Model-Based Electroencephalogram Instantaneous Frequency Tracking: Application in Automated Sleep–Wake Stage Classification
Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these d...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 24; no. 24; p. 7881 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s24247881 | 
Cover
| Abstract | Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep’s effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen’s kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set. | 
    
|---|---|
| AbstractList | Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep’s effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen’s kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set. Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep's effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen's kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set.Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing availability of affordable brain monitoring devices, the volume of collected brain data has increased significantly. However, analyzing these data, particularly when using the gold standard multi-lead electroencephalogram (EEG), remains resource-intensive and time-consuming. To address this challenge, automated brain monitoring has emerged as a crucial solution for cost-effective and efficient EEG data analysis. A critical component of sleep analysis is detecting transitions between wakefulness and sleep states. These transitions offer valuable insights into sleep quality and quantity, essential for diagnosing sleep disorders, designing effective interventions, enhancing overall health and well-being, and studying sleep's effects on cognitive function, mood, and physical performance. This study presents a novel EEG feature extraction pipeline for the accurate classification of various wake and sleep stages. We propose a noise-robust model-based Kalman filtering (KF) approach to track changes in a time-varying auto-regressive model (TVAR) applied to EEG data during different wake and sleep stages. Our approach involves extracting features, including instantaneous frequency and instantaneous power from EEG, and implementing a two-step classifier for sleep staging. The first step classifies data into wake, REM, and non-REM categories, while the second step further classifies non-REM data into N1, N2, and N3 stages. Evaluation on the extended Sleep-EDF dataset (Sleep-EDFx), with 153 EEG recordings from 78 subjects, demonstrated compelling results with classifiers including Logistic Regression, Support Vector Machines, Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LGBM). The best performance was achieved with the LGBM and XGBoost classifiers, yielding an overall accuracy of over 77%, a macro-averaged F1 score of 0.69, and a Cohen's kappa of 0.68, highlighting the efficacy of the proposed method with a remarkably compact and interpretable feature set.  | 
    
| Audience | Academic | 
    
| Author | Amiri, Hossein Rahbar Alam, Mahdi Sameni, Reza Nateghi, Masoud Nasiri, Samaneh  | 
    
| Author_xml | – sequence: 1 givenname: Masoud orcidid: 0009-0002-4263-2092 surname: Nateghi fullname: Nateghi, Masoud – sequence: 2 givenname: Mahdi surname: Rahbar Alam fullname: Rahbar Alam, Mahdi – sequence: 3 givenname: Hossein orcidid: 0000-0003-0926-7679 surname: Amiri fullname: Amiri, Hossein – sequence: 4 givenname: Samaneh orcidid: 0000-0002-4216-026X surname: Nasiri fullname: Nasiri, Samaneh – sequence: 5 givenname: Reza orcidid: 0000-0003-4913-6825 surname: Sameni fullname: Sameni, Reza  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39771620$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kt1qFDEUxwep2A-98AVkwBsrbM3HZGbWu3VpdaHiRSteDmeSkzXbTDJNZpC9KPgOvqFPYra7LlVEEsjh8Ms_Of9zjrMD5x1m2XNKzjifkjeRFayo6po-yo5oCic1Y-TgQXyYHce4IoRxzusn2SGfVhUtGTnK7j56hXbyDiKq_NyiHIJHJ7H_CtYvA3T5wsUBXNrox5hfBLwdE7DOrwPIG-OWb_NZ31sjYTDe5cbls3HwHQxJ78oi9j-___gCN5hfDbDEfG4hRqN3-NPssQYb8dnuPMk-X5xfzz9MLj-9X8xnlxNZFHSYcKkJKqGw1EIVQmlJqBKcAaGaCJyiZm2ruQaVQCG4Kqt6ipVsS6wKyig_yRZbXeVh1fTBdBDWjQfT3Cd8WDYQBiMtNkrollVQyFaKoiSq1boiLYc6JUuKbdJ6vdUaXQ_rb2DtXpCSZtOPZt-PBL_awn3wybc4NJ2JEq3d2tlwKnhdMVJu0Jd_oSs_BpdsSVQxrQQT7AG1hPRZ47QfUh82os2sZvQeKxJ19g8qLYWdkWl4tEn5Py682D0-th2qfUW_ByUBp1tABh9jQP2fon8BYUHNhg | 
    
| Cites_doi | 10.1016/0149-7634(95)00010-C 10.1109/TSP.2015.7296292 10.1038/nmeth.2855 10.1007/s10916-008-9134-z 10.1002/0470099720 10.1007/978-1-4757-3261-0 10.1186/1475-925X-11-52 10.1002/acs.1147 10.1016/j.jneumeth.2014.01.024 10.1016/j.bpa.2007.04.003 10.1109/78.558469 10.1111/j.1532-5415.1982.tb01279.x 10.1007/s10916-009-9286-5 10.1016/j.compbiomed.2012.09.012 10.1093/sleep/zsx152 10.1016/j.eswa.2006.02.005 10.1016/j.artmed.2004.04.004 10.1016/j.artmed.2008.07.005 10.1109/IEMBS.2008.4649365 10.5665/sleep.6230 10.1016/j.bbe.2020.02.002 10.1109/78.330368 10.1109/78.205752 10.1016/j.jneumeth.2015.01.022 10.1088/1741-2560/11/3/036012 10.1111/jsr.12780 10.1016/j.bspc.2013.12.003 10.1093/sleep/13.3.279 10.1111/jsr.12672 10.1007/s10916-014-0018-0 10.1088/1361-6579/aa93a1 10.1038/s41598-023-27528-0 10.1109/78.869059 10.1109/TASSP.1983.1164152 10.1016/j.bspc.2007.05.005 10.1109/TNSRE.2017.2775058 10.1109/TBME.2022.3147187 10.1016/j.cmpb.2011.11.005 10.1109/5.135376 10.1093/sleep/32.2.139 10.1109/10.668741 10.1152/jappl.1959.14.2.247 10.1109/AISP.2012.6313817 10.1016/j.ssci.2008.01.007 10.1007/BF00335153 10.1007/s00521-004-0441-0 10.1007/s11818-008-0327-y 10.1109/10.867928 10.1007/s00521-012-1065-4 10.1109/TBME.2003.821029 10.1007/s10527-007-0006-5 10.1016/j.jneumeth.2009.08.012 10.1109/TBME.2005.851465 10.1088/1361-6579/aa5bba 10.1088/1741-2560/12/3/031001 10.1109/BIBE.2009.68 10.1016/j.sleep.2017.11.1141 10.1038/s41467-018-07229-3 10.1109/5.135378 10.1109/TBME.2007.897817 10.1016/j.smrv.2011.06.003 10.1093/sleep/18.5.334  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s24247881 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_d5fb27a4cbc5460dbff70b3a827a61eb 10.3390/s24247881 A821975254 39771620 10_3390_s24247881  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United States Arkansas New Jersey  | 
    
| GeographicLocations_xml | – name: New Jersey – name: Arkansas – name: United States  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c441t-3cf0ed5de6f5d45dfc01d532a01f05e9ef2bbf3fadcf0553d6789e7cb6e741213 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Fri Oct 03 12:53:55 EDT 2025 Sun Oct 26 04:16:30 EDT 2025 Thu Sep 04 17:19:29 EDT 2025 Tue Oct 07 08:00:43 EDT 2025 Mon Oct 20 22:45:51 EDT 2025 Mon Oct 20 16:56:30 EDT 2025 Mon Jul 21 05:46:55 EDT 2025 Thu Oct 16 04:40:50 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 24 | 
    
| Keywords | automatic sleep staging Kalman filter instantaneous frequency tracking electroencephalogram  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c441t-3cf0ed5de6f5d45dfc01d532a01f05e9ef2bbf3fadcf0553d6789e7cb6e741213 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0009-0002-4263-2092 0000-0003-0926-7679 0000-0003-4913-6825 0000-0002-4216-026X  | 
    
| OpenAccessLink | https://doaj.org/article/d5fb27a4cbc5460dbff70b3a827a61eb | 
    
| PMID | 39771620 | 
    
| PQID | 3149752521 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d5fb27a4cbc5460dbff70b3a827a61eb unpaywall_primary_10_3390_s24247881 proquest_miscellaneous_3153872061 proquest_journals_3149752521 gale_infotracmisc_A821975254 gale_infotracacademiconefile_A821975254 pubmed_primary_39771620 crossref_primary_10_3390_s24247881  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2024 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Arnold (ref_54) 1998; 45 Warby (ref_3) 2014; 11 (ref_76) 2015; 12 Ronzhina (ref_26) 2012; 16 ref_58 Khosla (ref_41) 2020; 40 Nguyen (ref_45) 2009; 184 ref_56 Almeida (ref_47) 1994; 42 ref_53 ref_52 Moser (ref_67) 2009; 32 Koley (ref_29) 2012; 42 Baandrup (ref_7) 2019; 28 ref_15 ref_59 Hill (ref_33) 2014; 10 Miller (ref_6) 2016; 39 Rogowski (ref_37) 1981; 42 ref_60 Tagluk (ref_25) 2010; 34 Lajnef (ref_32) 2015; 250 Phan (ref_71) 2022; 69 ref_68 Zoubek (ref_13) 2007; 2 ref_66 ref_21 ref_64 ref_63 Yeo (ref_30) 2009; 47 ref_62 Subasi (ref_24) 2005; 14 Sameni (ref_77) 2014; 225 Armington (ref_78) 1959; 14 (ref_22) 2013; 23 Chapotot (ref_23) 2010; 24 Dahal (ref_38) 2014; 11 Sameni (ref_61) 2007; 54 ref_72 Fraiwan (ref_18) 2012; 108 Sinha (ref_16) 2008; 32 Subasi (ref_14) 2007; 32 Olesen (ref_9) 2018; 44 ref_36 Coenen (ref_35) 1995; 19 ref_34 Kemp (ref_69) 1990; 13 Prinz (ref_10) 1982; 30 ref_31 Boashash (ref_50) 1993; 41 ref_75 Stephansen (ref_4) 2018; 9 Kwok (ref_48) 2000; 48 ref_74 Boashash (ref_46) 1992; 80 (ref_19) 2008; 44 ref_39 Basner (ref_5) 2008; 12 Kemp (ref_65) 2000; 47 Koch (ref_8) 2019; 28 Sameni (ref_42) 2017; 38 Grenier (ref_51) 1983; 31 Armitage (ref_73) 1995; 18 Boashash (ref_49) 1992; 80 Peker (ref_27) 2014; 38 Tarvainen (ref_57) 2004; 51 Koch (ref_11) 2017; 40 Gudmundsson (ref_28) 2005; Volume 2 Picinbono (ref_40) 1997; 45 (ref_1) 2004; 4 Voss (ref_70) 2007; 21 ref_2 Karimzadeh (ref_44) 2018; 26 Doroshenkov (ref_12) 2007; 41 Seraj (ref_43) 2017; 38 Oropesa (ref_17) 1999; 2 Flexer (ref_20) 2005; 33 Aboy (ref_55) 2005; 52  | 
    
| References_xml | – volume: 19 start-page: 447 year: 1995 ident: ref_35 article-title: Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: Implications for information processing publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/0149-7634(95)00010-C – ident: ref_39 doi: 10.1109/TSP.2015.7296292 – volume: 11 start-page: 385 year: 2014 ident: ref_3 article-title: Sleep-spindle detection: Crowdsourcing and evaluating performance of experts, non-experts and automated methods publication-title: Nat. Methods doi: 10.1038/nmeth.2855 – volume: 32 start-page: 291 year: 2008 ident: ref_16 article-title: Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states publication-title: J. Med Syst. doi: 10.1007/s10916-008-9134-z – ident: ref_64 doi: 10.1002/0470099720 – ident: ref_53 doi: 10.1007/978-1-4757-3261-0 – ident: ref_68 – ident: ref_21 doi: 10.1186/1475-925X-11-52 – volume: 24 start-page: 409 year: 2010 ident: ref_23 article-title: Automated sleep–wake staging combining robust feature extraction, artificial neural network classification, and flexible decision rules publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.1147 – volume: 225 start-page: 97 year: 2014 ident: ref_77 article-title: An iterative subspace denoising algorithm for removing electroencephalogram ocular artifacts publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.01.024 – volume: 21 start-page: 313 year: 2007 ident: ref_70 article-title: Monitoring consciousness: The current status of EEG-based depth of anaesthesia monitors publication-title: Best Pract. Res. Clin. Anaesthesiol. doi: 10.1016/j.bpa.2007.04.003 – volume: 45 start-page: 552 year: 1997 ident: ref_40 article-title: On instantaneous amplitude and phase of signals publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.558469 – volume: 30 start-page: 86 year: 1982 ident: ref_10 article-title: Changes in the sleep and waking EEGs of nondemented and demented elderly subjects publication-title: J. Am. Geriatr. Soc. doi: 10.1111/j.1532-5415.1982.tb01279.x – volume: 34 start-page: 717 year: 2010 ident: ref_25 article-title: Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9286-5 – ident: ref_58 – volume: 42 start-page: 1186 year: 2012 ident: ref_29 article-title: An ensemble system for automatic sleep stage classification using single channel EEG signal publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2012.09.012 – volume: 40 start-page: zsx152 year: 2017 ident: ref_11 article-title: Breathing disturbances without hypoxia are associated with objective sleepiness in sleep apnea publication-title: Sleep doi: 10.1093/sleep/zsx152 – volume: 32 start-page: 1084 year: 2007 ident: ref_14 article-title: EEG signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2006.02.005 – volume: 33 start-page: 199 year: 2005 ident: ref_20 article-title: A reliable probabilistic sleep stager based on a single EEG signal publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2004.04.004 – volume: 44 start-page: 261 year: 2008 ident: ref_19 article-title: Discrimination ability of individual measures used in sleep stages classification publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2008.07.005 – ident: ref_56 – ident: ref_15 doi: 10.1109/IEMBS.2008.4649365 – ident: ref_52 – volume: 39 start-page: 1993 year: 2016 ident: ref_6 article-title: Clusters of insomnia disorder: An exploratory cluster analysis of objective sleep parameters reveals differences in neurocognitive functioning, quantitative EEG, and heart rate variability publication-title: Sleep doi: 10.5665/sleep.6230 – volume: 40 start-page: 649 year: 2020 ident: ref_41 article-title: A comparative analysis of signal processing and classification methods for different applications based on EEG signals publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2020.02.002 – volume: 42 start-page: 3084 year: 1994 ident: ref_47 article-title: The fractional Fourier transform and time-frequency representations publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.330368 – volume: 41 start-page: 1439 year: 1993 ident: ref_50 article-title: Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.205752 – volume: Volume 2 start-page: 366 year: 2005 ident: ref_28 article-title: Automatic sleep staging using support vector machines with posterior probability estimates publication-title: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06) – volume: 250 start-page: 94 year: 2015 ident: ref_32 article-title: Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.022 – ident: ref_66 – volume: 11 start-page: 036012 year: 2014 ident: ref_38 article-title: TVAR modeling of EEG to detect audio distraction during simulated driving publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/036012 – volume: 28 start-page: e12780 year: 2019 ident: ref_8 article-title: Automatic sleep classification using adaptive segmentation reveals an increased number of rapid eye movement sleep transitions publication-title: J. Sleep Res. doi: 10.1111/jsr.12780 – volume: 10 start-page: 21 year: 2014 ident: ref_33 article-title: Signal processing techniques applied to human sleep EEG signals—A review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.12.003 – ident: ref_72 – volume: 13 start-page: 279 year: 1990 ident: ref_69 article-title: Alternative electrode placement in (automatic) sleep scoring publication-title: Sleep doi: 10.1093/sleep/13.3.279 – volume: 28 start-page: e12672 year: 2019 ident: ref_7 article-title: Investigation of sleep spindle activity and morphology as predictors of neurocognitive functioning in medicated patients with schizophrenia publication-title: J. Sleep Res. doi: 10.1111/jsr.12672 – ident: ref_59 – volume: 38 start-page: 18 year: 2014 ident: ref_27 article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms publication-title: J. Med. Syst. doi: 10.1007/s10916-014-0018-0 – volume: 38 start-page: 2141 year: 2017 ident: ref_42 article-title: A robust statistical framework for instantaneous electroencephalogram phase and frequency estimation and analysis publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa93a1 – ident: ref_74 doi: 10.1038/s41598-023-27528-0 – volume: 48 start-page: 2964 year: 2000 ident: ref_48 article-title: Improved instantaneous frequency estimation using an adaptive short-time Fourier transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.869059 – volume: 31 start-page: 899 year: 1983 ident: ref_51 article-title: Time-dependent ARMA modeling of nonstationary signals publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1983.1164152 – volume: 2 start-page: 171 year: 2007 ident: ref_13 article-title: Feature selection for sleep/wake stages classification using data driven methods publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.05.005 – volume: 26 start-page: 362 year: 2018 ident: ref_44 article-title: A Distributed Classification Procedure for Automatic Sleep Stage Scoring Based on Instantaneous Electroencephalogram Phase and Envelope Features publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2775058 – volume: 2 start-page: 1 year: 1999 ident: ref_17 article-title: Sleep stage classification using wavelet transform and neural network publication-title: Int. Comput. Sci. Inst. – volume: 69 start-page: 2456 year: 2022 ident: ref_71 article-title: SleepTransformer: Automatic Sleep Staging With Interpretability and Uncertainty Quantification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2022.3147187 – ident: ref_34 – volume: 108 start-page: 10 year: 2012 ident: ref_18 article-title: Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2011.11.005 – volume: 80 start-page: 520 year: 1992 ident: ref_49 article-title: Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals publication-title: Proc. IEEE doi: 10.1109/5.135376 – volume: 32 start-page: 139 year: 2009 ident: ref_67 article-title: Sleep classification according to AASM and Rechtschaffen & Kales: Effects on sleep scoring parameters publication-title: Sleep doi: 10.1093/sleep/32.2.139 – volume: 45 start-page: 553 year: 1998 ident: ref_54 article-title: Adaptive AR modeling of nonstationary time series by means of Kalman filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.668741 – volume: 14 start-page: 247 year: 1959 ident: ref_78 article-title: Electroencephalogram and sleep deprivation publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1959.14.2.247 – ident: ref_62 doi: 10.1109/AISP.2012.6313817 – volume: 47 start-page: 115 year: 2009 ident: ref_30 article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving? publication-title: Saf. Sci. doi: 10.1016/j.ssci.2008.01.007 – volume: 42 start-page: 9 year: 1981 ident: ref_37 article-title: On the prediction of epileptic seizures publication-title: Biol. Cybern. doi: 10.1007/BF00335153 – ident: ref_63 – volume: 14 start-page: 45 year: 2005 ident: ref_24 article-title: Automatic recognition of vigilance state by using a wavelet-based artificial neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-004-0441-0 – volume: 12 start-page: 75 year: 2008 ident: ref_5 article-title: Inter-rater agreement in sleep stage classification between centers with different backgrounds publication-title: Somnologie doi: 10.1007/s11818-008-0327-y – volume: 47 start-page: 1185 year: 2000 ident: ref_65 article-title: Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.867928 – volume: 23 start-page: 1239 year: 2013 ident: ref_22 article-title: Classification of sleep stages using class-dependent sequential feature selection and artificial neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-012-1065-4 – volume: 51 start-page: 516 year: 2004 ident: ref_57 article-title: Estimation of nonstationary EEG with Kalman smoother approach: An application to event-related synchronization (ERS) publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.821029 – ident: ref_75 – ident: ref_2 – volume: 4 start-page: 59 year: 2004 ident: ref_1 article-title: Human sleep and sleep EEG publication-title: Meas. Sci. Rev. – volume: 41 start-page: 25 year: 2007 ident: ref_12 article-title: Classification of human sleep stages based on EEG processing using hidden Markov models publication-title: Biomed. Eng. doi: 10.1007/s10527-007-0006-5 – volume: 184 start-page: 365 year: 2009 ident: ref_45 article-title: Measuring instantaneous frequency of local field potential oscillations using the Kalman smoother publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2009.08.012 – volume: 52 start-page: 1485 year: 2005 ident: ref_55 article-title: Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.851465 – volume: 38 start-page: 501 year: 2017 ident: ref_43 article-title: Robust electroencephalogram phase estimation with applications in brain-computer interface systems publication-title: Physiol. Meas. doi: 10.1088/1361-6579/aa5bba – volume: 12 start-page: 031001 year: 2015 ident: ref_76 article-title: EEG artifact removal—State-of-the-art and guidelines publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/031001 – ident: ref_31 doi: 10.1109/BIBE.2009.68 – volume: 44 start-page: 97 year: 2018 ident: ref_9 article-title: A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy publication-title: Sleep Med. doi: 10.1016/j.sleep.2017.11.1141 – ident: ref_36 – ident: ref_60 – volume: 9 start-page: 5229 year: 2018 ident: ref_4 article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy publication-title: Nat. Commun. doi: 10.1038/s41467-018-07229-3 – volume: 80 start-page: 540 year: 1992 ident: ref_46 article-title: Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications publication-title: Proc. IEEE doi: 10.1109/5.135378 – volume: 54 start-page: 2172 year: 2007 ident: ref_61 article-title: A nonlinear Bayesian filtering framework for ECG denoising publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.897817 – volume: 16 start-page: 251 year: 2012 ident: ref_26 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2011.06.003 – volume: 18 start-page: 334 year: 1995 ident: ref_73 article-title: The distribution of EEG frequencies in REM and NREM sleep stages in healthy young adults publication-title: Sleep doi: 10.1093/sleep/18.5.334  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.4551275 | 
    
| Snippet | Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep’s impact on overall health. With the growing... Understanding sleep stages is crucial for diagnosing sleep disorders, developing treatments, and studying sleep's impact on overall health. With the growing...  | 
    
| SourceID | doaj unpaywall proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 7881 | 
    
| SubjectTerms | Adult Algorithms automatic sleep staging Automation Brain - physiology Classification electroencephalogram Electroencephalography Electroencephalography - methods Female Fourier transforms Humans Insomnia instantaneous frequency tracking Kalman filter Male Medical research Medicine, Experimental Methods Physiology Signal Processing, Computer-Assisted Sleep Sleep - physiology Sleep apnea Sleep disorders Sleep Stages - physiology Wakefulness - physiology Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL4UD4s1CqcxD4rSq188Nt7RqVJDgAhW9WX5SRNhG7UaoByT-Q_8hv4SxvVkSIcQFKcphPYmceXi-yc5-g9AL6X0k3Jqaq5bAG5yDkxib2lPiHeRf2ebbBW_fyaNj_uZEnKyN-ko9YYUeuChuz4toqTLcWSe4JN7GqIhlpoWLsgk2nb6knayKqaHUYlB5FR4hBkX93kV6CCIRp29kn0zS_-dRvJaLtpfdwlx-M_P5WtKZ3UI3B7SIp2WXt9G10N1BN9Y4BO-i72ma2bzeh2zk8WEZapOidXFqMh31V_w6I0B4Bajy8ey8NE9fYkhTLv1R_gpPf9_Fxp87PF32ZwBk4fvez0NY_Pxx9dF8CRhw6aeA8xTN1F-Uxe-h49nhh4OjepipUDsAPn3NXCTBCx9kFJ4LHx1pvGDUkCYSESYhUmsji8aDoBDMQzKbBOWsDIA9aMPuo63urAsPEZZGKekawBeG88gCYDfmuFHUGw8wkVbo2UrXelGoMzSUHMkgejRIhfaTFUaBxHadL4AP6MEH9L98oEIvkw11iskedGeGRwtgn4ndSk9bOJeVgFq4QjsbkhBLbnN55QV6iOULzaCITKsUNvt0XE6fTP1p2XYgA4lDUQBHFXpQvGf8SQliN5KSCj0f3envCnn0PxTyGF2nAL5K280O2urPl-EJgKfe7uY4-QU81hpT priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9NAFD6s3QfdB_FudJXxAj6FncxkklYQaaVlFSyiLu5bmMxlla1p7KbIPgj-B_-hv8RzctsWUSh5SE5KMuf2nczMdwCeJtZ6Huc6jNMhxwPGwZH3UWgFtwbzbzKspwvezpPDo_jNsTregXm3F4aWVXYxsQ7UdmnoG_mBRCifKoHZ5mX5LaSuUTS72rXQ0G1rBfuiphi7BLuCmLEGsDuZzt-970swiRVZwy8ksdg_OKPNEUSovpWVavL-v0P0Ro66vC5Kff5dLxYbyWh2Da62KJKNG7Vfhx1X3IC9DW7Bm_CDupwtwglmKcumTbMb8uLys65pqr-y1zUyxJ_D6p_NVs2i6nOG6cvQB_TnbHwxu82-FGy8rpYIcPH_PiycK3___PVJnzqGePXEsbq7Jq07qsVvwdFs-vHVYdj2WggNAqIqlMZzZ5V1iVc2VtYbHlklheaR58qNnBd57qXXFgWVkhaT3MilJk8cYhIRydswKJaFuwss0WmamAhxh45jLx1iOmlinQqrLcJHEcDjbqyzsqHUyLAUIYVkvUICmJAWegFiwa5PLFcnWetUmVU-F6mOTW5UnHCbe5_yXOohnkwilwfwjHSYka9WOHa63XKAz0msV9l4iPGajCoOYH9LEn3MbF_urCBrffwsu7DIAB71l-lOWrdW6w5lMKGkAkFTAHca6-lfiaB3lAgewJPenP49IPf-_wj34YpAuNUstNmHQbVauwcIl6r8YesDfwB6oBbQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-096A--H0aPWX9AJ9y3exmN60vkpMrp-AhaPF8Cvt5Hlfb0ibKCYL_g_-hf4kzSRpbRRCEkIfsJGyys_P7TXZmlpDHyrnAUqPjNBswOIEdHIaQxI4zZwF_1aBeLnh1qA7G6csjebSWxY9hleCKn9RGGrOwYkAw1ucpHlj6vD934dmn9l9SkglcZwMOcZ5sKQlsvEe2xoev8_d1UlF7d1NQSIB3319iNgQ-ZgOG6mr9f9rkNVC6UE3n-uyznkzW0Gd0hehVv5ugk9PdqjS79stvJR3_58WuksstNaV5o0vXyDk_vU4urRUsvEG-4tZpk3gPoM_R_WYHHTQN8w-6rn39kb6o6SYcflYt6WjRRGqfUcBEi3_ln9L815I5PZnSvCpnwJrheW8m3s9_fPv-Tp96CiT42NN6y04MZqrFb5LxaP_t84O43cAhtsCyyljYwLyTzqsgXSpdsCxxUnDNksCkH_rAjQkiaAeCUgoHyDn0mTXKA9Hhidgmvels6m8TqnSWKZsAmdFpGoQHoihsqjPutANOyiPycDWexbyp01GAf4ODXnSDHpE9HOlOAEtr1xdmi-OinamFk8HwTKfWWJkq5kwIGTNCD-CiSryJyBPUkwINQAnfTrd5DNBPLKVV5AMAgUyC4x2RnQ1JmLh2s3mlaUVrOJaFAI8VWzl09kHXjHdiMFw9diADKJVxYGIRudVoaPdKyOcTxVlEHnUq-_cPcuefpO6SixyoXBPEs0N65aLy94CKleZ-O9t-Aj6ULoA priority: 102 providerName: Unpaywall  | 
    
| Title | Model-Based Electroencephalogram Instantaneous Frequency Tracking: Application in Automated Sleep–Wake Stage Classification | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39771620 https://www.proquest.com/docview/3149752521 https://www.proquest.com/docview/3153872061 https://www.mdpi.com/1424-8220/24/24/7881/pdf?version=1733891522 https://doaj.org/article/d5fb27a4cbc5460dbff70b3a827a61eb  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7t4wAcEG8CS2UeEqeAY8dxioRQiloWpK1WQEX3FDl-LIjSlm4r6AGJ_8A_5JcwdtrQCpCQqhzsSZV4Zvx9E9szAA8yYxxNKxWnMqd4wXmw7VwSG0aNRvzN8rBccNTPDgfpq6EY7sC6xuZqAM_-Gtr5elKD2ejR18_LZ-jwT33EiSH74zN_xMGnRd-FfQSotq_gcJQ2iwmM81DQ2p_pihEPaZ1gaPvWLVgK2fv_nKM3QOrcYjxVyy9qNNpAo94luLiikaSo9X4Zduz4ClzYSC54Fb75MmejuIMwZUi3rnbj3Xj6XoU81Z_Iy0AN8Wcx_Ce9Wb2rekkQv7T_gv6EFL-Xt8mHMSkW8wkyXPy_NyNrpz-__3inPlqChPXUklBe0288CuLXYNDrvn1-GK-KLcQaGdE85tpRa4SxmRMmFcZpmhjBmaKJo8K2rWNV5bhTBgWF4AZRrm2lrjKLpIQl_DrsjSdjexNIpqTMdILEQ6Wp4xZJHdepkswog_yRRXBvPdbltM6pUWIs4hVSNgqJoOO10Aj4NNihYTI7LVdeVRrhKiZVqist0oyayjlJK65ybMwSW0Xw0Ouw9OYzx7FTqzMH-Jw-7VVZ5DhhS4FBcgQHW5LoZHq7e20F5dpGS47Rpe9l-LB3m25_p9-4FnSHMogokiFriuBGbT3NK3nunWSMRnC_Mad_D8it_36X23CeIfWqN90cwN58trB3kDrNqxbsyqHEa9570YL9Trd__LoVPkO0gstg26B_XJz8AqFkHcE | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q5VA4IHYMBYZNnKyOZ7ETJIRSaJTQ5UIrcnNnLYiQhCyqckDiP_A_-FH8Et7YjpMIwa2SlYP9bDnzlu8bz5v3AJ6n1noqtIpF1qD4g3Gw6X0SW0atQfxNG8VyweFR2jkR73uytwG_FnthQlrlIiYWgdoOTfhGvsORymeSIdq8GX2LQ9eosLq6aKFRmsW-m5_jlG3yuvsO9fuCsfbe8dtOXHUViA1C_zTmxlNnpXWpl1ZI6w1NrORM0cRT6ZrOM60998qioJTcYjhvuszo1CH6soTjcy_BZcExlqD_ZL3lBI_jfK-sXsR5k-5MwtaLUK59DfOK1gB_A8AKAm7NBiM1P1f9_grUta_DtYqjklZpVDdgww1uwtWVyoW34HvoodaPdxEDLdkrW-mEGDH6pIoi2F9Jt-CdeLjhbELa4zJle04QHE34PP-KtJZr5-TzgLRm0yHSZ3zeh75zo98_fn5UXxxBNnzmSNG7M2Q1FeK34eRCxvwObA6GA3cPSKqyLDUJsholhOcOGSM3QmXMKovklEXwdDHW-ags2JHjRCcoJK8VEsFu0EItEGpsFyeG47O8ctncSq9ZpoTRRoqUWu19RjVXDTyZJk5H8DLoMA-RYIpjp6oNDfieoaZW3mogGgSTFRFsr0miB5v1ywsryKsIMsmX9h7Bk_pyuDNkxRW6QxmEq4whJYvgbmk99V8KxD5JGY3gWW1O_x6Q-_9_hcew1Tk-PMgPukf7D-AKQ2JXpvRsw-Z0PHMPkZhN9aPCGwicXrT7_QGRiU8V | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8IG4MBZZLPFlZ73q9CRJCKW3UUqiQoCJvZr1HQYQk5FCVByT-A_-Gn8MvYcZ2LiF4qxTlwTuxnJ3j-9Y7OwPwOHMu8LQwcaqbHL8wDrZCSGInuLOIv1mz3C54c5jtHaWvuqq7Ab_mZ2EorXIeE8tA7QaW3pE3JFJ5rQSiTSPUaRFvdzovht9i6iBFO63zdhqViRz42Qku38bP93dQ10-E6Oy-f7kX1x0GYos0YBJLG7h3yvksKJcqFyxPnJLC8CRw5Vs-iKIIMhiHgkpJh6G95bUtMo9ILBKJ9z0DZ7WULUon1N3lYk_i2q-qZISDvDGmYxhUun0N_8o2AX-DwQoanp_2h2Z2Ynq9FdjrXIZLNV9l7crArsCG71-FiytVDK_Bd-qn1ou3EQ8d263a6lC8GH4yZUHsr2y_5KD48YPpmHVGVfr2jCFQWnpV_4y1l_vo7HOftaeTAVJpvN-7nvfD3z9-fjBfPENmfOxZ2ceTMpxK8etwdCpzfgM2-4O-vwUsM1pnNkGGY9I0SI_sUdrUaOGMQ6IqIng4n-t8WBXvyHHRQwrJFwqJYJu0sBCgetvlhcHoOK_dN3cqFEKb1BZWpRl3RQiaF9I08WKW-CKCp6TDnKLCBOfO1Icb8DmpvlbebiIykPmmEWytSaI32_XhuRXkdTQZ50vbj-DBYph-SRlype5QBqFLC6RnEdysrGfxl4jkJ5ngETxamNO_J-T2_x_hPpxDx8tf7x8e3IELAjleld2zBZuT0dTfRY42Ke6VzsDg42l73x8WXFNY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEF-096A--H0aPWX9AJ9y3exmN60vkpMrp-AhaPF8Cvt5Hlfb0ibKCYL_g_-hf4kzSRpbRRCEkIfsJGyys_P7TXZmlpDHyrnAUqPjNBswOIEdHIaQxI4zZwF_1aBeLnh1qA7G6csjebSWxY9hleCKn9RGGrOwYkAw1ucpHlj6vD934dmn9l9SkglcZwMOcZ5sKQlsvEe2xoev8_d1UlF7d1NQSIB3319iNgQ-ZgOG6mr9f9rkNVC6UE3n-uyznkzW0Gd0hehVv5ugk9PdqjS79stvJR3_58WuksstNaV5o0vXyDk_vU4urRUsvEG-4tZpk3gPoM_R_WYHHTQN8w-6rn39kb6o6SYcflYt6WjRRGqfUcBEi3_ln9L815I5PZnSvCpnwJrheW8m3s9_fPv-Tp96CiT42NN6y04MZqrFb5LxaP_t84O43cAhtsCyyljYwLyTzqsgXSpdsCxxUnDNksCkH_rAjQkiaAeCUgoHyDn0mTXKA9Hhidgmvels6m8TqnSWKZsAmdFpGoQHoihsqjPutANOyiPycDWexbyp01GAf4ODXnSDHpE9HOlOAEtr1xdmi-OinamFk8HwTKfWWJkq5kwIGTNCD-CiSryJyBPUkwINQAnfTrd5DNBPLKVV5AMAgUyC4x2RnQ1JmLh2s3mlaUVrOJaFAI8VWzl09kHXjHdiMFw9diADKJVxYGIRudVoaPdKyOcTxVlEHnUq-_cPcuefpO6SixyoXBPEs0N65aLy94CKleZ-O9t-Aj6ULoA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Electroencephalogram+Instantaneous+Frequency+Tracking%3A+Application+in+Automated+Sleep%E2%80%93Wake+Stage+Classification&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Nateghi%2C+Masoud&rft.au=Rahbar+Alam%2C+Mahdi&rft.au=Amiri%2C+Hossein&rft.au=Nasiri%2C+Samaneh&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft_id=info:doi/10.3390%2Fs24247881&rft.externalDocID=A821975254 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |