An MRI-based radiomics signature as a pretreatment noninvasive predictor of overall survival and chemotherapeutic benefits in lower-grade gliomas
Objectives The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG). Methods Radiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contra...
Saved in:
Published in | European radiology Vol. 31; no. 4; pp. 1785 - 1794 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0938-7994 1432-1084 1432-1084 |
DOI | 10.1007/s00330-020-07581-3 |
Cover
Abstract | Objectives
The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG).
Methods
Radiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data.
Results
A radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index, 0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clinicopathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692;
p
< 0.001). Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy.
Conclusions
The radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor for LGG patients’ survival. Moreover, it could predict which patients with LGG benefit from chemotherapy.
Key Points
• A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signatures derived from either single imaging modality.
• The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall survival of LGG patients.
• The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy. |
---|---|
AbstractList | ObjectivesThe aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG).MethodsRadiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data.ResultsA radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index, 0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clinicopathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692; p < 0.001). Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy.ConclusionsThe radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor for LGG patients’ survival. Moreover, it could predict which patients with LGG benefit from chemotherapy.Key Points• A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signatures derived from either single imaging modality.• The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall survival of LGG patients.• The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy. Objectives The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG). Methods Radiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data. Results A radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index, 0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clinicopathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692; p < 0.001). Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy. Conclusions The radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor for LGG patients’ survival. Moreover, it could predict which patients with LGG benefit from chemotherapy. Key Points • A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signatures derived from either single imaging modality. • The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall survival of LGG patients. • The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy. The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG).OBJECTIVESThe aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG).Radiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data.METHODSRadiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data.A radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index, 0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clinicopathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692; p < 0.001). Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy.RESULTSA radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index, 0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clinicopathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692; p < 0.001). Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy.The radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor for LGG patients' survival. Moreover, it could predict which patients with LGG benefit from chemotherapy.CONCLUSIONSThe radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor for LGG patients' survival. Moreover, it could predict which patients with LGG benefit from chemotherapy.• A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signatures derived from either single imaging modality. • The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall survival of LGG patients. • The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy.KEY POINTS• A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signatures derived from either single imaging modality. • The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall survival of LGG patients. • The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy. The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade gliomas (LGG). Radiomics features were extracted from precontrast axial fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced axial T-1 weighted (CE-T1-w) sequence. Lasso Cox regression model was used for feature selection and radiomics signature building. The radiomics signature was developed in a primary cohort that consisted of 149 LGG patients and was then validated on an entirely new validation cohort that contained 66 LGG patients. A radiomics nomogram for the prediction of OS was established by adding the radiomics to clinicopathologic nomogram which developed with clinical data. A radiomics signature derived from joint CE-T1-w and FLAIR images showed better prognostic performance (C-index, 0.798) than signatures derived from CE-T1-w (C-index, 0.744) or FLAIR (C-index, 0.736) sequences alone. Multivariable Cox regression revealed that the radiomics signature was an independent prognostic factor. One radiomics nomogram integrated the radiomics signature from joint CE-T1-w and FLAIR sequences with the clinicopathologic nomogram outperformed the clinicopathologic nomogram based on clinicopathologic data alone in predicting OS of LGG (C-index, 0.821 vs. 0.692; p < 0.001). Further analysis revealed that patients with higher radiomics signature were prone to benefit from chemotherapy. The radiomics signature was independent with clinicopathologic data and was a noninvasive pretreatment predictor for LGG patients' survival. Moreover, it could predict which patients with LGG benefit from chemotherapy. • A radiomics signature derived from joint CE-T1-w and FLAIR sequences showed better prognostic performance than signatures derived from either single imaging modality. • The radiomics signature is an independent prognostic factor and outperformed clinicopathologic features in predicting overall survival of LGG patients. • The radiomics signature could help preoperatively identify LGG patients who may benefit from chemotherapy. |
Author | Zhang, Jinling Xue, Fuzhong Jing, Rui Li, Gang Wang, Lijie Chen, Shuo Wang, Jingtao Heng, Xueyuan Che, Fengyuan Zheng, Xuejun Xue, Hao |
Author_xml | – sequence: 1 givenname: Jingtao surname: Wang fullname: Wang, Jingtao organization: Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Institute for Medical Dataology, Shandong University – sequence: 2 givenname: Xuejun surname: Zheng fullname: Zheng, Xuejun organization: Department of Radiology, The Linyi People’s Hospital, Shandong University – sequence: 3 givenname: Jinling surname: Zhang fullname: Zhang, Jinling organization: Cancer Center & The Research Center Of Function Image on Brain Tumor, The Linyi People’s Hospital, Shandong University – sequence: 4 givenname: Hao surname: Xue fullname: Xue, Hao organization: Department of Neurosurgery, Qilu Hospital of Shandong University – sequence: 5 givenname: Lijie surname: Wang fullname: Wang, Lijie organization: Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Institute for Medical Dataology, Shandong University – sequence: 6 givenname: Rui surname: Jing fullname: Jing, Rui organization: Department of Radiology, Second Hospital of Shandong University – sequence: 7 givenname: Shuo surname: Chen fullname: Chen, Shuo organization: Division of Biostatistics and Bioinformatics, Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine – sequence: 8 givenname: Fengyuan surname: Che fullname: Che, Fengyuan organization: Neurology Department & The Research Center of Function Image on Brain Tumor, The Linyi People’s Hospital, Shandong University – sequence: 9 givenname: Xueyuan surname: Heng fullname: Heng, Xueyuan organization: Neurology Department & The Research Center of Function Image on Brain Tumor, The Linyi People’s Hospital, Shandong University – sequence: 10 givenname: Gang surname: Li fullname: Li, Gang email: ligangqiluhospital@163.com organization: Department of Neurosurgery, Qilu Hospital of Shandong University – sequence: 11 givenname: Fuzhong surname: Xue fullname: Xue, Fuzhong email: xuefzh@sdu.edu.cn organization: Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Institute for Medical Dataology, Shandong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33409797$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rFTEUxYO02NfqF3AhATduRvNvJsmyFLWFilB0HTKZO68pM8kzyUzxY_iNzfPVCl10ccni_s49h5xTdBRiAITeUPKBEiI_ZkI4Jw1hdWSraMNfoA0VnDWUKHGENkRz1UitxQk6zfmOEKKpkC_RCeeCaKnlBv0-D_jrzVXT2wwDTnbwcfYu4-y3wZYlAbYZW7xLUBLYMkMouMbwYbXZr7BfDN6VmHAccVwh2WnCeUmrX-2EbRiwu4U5ltu62cFSvMM9BBh9ydgHPMV7SM22-gLeTtXb5lfoeLRThtcP7xn68fnT94vL5vrbl6uL8-vGCUFLQ6UAJ5jounEY-WAV01pRKiztqJYdB3Cy77uu64XknFqqVMvd2OphZHrQnJ-h94e7uxR_LpCLmX12ME02QFyyYUJ2lCnFu4q-e4LexSWFms6wlnDSMkr31NsHaulnGMwu-dmmX-bfZ1eAHQCXYs4JxkeEErNv1BwaNbVR87dRs4-pnoicL7b4GEqyfnpeyg_SXH3CFtL_2M-o_gCJv7Yb |
CitedBy_id | crossref_primary_10_3389_fonc_2022_892056 crossref_primary_10_3389_fonc_2022_996262 crossref_primary_10_1055_a_1808_0236 crossref_primary_10_1002_cam4_5097 crossref_primary_10_3389_fonc_2023_1143688 crossref_primary_10_1055_a_1748_3321 crossref_primary_10_3390_jcm11133802 crossref_primary_10_1016_j_displa_2023_102399 crossref_primary_10_1002_mco2_722 crossref_primary_10_1007_s40846_022_00692_w crossref_primary_10_1007_s00259_023_06468_x crossref_primary_10_3390_cancers15030965 crossref_primary_10_1016_j_clineuro_2024_108409 crossref_primary_10_1227_neu_0000000000001938 crossref_primary_10_3389_fonc_2021_657288 crossref_primary_10_1055_a_1857_6659 crossref_primary_10_1038_s41598_023_30309_4 crossref_primary_10_1093_oncolo_oyac036 crossref_primary_10_1007_s11060_025_05006_z crossref_primary_10_1080_14737175_2023_2285472 crossref_primary_10_3390_diagnostics11101875 crossref_primary_10_1177_15330338241262483 crossref_primary_10_1002_ima_23059 crossref_primary_10_1055_a_1885_6777 crossref_primary_10_3390_diagnostics12092125 crossref_primary_10_1016_j_clinsp_2023_100238 crossref_primary_10_1016_j_wneu_2024_03_166 crossref_primary_10_3389_fonc_2023_1083080 crossref_primary_10_1007_s00330_020_07603_0 crossref_primary_10_3348_kjr_2021_0421 crossref_primary_10_3389_fonc_2021_646267 crossref_primary_10_3390_jcm10071411 crossref_primary_10_3349_ymj_2023_0323 crossref_primary_10_3389_fonc_2022_969907 |
Cites_doi | 10.1148/radiol.2015151169 10.1002/ana.21044 10.1016/j.neuroimage.2009.09.049 10.1016/S1470-2045(17)30194-8 10.1016/j.radonc.2018.03.013 10.1038/nrclinonc.2017.141 10.1158/0008-5472.CAN-17-0339 10.7150/thno.28018 10.1093/neuonc/nou297 10.1093/neuonc/now256 10.1016/0167-8140(93)90025-4 10.1200/JCO.2018.36.6_suppl.113 10.1215/15228517-2008-063 10.1016/j.ebiom.2018.09.007 10.1212/WNL.0b013e3181f96282 10.1007/s00330-017-4964-z 10.1002/cncr.21809 10.1158/1078-0432.CCR-16-2910 10.18383/j.tom.2016.00250 10.1016/S1470-2045(11)70057-2 10.1037/0033-2909.86.2.420 10.1158/1078-0432.CCR-04-0713 10.18632/aging.101594 10.1200/JCO.2012.43.2229 10.1056/NEJMoa1402121 10.1148/radiol.2016152234 10.1016/S1470-2045(18)30827-1 10.1016/S1470-2045(16)30313-8 10.1038/ncomms5006 10.1007/s00401-016-1545-1 10.1093/neuonc/noz191 10.1016/j.ejca.2011.11.036 10.1158/1078-0432.CCR-06-2184 10.1200/JCO.2012.43.2674 10.1158/1078-0432.CCR-14-2737 10.1056/NEJMoa043331 10.1093/annonc/mdx034 10.1016/j.nicl.2018.10.014 10.1073/pnas.0801279105 10.1007/s00330-018-5575-z |
ContentType | Journal Article |
Copyright | European Society of Radiology 2021 European Society of Radiology 2021. |
Copyright_xml | – notice: European Society of Radiology 2021 – notice: European Society of Radiology 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-020-07581-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 1794 |
ExternalDocumentID | 33409797 10_1007_s00330_020_07581_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shandong Province major science and technology innovation project grantid: NO 2018CXGC1210 – fundername: NIDA NIH HHS grantid: DP1 DA048968 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c441t-174ec42466fdf3da82998114a1619763eec7bb666b47331a18853cf59df29d933 |
IEDL.DBID | 8FG |
ISSN | 0938-7994 1432-1084 |
IngestDate | Fri Sep 05 09:40:47 EDT 2025 Sun Sep 07 05:31:24 EDT 2025 Wed Feb 19 02:27:44 EST 2025 Thu Apr 24 22:50:44 EDT 2025 Tue Jul 01 03:08:21 EDT 2025 Fri Feb 21 02:50:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Prognosis Glioma Magnetic resonance imaging Nomograms Radiomics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c441t-174ec42466fdf3da82998114a1619763eec7bb666b47331a18853cf59df29d933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 33409797 |
PQID | 2503052116 |
PQPubID | 54162 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2476128836 proquest_journals_2503052116 pubmed_primary_33409797 crossref_primary_10_1007_s00330_020_07581_3 crossref_citationtrail_10_1007_s00330_020_07581_3 springer_journals_10_1007_s00330_020_07581_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | McGarry, Hurrell, Kaczmarowski (CR20) 2016; 2 Liu, Solheim, Polley (CR34) 2009; 11 Wei, Yang, Hao (CR26) 2019; 29 Zhang, Tian, Dong (CR19) 2017; 23 Bent (CR5) 2014; 16 Gold, Bloom, Hale (CR30) 2018; 36 Camp, Dolled-Filhart, Rimm (CR29) 2004; 10 CR33 Gittleman, Sloan, Barnholtz-Sloan (CR2) 2020; 22 Jiang, Yuan, Lv (CR37) 2018; 8 Endrich, Vaupel, Molls, Vaupel (CR40) 1998 (CR1) 2015; 372 Huang, Liu, He (CR22) 2016; 281 Jiang, Chen, Xie (CR21) 2018; 36 Limkin, Sun, Dercle (CR16) 2017; 28 Drabycz, Roldán, de Robles (CR39) 2010; 49 Liu, Li, Qian (CR25) 2018; 20 Diehn, Nardini, Wang (CR42) 2008; 105 Baumert, Hegi, Bent (CR10) 2016; 17 Cairncross, Wang, Shaw (CR8) 2013; 31 Gillies, Kinahan, Hricak (CR15) 2016; 278 Houillier, Wang, Kaloshi (CR11) 2010; 75 Qian, Li, Sun (CR31) 2018; 10 Hegi, Diserens, Gorlia (CR35) 2005; 352 Levin, Lavon, Zelikovitsh (CR36) 2006; 106 Shrout, Fleiss (CR27) 1979; 86 Lambin, Leijenaar, Deist (CR18) 2017; 14 Lambin, Rios-Velazquez, Leijenaar (CR17) 2012; 48 Li, Liu, Xu (CR3) 2018; 28 Bent, Brandes, Taphoorn (CR12) 2013; 31 Abrunhosa-Branquinho, Bar-Deroma, Collette (CR9) 2018; 127 Eoli, Menghi, Bruzzone (CR38) 2007; 13 Bent, Wefel, Schiff (CR4) 2011; 12 Louis, Perry, Reifenberger (CR32) 2016; 131 Zhou, Vallières, Bai (CR24) 2017; 19 Weller, Bent, Tonn (CR6) 2017; 18 Weller, Tabatabai, Kastner (CR13) 2015; 21 Aerts, Velazquez, Leijenaar (CR23) 2014; 5 van Griethuysen, Fedorov, Parmar (CR28) 2017; 77 Stupp (CR7) 2019; 20 H€ockel, Knoop, Schlenger (CR41) 1993; 26 Everhard, Kaloshi, Crinière (CR14) 2006; 60 ME Hegi (7581_CR35) 2005; 352 Y Jiang (7581_CR21) 2018; 36 Z Qian (7581_CR31) 2018; 10 M H€ockel (7581_CR41) 1993; 26 Y Li (7581_CR3) 2018; 28 SD McGarry (7581_CR20) 2016; 2 BG Baumert (7581_CR10) 2016; 17 RJ Gillies (7581_CR15) 2016; 278 R Liu (7581_CR34) 2009; 11 S Drabycz (7581_CR39) 2010; 49 G Cairncross (7581_CR8) 2013; 31 DN Louis (7581_CR32) 2016; 131 MJ Bent (7581_CR5) 2014; 16 7581_CR33 M Eoli (7581_CR38) 2007; 13 JJM van Griethuysen (7581_CR28) 2017; 77 S Everhard (7581_CR14) 2006; 60 X Liu (7581_CR25) 2018; 20 RL Camp (7581_CR29) 2004; 10 J Wei (7581_CR26) 2019; 29 R Stupp (7581_CR7) 2019; 20 M Weller (7581_CR13) 2015; 21 H Zhou (7581_CR24) 2017; 19 H Gittleman (7581_CR2) 2020; 22 M Weller (7581_CR6) 2017; 18 HJWL Aerts (7581_CR23) 2014; 5 PE Shrout (7581_CR27) 1979; 86 MJ Bent (7581_CR12) 2013; 31 P Lambin (7581_CR18) 2017; 14 B Zhang (7581_CR19) 2017; 23 The Cancer Genome Atlas Research Network (7581_CR1) 2015; 372 N Levin (7581_CR36) 2006; 106 EJ Limkin (7581_CR16) 2017; 28 P Lambin (7581_CR17) 2012; 48 Y Huang (7581_CR22) 2016; 281 AN Abrunhosa-Branquinho (7581_CR9) 2018; 127 C Houillier (7581_CR11) 2010; 75 S Gold (7581_CR30) 2018; 36 MJ Bent (7581_CR4) 2011; 12 B Endrich (7581_CR40) 1998 Y Jiang (7581_CR37) 2018; 8 M Diehn (7581_CR42) 2008; 105 |
References_xml | – volume: 278 start-page: 563 year: 2016 end-page: 577 ident: CR15 article-title: Radiomics: images are more than pictures, they are data publication-title: Radiology – volume: 12 start-page: 583 year: 2011 end-page: 593 ident: CR4 article-title: Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas publication-title: Lancet Oncol – volume: 10 start-page: 7252 year: 2004 end-page: 7259 ident: CR29 article-title: X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization publication-title: Clin Cancer Res – volume: 21 start-page: 2057 year: 2015 end-page: 2064 ident: CR13 article-title: MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial publication-title: Clin Cancer Res – volume: 75 start-page: 1560 year: 2010 end-page: 1566 ident: CR11 article-title: IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas publication-title: Neurology – volume: 5 start-page: 4006 year: 2014 ident: CR23 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: CR18 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat Rev Clin Oncol – volume: 10 start-page: 2884 year: 2018 end-page: 2899 ident: CR31 article-title: Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction publication-title: Aging (Albany NY) – year: 1998 ident: CR40 article-title: The role of microcirculation in the treatment of malignant tumours: facts and fiction publication-title: Blood perfusion and microenvironment of human tumors – volume: 20 start-page: 10 year: 2019 end-page: 12 ident: CR7 article-title: Drug development for glioma: are we repeating the same mistakes? publication-title: Lancet Oncol – ident: CR33 – volume: 16 start-page: 1570 year: 2014 end-page: 1574 ident: CR5 article-title: Practice changing mature results of RTOG study 9802: another positive PCV trial makes adjuvant chemotherapy part of standard of care in low-grade glioma publication-title: Neuro Oncol – volume: 19 start-page: 862 year: 2017 end-page: 870 ident: CR24 article-title: MRI features predict survival and molecular markers in diffuse lower-grade gliomas publication-title: Neuro Oncol – volume: 281 start-page: 947 year: 2016 end-page: 957 ident: CR22 article-title: Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non—small cell lung cancer publication-title: Radiology – volume: 31 start-page: 337 year: 2013 ident: CR8 article-title: Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402 publication-title: J Clin Oncol – volume: 60 start-page: 740 year: 2006 end-page: 743 ident: CR14 article-title: MGMT methylation: a marker of response to temozolomide in low-grade gliomas publication-title: Ann Neurol – volume: 352 start-page: 997 year: 2005 end-page: 1003 ident: CR35 article-title: MGMT gene silencing and benefit from temozolomide in glioblastoma publication-title: N Engl J Med – volume: 8 start-page: 5915 year: 2018 end-page: 5928 ident: CR37 article-title: Radiomic signature of F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits publication-title: Theranostics – volume: 11 start-page: 59 year: 2009 end-page: 68 ident: CR34 article-title: Quality of life in low-grade glioma patients receiving temozolomide publication-title: Neuro Oncol – volume: 17 start-page: 1521 year: 2016 end-page: 1532 ident: CR10 article-title: Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study publication-title: Lancet Oncol – volume: 372 start-page: 2481 year: 2015 end-page: 2498 ident: CR1 article-title: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas publication-title: N Engl J Med – volume: 28 start-page: 356 year: 2018 end-page: 362 ident: CR3 article-title: MRI features can predict EGFR expression in lower grade gliomas: a voxel-based radiomic analysis publication-title: Eur Radiol – volume: 77 start-page: e104 year: 2017 end-page: e107 ident: CR28 article-title: Computational radiomics system to decode the radiographic phenotype publication-title: Cancer Res – volume: 131 start-page: 803 year: 2016 end-page: 820 ident: CR32 article-title: The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary publication-title: Acta Neuropathol – volume: 106 start-page: 1759 year: 2006 end-page: 1765 ident: CR36 article-title: Progressive low-grade oligodendrogliomas publication-title: Cancer – volume: 105 start-page: 5213 year: 2008 end-page: 5218 ident: CR42 article-title: Identification of noninvasive imaging surrogates for brain tumor gene-expression modules publication-title: Proc Natl Acad Sci U S A – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: CR27 article-title: Intraclass correlations: Uses in assessing rater reliability publication-title: Psychol Bull – volume: 2 start-page: 223 year: 2016 end-page: 228 ident: CR20 article-title: Magnetic resonance imaging-based radiomic profiles predict patient prognosis in newly diagnosed glioblastoma before therapy publication-title: Tomography – volume: 36 start-page: 171 year: 2018 end-page: 182 ident: CR21 article-title: Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer publication-title: EBioMedicine – volume: 49 start-page: 1398 year: 2010 end-page: 1405 ident: CR39 article-title: An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging publication-title: Neuroimage – volume: 23 start-page: 4259 year: 2017 end-page: 4269 ident: CR19 article-title: Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma publication-title: Clin Cancer Res – volume: 48 start-page: 441 year: 2012 end-page: 446 ident: CR17 article-title: Radiomics: extracting more information from medical images using advanced feature analysis publication-title: Eur J Cancer – volume: 13 start-page: 2606 year: 2007 end-page: 2613 ident: CR38 article-title: Methylation of O6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival publication-title: Clin Cancer Res – volume: 18 start-page: e315 year: 2017 end-page: e329 ident: CR6 article-title: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas publication-title: Lancet Oncol – volume: 31 start-page: 344 year: 2013 end-page: 350 ident: CR12 article-title: Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951 publication-title: J Clin Oncol – volume: 36 start-page: 113 year: 2018 end-page: 113 ident: CR30 article-title: Ability of multiparametric magnetic resonance imaging (MRI) to predict prostate tumor heterogeneity on targeted biopsy publication-title: J Clin Oncol – volume: 26 start-page: 45 year: 1993 end-page: 50 ident: CR41 article-title: Intratumoral pO2predicts survival in advanced cancer of the uterine cervix publication-title: Radiother Oncol – volume: 28 start-page: 1191 year: 2017 end-page: 1206 ident: CR16 article-title: Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology publication-title: Ann Oncol – volume: 29 start-page: 877 year: 2019 end-page: 888 ident: CR26 article-title: A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication publication-title: Eur Radiol – volume: 20 start-page: 1070 year: 2018 end-page: 1077 ident: CR25 article-title: A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas publication-title: Neuroimage Clin – volume: 22 start-page: 665 year: 2020 end-page: 674 ident: CR2 article-title: An independently validated survival nomogram for lower-grade glioma publication-title: Neuro Oncol – volume: 127 start-page: 292 year: 2018 end-page: 298 ident: CR9 article-title: Radiotherapy quality assurance for the RTOG 0834/EORTC 26053-22054/NCIC CTG CEC.1/CATNON intergroup trial “concurrent and adjuvant temozolomide chemotherapy in newly diagnosed non-1p/19q deleted anaplastic glioma”: individual case review analysis publication-title: Radiother Oncol – volume: 278 start-page: 563 year: 2016 ident: 7581_CR15 publication-title: Radiology doi: 10.1148/radiol.2015151169 – volume: 60 start-page: 740 year: 2006 ident: 7581_CR14 publication-title: Ann Neurol doi: 10.1002/ana.21044 – ident: 7581_CR33 – volume: 49 start-page: 1398 year: 2010 ident: 7581_CR39 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.049 – volume: 18 start-page: e315 year: 2017 ident: 7581_CR6 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(17)30194-8 – volume: 127 start-page: 292 year: 2018 ident: 7581_CR9 publication-title: Radiother Oncol doi: 10.1016/j.radonc.2018.03.013 – volume: 14 start-page: 749 year: 2017 ident: 7581_CR18 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 77 start-page: e104 year: 2017 ident: 7581_CR28 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0339 – volume: 8 start-page: 5915 year: 2018 ident: 7581_CR37 publication-title: Theranostics doi: 10.7150/thno.28018 – volume: 16 start-page: 1570 year: 2014 ident: 7581_CR5 publication-title: Neuro Oncol doi: 10.1093/neuonc/nou297 – volume: 19 start-page: 862 year: 2017 ident: 7581_CR24 publication-title: Neuro Oncol doi: 10.1093/neuonc/now256 – volume: 26 start-page: 45 year: 1993 ident: 7581_CR41 publication-title: Radiother Oncol doi: 10.1016/0167-8140(93)90025-4 – volume: 36 start-page: 113 year: 2018 ident: 7581_CR30 publication-title: J Clin Oncol doi: 10.1200/JCO.2018.36.6_suppl.113 – volume: 11 start-page: 59 year: 2009 ident: 7581_CR34 publication-title: Neuro Oncol doi: 10.1215/15228517-2008-063 – volume: 36 start-page: 171 year: 2018 ident: 7581_CR21 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.09.007 – volume: 75 start-page: 1560 year: 2010 ident: 7581_CR11 publication-title: Neurology doi: 10.1212/WNL.0b013e3181f96282 – volume: 28 start-page: 356 year: 2018 ident: 7581_CR3 publication-title: Eur Radiol doi: 10.1007/s00330-017-4964-z – volume: 106 start-page: 1759 year: 2006 ident: 7581_CR36 publication-title: Cancer doi: 10.1002/cncr.21809 – volume: 23 start-page: 4259 year: 2017 ident: 7581_CR19 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-16-2910 – volume: 2 start-page: 223 year: 2016 ident: 7581_CR20 publication-title: Tomography doi: 10.18383/j.tom.2016.00250 – volume: 12 start-page: 583 year: 2011 ident: 7581_CR4 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(11)70057-2 – volume: 86 start-page: 420 year: 1979 ident: 7581_CR27 publication-title: Psychol Bull doi: 10.1037/0033-2909.86.2.420 – volume: 10 start-page: 7252 year: 2004 ident: 7581_CR29 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0713 – volume: 10 start-page: 2884 year: 2018 ident: 7581_CR31 publication-title: Aging (Albany NY) doi: 10.18632/aging.101594 – volume: 31 start-page: 344 year: 2013 ident: 7581_CR12 publication-title: J Clin Oncol doi: 10.1200/JCO.2012.43.2229 – volume: 372 start-page: 2481 year: 2015 ident: 7581_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMoa1402121 – volume: 281 start-page: 947 year: 2016 ident: 7581_CR22 publication-title: Radiology doi: 10.1148/radiol.2016152234 – volume: 20 start-page: 10 year: 2019 ident: 7581_CR7 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(18)30827-1 – volume: 17 start-page: 1521 year: 2016 ident: 7581_CR10 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(16)30313-8 – volume: 5 start-page: 4006 year: 2014 ident: 7581_CR23 publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 131 start-page: 803 year: 2016 ident: 7581_CR32 publication-title: Acta Neuropathol doi: 10.1007/s00401-016-1545-1 – volume-title: Blood perfusion and microenvironment of human tumors year: 1998 ident: 7581_CR40 – volume: 22 start-page: 665 year: 2020 ident: 7581_CR2 publication-title: Neuro Oncol doi: 10.1093/neuonc/noz191 – volume: 48 start-page: 441 year: 2012 ident: 7581_CR17 publication-title: Eur J Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 13 start-page: 2606 year: 2007 ident: 7581_CR38 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-06-2184 – volume: 31 start-page: 337 year: 2013 ident: 7581_CR8 publication-title: J Clin Oncol doi: 10.1200/JCO.2012.43.2674 – volume: 21 start-page: 2057 year: 2015 ident: 7581_CR13 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2737 – volume: 352 start-page: 997 year: 2005 ident: 7581_CR35 publication-title: N Engl J Med doi: 10.1056/NEJMoa043331 – volume: 28 start-page: 1191 year: 2017 ident: 7581_CR16 publication-title: Ann Oncol doi: 10.1093/annonc/mdx034 – volume: 20 start-page: 1070 year: 2018 ident: 7581_CR25 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.10.014 – volume: 105 start-page: 5213 year: 2008 ident: 7581_CR42 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0801279105 – volume: 29 start-page: 877 year: 2019 ident: 7581_CR26 publication-title: Eur Radiol doi: 10.1007/s00330-018-5575-z |
SSID | ssj0009147 |
Score | 2.4867883 |
Snippet | Objectives
The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with... The aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with lower-grade... ObjectivesThe aim of this study was to develop and validate a radiomics signature for predicting survival and chemotherapeutic benefits of patients with... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1785 |
SubjectTerms | Chemotherapy Diagnostic Radiology Feature extraction Glioma Glioma - diagnostic imaging Glioma - drug therapy Humans Imaging Imaging Informatics and Artificial Intelligence Internal Medicine Interventional Radiology Magnetic Resonance Imaging Medical prognosis Medicine Medicine & Public Health Neuroradiology Nomograms Prognosis Radiology Radiomics Regression analysis Regression models Retrospective Studies Signatures Survival Ultrasound |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RrYR64dHyWFjQVOLWumpi53VcoZYC2h6qrtSeItuxqxUhRZssB_4F_5iZbJIWCkg9Z2I7ztjzjf3NDMA7K7WPLe1-ieOjGxNFIjWJEYFxpD-0oGTLJpydxidz9ekiuuiCwuqe7d5fSbY79RDsxmXHDgW7O2Tm0kDIDdiM2EEZweb0w-Xno5tku0FbWIyc9VQkWaa6YJm_t_K7QbqDMu_ckLaG5_gxzPshr_kmXw5WjTmwP_7I5njfb3oCjzokitO16jyFB67ahoez7q59B35OK5ydfRRs5wpc6mLBAcw1MuOjzQaKukaNTFjsyepY8eHud82UeH5ATZFLj9cemSiqyxLrFW1NpNyoqwJJX77eDgBDQxuvXzQ1LiosuXybuKJ-HV6VC6YxPYP58dH5-xPRFXAQllBWI8jbcVaFKo594WWhU7J9KTlgmmAmwSDpnE2MIQfKKC4dqYOUwIP1UVb4MCsyKZ_DiAbuXgKazKno0ASRlUoVxpsg9Iw_ZBh5cnL1GIL-L-a2y27ORTbKfMjL3M51TnOdt3OdyzHsDe98W-f2-K_0pFeOvFvndU4AUnL4cxCPYXd4TCuUr1105a5XJKMSgpFpKknmxVqphu6k5HxjWTKG_V5Bbhr_91he3U_8NWyFTMVpCUcTGDXLlXtDWKoxb7ul8wsIdxN1 priority: 102 providerName: Springer Nature |
Title | An MRI-based radiomics signature as a pretreatment noninvasive predictor of overall survival and chemotherapeutic benefits in lower-grade gliomas |
URI | https://link.springer.com/article/10.1007/s00330-020-07581-3 https://www.ncbi.nlm.nih.gov/pubmed/33409797 https://www.proquest.com/docview/2503052116 https://www.proquest.com/docview/2476128836 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1432-1084 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1432-1084 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 0938-7994 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZoKyEuiDdpS2QkbmBRr72vE0pQ0gJKhCoihdPKzyrSsindpP-j_5gZx5u0qujJB3tta2c8D_ubGUI-GKF8ZkD65Q6vbnSaskLnmnHtgH_gQImAJpxMs7OZ_D5P5_HCrY2wyk4mBkFtlwbvyD-DqhYYaMqzL5d_GVaNwtfVWEJjjxzwBDgJI8XHp7ukuzwUGAOnvWB5WcoYNBNC57CI2QlD5wmUZsGZuKuY7lmb915KgwIaPyNPo-VIBxtSPyePXPOCPJ7Et_GX5GbQ0Mn5N4Z6ydIrZRcYcNxSRGiE7J1UtVRRBBh24HLa4GXstUIIO3bAVOCC06WnCOxUdU3bNYgSYEaqGkuBvn9uB2xRDYLSL1YtXTS0xnJr7ALWdfSiXiDs6BWZjUe_vp6xWHCBGbCKVgy8E2dkIrPMWy-sKkBXFeAwKTALwWwRzplca3B4tMRSj4oXoOyNT0vrk9KWQrwm-7Bx95ZQXTqZnmieGiGl1V7zxKO9IJLUg1OqeoR3f7syMRs5FsWoq20e5UChCihUBQpVokc-br-53OTieHD0cUfEKp7LttpxUY-833bDicJnEtW45RrGyBzMvqIQMObNhvjb5YTA_GBl3iOfOm7YTf7_vRw-vJcj8iRBqEwABB2T_dXV2r0DW2el-2Qvn-f9wNZ9cjAYD4dTbE9__xhBOxxNf55D7ywZ_AN4VgAP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRQIuiP8uFBgkOIHFJnb-DghVQLVLuz2gVtpbsGO7WilkS7ML4jF4EZ6RGW-yC6rorec4jpUZfzNjfzMD8KKS2qcVoV_m-OjGJInITWZEZBzpD20oGdiEk6N0dKI-TZPpFvzuc2GYVtljYgBqO6_4jPwNmWrJiaZR-u7sm-CuUXy72rfQWKnFgfv5g0K29u34A8n3ZRzvfzx-PxJdVwFRkelfCHLBXaVilabeeml1ToCcU1Sgyfch2yydqzJjyKs3ivsZ6igni1b5pLA-LmzBB6AE-deUHCqu1Z9Ns02R3yg0NBsWBCJZUaguSSek6nHTtKHgYI2MdB4J-a8hvODdXriZDQZv_zbc6jxV3Fup1h3Ycs1duD7p7uLvwa-9Biefx4LtoMVzbWec4NwiM0JCtVDULWpkQmNPZseGD3-_a6bM8wOaikJ-nHtkIqmua2yXBF2k_Kgbi6RPX_9OEENDwOxnixZnDdbc3k2c0ncdntYzpjndh5MrEcUD2KaFux1AUziVDE2UVFIpa7yJYs_-iYwTT0GwHkDU_-2y6qqfcxOOulzXbQ4SKklCZZBQKQfwav3O2ar2x6Wjd3shlh0OtOVGawfwfP2YdjBfy-jGzZc0RmXkZua5pDEPV8Jff05KrkdWZAN43WvDZvL_r-XR5Wt5BjdGx5PD8nB8dPAYbsZM0wlkpF3YXpwv3RPysxbmaVBuhC9XvZv-AHUGNO8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VRaq4IP4JFBgkOMGqsXfttQ8IVZSooaRCiEq5mf2tIhmn1AmIx-B1eDpmNnYCquitZ2_sVWbmm5ndb2YYe26FDrlF9FOejm5MlvHCKMMT41F_0KBEZBNOjvPDE_l-mk232O--FoZolT0mRqB2c0tn5HvoqgUVmib5XuhoER8PRm_OvnGaIEU3rf04jZWKHPmfPzB9a1-PD1DWL9J09O7z20PeTRjgFsOABcdw3FuZyjwPLginCwTnAjMEjXEQ-mnhvVXGYIRvJM021EmB3s2GrHQhLV1Jh6EI_9eUkILoZGqqNg1_kzjcbFgioKiylF3BTizbowFqQ06JGzrsIuHiX6d4IdK9cEsbnd_oJrvRRa2wv1KzW2zLN7fZzqS7l7_Dfu03MPk05uQTHZxrN6Ni5xaIHRI7h4JuQQORG3tiOzR0EPxdE32eHuCrMP2HeQAileq6hnaJMIaGALpxgLr19e9iMTAI0mG2aGHWQE2j3vgpftfDaT0jytNddnIlorjHtnHj_gEDU3qZDU2SWSGlM8EkaaBYRaRZwIRYD1jS_9uV7Tqh00COulr3cI4SqlBCVZRQJQbs5fo3Z6s-IJeu3u2FWHWY0FYbDR6wZ-vHaM10RaMbP1_iGqkw5CwKgWvur4S__pwQ1JusVAP2qteGzcv_v5eHl-_lKdtBO6o-jI-PHrHrKTF2Ii9pl20vzpf-MYZcC_Mk6jawL1dtTH8AGuE5Kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+MRI-based+radiomics+signature+as+a+pretreatment+noninvasive+predictor+of+overall+survival+and+chemotherapeutic+benefits+in+lower-grade+gliomas&rft.jtitle=European+radiology&rft.au=Wang%2C+Jingtao&rft.au=Zheng%2C+Xuejun&rft.au=Zhang%2C+Jinling&rft.au=Xue%2C+Hao&rft.date=2021-04-01&rft.eissn=1432-1084&rft.volume=31&rft.issue=4&rft.spage=1785&rft_id=info:doi/10.1007%2Fs00330-020-07581-3&rft_id=info%3Apmid%2F33409797&rft.externalDocID=33409797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |