Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex

Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 8; no. 4; pp. 45005 - 1-11
Main Authors Chestek, Cynthia A, Gilja, Vikash, Nuyujukian, Paul, Foster, Justin D, Fan, Joline M, Kaufman, Matthew T, Churchland, Mark M, Rivera-Alvidrez, Zuley, Cunningham, John P, Ryu, Stephen I, Shenoy, Krishna V
Format Journal Article
LanguageEnglish
Published England 01.08.2011
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2560/8/4/045005

Cover

Abstract Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.
AbstractList Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.
Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from four intracortical arrays in three animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in three animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for three of four arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold-crossing events rather than well-isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold-crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.
Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals requires further characterization. Here, we quantify action potential changes and offline neural decoder performance over 382 days of recording from 4 intracortical arrays in 3 animals. Action potential amplitude decreased by 2.4% per month on average over the course of 9.4, 10.4, and 31.7 months in 3 animals. During most time periods, decoder performance was not well correlated with action potential amplitude (p > 0.05 for 3 of 4 arrays). In two arrays from one animal, action potential amplitude declined by an average of 37% over the first 2 months after implant. However, when using simple threshold crossing events rather than well isolated action potentials, no corresponding performance loss was observed during this time using an offline decoder. One of these arrays was effectively used for online prosthetic experiments over the following year. Substantial short-term variations in waveforms were quantified using a wireless system for contiguous recording in one animal, and compared within and between days for all three animals. Overall, this study suggests that action potential amplitude declines more slowly than previously supposed, and performance can be maintained over the course of multiple years when decoding from threshold crossing events rather than isolated action potentials. This suggests that neural prosthetic systems may provide high performance over multiple years in human clinical trials.
Author Nuyujukian, Paul
Cunningham, John P
Foster, Justin D
Shenoy, Krishna V
Chestek, Cynthia A
Ryu, Stephen I
Gilja, Vikash
Fan, Joline M
Rivera-Alvidrez, Zuley
Kaufman, Matthew T
Churchland, Mark M
AuthorAffiliation 1 Department of Electrical Engineering Stanford University, Stanford, CA
3 Department of Bioengineering Stanford University, Stanford, CA
2 Department of Computer Science Stanford University, Stanford, CA
4 Stanford Medical School Stanford University, Stanford, CA
5 Neurosciences Program Stanford University, Stanford, CA
6 Department of Neurosurgery Palo Alto Medical Foundation, Palo Alto, CA
AuthorAffiliation_xml – name: 5 Neurosciences Program Stanford University, Stanford, CA
– name: 4 Stanford Medical School Stanford University, Stanford, CA
– name: 6 Department of Neurosurgery Palo Alto Medical Foundation, Palo Alto, CA
– name: 1 Department of Electrical Engineering Stanford University, Stanford, CA
– name: 2 Department of Computer Science Stanford University, Stanford, CA
– name: 3 Department of Bioengineering Stanford University, Stanford, CA
Author_xml – sequence: 1
  givenname: Cynthia A
  surname: Chestek
  fullname: Chestek, Cynthia A
– sequence: 2
  givenname: Vikash
  surname: Gilja
  fullname: Gilja, Vikash
– sequence: 3
  givenname: Paul
  surname: Nuyujukian
  fullname: Nuyujukian, Paul
– sequence: 4
  givenname: Justin D
  surname: Foster
  fullname: Foster, Justin D
– sequence: 5
  givenname: Joline M
  surname: Fan
  fullname: Fan, Joline M
– sequence: 6
  givenname: Matthew T
  surname: Kaufman
  fullname: Kaufman, Matthew T
– sequence: 7
  givenname: Mark M
  surname: Churchland
  fullname: Churchland, Mark M
– sequence: 8
  givenname: Zuley
  surname: Rivera-Alvidrez
  fullname: Rivera-Alvidrez, Zuley
– sequence: 9
  givenname: John P
  surname: Cunningham
  fullname: Cunningham, John P
– sequence: 10
  givenname: Stephen I
  surname: Ryu
  fullname: Ryu, Stephen I
– sequence: 11
  givenname: Krishna V
  surname: Shenoy
  fullname: Shenoy, Krishna V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21775782$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URB_wDxDyDjZD7IlfwwIJVQUqReoG1tYdjycx8tjB9gD59zhNKJQFdOXHPd_Rveeeo5MQg0XoOSWvKVFqQSWjTcsFWagFWxDGCeGP0Nnxm7cnd3dBTtF5zl8IWVLZkSfotKVScqnaM1RWMaybYtOEc4HeeVd2OI442DmBx9sUc9nY4gw2MZQUPc5uHcBnPKZYmQrUQi2mqqkApAS7jF3AaWPznPEEBr7OFk-xxHSrsz-eosdjtbDPjucF-vz-6tPlx2Z18-H68t2qMYyR0kDbEyEoSNbWd8cGy3g7DFbSFgiXoDomKR8HYS0RAzeD7KzoOTOS9EaRfnmB-MF3DlvYfQfv9Ta5CdJOU6L3Kep9RHofkVaa6UOKlXt74LZzP9nB2Do5_GYjOH2_EtxGr-M3vRSMCSqrwcujQYp1-Fz05LKx3kOwcc5aSaVoJ1pala_-qaRs2UkpWddV6Ys_u7pr59cyq-DNQWDq1nKyozauQHH7xYHz_5uZ_QU_KKqf8p_Gtw
CitedBy_id crossref_primary_10_3390_mi12070761
crossref_primary_10_1088_1741_2560_13_1_016010
crossref_primary_10_1021_acs_nanolett_8b04456
crossref_primary_10_1021_acs_chemrev_1c00365
crossref_primary_10_1016_j_biomaterials_2023_122210
crossref_primary_10_34133_2020_7190517
crossref_primary_10_1088_1741_2560_12_3_036009
crossref_primary_10_3390_mi11090838
crossref_primary_10_1016_j_neuron_2021_11_026
crossref_primary_10_1088_1741_2552_ac6908
crossref_primary_10_1089_ten_teb_2015_0279
crossref_primary_10_1109_TBCAS_2022_3175926
crossref_primary_10_1371_journal_pcbi_1006168
crossref_primary_10_3389_fnins_2018_00456
crossref_primary_10_1038_s41598_020_77616_8
crossref_primary_10_1088_1741_2552_acbf78
crossref_primary_10_1038_nrn3724
crossref_primary_10_1088_1741_2560_13_6_066002
crossref_primary_10_1038_s41583_019_0140_6
crossref_primary_10_3390_app11104464
crossref_primary_10_1016_j_jneumeth_2014_12_010
crossref_primary_10_1016_j_neuron_2014_04_048
crossref_primary_10_1088_1361_6528_ab3534
crossref_primary_10_1146_annurev_bioeng_071910_124640
crossref_primary_10_1038_s41551_020_0591_0
crossref_primary_10_1016_j_jneumeth_2024_110169
crossref_primary_10_3389_fnbot_2023_1154427
crossref_primary_10_1152_physrev_00034_2020
crossref_primary_10_3389_fncom_2020_00022
crossref_primary_10_1038_s41598_017_06029_x
crossref_primary_10_1088_1741_2560_11_1_016004
crossref_primary_10_1177_1073858418775355
crossref_primary_10_1088_1741_2560_10_3_036004
crossref_primary_10_1088_1741_2560_11_4_046020
crossref_primary_10_3389_fnins_2023_1320441
crossref_primary_10_1021_acs_accounts_4c00057
crossref_primary_10_1088_1741_2552_ad5049
crossref_primary_10_1088_1741_2552_ac98e2
crossref_primary_10_3389_fbioe_2018_00009
crossref_primary_10_1016_j_actbio_2023_07_027
crossref_primary_10_1038_nature11076
crossref_primary_10_1038_nn_3265
crossref_primary_10_1051_medsci_20122811010
crossref_primary_10_1152_jn_00493_2017
crossref_primary_10_1088_1741_2552_aab7a0
crossref_primary_10_1016_j_biomaterials_2018_07_026
crossref_primary_10_1088_1741_2552_abde8a
crossref_primary_10_1038_s41467_021_23884_5
crossref_primary_10_1016_j_neuron_2014_11_021
crossref_primary_10_1038_s41587_020_0662_5
crossref_primary_10_1088_1741_2552_ac8077
crossref_primary_10_1016_j_jneumeth_2015_02_001
crossref_primary_10_3389_fbioe_2021_759711
crossref_primary_10_1088_1741_2560_10_6_066014
crossref_primary_10_1016_j_jphysparis_2017_03_001
crossref_primary_10_7554_eLife_84385
crossref_primary_10_1088_1741_2560_11_5_056005
crossref_primary_10_3390_mi9090443
crossref_primary_10_1109_TBME_2014_2354697
crossref_primary_10_1126_science_abf4588
crossref_primary_10_3389_fncom_2023_1135783
crossref_primary_10_3389_fbioe_2020_00416
crossref_primary_10_1038_s41598_022_13436_2
crossref_primary_10_1088_1741_2552_aae748
crossref_primary_10_3390_mi12121446
crossref_primary_10_1016_j_cmpb_2024_108208
crossref_primary_10_1016_j_jneumeth_2012_08_009
crossref_primary_10_1016_j_neuron_2020_10_015
crossref_primary_10_1038_s42003_024_06784_4
crossref_primary_10_3389_fnsys_2015_00108
crossref_primary_10_1088_1741_2552_aa8dc1
crossref_primary_10_1371_journal_pone_0151180
crossref_primary_10_1002_adfm_201704420
crossref_primary_10_1007_s13534_022_00217_z
crossref_primary_10_1016_j_jneumeth_2014_07_025
crossref_primary_10_1088_2057_1976_ab4c02
crossref_primary_10_1088_1741_2560_11_4_046007
crossref_primary_10_1016_j_neuron_2014_08_038
crossref_primary_10_1371_journal_pone_0087253
crossref_primary_10_1088_1741_2552_ad5936
crossref_primary_10_1016_j_biomaterials_2022_121784
crossref_primary_10_1016_j_proeng_2016_11_210
crossref_primary_10_1016_j_brs_2013_07_001
crossref_primary_10_1002_adfm_201701269
crossref_primary_10_1109_JMEMS_2012_2203789
crossref_primary_10_1152_jn_00070_2017
crossref_primary_10_1109_ACCESS_2023_3270803
crossref_primary_10_54097_ijbls_v3i2_10514
crossref_primary_10_3389_fnsys_2014_00102
crossref_primary_10_1038_s41596_018_0030_9
crossref_primary_10_1088_1741_2552_aae39d
crossref_primary_10_1088_1741_2552_ab8343
crossref_primary_10_1016_j_hcl_2021_04_003
crossref_primary_10_1016_j_biomaterials_2018_04_043
crossref_primary_10_1109_TBME_2021_3069119
crossref_primary_10_1016_j_jneumeth_2015_03_008
crossref_primary_10_1016_j_bios_2020_112096
crossref_primary_10_1186_s42234_018_0011_x
crossref_primary_10_3389_fnins_2014_00111
crossref_primary_10_1162_neco_a_01189
crossref_primary_10_1088_1741_2560_11_3_036009
crossref_primary_10_1109_JPROC_2014_2307357
crossref_primary_10_1186_1475_925X_11_33
crossref_primary_10_1186_s42234_025_00168_7
crossref_primary_10_1088_1741_2560_9_2_026027
crossref_primary_10_1152_physrev_00027_2016
crossref_primary_10_1360_TB_2023_0798
crossref_primary_10_1152_jn_00504_2017
crossref_primary_10_1088_1741_2560_9_2_026028
crossref_primary_10_1523_JNEUROSCI_1224_23_2024
crossref_primary_10_1088_1741_2552_abb1f6
crossref_primary_10_1016_j_neuron_2015_01_028
crossref_primary_10_1186_s12938_018_0459_7
crossref_primary_10_1016_j_biomaterials_2020_120559
crossref_primary_10_1088_1741_2560_12_5_056010
crossref_primary_10_1098_rsos_150031
crossref_primary_10_1016_j_nbd_2014_10_014
crossref_primary_10_1088_1361_6439_ad27f7
crossref_primary_10_7554_eLife_24573
crossref_primary_10_1016_j_biomaterials_2016_10_054
crossref_primary_10_1016_j_snb_2015_03_055
crossref_primary_10_1016_j_neuron_2018_05_017
crossref_primary_10_1016_j_biomaterials_2020_119842
crossref_primary_10_1038_s41551_020_0595_9
crossref_primary_10_1109_JPROC_2016_2586967
crossref_primary_10_3389_fnins_2017_00406
crossref_primary_10_1016_j_biomaterials_2014_08_006
crossref_primary_10_3390_mi16020113
crossref_primary_10_1016_j_biomaterials_2014_10_040
crossref_primary_10_5694_mja16_01011
crossref_primary_10_1016_j_actbio_2014_01_018
crossref_primary_10_3389_fnbot_2016_00009
crossref_primary_10_1002_anbr_202400114
crossref_primary_10_1088_1741_2560_12_1_016009
crossref_primary_10_1109_TNSRE_2013_2287768
crossref_primary_10_7554_eLife_18554
crossref_primary_10_1088_1741_2560_13_3_036009
crossref_primary_10_1109_TBME_2019_2955722
crossref_primary_10_1088_1741_2552_aaa8a4
crossref_primary_10_1152_jn_00131_2018
crossref_primary_10_1523_JNEUROSCI_5181_14_2015
crossref_primary_10_1038_s41551_022_00962_7
crossref_primary_10_1038_srep35944
crossref_primary_10_1109_ACCESS_2022_3159225
crossref_primary_10_1088_1741_2552_ac1add
crossref_primary_10_1152_jn_00162_2017
crossref_primary_10_1016_j_bspc_2022_104453
crossref_primary_10_7554_eLife_27702
crossref_primary_10_1002_adfm_201700905
crossref_primary_10_1039_C4TB00125G
crossref_primary_10_1088_1741_2552_ab4869
crossref_primary_10_7554_eLife_84385_3
crossref_primary_10_1016_j_biomaterials_2024_122543
crossref_primary_10_1088_2057_1976_aada67
crossref_primary_10_1371_journal_pcbi_1004948
crossref_primary_10_1016_j_celrep_2020_107581
crossref_primary_10_1088_1741_2560_11_2_026001
crossref_primary_10_1039_C5SM00174A
crossref_primary_10_1088_1741_2552_ac127e
crossref_primary_10_1088_1741_2552_ac115c
crossref_primary_10_1152_jn_00641_2019
crossref_primary_10_1038_ncomms13749
crossref_primary_10_1523_JNEUROSCI_1091_16_2016
crossref_primary_10_1088_1741_2552_ab0bfb
crossref_primary_10_1371_journal_pcbi_1009280
crossref_primary_10_3390_app7121292
crossref_primary_10_1088_1741_2560_12_2_026003
crossref_primary_10_1126_scitranslmed_abm5868
crossref_primary_10_1109_TNSRE_2017_2772961
crossref_primary_10_1016_j_actbio_2025_02_030
crossref_primary_10_3389_fnins_2019_00464
crossref_primary_10_1088_1741_2552_ac18ad
crossref_primary_10_1016_j_actbio_2017_02_010
crossref_primary_10_3389_fnins_2023_1096097
crossref_primary_10_1088_1741_2552_ac7352
crossref_primary_10_1109_TNSRE_2020_3034234
crossref_primary_10_1016_j_jneumeth_2014_08_004
crossref_primary_10_1088_1741_2552_abc528
crossref_primary_10_1126_scitranslmed_aac7328
crossref_primary_10_1088_1741_2552_abacd7
crossref_primary_10_1162_NECO_a_00632
crossref_primary_10_1016_j_biomaterials_2018_12_031
crossref_primary_10_3389_fnins_2019_00350
crossref_primary_10_1038_s41598_017_15121_1
crossref_primary_10_1109_TOH_2021_3072615
crossref_primary_10_1088_1741_2560_11_6_066003
crossref_primary_10_1109_JPROC_2015_2507180
crossref_primary_10_1016_j_neuron_2019_05_003
crossref_primary_10_1088_1741_2560_12_1_016019
crossref_primary_10_1088_1741_2552_ac3eaf
crossref_primary_10_1152_jn_00293_2014
crossref_primary_10_1186_s42234_019_0019_x
crossref_primary_10_1186_s12984_016_0134_9
crossref_primary_10_1088_1741_2560_10_4_046012
crossref_primary_10_1088_1741_2560_13_4_046019
crossref_primary_10_1088_1741_2560_10_4_046010
crossref_primary_10_1002_admi_202001152
crossref_primary_10_1371_journal_pone_0219034
crossref_primary_10_1016_j_biomaterials_2017_10_001
crossref_primary_10_1038_s41551_024_01297_1
crossref_primary_10_1039_C5TC00569H
crossref_primary_10_1088_2057_1976_aad714
crossref_primary_10_1088_1741_2560_10_5_056005
crossref_primary_10_1016_j_wneu_2013_01_078
crossref_primary_10_1523_JNEUROSCI_2339_15_2016
crossref_primary_10_1088_1741_2552_abbfef
crossref_primary_10_1109_MPUL_2013_2242014
crossref_primary_10_1016_j_biomaterials_2023_122316
crossref_primary_10_1109_TNSRE_2015_2501752
crossref_primary_10_1002_adhm_202302456
crossref_primary_10_1038_s41593_019_0555_4
crossref_primary_10_1038_s41598_020_58097_1
crossref_primary_10_1088_1741_2552_accece
crossref_primary_10_1177_08830738231167736
Cites_doi 10.1016/j.neulet.2006.07.018
10.1038/416141a
10.1002/jbm.820271106
10.1109/TNSRE.2009.2023298
10.1109/TNSRE.2005.857687
10.1126/science.1070291
10.1007/BF00689766
10.1038/nature04968
10.1523/JNEUROSCI.2772-05.2005
10.1523/JNEUROSCI.1463-08.2008
10.1523/JNEUROSCI.1321-07.2007
10.1088/1741-2560/5/1/008
10.1109/TBME.2007.895753
10.1016/S1385-299X(99)00034-3
10.3171/2009.4.FOCUS0977
10.1016/j.neunet.2009.05.005
10.1088/1741-2560/5/4/010
10.1523/JNEUROSCI.5506-08.2009
10.1523/JNEUROSCI.4088-04.2005
10.1523/JNEUROSCI.02-11-01527.1982
10.1109/10.141202
10.1038/nature06996
10.1001/jama.2009.116
10.1109/TNSRE.2009.2023293
10.1523/JNEUROSCI.4415-07.2008
10.1038/nature04970
10.1016/j.conb.2010.06.007
10.1016/j.jneumeth.2005.08.015
10.1088/1741-2560/6/6/066001
10.1523/JNEUROSCI.0959-07.2007
10.1088/1741-2560/7/4/046002
10.1088/1741-2560/6/5/055004
10.1016/S0006-8993(03)03023-3
10.1152/jn.90920.2008
10.1152/jn.01245.2003
10.1523/JNEUROSCI.5443-09.2010
10.1007/s00422-002-0374-6
10.1016/j.neuron.2010.09.015
10.1006/exnr.1998.6983
10.1007/s10544-008-9251-y
10.1016/j.clinph.2005.05.018
10.1016/j.biomaterials.2009.11.049
10.1371/journal.pbio.1000153
10.1371/journal.pbio.0000042
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ADTOC
UNPAY
DOI 10.1088/1741-2560/8/4/045005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
EndPage 1-11
ExternalDocumentID oai:pubmedcentral.nih.gov:3644617
PMC3644617
21775782
10_1088_1741_2560_8_4_045005
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: 1DP1OD006409
– fundername: NICHD NIH HHS
  grantid: DP1 HD075623
– fundername: NINDS NIH HHS
  grantid: R01 NS054283
– fundername: NIH HHS
  grantid: DP1 OD006409
– fundername: NINDS NIH HHS
  grantid: R01-NS054283
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS054283-05 || NS
GroupedDBID ---
1JI
1WK
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AALHV
AATNI
AAYXX
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACARI
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AERVB
AFYNE
AGQPQ
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ARNYC
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CITATION
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
RIN
RNS
RO9
ROL
RPA
S3P
SY9
W28
XPP
02O
AHSEE
CEBXE
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c440t-a2b0661a74244094de452dde712a057a894715fd6ee06d5cd79e6b54c70bc80b3
IEDL.DBID UNPAY
ISSN 1741-2560
1741-2552
IngestDate Sun Oct 26 03:53:02 EDT 2025
Thu Aug 21 14:06:09 EDT 2025
Thu Sep 04 16:57:08 EDT 2025
Wed Oct 01 13:52:18 EDT 2025
Sat May 31 02:05:30 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Wed Oct 01 02:41:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-a2b0661a74244094de452dde712a057a894715fd6ee06d5cd79e6b54c70bc80b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/3644617
PMID 21775782
PQID 1439777499
PQPubID 23462
PageCount 1
ParticipantIDs unpaywall_primary_10_1088_1741_2560_8_4_045005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3644617
proquest_miscellaneous_878819621
proquest_miscellaneous_1439777499
pubmed_primary_21775782
crossref_citationtrail_10_1088_1741_2560_8_4_045005
crossref_primary_10_1088_1741_2560_8_4_045005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2011
References 44
Acharya S (56) 2010; 7
45
Borton D A (60) 2009
Chestek C A (49) 2009
Gilja V (1) 2011
Chao Z C (53) 2010; 3
Kim S (9) 2008; 5
51
10
11
55
13
57
58
59
17
18
19
Sahani M (46) 1999
2
3
4
5
6
7
Cunningham J P (47) 2011
8
Chestek C A Gilja V Nuyujukian P Foster J D Kaufman M T Ryu S I Shenoy K V (50) 2010
20
Georgopoulos A P (43) 1982; 2
21
22
23
24
25
26
27
28
Fraser G W (12) 2009; 6
Nuyujukian P Gilja V Chestek C A Cunningham J P Fan J M Yu B M Ryu S I Shenoy K V (16) 2010
Santhanam G Sahani M Ryu S I Shenoy K V (32) 2004
Schalk G (52) 2008; 5
Kubanek J (54) 2009; 6
Kruger J (29) 2010; 3
30
33
35
36
37
Gilja V (14) 2010
38
39
Gilja V Nuyujukian P Chestek C A Cunningham J P Yu B M Ryu S I Shenoy K V (15) 2010
Wood F Fellows M Donoghue J Black M J (31) 2004
Rivera-Alvidrez Z (41) 2010
Parker R A (34) 2011; 194
Cunningham J P Nuyujukian P Gilja V Chestek C A Ryu S I Shenoy K V (48) 2010
40
42
References_xml – year: 2010
  ident: 14
  publication-title: Conference Abstract: Computational and Systems Neuroscience (COSYNE)
– ident: 26
  doi: 10.1016/j.neulet.2006.07.018
– year: 2010
  ident: 50
– ident: 4
  doi: 10.1038/416141a
– ident: 20
  doi: 10.1002/jbm.820271106
– ident: 45
  doi: 10.1109/TNSRE.2009.2023298
– start-page: 4380
  year: 2004
  ident: 32
– ident: 38
  doi: 10.1109/TNSRE.2005.857687
– ident: 3
  doi: 10.1126/science.1070291
– ident: 21
  doi: 10.1007/BF00689766
– ident: 2
  doi: 10.1038/nature04968
– start-page: 5531
  year: 2009
  ident: 60
  publication-title: Proc. 31st Annu. Int. Conf. IEEE EMBS (Minneapolis, MN, USA)
– ident: 7
  doi: 10.1523/JNEUROSCI.2772-05.2005
– ident: 10
  doi: 10.1523/JNEUROSCI.1463-08.2008
– ident: 33
  doi: 10.1523/JNEUROSCI.1321-07.2007
– volume: 5
  start-page: 75
  issn: 1741-2560
  year: 2008
  ident: 52
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/1/008
– ident: 57
  doi: 10.1109/TBME.2007.895753
– year: 2010
  ident: 15
– ident: 24
  doi: 10.1016/S1385-299X(99)00034-3
– start-page: 4009
  year: 2004
  ident: 31
  publication-title: Proc. 26th Annu. Int. IEEE EMBS
– year: 1999
  ident: 46
– ident: 51
  doi: 10.3171/2009.4.FOCUS0977
– ident: 11
  doi: 10.1016/j.neunet.2009.05.005
– volume: 5
  start-page: 455
  issn: 1741-2560
  year: 2008
  ident: 9
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/4/010
– ident: 55
  doi: 10.1523/JNEUROSCI.5506-08.2009
– ident: 6
  doi: 10.1523/JNEUROSCI.4088-04.2005
– volume: 2
  start-page: 1527
  year: 1982
  ident: 43
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.02-11-01527.1982
– ident: 23
  doi: 10.1109/10.141202
– ident: 17
  doi: 10.1038/nature06996
– year: 2011
  ident: 47
  publication-title: J. Neurophysiol.
– volume: 194
  year: 2011
  ident: 34
  publication-title: Progress in Brain Research
– year: 2010
  ident: 16
– ident: 19
  doi: 10.1001/jama.2009.116
– ident: 39
  doi: 10.1109/TNSRE.2009.2023293
– ident: 30
  doi: 10.1523/JNEUROSCI.4415-07.2008
– ident: 8
  doi: 10.1038/nature04970
– start-page: 3369
  year: 2009
  ident: 49
  publication-title: Proc. 31st Annu. Int. Conf. IEEE EMBS (Minneapolis, MN, USA)
– ident: 40
  doi: 10.1016/j.conb.2010.06.007
– ident: 27
  doi: 10.1016/j.jneumeth.2005.08.015
– volume: 6
  start-page: 1
  issn: 1741-2552
  year: 2009
  ident: 54
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/6/066001
– ident: 35
  doi: 10.1523/JNEUROSCI.0959-07.2007
– volume: 7
  start-page: 1
  issn: 1741-2552
  year: 2010
  ident: 56
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/4/046002
– volume: 6
  start-page: 1
  issn: 1741-2552
  year: 2009
  ident: 12
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/6/5/055004
– ident: 28
  doi: 10.1016/S0006-8993(03)03023-3
– ident: 36
  doi: 10.1152/jn.90920.2008
– start-page: at press
  issn: 0018-9294
  year: 2011
  ident: 1
  publication-title: IEEE Transactions on Biomedical Engineering.
– ident: 44
  doi: 10.1152/jn.01245.2003
– volume: 3
  start-page: 1
  year: 2010
  ident: 53
  publication-title: Front. Neuroeng.
– start-page: 6027
  year: 2010
  ident: 41
  publication-title: Proc. 32nd Annu. Int. Conf. IEEE EMBS (Buenos Aires, Argentina)
– volume: 3
  start-page: 1
  year: 2010
  ident: 29
  publication-title: Frontiers in Neuroengineering
– ident: 18
  doi: 10.1523/JNEUROSCI.5443-09.2010
– ident: 37
  doi: 10.1007/s00422-002-0374-6
– ident: 42
  doi: 10.1016/j.neuron.2010.09.015
– ident: 22
  doi: 10.1006/exnr.1998.6983
– ident: 59
  doi: 10.1007/s10544-008-9251-y
– ident: 58
  doi: 10.1016/j.clinph.2005.05.018
– year: 2010
  ident: 48
– ident: 25
  doi: 10.1016/j.biomaterials.2009.11.049
– ident: 13
  doi: 10.1371/journal.pbio.1000153
– ident: 5
  doi: 10.1371/journal.pbio.0000042
SSID ssj0031790
Score 2.4500902
Snippet Cortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 45005
SubjectTerms Action Potentials - physiology
Algorithms
Animals
Data Interpretation, Statistical
Electrodes, Implanted
Electroencephalography
Macaca mulatta
Motor Cortex - physiology
Neurons - physiology
Prostheses and Implants
Prosthesis Design
User-Computer Interface
Title Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/21775782
https://www.proquest.com/docview/1439777499
https://www.proquest.com/docview/878819621
https://pubmed.ncbi.nlm.nih.gov/PMC3644617
https://www.ncbi.nlm.nih.gov/pmc/articles/3644617
UnpaywallVersion submittedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bj5QwFD7ZnX3QF2_rBS-bmhjfuBQKdB4nxs1qdN0YJ1mfSCmdnYlMmTAQHX-9p-Xirhuj-wABWiClH5zvlO-cArySTPEokbEbRWrhMoorTkXiRiGnNCkiXEw08sfT5GTO3p_H53tAh1gYK9qX-crT5drTq6XVVm7W0h90Yn6EFhzN7j4cJDHS7wkczE_PZl-7wEfqIkUOf28nwRAuh47eeMznPvORywRm0rrL5ugax7wulbzV6o3YfRdleckOHd-Fz0MLOvnJN69tck_-_CO5442aeA_u9KyUzLqi-7Cn9AM4nGn0yNc78ppYnagdgD-E5kOlL1zzRSfILK22dkeqBTGZMfEaGxNGsjShkaSXwROjEUGUExPKgjslgk9jYW2H0Ymoa7HbkpUm9VJt2y1ZCynw-RAEUVXbeurHQ5gfv_3y5sTt525wJWNB44owRzJDRWoC6dCFLBSLQ_yUpjQUSBEFn6JVjBdFolSQFLEs0qlK8pjJNMglD_LoEUx0pdUTIMhh0lRIKmOF9LIQlufJaVpwGuRMcAeioQsz2Sc2N_NrlJn9wc55Zjo-Mx2f8YxlXcc74I5nbbrEHv-o_3JAR4ZvoPmtIrSq2i06T4ZEp-g6OkD-UoebrP3TJKQOPO4ANd4UfUI7p4AD6RWojRVMAvCrJQgamwi8x4kD3gjK_2rL05ue8AxuD2PpAX0Ok6Zu1QskY01-BPvvPp0d9S_hL8fdMRY
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bj5QwFD5ZZx_0xdt6wVtqYnyDoVBK53Fi3GyMboxxkvWJlNJxJjJlwkB2x1_vabm468boPkCAFkjpB-c75TunAG8U0yLmKvHjWC99RnElqOR-HAlKeRHjYqORP53ykwX7cJacHQAdYmGcaF_l68CUm8CsV05bud2o6aATm8ZowdHs3oJDniD9nsDh4vTz_FsX-Eh9pMjR720eDuFy6OiNx6ZiyqbIZUI7ad1lc3SNY16XSt5uzVbuz2VZXrJDx_fgy9CCTn7yI2ibPFA__0jueKMm3oe7PSsl867oARxo8xCO5gY98s2evCVOJ-oG4I-g-ViZ7779ohNklk5buyfVktjMmHiNrQ0jWdnQSNLL4InViCDKiQ1lwZ0SwWewsHbD6ETWtdzvyNqQeqV37Y5spJL4fAiCqKpdPX3xCBbH77--O_H7uRt8xVjY-DLKkcxQmdpAOnQhC82SCD-lKY0kUkQpZmgVk2XBtQ55kaginWmeJ0ylYa5EmMePYWIqo58CQQ6TplJRlWikl4V0PE_N0kLQMGdSeBAPXZipPrG5nV-jzNwPdiEy2_GZ7fhMZCzrOt4Dfzxr2yX2-Ef91wM6MnwD7W8VaXTV7tB5siQ6RdfRA_KXOsJm7Z_xiHrwpAPUeFP0Cd2cAh6kV6A2VrAJwK-WIGhcIvAeJx4EIyj_qy3PbnrCc7gzjKWH9AVMmrrVL5GMNfmr_vX7BabPMA0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+stability+of+neural+prosthetic+control+signals+from+silicon+cortical+arrays+in+rhesus+macaque+motor+cortex&rft.jtitle=Journal+of+neural+engineering&rft.au=Chestek%2C+Cynthia+A&rft.au=Gilja%2C+Vikash&rft.au=Nuyujukian%2C+Paul&rft.au=Foster%2C+Justin+D&rft.date=2011-08-01&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=8&rft.issue=4&rft.spage=045005&rft_id=info:doi/10.1088%2F1741-2560%2F8%2F4%2F045005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon