkzW0Gd0hehVv5ugk9PdqjS79stvJR3_58WuksstNaV5o0vXyDk_vU4urRUsvEG-4tZpk3gPoM_R_WYHHTQN8w-6rn39kb6o6SYcflYt6WjRRGqfUcBEi3_ln9L815I5PZnSvCpnwJrheW8m3s9_fPv-Tp96CiT42NN6y04MZqrFb5LxaP_t84O43cAhtsCyyljYwLyTzqsgXSpdsCxxUnDNksCkH_rAjQkiaAeCUgoHyDn0mTXKA9Hhidgmvels6m8TqnSWKZsAmdFpGoQHoihsqjPutANOyiPycDWexbyp01GAf4ODXnSDHpE9HOlOAEtr1xdmi-OinamFk8HwTKfWWJkq5kwIGTNCD-CiSryJyBPUkwINQAnfTrd5DNBPLKVV5AMAgUyC4x2RnQ1JmLh2s3mlaUVrOJaFAI8VWzl09kHXjHdiMFw9diADKJVxYGIRudVoaPdKyOcTxVlEHnUq-_cPcuefpO6SixyoXBPEs0N65aLy94CKleZ-O9t-Aj6ULoA
  priority: 102
  providerName: Unpaywall
Title Model-Based Electroencephalogram Instantaneous Frequency Tracking: Application in Automated Sleep–Wake Stage Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/39771620
https://www.proquest.com/docview/3149752521
https://www.proquest.com/docview/3153872061
https://www.mdpi.com/1424-8220/24/24/7881/pdf?version=1733891522
https://doaj.org/article/d5fb27a4cbc5460dbff70b3a827a61eb
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeEqeAY8dxioRQiloWpK1WQEX3FDl-LIjSlm4r6AGJ_8A_5JcwdtrQCpCQqhzsSZV4Zvx9E9szAA8yYxxNKxWnMqd4wXmw7VwSG0aNRvzN8rBccNTPDgfpq6EY7sC6xuZqAM_-Gtr5elKD2ejR18_LZ-jwT33EiSH74zN_xMGnRd-FfQSotq_gcJQ2iwmM81DQ2p_pihEPaZ1gaPvWLVgK2fv_nKM3QOrcYjxVyy9qNNpAo94luLiikaSo9X4Zduz4ClzYSC54Fb75MmejuIMwZUi3rnbj3Xj6XoU81Z_Iy0AN8Wcx_Ce9Wb2rekkQv7T_gv6EFL-Xt8mHMSkW8wkyXPy_NyNrpz-__3inPlqChPXUklBe0288CuLXYNDrvn1-GK-KLcQaGdE85tpRa4SxmRMmFcZpmhjBmaKJo8K2rWNV5bhTBgWF4AZRrm2lrjKLpIQl_DrsjSdjexNIpqTMdILEQ6Wp4xZJHdepkswog_yRRXBvPdbltM6pUWIs4hVSNgqJoOO10Aj4NNihYTI7LVdeVRrhKiZVqist0oyayjlJK65ybMwSW0Xw0Ouw9OYzx7FTqzMH-Jw-7VVZ5DhhS4FBcgQHW5LoZHq7e20F5dpGS47Rpe9l-LB3m25_p9-4FnSHMogokiFriuBGbT3NK3nunWSMRnC_Mad_D8it_36X23CeIfWqN90cwN58trB3kDrNqxbsyqHEa9570YL9Trd__LoVPkO0gstg26B_XJz8AqFkHcE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5VA4IHYMBYZNnKyOZ7ETJIRSaJTQ5UIrcnNnLYiQhCyqckDiP_A_-FH8Et7YjpMIwa2SlYP9bDnzlu8bz5v3AJ6n1noqtIpF1qD4g3Gw6X0SW0atQfxNG8VyweFR2jkR73uytwG_FnthQlrlIiYWgdoOTfhGvsORymeSIdq8GX2LQ9eosLq6aKFRmsW-m5_jlG3yuvsO9fuCsfbe8dtOXHUViA1C_zTmxlNnpXWpl1ZI6w1NrORM0cRT6ZrOM60998qioJTcYjhvuszo1CH6soTjcy_BZcExlqD_ZL3lBI_jfK-sXsR5k-5MwtaLUK59DfOK1gB_A8AKAm7NBiM1P1f9_grUta_DtYqjklZpVDdgww1uwtWVyoW34HvoodaPdxEDLdkrW-mEGDH6pIoi2F9Jt-CdeLjhbELa4zJle04QHE34PP-KtJZr5-TzgLRm0yHSZ3zeh75zo98_fn5UXxxBNnzmSNG7M2Q1FeK34eRCxvwObA6GA3cPSKqyLDUJsholhOcOGSM3QmXMKovklEXwdDHW-ags2JHjRCcoJK8VEsFu0EItEGpsFyeG47O8ctncSq9ZpoTRRoqUWu19RjVXDTyZJk5H8DLoMA-RYIpjp6oNDfieoaZW3mogGgSTFRFsr0miB5v1ywsryKsIMsmX9h7Bk_pyuDNkxRW6QxmEq4whJYvgbmk99V8KxD5JGY3gWW1O_x6Q-_9_hcew1Tk-PMgPukf7D-AKQ2JXpvRsw-Z0PHMPkZhN9aPCGwicXrT7_QGRiU8V
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBZZLPFlZ73q9CRJCKW3UUqiQoCJvZr1HQYQk5FCVByT-A_-Gn8MvYcZ2LiF4qxTlwTuxnJ3j-9Y7OwPwOHMu8LQwcaqbHL8wDrZCSGInuLOIv1mz3C54c5jtHaWvuqq7Ab_mZ2EorXIeE8tA7QaW3pE3JFJ5rQSiTSPUaRFvdzovht9i6iBFO63zdhqViRz42Qku38bP93dQ10-E6Oy-f7kX1x0GYos0YBJLG7h3yvksKJcqFyxPnJLC8CRw5Vs-iKIIMhiHgkpJh6G95bUtMo9ILBKJ9z0DZ7WULUon1N3lYk_i2q-qZISDvDGmYxhUun0N_8o2AX-DwQoanp_2h2Z2Ynq9FdjrXIZLNV9l7crArsCG71-FiytVDK_Bd-qn1ou3EQ8d263a6lC8GH4yZUHsr2y_5KD48YPpmHVGVfr2jCFQWnpV_4y1l_vo7HOftaeTAVJpvN-7nvfD3z9-fjBfPENmfOxZ2ceTMpxK8etwdCpzfgM2-4O-vwUsM1pnNkGGY9I0SI_sUdrUaOGMQ6IqIng4n-t8WBXvyHHRQwrJFwqJYJu0sBCgetvlhcHoOK_dN3cqFEKb1BZWpRl3RQiaF9I08WKW-CKCp6TDnKLCBOfO1Icb8DmpvlbebiIykPmmEWytSaI32_XhuRXkdTQZ50vbj-DBYph-SRlype5QBqFLC6RnEdysrGfxl4jkJ5ngETxamNO_J-T2_x_hPpxDx8tf7x8e3IELAjleld2zBZuT0dTfRY42Ke6VzsDg42l73x8WXFNY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-096A--H0aPWX9AJ9y3exmN60vkpMrp-AhaPF8Cvt5Hlfb0ibKCYL_g_-hf4kzSRpbRRCEkIfsJGyys_P7TXZmlpDHyrnAUqPjNBswOIEdHIaQxI4zZwF_1aBeLnh1qA7G6csjebSWxY9hleCKn9RGGrOwYkAw1ucpHlj6vD934dmn9l9SkglcZwMOcZ5sKQlsvEe2xoev8_d1UlF7d1NQSIB3319iNgQ-ZgOG6mr9f9rkNVC6UE3n-uyznkzW0Gd0hehVv5ugk9PdqjS79stvJR3_58WuksstNaV5o0vXyDk_vU4urRUsvEG-4tZpk3gPoM_R_WYHHTQN8w-6rn39kb6o6SYcflYt6WjRRGqfUcBEi3_ln9L815I5PZnSvCpnwJrheW8m3s9_fPv-Tp96CiT42NN6y04MZqrFb5LxaP_t84O43cAhtsCyyljYwLyTzqsgXSpdsCxxUnDNksCkH_rAjQkiaAeCUgoHyDn0mTXKA9Hhidgmvels6m8TqnSWKZsAmdFpGoQHoihsqjPutANOyiPycDWexbyp01GAf4ODXnSDHpE9HOlOAEtr1xdmi-OinamFk8HwTKfWWJkq5kwIGTNCD-CiSryJyBPUkwINQAnfTrd5DNBPLKVV5AMAgUyC4x2RnQ1JmLh2s3mlaUVrOJaFAI8VWzl09kHXjHdiMFw9diADKJVxYGIRudVoaPdKyOcTxVlEHnUq-_cPcuefpO6SixyoXBPEs0N65aLy94CKleZ-O9t-Aj6ULoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Electroencephalogram+Instantaneous+Frequency+Tracking%3A+Application+in+Automated+Sleep%E2%80%93Wake+Stage+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nateghi%2C+Masoud&rft.au=Rahbar+Alam%2C+Mahdi&rft.au=Amiri%2C+Hossein&rft.au=Nasiri%2C+Samaneh&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft_id=info:doi/10.3390%2Fs24247881&rft.externalDocID=A821975254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon