Multiobjective bacteria foraging algorithm for electrical load dispatch problem
In this paper the bacteria foraging meta-heuristic is extended into the domain of multiobjective optimization. In this multiobjective bacteria foraging (MOBF) optimization technique, during chemotaxis a set of intermediate bacteria positions are generated. Next, we use pareto non-dominance criterion...
Saved in:
| Published in | Energy conversion and management Vol. 52; no. 2; pp. 1334 - 1342 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.02.2011
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 |
| DOI | 10.1016/j.enconman.2010.09.031 |
Cover
| Summary: | In this paper the bacteria foraging meta-heuristic is extended into the domain of multiobjective optimization. In this multiobjective bacteria foraging (MOBF) optimization technique, during chemotaxis a set of intermediate bacteria positions are generated. Next, we use pareto non-dominance criterion to determine final set of bacteria positions, which constitute the superior solutions among current and intermediate solutions. To test the efficacy of our proposed algorithm we have chosen a highly constrained optimization problem namely economic/emission dispatch. Economic dispatch is a constrained optimization problem in power system to distribute the load demand among the committed generators economically. Now-a-days environmental concern that arises due to the operation of fossil fuel fired electric generators and global warming, transforms the classical economic load dispatch problem into multiobjective environmental/economic dispatch (EED). In the proposed work, we have considered the standard IEEE 30-bus six-generator test system on which several other multiobjective evolutionary algorithms are tested. We have also made a comparative study of the proposed algorithm with that of reported in the literature. Results show that the proposed algorithm is a capable candidate in solving the multiobjective economic emission load dispatch problem. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0196-8904 1879-2227 |
| DOI: | 10.1016/j.enconman.2010.09.031 |