Strange metallicity in the doped Hubbard model
Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated syste...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 366; no. 6468; pp. 987 - 990 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
22.11.2019
The American Association for the Advancement of Science AAAS |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aau7063 |
Cover
Abstract | Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials. |
---|---|
AbstractList | Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials. Looking for a strange metalIn many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong correlations, this approximation can break down, leading to anomalous transport properties at high temperatures. Huang et al. used quantum Monte Carlo calculations to look for this so-called strange metal phase in the simplest two-dimensional model of interacting electrons, the Hubbard model. They found that the calculated resistivity had a linear temperature dependence when hole doping was introduced, as expected in the strange metal phase. This observation provides confidence that simplified models can be used to describe and understand the behavior of real materials, such as cuprate high-temperature superconductors.Science, this issue p. 987Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials. In many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong correlations, this approximation can break down, leading to anomalous transport properties at high temperatures. Huang et al. used quantum Monte Carlo calculations to look for this so-called strange metal phase in the simplest two-dimensional model of interacting electrons, the Hubbard model. They found that the calculated resistivity had a linear temperature dependence when hole doping was introduced, as expected in the strange metal phase. This observation provides confidence that simplified models can be used to describe and understand the behavior of real materials, such as cuprate high-temperature superconductors. Science , this issue p. 987 Quantum Monte Carlo calculations indicate the presence of anomalous transport in the normal state of the 2D Hubbard model. Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials. Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials. |
Author | Sheppard, Ryan Huang, Edwin W. Moritz, Brian Devereaux, Thomas P. |
Author_xml | – sequence: 1 givenname: Edwin W. surname: Huang fullname: Huang, Edwin W. – sequence: 2 givenname: Ryan surname: Sheppard fullname: Sheppard, Ryan – sequence: 3 givenname: Brian surname: Moritz fullname: Moritz, Brian – sequence: 4 givenname: Thomas P. surname: Devereaux fullname: Devereaux, Thomas P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31753997$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1575807$$D View this record in Osti.gov |
BookMark | eNp9kb1PxCAYh4k5433o7KRpdHHpCaWUMhrjV2LioDuh9K3HpYUT6OB_L5c7HW5wYuD5vfC8vzmaWGcBoXOCl4QU1W3QBqyGpVIjxxU9QjOCBctFgekEzTCmVV5jzqZoHsIa43Qn6AmaUsIZFYLP0PI9emU_IRsgqr432sTvzNgsriBr3Qba7HlsGuXbbHAt9KfouFN9gLP9uUAfjw8f98_569vTy_3da67LEsdc64IzUommbHCnmCBUc8AMgHSECoVBK047oVhNWqClIjUnjdIVhbqsNacLdLUb60I0MklG0CvtrAUdJWGcJakE3eygjXdfI4QoBxM09L2y4MYgi62lKNNHEnp9gK7d6G0y2FJVjUuOt9TlnhqbAVq58WZQ_lv-bisBtztAexeCh-4PIVhu-5D7PuS-j5RgB4nkoqJxNq3d9P_kLna5dYjO_z1TVHVFClHSHwelmUI |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_L032068 crossref_primary_10_1038_s41535_020_00254_w crossref_primary_10_1038_s41535_023_00611_5 crossref_primary_10_1103_PhysRevB_107_L201102 crossref_primary_10_1103_PhysRevB_106_075128 crossref_primary_10_1103_PhysRevLett_130_226502 crossref_primary_10_1103_PhysRevB_108_064514 crossref_primary_10_1103_PhysRevResearch_5_023198 crossref_primary_10_1103_PhysRevB_106_245123 crossref_primary_10_1103_PhysRevB_107_L041103 crossref_primary_10_1103_PhysRevB_109_L140301 crossref_primary_10_1103_PhysRevResearch_5_043007 crossref_primary_10_1103_PhysRevResearch_3_033033 crossref_primary_10_7566_JPSJ_92_092001 crossref_primary_10_1103_PhysRevB_102_045115 crossref_primary_10_1103_PhysRevB_102_115142 crossref_primary_10_1103_PhysRevA_102_033340 crossref_primary_10_1103_PhysRevResearch_2_033434 crossref_primary_10_1103_PhysRevD_101_014508 crossref_primary_10_1103_PhysRevResearch_3_023082 crossref_primary_10_1103_PhysRevB_108_085131 crossref_primary_10_21468_SciPostPhysCodeb_29_r0_3 crossref_primary_10_1103_PhysRevB_108_125145 crossref_primary_10_1103_RevModPhys_94_041002 crossref_primary_10_1142_S0129183124501031 crossref_primary_10_1142_S0217979224501017 crossref_primary_10_1103_PhysRevB_104_054513 crossref_primary_10_1073_pnas_2404853121 crossref_primary_10_1016_j_jssc_2020_121289 crossref_primary_10_1063_5_0133597 crossref_primary_10_1146_annurev_conmatphys_090921_033948 crossref_primary_10_1103_PhysRevB_104_205123 crossref_primary_10_1103_PhysRevB_111_125105 crossref_primary_10_1103_PhysRevX_11_041028 crossref_primary_10_1016_j_cartre_2022_100231 crossref_primary_10_1038_s42005_021_00718_w crossref_primary_10_1103_PhysRevB_106_064504 crossref_primary_10_1103_PhysRevB_107_085126 crossref_primary_10_1080_00018732_2021_1935698 crossref_primary_10_1103_PhysRevB_107_L100301 crossref_primary_10_1103_PhysRevB_111_035123 crossref_primary_10_1103_PhysRevB_106_195117 crossref_primary_10_21468_SciPostPhys_11_2_039 crossref_primary_10_1103_PhysRevLett_127_197003 crossref_primary_10_1103_PhysRevX_14_041053 crossref_primary_10_1088_1367_2630_ac3a83 crossref_primary_10_1038_s41598_020_77513_0 crossref_primary_10_1103_PhysRevB_104_045138 crossref_primary_10_1038_s42005_022_00968_2 crossref_primary_10_1146_annurev_conmatphys_031620_102024 crossref_primary_10_1038_s43246_024_00582_5 crossref_primary_10_1103_PhysRevLett_132_266502 crossref_primary_10_1103_PhysRevB_100_245147 crossref_primary_10_1103_PhysRevLett_127_266601 crossref_primary_10_1080_00018732_2024_2369389 crossref_primary_10_1103_PhysRevB_101_245149 crossref_primary_10_1073_pnas_2115819119 crossref_primary_10_1126_science_abg9299 crossref_primary_10_1103_PhysRevB_107_165154 crossref_primary_10_1103_PhysRevB_109_075114 crossref_primary_10_1103_PhysRevB_109_184510 crossref_primary_10_1103_PhysRevB_110_075118 crossref_primary_10_1103_PhysRevB_107_155140 crossref_primary_10_21468_SciPostPhys_13_4_095 crossref_primary_10_1103_PhysRevB_104_L081115 crossref_primary_10_1103_PhysRevB_110_165137 crossref_primary_10_1126_science_ade3232 crossref_primary_10_1103_PhysRevB_108_155118 crossref_primary_10_1103_PhysRevB_109_235118 crossref_primary_10_21468_SciPostPhysCodeb_29 crossref_primary_10_1103_PhysRevA_109_053303 crossref_primary_10_7566_JPSJ_90_111010 crossref_primary_10_1103_PhysRevB_106_205144 crossref_primary_10_1103_RevModPhys_94_035004 crossref_primary_10_1073_pnas_2322670121 crossref_primary_10_1103_PhysRevB_102_201112 crossref_primary_10_1103_PhysRevB_111_064518 crossref_primary_10_1016_j_physrep_2024_09_005 crossref_primary_10_1103_PhysRevB_101_075113 crossref_primary_10_1103_PhysRevB_104_205101 crossref_primary_10_1103_PhysRevB_103_195111 crossref_primary_10_1103_PhysRevB_104_165143 crossref_primary_10_1103_PhysRevB_109_115108 crossref_primary_10_1103_PhysRevB_105_L161103 crossref_primary_10_1103_PhysRevB_104_165146 crossref_primary_10_1016_j_jallcom_2021_161812 crossref_primary_10_1103_PhysRevB_108_235173 crossref_primary_10_3390_ma16031044 crossref_primary_10_1038_s42005_023_01362_2 crossref_primary_10_1103_PhysRevB_106_035108 crossref_primary_10_1103_PhysRevB_109_195150 crossref_primary_10_1103_PhysRevB_102_195131 crossref_primary_10_1103_PhysRevB_104_L081106 crossref_primary_10_1103_PhysRevResearch_3_033204 crossref_primary_10_1103_PhysRevB_107_054508 crossref_primary_10_1126_science_abh4273 |
Cites_doi | 10.1103/RevModPhys.75.1085 10.1103/PhysRevB.82.165125 10.1103/PhysRevB.55.14953 10.1103/PhysRevB.94.235115 10.1103/PhysRevLett.111.036401 10.1103/PhysRevLett.122.186601 10.1016/0370-1573(95)00074-7 10.1103/RevModPhys.87.457 10.1103/PhysRevB.81.054512 10.1103/PhysRevLett.119.141601 10.1088/1751-8113/48/26/265002 10.1103/PhysRevE.94.023303 10.1103/PhysRevB.40.506 10.1103/PhysRevB.73.035113 10.1126/science.aam7127 10.1103/PhysRevB.93.224205 10.1103/PhysRevB.54.R3756 10.1038/nature14165 10.1103/PhysRevLett.110.086401 10.1126/science.aal5304 10.1038/nphys3174 10.1080/00018739500101526 10.1080/14786430410001716944 10.1126/science.aat4387 10.1038/s41535-018-0097-0 10.1103/PhysRevD.24.2278 10.1073/pnas.1620651114 10.1103/PhysRevB.95.041110 10.1126/science.aat4134 10.1103/PhysRevLett.74.3253 10.1103/PhysRevB.84.085128 |
ContentType | Journal Article |
Copyright | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
CorporateAuthor | SLAC National Accelerator Lab., Menlo Park, CA (United States) |
CorporateAuthor_xml | – name: SLAC National Accelerator Lab., Menlo Park, CA (United States) |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 OTOTI |
DOI | 10.1126/science.aau7063 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 990 |
ExternalDocumentID | 1575807 31753997 10_1126_science_aau7063 26861294 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AEUPB AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JENOY JLS JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O GX1 NPM OK1 UIG YCJ ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 0B8 63O 6XO ABPTK ABQIS AEXZC AFUVZ AGCDD ANJGP B-7 ESX IGG OTOTI PK8 PQEST RHF UMP VQA XFK ZA5 |
ID | FETCH-LOGICAL-c440t-cc275169b4b0fa5913c7e05ee1f139a0eca73f9a581de34a1871bac63e848c73 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu May 18 22:27:01 EDT 2023 Sat Sep 27 20:15:18 EDT 2025 Fri Jul 25 10:35:57 EDT 2025 Thu Apr 03 07:07:04 EDT 2025 Tue Jul 01 01:51:36 EDT 2025 Thu Apr 24 23:09:13 EDT 2025 Thu Jul 03 21:41:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6468 |
Language | English |
License | Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c440t-cc275169b4b0fa5913c7e05ee1f139a0eca73f9a581de34a1871bac63e848c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-76SF00515; AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division National Energy Research Scientific Computing Center |
ORCID | 0000-0002-6250-9529 0000-0001-5598-2089 0000-0002-3747-8484 0000-0001-8072-9237 0000000262509529 0000000180729237 0000000155982089 0000000237478484 |
PMID | 31753997 |
PQID | 2316804701 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | osti_scitechconnect_1575807 proquest_miscellaneous_2317594751 proquest_journals_2316804701 pubmed_primary_31753997 crossref_primary_10_1126_science_aau7063 crossref_citationtrail_10_1126_science_aau7063 jstor_primary_26861294 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-22 |
PublicationDateYYYYMMDD | 2019-11-22 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2019 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science AAAS |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_5_2 doi: 10.1103/RevModPhys.75.1085 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevB.82.165125 – ident: e_1_3_2_10_2 doi: 10.1103/PhysRevB.55.14953 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevB.94.235115 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevLett.111.036401 – ident: e_1_3_2_22_2 doi: 10.1103/PhysRevLett.122.186601 – ident: e_1_3_2_13_2 doi: 10.1016/0370-1573(95)00074-7 – ident: e_1_3_2_34_2 – ident: e_1_3_2_2_2 doi: 10.1103/RevModPhys.87.457 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevB.81.054512 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevLett.119.141601 – ident: e_1_3_2_37_2 doi: 10.1088/1751-8113/48/26/265002 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevE.94.023303 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevB.40.506 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevB.73.035113 – ident: e_1_3_2_31_2 doi: 10.1126/science.aam7127 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevB.93.224205 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevB.54.R3756 – ident: e_1_3_2_36_2 – ident: e_1_3_2_3_2 doi: 10.1038/nature14165 – ident: e_1_3_2_25_2 doi: 10.1103/PhysRevLett.110.086401 – ident: e_1_3_2_30_2 doi: 10.1126/science.aal5304 – ident: e_1_3_2_19_2 doi: 10.1038/nphys3174 – ident: e_1_3_2_23_2 doi: 10.1080/00018739500101526 – ident: e_1_3_2_6_2 doi: 10.1080/14786430410001716944 – ident: e_1_3_2_29_2 doi: 10.1126/science.aat4387 – ident: e_1_3_2_33_2 – ident: e_1_3_2_27_2 – ident: e_1_3_2_32_2 doi: 10.1038/s41535-018-0097-0 – ident: e_1_3_2_7_2 doi: 10.1103/PhysRevD.24.2278 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.1620651114 – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevB.95.041110 – ident: e_1_3_2_35_2 – ident: e_1_3_2_28_2 doi: 10.1126/science.aat4134 – ident: e_1_3_2_4_2 doi: 10.1103/PhysRevLett.74.3253 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevB.84.085128 |
SSID | ssj0009593 |
Score | 2.6495528 |
Snippet | Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated... In many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong correlations, this approximation can... Looking for a strange metalIn many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong... |
SourceID | osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 987 |
SubjectTerms | Charge materials Climate Computer simulation Confidence Correlation Current carriers Doping High temperature High temperature superconductors Incompatibility MATERIALS SCIENCE Mathematical models Metallicity Metals Monte Carlo simulation Temperature Temperature dependence Transport properties Two dimensional models |
Title | Strange metallicity in the doped Hubbard model |
URI | https://www.jstor.org/stable/26861294 https://www.ncbi.nlm.nih.gov/pubmed/31753997 https://www.proquest.com/docview/2316804701 https://www.proquest.com/docview/2317594751 https://www.osti.gov/biblio/1575807 |
Volume | 366 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVqBeEC20hBYUJA7lkJWTOHFy3EKrFVI5LVJvke04YqU2WbWJaPvrGT_yqGAl4BLt2k4i-RuPv3HmAfCR6WDJjJRBLoQIaFwlQYbbeJDHaG5pNwxqkulcfEuX3-nXy-Ry9FU10SWtmMuHP8aV_A-q2Ia46ijZf0B2eCg24G_EF6-IMF7_CmOdWrZGq_9aIYW-WkvNqJ3fYtlskEouOyH0OYGpdzPlof2SRn45fLOZIDU4Hy6si0DvMeBumxwfLDt34HxW_sRXjyc2P9TGZnJECO9HEbxobtamhKw-lhibte8S0tfubnRacpFn7kQizHVong0uniurRYkuABmReKpmY1tdxclTSm01Hac3c7vr_q7PJxUo1ZzzjhGrDyfobq4NvJoIIdti48Y2uBv2XU9hJ2JIsWawszj9cnr-KDuzy_s0iajq37cLz_snPGIv1oEV9_IGtfF2C8UwldVLeOFMDH9h5WUPnqh6H57ZoqP3-7DnQLz1T1zO8U-vYO5EyZ-Ikr-ufZQB34iS70TJN6L0GlbnZ6vPy8CV0ggkpaQNpIyY_iIqqCAVT_IwlkyRRKmwQhOAEyU5i6ucJ2i-qJjyEO1owWUaq4xmksUHMKubWr0BH__kJY-5IqKkmUiyKioJLVWoY7xFVnkw72eokC7NvK52clUYczNKCze7hZtdD06GGzY2w8r2oQdmyodxUZohQ8-pB0caAz1epz6W2kdMtkWItkhGmAfHPTSFW723RaQrthHKSOjBh6Ebdav-YMZr1XRmDEtyijPnwaGFdHh1LxFvt_Ycwe64Oo5h1t506h0y2Fa8d_L3Czk2mm4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strange+metallicity+in+the+doped+Hubbard+model&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Huang%2C+Edwin+W&rft.au=Sheppard%2C+Ryan&rft.au=Moritz%2C+Brian&rft.au=Devereaux%2C+Thomas+P&rft.date=2019-11-22&rft.eissn=1095-9203&rft.volume=366&rft.issue=6468&rft.spage=987&rft_id=info:doi/10.1126%2Fscience.aau7063&rft_id=info%3Apmid%2F31753997&rft.externalDocID=31753997 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |