Strange metallicity in the doped Hubbard model

Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated syste...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 366; no. 6468; pp. 987 - 990
Main Authors Huang, Edwin W., Sheppard, Ryan, Moritz, Brian, Devereaux, Thomas P.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 22.11.2019
The American Association for the Advancement of Science
AAAS
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aau7063

Cover

Abstract Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
AbstractList Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
Looking for a strange metalIn many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong correlations, this approximation can break down, leading to anomalous transport properties at high temperatures. Huang et al. used quantum Monte Carlo calculations to look for this so-called strange metal phase in the simplest two-dimensional model of interacting electrons, the Hubbard model. They found that the calculated resistivity had a linear temperature dependence when hole doping was introduced, as expected in the strange metal phase. This observation provides confidence that simplified models can be used to describe and understand the behavior of real materials, such as cuprate high-temperature superconductors.Science, this issue p. 987Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
In many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong correlations, this approximation can break down, leading to anomalous transport properties at high temperatures. Huang et al. used quantum Monte Carlo calculations to look for this so-called strange metal phase in the simplest two-dimensional model of interacting electrons, the Hubbard model. They found that the calculated resistivity had a linear temperature dependence when hole doping was introduced, as expected in the strange metal phase. This observation provides confidence that simplified models can be used to describe and understand the behavior of real materials, such as cuprate high-temperature superconductors. Science , this issue p. 987 Quantum Monte Carlo calculations indicate the presence of anomalous transport in the normal state of the 2D Hubbard model. Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.
Author Sheppard, Ryan
Huang, Edwin W.
Moritz, Brian
Devereaux, Thomas P.
Author_xml – sequence: 1
  givenname: Edwin W.
  surname: Huang
  fullname: Huang, Edwin W.
– sequence: 2
  givenname: Ryan
  surname: Sheppard
  fullname: Sheppard, Ryan
– sequence: 3
  givenname: Brian
  surname: Moritz
  fullname: Moritz, Brian
– sequence: 4
  givenname: Thomas P.
  surname: Devereaux
  fullname: Devereaux, Thomas P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31753997$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1575807$$D View this record in Osti.gov
BookMark eNp9kb1PxCAYh4k5433o7KRpdHHpCaWUMhrjV2LioDuh9K3HpYUT6OB_L5c7HW5wYuD5vfC8vzmaWGcBoXOCl4QU1W3QBqyGpVIjxxU9QjOCBctFgekEzTCmVV5jzqZoHsIa43Qn6AmaUsIZFYLP0PI9emU_IRsgqr432sTvzNgsriBr3Qba7HlsGuXbbHAt9KfouFN9gLP9uUAfjw8f98_569vTy_3da67LEsdc64IzUommbHCnmCBUc8AMgHSECoVBK047oVhNWqClIjUnjdIVhbqsNacLdLUb60I0MklG0CvtrAUdJWGcJakE3eygjXdfI4QoBxM09L2y4MYgi62lKNNHEnp9gK7d6G0y2FJVjUuOt9TlnhqbAVq58WZQ_lv-bisBtztAexeCh-4PIVhu-5D7PuS-j5RgB4nkoqJxNq3d9P_kLna5dYjO_z1TVHVFClHSHwelmUI
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_L032068
crossref_primary_10_1038_s41535_020_00254_w
crossref_primary_10_1038_s41535_023_00611_5
crossref_primary_10_1103_PhysRevB_107_L201102
crossref_primary_10_1103_PhysRevB_106_075128
crossref_primary_10_1103_PhysRevLett_130_226502
crossref_primary_10_1103_PhysRevB_108_064514
crossref_primary_10_1103_PhysRevResearch_5_023198
crossref_primary_10_1103_PhysRevB_106_245123
crossref_primary_10_1103_PhysRevB_107_L041103
crossref_primary_10_1103_PhysRevB_109_L140301
crossref_primary_10_1103_PhysRevResearch_5_043007
crossref_primary_10_1103_PhysRevResearch_3_033033
crossref_primary_10_7566_JPSJ_92_092001
crossref_primary_10_1103_PhysRevB_102_045115
crossref_primary_10_1103_PhysRevB_102_115142
crossref_primary_10_1103_PhysRevA_102_033340
crossref_primary_10_1103_PhysRevResearch_2_033434
crossref_primary_10_1103_PhysRevD_101_014508
crossref_primary_10_1103_PhysRevResearch_3_023082
crossref_primary_10_1103_PhysRevB_108_085131
crossref_primary_10_21468_SciPostPhysCodeb_29_r0_3
crossref_primary_10_1103_PhysRevB_108_125145
crossref_primary_10_1103_RevModPhys_94_041002
crossref_primary_10_1142_S0129183124501031
crossref_primary_10_1142_S0217979224501017
crossref_primary_10_1103_PhysRevB_104_054513
crossref_primary_10_1073_pnas_2404853121
crossref_primary_10_1016_j_jssc_2020_121289
crossref_primary_10_1063_5_0133597
crossref_primary_10_1146_annurev_conmatphys_090921_033948
crossref_primary_10_1103_PhysRevB_104_205123
crossref_primary_10_1103_PhysRevB_111_125105
crossref_primary_10_1103_PhysRevX_11_041028
crossref_primary_10_1016_j_cartre_2022_100231
crossref_primary_10_1038_s42005_021_00718_w
crossref_primary_10_1103_PhysRevB_106_064504
crossref_primary_10_1103_PhysRevB_107_085126
crossref_primary_10_1080_00018732_2021_1935698
crossref_primary_10_1103_PhysRevB_107_L100301
crossref_primary_10_1103_PhysRevB_111_035123
crossref_primary_10_1103_PhysRevB_106_195117
crossref_primary_10_21468_SciPostPhys_11_2_039
crossref_primary_10_1103_PhysRevLett_127_197003
crossref_primary_10_1103_PhysRevX_14_041053
crossref_primary_10_1088_1367_2630_ac3a83
crossref_primary_10_1038_s41598_020_77513_0
crossref_primary_10_1103_PhysRevB_104_045138
crossref_primary_10_1038_s42005_022_00968_2
crossref_primary_10_1146_annurev_conmatphys_031620_102024
crossref_primary_10_1038_s43246_024_00582_5
crossref_primary_10_1103_PhysRevLett_132_266502
crossref_primary_10_1103_PhysRevB_100_245147
crossref_primary_10_1103_PhysRevLett_127_266601
crossref_primary_10_1080_00018732_2024_2369389
crossref_primary_10_1103_PhysRevB_101_245149
crossref_primary_10_1073_pnas_2115819119
crossref_primary_10_1126_science_abg9299
crossref_primary_10_1103_PhysRevB_107_165154
crossref_primary_10_1103_PhysRevB_109_075114
crossref_primary_10_1103_PhysRevB_109_184510
crossref_primary_10_1103_PhysRevB_110_075118
crossref_primary_10_1103_PhysRevB_107_155140
crossref_primary_10_21468_SciPostPhys_13_4_095
crossref_primary_10_1103_PhysRevB_104_L081115
crossref_primary_10_1103_PhysRevB_110_165137
crossref_primary_10_1126_science_ade3232
crossref_primary_10_1103_PhysRevB_108_155118
crossref_primary_10_1103_PhysRevB_109_235118
crossref_primary_10_21468_SciPostPhysCodeb_29
crossref_primary_10_1103_PhysRevA_109_053303
crossref_primary_10_7566_JPSJ_90_111010
crossref_primary_10_1103_PhysRevB_106_205144
crossref_primary_10_1103_RevModPhys_94_035004
crossref_primary_10_1073_pnas_2322670121
crossref_primary_10_1103_PhysRevB_102_201112
crossref_primary_10_1103_PhysRevB_111_064518
crossref_primary_10_1016_j_physrep_2024_09_005
crossref_primary_10_1103_PhysRevB_101_075113
crossref_primary_10_1103_PhysRevB_104_205101
crossref_primary_10_1103_PhysRevB_103_195111
crossref_primary_10_1103_PhysRevB_104_165143
crossref_primary_10_1103_PhysRevB_109_115108
crossref_primary_10_1103_PhysRevB_105_L161103
crossref_primary_10_1103_PhysRevB_104_165146
crossref_primary_10_1016_j_jallcom_2021_161812
crossref_primary_10_1103_PhysRevB_108_235173
crossref_primary_10_3390_ma16031044
crossref_primary_10_1038_s42005_023_01362_2
crossref_primary_10_1103_PhysRevB_106_035108
crossref_primary_10_1103_PhysRevB_109_195150
crossref_primary_10_1103_PhysRevB_102_195131
crossref_primary_10_1103_PhysRevB_104_L081106
crossref_primary_10_1103_PhysRevResearch_3_033204
crossref_primary_10_1103_PhysRevB_107_054508
crossref_primary_10_1126_science_abh4273
Cites_doi 10.1103/RevModPhys.75.1085
10.1103/PhysRevB.82.165125
10.1103/PhysRevB.55.14953
10.1103/PhysRevB.94.235115
10.1103/PhysRevLett.111.036401
10.1103/PhysRevLett.122.186601
10.1016/0370-1573(95)00074-7
10.1103/RevModPhys.87.457
10.1103/PhysRevB.81.054512
10.1103/PhysRevLett.119.141601
10.1088/1751-8113/48/26/265002
10.1103/PhysRevE.94.023303
10.1103/PhysRevB.40.506
10.1103/PhysRevB.73.035113
10.1126/science.aam7127
10.1103/PhysRevB.93.224205
10.1103/PhysRevB.54.R3756
10.1038/nature14165
10.1103/PhysRevLett.110.086401
10.1126/science.aal5304
10.1038/nphys3174
10.1080/00018739500101526
10.1080/14786430410001716944
10.1126/science.aat4387
10.1038/s41535-018-0097-0
10.1103/PhysRevD.24.2278
10.1073/pnas.1620651114
10.1103/PhysRevB.95.041110
10.1126/science.aat4134
10.1103/PhysRevLett.74.3253
10.1103/PhysRevB.84.085128
ContentType Journal Article
Copyright Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
CorporateAuthor SLAC National Accelerator Lab., Menlo Park, CA (United States)
CorporateAuthor_xml – name: SLAC National Accelerator Lab., Menlo Park, CA (United States)
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
OTOTI
DOI 10.1126/science.aau7063
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 990
ExternalDocumentID 1575807
31753997
10_1126_science_aau7063
26861294
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JENOY
JLS
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
GX1
NPM
OK1
UIG
YCJ
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
0B8
63O
6XO
ABPTK
ABQIS
AEXZC
AFUVZ
AGCDD
ANJGP
B-7
ESX
IGG
OTOTI
PK8
PQEST
RHF
UMP
VQA
XFK
ZA5
ID FETCH-LOGICAL-c440t-cc275169b4b0fa5913c7e05ee1f139a0eca73f9a581de34a1871bac63e848c73
ISSN 0036-8075
1095-9203
IngestDate Thu May 18 22:27:01 EDT 2023
Sat Sep 27 20:15:18 EDT 2025
Fri Jul 25 10:35:57 EDT 2025
Thu Apr 03 07:07:04 EDT 2025
Tue Jul 01 01:51:36 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
Thu Jul 03 21:41:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6468
Language English
License Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-cc275169b4b0fa5913c7e05ee1f139a0eca73f9a581de34a1871bac63e848c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-76SF00515; AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
National Energy Research Scientific Computing Center
ORCID 0000-0002-6250-9529
0000-0001-5598-2089
0000-0002-3747-8484
0000-0001-8072-9237
0000000262509529
0000000180729237
0000000155982089
0000000237478484
PMID 31753997
PQID 2316804701
PQPubID 1256
PageCount 4
ParticipantIDs osti_scitechconnect_1575807
proquest_miscellaneous_2317594751
proquest_journals_2316804701
pubmed_primary_31753997
crossref_primary_10_1126_science_aau7063
crossref_citationtrail_10_1126_science_aau7063
jstor_primary_26861294
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-22
PublicationDateYYYYMMDD 2019-11-22
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2019
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
AAAS
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_5_2
  doi: 10.1103/RevModPhys.75.1085
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevB.82.165125
– ident: e_1_3_2_10_2
  doi: 10.1103/PhysRevB.55.14953
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevB.94.235115
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevLett.111.036401
– ident: e_1_3_2_22_2
  doi: 10.1103/PhysRevLett.122.186601
– ident: e_1_3_2_13_2
  doi: 10.1016/0370-1573(95)00074-7
– ident: e_1_3_2_34_2
– ident: e_1_3_2_2_2
  doi: 10.1103/RevModPhys.87.457
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevB.81.054512
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevLett.119.141601
– ident: e_1_3_2_37_2
  doi: 10.1088/1751-8113/48/26/265002
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevE.94.023303
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevB.40.506
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevB.73.035113
– ident: e_1_3_2_31_2
  doi: 10.1126/science.aam7127
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevB.93.224205
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevB.54.R3756
– ident: e_1_3_2_36_2
– ident: e_1_3_2_3_2
  doi: 10.1038/nature14165
– ident: e_1_3_2_25_2
  doi: 10.1103/PhysRevLett.110.086401
– ident: e_1_3_2_30_2
  doi: 10.1126/science.aal5304
– ident: e_1_3_2_19_2
  doi: 10.1038/nphys3174
– ident: e_1_3_2_23_2
  doi: 10.1080/00018739500101526
– ident: e_1_3_2_6_2
  doi: 10.1080/14786430410001716944
– ident: e_1_3_2_29_2
  doi: 10.1126/science.aat4387
– ident: e_1_3_2_33_2
– ident: e_1_3_2_27_2
– ident: e_1_3_2_32_2
  doi: 10.1038/s41535-018-0097-0
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevD.24.2278
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.1620651114
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevB.95.041110
– ident: e_1_3_2_35_2
– ident: e_1_3_2_28_2
  doi: 10.1126/science.aat4134
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevLett.74.3253
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevB.84.085128
SSID ssj0009593
Score 2.6495528
Snippet Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated...
In many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong correlations, this approximation can...
Looking for a strange metalIn many materials, charge carriers are well described as noninteracting quasiparticles. However, in materials with strong...
SourceID osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 987
SubjectTerms Charge materials
Climate
Computer simulation
Confidence
Correlation
Current carriers
Doping
High temperature
High temperature superconductors
Incompatibility
MATERIALS SCIENCE
Mathematical models
Metallicity
Metals
Monte Carlo simulation
Temperature
Temperature dependence
Transport properties
Two dimensional models
Title Strange metallicity in the doped Hubbard model
URI https://www.jstor.org/stable/26861294
https://www.ncbi.nlm.nih.gov/pubmed/31753997
https://www.proquest.com/docview/2316804701
https://www.proquest.com/docview/2317594751
https://www.osti.gov/biblio/1575807
Volume 366
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BVqBeEC20hBYUJA7lkJWTOHFy3EKrFVI5LVJvke04YqU2WbWJaPvrGT_yqGAl4BLt2k4i-RuPv3HmAfCR6WDJjJRBLoQIaFwlQYbbeJDHaG5pNwxqkulcfEuX3-nXy-Ry9FU10SWtmMuHP8aV_A-q2Ia46ijZf0B2eCg24G_EF6-IMF7_CmOdWrZGq_9aIYW-WkvNqJ3fYtlskEouOyH0OYGpdzPlof2SRn45fLOZIDU4Hy6si0DvMeBumxwfLDt34HxW_sRXjyc2P9TGZnJECO9HEbxobtamhKw-lhibte8S0tfubnRacpFn7kQizHVong0uniurRYkuABmReKpmY1tdxclTSm01Hac3c7vr_q7PJxUo1ZzzjhGrDyfobq4NvJoIIdti48Y2uBv2XU9hJ2JIsWawszj9cnr-KDuzy_s0iajq37cLz_snPGIv1oEV9_IGtfF2C8UwldVLeOFMDH9h5WUPnqh6H57ZoqP3-7DnQLz1T1zO8U-vYO5EyZ-Ikr-ufZQB34iS70TJN6L0GlbnZ6vPy8CV0ggkpaQNpIyY_iIqqCAVT_IwlkyRRKmwQhOAEyU5i6ucJ2i-qJjyEO1owWUaq4xmksUHMKubWr0BH__kJY-5IqKkmUiyKioJLVWoY7xFVnkw72eokC7NvK52clUYczNKCze7hZtdD06GGzY2w8r2oQdmyodxUZohQ8-pB0caAz1epz6W2kdMtkWItkhGmAfHPTSFW723RaQrthHKSOjBh6Ebdav-YMZr1XRmDEtyijPnwaGFdHh1LxFvt_Ycwe64Oo5h1t506h0y2Fa8d_L3Czk2mm4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strange+metallicity+in+the+doped+Hubbard+model&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Huang%2C+Edwin+W&rft.au=Sheppard%2C+Ryan&rft.au=Moritz%2C+Brian&rft.au=Devereaux%2C+Thomas+P&rft.date=2019-11-22&rft.eissn=1095-9203&rft.volume=366&rft.issue=6468&rft.spage=987&rft_id=info:doi/10.1126%2Fscience.aau7063&rft_id=info%3Apmid%2F31753997&rft.externalDocID=31753997
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon