The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality

Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte–Carlo simulation was run on...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 3; p. 339
Main Authors Popiel, Nicholas J.M., Khajehabdollahi, Sina, Abeyasinghe, Pubuditha M., Riganello, Francesco, Nichols, Emily S., Owen, Adrian M., Soddu, Andrea
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 16.03.2020
MDPI AG
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e22030339

Cover

Abstract Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte–Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that Φ can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model.
AbstractList Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte-Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that Φ can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model.
Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte–Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that Φ can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model.
Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte-Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that Φ can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model.Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte-Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that Φ can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model.
Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising model was used to calculate Φ as a function of temperature in toy models of fully connected neural networks. A Monte−Carlo simulation was run on 159 normalized, random, positively weighted networks analogous to small five-node excitatory neural network motifs. Integrated information generated by this sample of small Ising models was measured across model parameter spaces. It was observed that integrated information, as an order parameter, underwent a phase transition at the critical point in the model. This critical point was demarcated by the peak of the generalized susceptibility (or variance in configuration due to temperature) of integrated information. At this critical point, integrated information was maximally receptive and responsive to perturbations of its own states. The results of this study provide evidence that Φ can capture integrated information in an empirical dataset, and display critical behavior acting as an order parameter from the generalized Ising model.
Author Owen, Adrian M.
Popiel, Nicholas J.M.
Khajehabdollahi, Sina
Nichols, Emily S.
Soddu, Andrea
Riganello, Francesco
Abeyasinghe, Pubuditha M.
AuthorAffiliation 1 Department of Physics and Astronomy, Western University, 151 Richmond St, London, ON N6A 3K7, Canada; sina.abdollahi@gmail.com (S.K.); enicho4@uwo.ca (E.S.N.); asoddu@uwo.ca (A.S.)
3 Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris 11, 88900 Crotone, Italy; francescoriganello@gmail.com
4 Brain and Mind Institute, Western University, 151 Richmond St, London, ON N6A 3K7, Canada; aowen6@uwo.ca
5 Department of Psychology and Department of Physiology and Pharmacology, 151 Richmond St, London, ON N6A 3K7, Canada
2 Faculty of Medicine Nursing and Health Sciences, Monash University, Wellington Rd, Clayton VIC 3800, Australia; pubu.abeyasinghe@monash.edu
AuthorAffiliation_xml – name: 1 Department of Physics and Astronomy, Western University, 151 Richmond St, London, ON N6A 3K7, Canada; sina.abdollahi@gmail.com (S.K.); enicho4@uwo.ca (E.S.N.); asoddu@uwo.ca (A.S.)
– name: 5 Department of Psychology and Department of Physiology and Pharmacology, 151 Richmond St, London, ON N6A 3K7, Canada
– name: 4 Brain and Mind Institute, Western University, 151 Richmond St, London, ON N6A 3K7, Canada; aowen6@uwo.ca
– name: 2 Faculty of Medicine Nursing and Health Sciences, Monash University, Wellington Rd, Clayton VIC 3800, Australia; pubu.abeyasinghe@monash.edu
– name: 3 Research in Advanced Neurorehabilitation (RAN), S. Anna Institute, Via Siris 11, 88900 Crotone, Italy; francescoriganello@gmail.com
Author_xml – sequence: 1
  givenname: Nicholas J.M.
  surname: Popiel
  fullname: Popiel, Nicholas J.M.
– sequence: 2
  givenname: Sina
  orcidid: 0000-0003-3701-1734
  surname: Khajehabdollahi
  fullname: Khajehabdollahi, Sina
– sequence: 3
  givenname: Pubuditha M.
  orcidid: 0000-0002-7595-5237
  surname: Abeyasinghe
  fullname: Abeyasinghe, Pubuditha M.
– sequence: 4
  givenname: Francesco
  surname: Riganello
  fullname: Riganello, Francesco
– sequence: 5
  givenname: Emily S.
  orcidid: 0000-0003-0541-9233
  surname: Nichols
  fullname: Nichols, Emily S.
– sequence: 6
  givenname: Adrian M.
  surname: Owen
  fullname: Owen, Adrian M.
– sequence: 7
  givenname: Andrea
  surname: Soddu
  fullname: Soddu, Andrea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33286113$$D View this record in MEDLINE/PubMed
BookMark eNptkc1u1DAQxy1URD_gwAugHEHqUn_FSS5IKCqwUiUu5cTBmjjjravEXmxvRW99DHi9Pglut6xaxMkjz8-_Gfl_SPZ88EjIa0bfC9HRE-ScClrKZ-SA0a5bSEHp3qN6nxymdEkpF5ypF2RfCN4qxsQB-X5-gdXpjHGF3mAVbLX0GVcRMo6ltCHOkF3wx1Uf5vWEP12-Pq7Aj9Xtza8--GRc2CSPKd3e_K4gV3102RmYCveSPLcwJXz1cB6Rb59Oz_svi7Ovn5f9x7OFkZLlBa8tNsI0FMFwUTe1FZ21w8CHho8tU9J0QI2whtXDYNrBNN3AwCK3TauMUOKILLfeMcClXkc3Q7zWAZy-vwhxpSGWpSbUQGtQtWSKC5AdDF0jUFmpZNsakIYV14eta70ZZhwN-hxheiJ92vHuQq_ClW5qplpKi-DtgyCGHxtMWc8uGZwm8Fh-SnOpWiEUbe_QN49n7Yb8TacA77aAiSGliHaHMKrvkte75At78g9rXL6Prqzppv-8-AMcvLHY
CitedBy_id crossref_primary_10_1038_s41598_024_57473_5
crossref_primary_10_1007_s43684_022_00044_0
crossref_primary_10_31857_S0044467723010082
crossref_primary_10_3390_jcm9051342
crossref_primary_10_3389_fnhum_2022_992649
crossref_primary_10_1103_PhysRevE_107_054308
crossref_primary_10_1016_j_tins_2022_08_007
crossref_primary_10_1093_nc_niad014
crossref_primary_10_1016_j_neubiorev_2024_105670
crossref_primary_10_1016_j_neubiorev_2021_12_034
crossref_primary_10_3390_e22080866
crossref_primary_10_3390_e23010009
crossref_primary_10_3390_e23010006
crossref_primary_10_1002_hbm_25802
crossref_primary_10_3390_brainsci12050596
crossref_primary_10_3390_info15050284
crossref_primary_10_3390_e25060890
crossref_primary_10_3389_fpsyg_2022_1008407
crossref_primary_10_1016_j_neunet_2023_02_034
crossref_primary_10_3390_e25030418
crossref_primary_10_1038_s42003_024_06613_8
crossref_primary_10_1371_journal_pcbi_1012369
crossref_primary_10_1007_s00521_023_08328_z
crossref_primary_10_3389_fpsyg_2022_911620
crossref_primary_10_1016_j_neunet_2024_107079
crossref_primary_10_1021_acs_jmedchem_2c01737
Cites_doi 10.1038/scientificamerican0191-46
10.1103/PhysRevE.79.061922
10.1103/PhysRevE.99.032408
10.3390/e21100981
10.1098/rsta.2007.2092
10.1007/978-3-642-69689-3
10.3389/fphys.2016.00425
10.1371/journal.pcbi.1003588
10.3390/e21121198
10.1103/PhysRevLett.113.238102
10.1103/PhysRevLett.110.178101
10.1017/CBO9781139696463
10.3389/fncom.2012.00068
10.1371/journal.pone.0093616
10.1103/Physics.7.120
10.1038/17290
10.1371/journal.pcbi.1005123
10.1016/S0375-9601(99)00757-4
10.1103/RevModPhys.77.137
10.1089/brain.2017.0516
10.1103/RevModPhys.47.773
10.1088/1742-5468/2016/04/043301
10.1371/journal.pcbi.1003111
10.3389/fphys.2012.00015
10.1073/pnas.1319166111
10.1073/pnas.0912289107
10.1146/annurev-conmatphys-062910-140509
10.1007/s10955-011-0229-4
10.1038/35065675
10.1177/1073858412445487
10.1098/rsif.2010.0416
10.20944/preprints201904.0077.v1
10.1103/PhysRevLett.42.859
10.1038/nphys1803
10.1103/PhysRevLett.104.025701
10.1038/nphys2190
10.1103/PhysRevB.29.4030
10.1371/journal.pcbi.1002236
10.1016/j.physd.2006.12.004
10.1093/oso/9780195135138.001.0001
10.1017/CBO9781316348772
10.3389/fnsys.2014.00166
10.1103/PhysRev.65.117
10.1038/ncomms3521
10.1038/376046a0
10.1371/journal.pcbi.1006343
10.1038/srep35831
10.1209/0295-5075/23/5/011
10.1016/j.cub.2015.10.014
10.1371/journal.pone.0002456
10.1016/j.physa.2004.05.064
10.1038/srep29640
10.1523/JNEUROSCI.23-35-11167.2003
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/e22030339
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_a05a6541623a49ab973e6f46488ca4c1
PMC7516800
33286113
10_3390_e22030339
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN/05578-2014
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c441t-25fe73c70eac23575f39ffbb2b72d8164c9a0c3fc15bbc8bc79b1afe2f786c363
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:31:35 EDT 2025
Thu Aug 21 14:09:03 EDT 2025
Thu Sep 04 19:08:56 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Tue Jul 01 01:57:55 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords criticality
integrated information
Ising model
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c441t-25fe73c70eac23575f39ffbb2b72d8164c9a0c3fc15bbc8bc79b1afe2f786c363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-7595-5237
0000-0003-3701-1734
0000-0003-0541-9233
OpenAccessLink https://doaj.org/article/a05a6541623a49ab973e6f46488ca4c1
PMID 33286113
PQID 2468336080
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a05a6541623a49ab973e6f46488ca4c1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7516800
proquest_miscellaneous_2468336080
pubmed_primary_33286113
crossref_primary_10_3390_e22030339
crossref_citationtrail_10_3390_e22030339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200316
PublicationDateYYYYMMDD 2020-03-16
PublicationDate_xml – month: 3
  year: 2020
  text: 20200316
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_50
Pawley (ref_49) 1984; 29
Chialvo (ref_29) 2004; 340
Newman (ref_45) 1999; 263
ref_14
ref_13
Sarasso (ref_22) 2015; 25
ref_12
Herrmann (ref_9) 2010; 107
Sethna (ref_16) 2001; 410
ref_53
ref_52
ref_51
Lux (ref_33) 1999; 397
Expert (ref_3) 2011; 8
ref_15
Beggs (ref_2) 2003; 23
ref_25
Crutchfield (ref_1) 2012; 8
ref_24
ref_23
ref_21
Bak (ref_11) 1991; 264
Hesse (ref_8) 2014; 8
Hansel (ref_54) 1993; 23
Wilson (ref_44) 1975; 47
ref_27
ref_26
Bonilla (ref_55) 2005; 77
Swendsen (ref_48) 1979; 42
Mora (ref_18) 2011; 144
ref_36
ref_35
ref_32
ref_30
Goldenfeld (ref_20) 2011; 2
Mantegna (ref_34) 1995; 376
Onsager (ref_28) 1944; 65
ref_39
Beggs (ref_10) 2008; 366
ref_38
ref_37
Shew (ref_17) 2013; 19
Cumin (ref_56) 2007; 226
ref_47
ref_46
Abeyasinghe (ref_31) 2018; 8
ref_43
ref_42
ref_41
ref_40
ref_5
ref_4
ref_7
ref_6
Hidalgo (ref_19) 2014; 111
References_xml – volume: 264
  start-page: 46
  year: 1991
  ident: ref_11
  article-title: Self-organized criticality
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0191-46
– ident: ref_12
  doi: 10.1103/PhysRevE.79.061922
– ident: ref_27
  doi: 10.1103/PhysRevE.99.032408
– ident: ref_26
  doi: 10.3390/e21100981
– volume: 366
  start-page: 329
  year: 2008
  ident: ref_10
  article-title: The criticality hypothesis: How local cortical networks might optimize information processing
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2007.2092
– ident: ref_53
  doi: 10.1007/978-3-642-69689-3
– ident: ref_6
  doi: 10.3389/fphys.2016.00425
– ident: ref_21
  doi: 10.1371/journal.pcbi.1003588
– ident: ref_25
  doi: 10.3390/e21121198
– ident: ref_35
  doi: 10.1103/PhysRevLett.113.238102
– ident: ref_14
  doi: 10.1103/PhysRevLett.110.178101
– ident: ref_38
  doi: 10.1017/CBO9781139696463
– ident: ref_13
  doi: 10.3389/fncom.2012.00068
– ident: ref_39
– ident: ref_15
  doi: 10.1371/journal.pone.0093616
– ident: ref_36
  doi: 10.1103/Physics.7.120
– volume: 397
  start-page: 498
  year: 1999
  ident: ref_33
  article-title: Scaling and criticality in a stochastic multi-agent model of a financial market
  publication-title: Nature
  doi: 10.1038/17290
– ident: ref_23
  doi: 10.1371/journal.pcbi.1005123
– volume: 263
  start-page: 341
  year: 1999
  ident: ref_45
  article-title: Renormalization group analysis of the small-world network model
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(99)00757-4
– volume: 77
  start-page: 137
  year: 2005
  ident: ref_55
  article-title: The Kuramoto model: A simple paradigm for synchronization phenomena
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.137
– volume: 8
  start-page: 444
  year: 2018
  ident: ref_31
  article-title: Role of Dimensionality in Predicting the Spontaneous Behavior of the Brain Using the Classical Ising Model and the Ising Model Implemented on a Structural Connectome
  publication-title: Brain Connect.
  doi: 10.1089/brain.2017.0516
– volume: 47
  start-page: 773
  year: 1975
  ident: ref_44
  article-title: The renormalization group: Critical phenomena and the Kondo problem
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.47.773
– ident: ref_52
– ident: ref_40
  doi: 10.1088/1742-5468/2016/04/043301
– ident: ref_50
  doi: 10.1371/journal.pcbi.1003111
– ident: ref_4
  doi: 10.3389/fphys.2012.00015
– volume: 111
  start-page: 10095
  year: 2014
  ident: ref_19
  article-title: Information-based fitness and the emergence of criticality in living systems
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1319166111
– volume: 107
  start-page: 3977
  year: 2010
  ident: ref_9
  article-title: Learning as a phenomenon occurring in a critical state
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0912289107
– volume: 2
  start-page: 375
  year: 2011
  ident: ref_20
  article-title: Life is Physics: Evolution as a Collective Phenomenon Far From Equilibrium
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-062910-140509
– ident: ref_47
– volume: 144
  start-page: 268
  year: 2011
  ident: ref_18
  article-title: Are Biological Systems Poised at Criticality?
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-011-0229-4
– volume: 410
  start-page: 242
  year: 2001
  ident: ref_16
  article-title: Crackling noise
  publication-title: Nature
  doi: 10.1038/35065675
– volume: 19
  start-page: 88
  year: 2013
  ident: ref_17
  article-title: The functional benefits of criticality in the cortex
  publication-title: Neuroscientist
  doi: 10.1177/1073858412445487
– volume: 8
  start-page: 472
  year: 2011
  ident: ref_3
  article-title: Self-similar correlation function in brain resting-state functional magnetic resonance imaging
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0416
– ident: ref_24
  doi: 10.20944/preprints201904.0077.v1
– volume: 42
  start-page: 859
  year: 1979
  ident: ref_48
  article-title: Monte carlo renormalization group
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.42.859
– ident: ref_30
  doi: 10.1038/nphys1803
– ident: ref_46
  doi: 10.1103/PhysRevLett.104.025701
– volume: 8
  start-page: 17
  year: 2012
  ident: ref_1
  article-title: Between order and chaos
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2190
– volume: 29
  start-page: 4030
  year: 1984
  ident: ref_49
  article-title: Monte Carlo renormalization-group calculations of critical behavior in the simple-cubic Ising model
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.29.4030
– ident: ref_51
  doi: 10.1371/journal.pcbi.1002236
– volume: 226
  start-page: 181
  year: 2007
  ident: ref_56
  article-title: Generalising the Kuramoto model for the study of neuronal synchronisation in the brain
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.12.004
– ident: ref_42
  doi: 10.1093/oso/9780195135138.001.0001
– ident: ref_43
  doi: 10.1017/CBO9781316348772
– volume: 8
  start-page: 166
  year: 2014
  ident: ref_8
  article-title: Self-organized criticality as a fundamental property of neural systems
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00166
– volume: 65
  start-page: 117
  year: 1944
  ident: ref_28
  article-title: Crystal statistics. I. A two-dimensional model with an order-disorder transition
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– ident: ref_7
  doi: 10.1038/ncomms3521
– volume: 376
  start-page: 46
  year: 1995
  ident: ref_34
  article-title: Scaling behaviour in the dynamics of an economic index
  publication-title: Nature
  doi: 10.1038/376046a0
– ident: ref_37
  doi: 10.1371/journal.pcbi.1006343
– ident: ref_5
  doi: 10.1038/srep35831
– volume: 23
  start-page: 367
  year: 1993
  ident: ref_54
  article-title: Phase dynamics for weakly coupled hodgkin-huxley neurons
  publication-title: EPL
  doi: 10.1209/0295-5075/23/5/011
– volume: 25
  start-page: 3099
  year: 2015
  ident: ref_22
  article-title: Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.10.014
– ident: ref_32
  doi: 10.1371/journal.pone.0002456
– volume: 340
  start-page: 756
  year: 2004
  ident: ref_29
  article-title: Critical brain networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2004.05.064
– ident: ref_41
  doi: 10.1038/srep29640
– volume: 23
  start-page: 11167
  year: 2003
  ident: ref_2
  article-title: Neuronal Avalanches in Neocortical Circuits
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-35-11167.2003
SSID ssj0023216
Score 2.3664792
Snippet Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising...
Integrated Information Theory (IIT) posits that integrated information ( Φ ) represents the quantity of a conscious experience. Here, the generalized Ising...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 339
SubjectTerms criticality
integrated information
ising model
Title The Emergence of Integrated Information, Complexity, and ‘Consciousness’ at Criticality
URI https://www.ncbi.nlm.nih.gov/pubmed/33286113
https://www.proquest.com/docview/2468336080
https://pubmed.ncbi.nlm.nih.gov/PMC7516800
https://doaj.org/article/a05a6541623a49ab973e6f46488ca4c1
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEB50vXiRFX_V1UcUDx62bJNpk-boynu7Ci4iLjzwUJI0QUG6IvXgbf8M_ff2L3GmPx7vyYIXLz20Qxu-mTTzkck3AC-0KnWQUuetlikvI4WxTZamu0eXtFYqDDu678706Xn5dl2tt1p9cU3YKA88Anfkispxr2papl1pnbcGo06lpsALrgwD8SlsMZOpiWqhknrUEUIi9UdRKQpm5I7gW6vPINJ_XWb5d4Hk1oqz2oc7U6ooXo1DvAs3YncPPpFfxXI6MxnFRRJvZsGHVkxnixjrQ8EzndUu-5-HwnWtuLr8xd05Axe98v_t6vK3cL2Yex2Q3X04Xy0_vj7NpwYJeaAsps9VlaLBYAr6e7JsTZXQpuS98ka1NRGhYF0RMAVZeR9qH4z10qWokql1QI0PYK-76OIjEIkzIfSVxeRKRS9E4hlGBdM6Z2rnMng5A9eEST2cm1h8bYhFMMbNBuMMnm9Mv42SGdcZHTP6GwNWuR5ukO-byffNv3yfwbPZdw3NCt7qcF0kFBuKwBpRUzqcwcPRl5tPIapaS4kZmB0v74xl90n35fOgvG0qqSnDfvw_Bn8AtxVzd64N1E9gr__-Iz6lBKf3C7hZr04WcOt4efb-w2KIbLqerOUfEMH-6w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Emergence+of+Integrated+Information%2C+Complexity%2C+and+%27Consciousness%27+at+Criticality&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Popiel%2C+Nicholas+J+M&rft.au=Khajehabdollahi%2C+Sina&rft.au=Abeyasinghe%2C+Pubuditha+M&rft.au=Riganello%2C+Francesco&rft.date=2020-03-16&rft.eissn=1099-4300&rft.volume=22&rft.issue=3&rft_id=info:doi/10.3390%2Fe22030339&rft_id=info%3Apmid%2F33286113&rft.externalDocID=33286113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon