Maximizing oil production from water alternating gas (CO2) injection into residual oil zones: The impact of oil saturation and heterogeneity

Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential to produce volumes of oil sufficiently significant to make appreciable impacts on th...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 222; no. C; p. 119915
Main Authors Ren, Bo, Duncan, Ian J.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.05.2021
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2021.119915

Cover

Abstract Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential to produce volumes of oil sufficiently significant to make appreciable impacts on the US’s oil reserves and associated incidental CO2 sequestration. The objective of this study is to improve our understanding the impact of heterogeneous and low oil saturations, in brownfield ROZs, on the effectiveness of water alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and elsewhere, and operators are using CO2 injection for enhanced oil recovery (EOR) in these zones. The consensus model for the formation of ROZs is that they were formed by the effect of faster regional aquifer flow, acting over millions of years. Both the magnitude of oil saturation and the spatial distribution of oil differ from water-flooded main pay zones (MPZs). To explore the most effective injection strategies, we conducted simulations of CO2 injection into synthetic geologic reservoirs. These simulations focused on injection into reservoirs subject to either man-made waterflooding or long-term natural waterflooding. By exploring the impact of varying: oil saturation; well patterns; reservoir heterogeneity; and permeability anisotropy, we attempt to quantify the factors that most influence the effectiveness of WAG injection. WAG ratios (the ratio of injected water and CO2, in reservoir volumes) of interest are those that either minimize the net CO2 utilization ratios or maximize oil production rates. In general, the most effective WAG ratios for ROZs, are consistently less than those observed undergoing CO2 injection in the same geologic reservoir models after traditional (man-made) waterflooding. This work demonstrates that most favorable WAG ratios for oil production in ROZs are different from those in traditional MPZs because of oil saturation differences. Thus, CO2 injection into both zones or directly copying WAG injection designs from MPZs to ROZs might not maximize oil production. •Capillarity influences oil saturation in simulating residual oil zone formation.•ROZs tend to need small WAG ratios for maximum oil production compared to MPZs.•Net CO2 utilization ratios for ROZs are overall larger than those for MPZs.
AbstractList Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential to produce volumes of oil sufficiently significant to make appreciable impacts on the US’s oil reserves and associated incidental CO₂ sequestration. The objective of this study is to improve our understanding the impact of heterogeneous and low oil saturations, in brownfield ROZs, on the effectiveness of water alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and elsewhere, and operators are using CO₂ injection for enhanced oil recovery (EOR) in these zones. The consensus model for the formation of ROZs is that they were formed by the effect of faster regional aquifer flow, acting over millions of years. Both the magnitude of oil saturation and the spatial distribution of oil differ from water-flooded main pay zones (MPZs). To explore the most effective injection strategies, we conducted simulations of CO₂ injection into synthetic geologic reservoirs. These simulations focused on injection into reservoirs subject to either man-made waterflooding or long-term natural waterflooding. By exploring the impact of varying: oil saturation; well patterns; reservoir heterogeneity; and permeability anisotropy, we attempt to quantify the factors that most influence the effectiveness of WAG injection. WAG ratios (the ratio of injected water and CO₂, in reservoir volumes) of interest are those that either minimize the net CO₂ utilization ratios or maximize oil production rates. In general, the most effective WAG ratios for ROZs, are consistently less than those observed undergoing CO₂ injection in the same geologic reservoir models after traditional (man-made) waterflooding. This work demonstrates that most favorable WAG ratios for oil production in ROZs are different from those in traditional MPZs because of oil saturation differences. Thus, CO₂ injection into both zones or directly copying WAG injection designs from MPZs to ROZs might not maximize oil production.
Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential to produce volumes of oil sufficiently significant to make appreciable impacts on the US's oil reserves and associated incidental CO2 sequestration. The objective of this study is to improve our understanding the impact of heterogeneous and low oil saturations, in brownfield ROZs, on the effectiveness of water alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and elsewhere, and operators are using CO2 injection for enhanced oil recovery (EOR) in these zones. The consensus model for the formation of ROZs is that they were formed by the effect of faster regional aquifer flow, acting over millions of years. Both the magnitude of oil saturation and the spatial distribution of oil differ from water-flooded main pay zones (MPZs). To explore the most effective injection strategies, we conducted simulations of CO2 injection into synthetic geologic reservoirs. These simulations focused on injection into reservoirs subject to either man-made waterflooding or long-term natural waterflooding. By exploring the impact of varying: oil saturation; well patterns; reservoir heterogeneity; and permeability anisotropy, we attempt to quantify the factors that most influence the effectiveness of WAG injection. WAG ratios (the ratio of injected water and CO2, in reservoir volumes) of interest are those that either minimize the net CO2 utilization ratios or maximize oil production rates. In general, the most effective WAG ratios for ROZs, are consistently less than those observed undergoing CO2 injection in the same geologic reservoir models after traditional (man-made) waterflooding. This work demonstrates that most favorable WAG ratios for oil production in ROZs are different from those in traditional MPZs because of oil saturation differences. Thus, CO2 injection into both zones or directly copying WAG injection designs from MPZs to ROZs might not maximize oil production.
Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either underlying oil fields (brownfield) or lateral (greenfield) to such fields. These reservoirs have the potential to produce volumes of oil sufficiently significant to make appreciable impacts on the US’s oil reserves and associated incidental CO2 sequestration. The objective of this study is to improve our understanding the impact of heterogeneous and low oil saturations, in brownfield ROZs, on the effectiveness of water alternating gas (WAG) injection strategies. ROZs occur in the Permian Basin and elsewhere, and operators are using CO2 injection for enhanced oil recovery (EOR) in these zones. The consensus model for the formation of ROZs is that they were formed by the effect of faster regional aquifer flow, acting over millions of years. Both the magnitude of oil saturation and the spatial distribution of oil differ from water-flooded main pay zones (MPZs). To explore the most effective injection strategies, we conducted simulations of CO2 injection into synthetic geologic reservoirs. These simulations focused on injection into reservoirs subject to either man-made waterflooding or long-term natural waterflooding. By exploring the impact of varying: oil saturation; well patterns; reservoir heterogeneity; and permeability anisotropy, we attempt to quantify the factors that most influence the effectiveness of WAG injection. WAG ratios (the ratio of injected water and CO2, in reservoir volumes) of interest are those that either minimize the net CO2 utilization ratios or maximize oil production rates. In general, the most effective WAG ratios for ROZs, are consistently less than those observed undergoing CO2 injection in the same geologic reservoir models after traditional (man-made) waterflooding. This work demonstrates that most favorable WAG ratios for oil production in ROZs are different from those in traditional MPZs because of oil saturation differences. Thus, CO2 injection into both zones or directly copying WAG injection designs from MPZs to ROZs might not maximize oil production. •Capillarity influences oil saturation in simulating residual oil zone formation.•ROZs tend to need small WAG ratios for maximum oil production compared to MPZs.•Net CO2 utilization ratios for ROZs are overall larger than those for MPZs.
ArticleNumber 119915
Author Duncan, Ian J.
Ren, Bo
Author_xml – sequence: 1
  givenname: Bo
  surname: Ren
  fullname: Ren, Bo
– sequence: 2
  givenname: Ian J.
  surname: Duncan
  fullname: Duncan, Ian J.
  email: ian.duncan@beg.utexas.edu
BackLink https://www.osti.gov/biblio/1780199$$D View this record in Osti.gov
BookMark eNqFkc1u3CAUhVGVSpmkfYMuULtJF54AtrGdRaVq1D8pVTbpGjFwmcGyYQq47eQZ-tDF46yyaDaAxHcO3HMu0JnzDhB6Q8maEsqv-zU4CLvjmhFG15R2Ha1foBVtm7LgTVufoRUpOSnqqmLn6CLGnhBSt123Qn-_yz92tA_W7bC3Az4EryeVrHfYBD_i3zJBwHLIq5NppnYy4qvNHXuPrethQa1LHgeIVk9yOPk85B_GG3y_B2zHg1QJe3O6iDJNQZ5U0mm8h-zsd_n_Nh1foZdGDhFeP-6X6MfnT_ebr8Xt3Zdvm4-3haoqkooWSqNqSlpWwpZyA2BKwrkmBlrd1FtJO7mVHSG8arZtPmjdKmZUQztGNTflJXq7-PqYrIjKJlB75Z3L4wjatCQnmKGrBcqR_JwgJjHaqGAYpAM_RcHqpipZTRuW0XdP0N5POa9hpijhpGooz9TNQqngYwxgRH74lEQK0g6CEjG3KXqxtCnmNsXSZhZXT8SHYEcZjs_JPiwyyHH-shDmacEp0DbMw2pv_2_wD99jvyo
CitedBy_id crossref_primary_10_1016_j_jconhyd_2024_104416
crossref_primary_10_1016_j_ptlrs_2024_08_006
crossref_primary_10_1016_j_geoen_2023_212275
crossref_primary_10_1155_2021_6515846
crossref_primary_10_1016_j_energy_2024_131305
crossref_primary_10_3390_gases5010001
crossref_primary_10_3390_su131810010
crossref_primary_10_1016_j_applthermaleng_2022_118331
crossref_primary_10_1016_j_petrol_2022_110354
crossref_primary_10_1007_s41939_024_00469_5
crossref_primary_10_1016_j_energy_2022_124524
crossref_primary_10_2118_205995_PA
crossref_primary_10_1016_j_energy_2025_134503
crossref_primary_10_3390_pr11082415
crossref_primary_10_1080_10916466_2024_2387161
crossref_primary_10_1016_j_petsci_2024_02_002
crossref_primary_10_1016_j_ijhydene_2022_04_217
crossref_primary_10_1016_j_petrol_2022_110442
crossref_primary_10_1016_j_petrol_2021_109889
crossref_primary_10_1007_s40789_023_00647_9
crossref_primary_10_1021_acs_energyfuels_3c02071
crossref_primary_10_1016_j_cej_2024_153127
crossref_primary_10_3390_en16176149
crossref_primary_10_1016_j_fuel_2024_131595
crossref_primary_10_1016_j_geoen_2024_213325
crossref_primary_10_1061_JLEED9_EYENG_5202
Cites_doi 10.2118/22654-PA
10.1021/acs.energyfuels.5b01185
10.2118/73830-PA
10.2118/173217-PA
10.2118/84366-PA
10.1016/j.ijggc.2014.04.006
10.2118/179545-PA
10.1016/0920-4105(89)90005-3
10.1016/j.fuel.2018.04.015
10.1016/j.egypro.2017.03.1688
10.1016/j.energy.2018.11.007
10.1016/j.petrol.2019.02.072
10.1016/j.energy.2019.06.142
10.2118/141650-PA
10.2118/26648-PA
10.1016/j.ijggc.2020.103006
10.1016/j.ijggc.2016.04.010
10.1016/j.compfluid.2014.03.022
10.1016/j.ijggc.2016.10.005
10.1002/ghg.1618
10.1016/j.petrol.2005.09.004
10.2118/71203-PA
10.2118/178915-PA
10.2118/166138-PA
10.2118/941152-G
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV May 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV May 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
OTOTI
DOI 10.1016/j.energy.2021.119915
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Geology
EISSN 1873-6785
ExternalDocumentID 1780199
10_1016_j_energy_2021_119915
S036054422100164X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
ACLOT
L.6
~HD
AALMO
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c440t-8e3fc510823eb16feef3066d0fe8d75ba19aba900647b8a90dd8c2fc71921d6f3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri May 19 00:37:15 EDT 2023
Sun Sep 28 09:37:38 EDT 2025
Wed Aug 13 11:24:13 EDT 2025
Tue Jul 01 00:43:37 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Fri Feb 23 02:44:49 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Reservoir heterogeneity
Oil saturation
Water alternating gas
Residual oil zone
CO2-EOR
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-8e3fc510823eb16feef3066d0fe8d75ba19aba900647b8a90dd8c2fc71921d6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
OpenAccessLink https://www.osti.gov/biblio/1780199
PQID 2510604716
PQPubID 2045484
ParticipantIDs osti_scitechconnect_1780199
proquest_miscellaneous_2574325172
proquest_journals_2510604716
crossref_citationtrail_10_1016_j_energy_2021_119915
crossref_primary_10_1016_j_energy_2021_119915
elsevier_sciencedirect_doi_10_1016_j_energy_2021_119915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United Kingdom
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Trentham, Melzer, Vance (bib36) 2012
Rassenfoss (bib57) 2017; 69
Wu, Ogbe, Zhu, Khataniar (bib17) 2004
Chen, Pawar (bib54) 2019; 183
Walsh, Lake (bib47) 1989; 2
Harouaka, Trentham, Melzer (bib1) 2013
Kuuskraa, Petrusak, Wallace (bib2) 2017; 114
Ren, Duncan (bib37) 2019; 177
Honarpour, Nagarajan, Grijalba Cuenca, Valle, Adesoye (bib39) 2010
Ettehadtavakkol (bib45) 2013
Kulkarni, Rao (bib20) 2005; 48
Malik, Islam (bib21) 2000
Li, Lake (bib31) 1995; 3
Ren, Duncan (bib8) 2019; 167
Afzali, Rezaei, Zendehboudi (bib16) 2018; 227
Arab, Kantzas, Bryant (bib38) 2019; 186
Sifuentes, Marie, Martin (bib12) 2009
Sanguinito, Singh, Myshakin, Goodman, Dilmore, Grant, Morgan, Bromhal, Warwick, Brennan, Freeman (bib58) 2020; 96
Bermudez, Johns, Parakh (bib19) 2007; 12
Gong, Gu (bib48) 2015; 29
Rogers, Grigg (bib18) 2001; 4
Koperna, Melzer, Kuuskraa (bib4) 2006
Remy, Boucher, Wu (bib30) 2009
Egermann, Vizika, Dallet, Requin, Sonier (bib41) 2000
Chen, Reynolds (bib25) 2016; 21
Chen, Li, Yang, Tontiwachwuthikul (bib24) 2010; 49
Song, Li, Wei, Lai, Bai (bib22) 2014; 99
Lake, Johns, Rossen, Pope (bib13) 2014
Christensen, Stenby, Skauge (bib14) 2001; 4
Melzer (bib6) 2013
Chang, Lim, Pope, Sepehrnoori (bib53) 1994; 9
Nwachukwu, Jeong, Sun, Pyrcz, Lake (bib27) 2018
Element, Masters, Sargent, Jayasekera, Goodyear (bib42) 2003
Bunge, Radke (bib52) 1982; 34
Jamali, Ettehadtavakkol (bib7) 2017; 56
Eclipse (bib9) 2016
Spiteri, Juanes (bib44) 2006; 50
Jarrell, Fox, Stein, Webb (bib46) 2002; vol. 22
Shehata, El-banbi, Sayyouh (bib28) 2012
Leverett (bib34) 1941; 142
Duncan, Ren, Male, Baques (bib5) 2019
Stone (bib40) 1970; 22
Ren (bib35) 2017
Skauge, Sorbie (bib43) 2014
Melzer, Kuuskraa, Koperna (bib3) 2006
Pan, McPherson, Dai, Jia, Lee, Ampomah, Viswanathan, Esser (bib11) 2016; 51
(bib49) 2018
Zuo, Chen, Zou, Kamath (bib23) 2014; 17
Tavassoli, Pope, Sepehrnoori (bib32) 2016; 21
Ampomah, Balch, Grigg, McPherson, Will, Lee, Dai, Pan (bib10) 2017; 7
Stalkup (bib15) 1970; 10
Aleidan, Kwak, Muller, Zhou (bib50) 2017; 20
Holtz (bib33) 2002
Ettehadtavakkol, Lake, Bryant (bib26) 2014; 25
Jensen, Lake, Corbett, Goggin (bib29) 2000
Pan (10.1016/j.energy.2021.119915_bib11) 2016; 51
Koperna (10.1016/j.energy.2021.119915_bib4) 2006
Chen (10.1016/j.energy.2021.119915_bib25) 2016; 21
Sanguinito (10.1016/j.energy.2021.119915_bib58) 2020; 96
Chang (10.1016/j.energy.2021.119915_bib53) 1994; 9
Duncan (10.1016/j.energy.2021.119915_bib5) 2019
Egermann (10.1016/j.energy.2021.119915_bib41) 2000
Stone (10.1016/j.energy.2021.119915_bib40) 1970; 22
Nwachukwu (10.1016/j.energy.2021.119915_bib27) 2018
Rogers (10.1016/j.energy.2021.119915_bib18) 2001; 4
Rassenfoss (10.1016/j.energy.2021.119915_bib57) 2017; 69
Holtz (10.1016/j.energy.2021.119915_bib33) 2002
Li (10.1016/j.energy.2021.119915_bib31) 1995; 3
Melzer (10.1016/j.energy.2021.119915_bib3) 2006
Ren (10.1016/j.energy.2021.119915_bib35) 2017
Jensen (10.1016/j.energy.2021.119915_bib29) 2000
Bunge (10.1016/j.energy.2021.119915_bib52) 1982; 34
Ettehadtavakkol (10.1016/j.energy.2021.119915_bib45) 2013
Harouaka (10.1016/j.energy.2021.119915_bib1) 2013
Eclipse (10.1016/j.energy.2021.119915_bib9) 2016
Melzer (10.1016/j.energy.2021.119915_bib6) 2013
Jarrell (10.1016/j.energy.2021.119915_bib46) 2002; vol. 22
Tavassoli (10.1016/j.energy.2021.119915_bib32) 2016; 21
Lake (10.1016/j.energy.2021.119915_bib13) 2014
Shehata (10.1016/j.energy.2021.119915_bib28) 2012
Song (10.1016/j.energy.2021.119915_bib22) 2014; 99
Arab (10.1016/j.energy.2021.119915_bib38) 2019; 186
Trentham (10.1016/j.energy.2021.119915_bib36) 2012
(10.1016/j.energy.2021.119915_bib49) 2018
Chen (10.1016/j.energy.2021.119915_bib24) 2010; 49
Afzali (10.1016/j.energy.2021.119915_bib16) 2018; 227
Ettehadtavakkol (10.1016/j.energy.2021.119915_bib26) 2014; 25
Honarpour (10.1016/j.energy.2021.119915_bib39) 2010
Walsh (10.1016/j.energy.2021.119915_bib47) 1989; 2
Aleidan (10.1016/j.energy.2021.119915_bib50) 2017; 20
Chen (10.1016/j.energy.2021.119915_bib54) 2019; 183
Kulkarni (10.1016/j.energy.2021.119915_bib20) 2005; 48
Christensen (10.1016/j.energy.2021.119915_bib14) 2001; 4
Malik (10.1016/j.energy.2021.119915_bib21) 2000
Sifuentes (10.1016/j.energy.2021.119915_bib12) 2009
Gong (10.1016/j.energy.2021.119915_bib48) 2015; 29
Kuuskraa (10.1016/j.energy.2021.119915_bib2) 2017; 114
Wu (10.1016/j.energy.2021.119915_bib17) 2004
Skauge (10.1016/j.energy.2021.119915_bib43) 2014
Ren (10.1016/j.energy.2021.119915_bib37) 2019; 177
Spiteri (10.1016/j.energy.2021.119915_bib44) 2006; 50
Ampomah (10.1016/j.energy.2021.119915_bib10) 2017; 7
Element (10.1016/j.energy.2021.119915_bib42) 2003
Leverett (10.1016/j.energy.2021.119915_bib34) 1941; 142
Stalkup (10.1016/j.energy.2021.119915_bib15) 1970; 10
Zuo (10.1016/j.energy.2021.119915_bib23) 2014; 17
Remy (10.1016/j.energy.2021.119915_bib30) 2009
Ren (10.1016/j.energy.2021.119915_bib8) 2019; 167
Bermudez (10.1016/j.energy.2021.119915_bib19) 2007; 12
Jamali (10.1016/j.energy.2021.119915_bib7) 2017; 56
References_xml – year: 2000
  ident: bib21
  article-title: CO2 injection in the weyburn field of Canada: optimization of enhanced oil recovery and greenhouse gas storage with horizontal wells
  publication-title: SPE-59327-MS presented at SPE/DOE improved oil recovery symposium, Tulsa, Oklahoma, 3-5 April
– year: 2009
  ident: bib12
  article-title: Modeling CO2 storage in aquifers: assessing the key contributors to uncertainty
  publication-title: SPE-123582 presented at SPE offshore europe oil and gas conference and exhibition, aberdeen, UK, 8-11 september
– start-page: pp46
  year: 2013
  ident: bib45
  article-title: CO2 EOR-storage design Optimization under uncertainty
– volume: 4
  start-page: 97
  year: 2001
  end-page: 106
  ident: bib14
  article-title: Review of WAG field experience
  publication-title: SPE Reservoir Eval Eng
– year: 2004
  ident: bib17
  article-title: Critical design factors and evaluation of recovery performance of miscible displacement and WAG process
  publication-title: PETSOC-2004-192 presented at the Canadian international petroleum conference, calgary, alberta, 8-10 june
– year: 2002
  ident: bib33
  article-title: Residual gas saturation to aquifer influx: a calculation method for 3-D computer reservoir model construction
  publication-title: SPE-75502-MS presented at SPE gas technology symposium, calgary, alberta, Canada, 30 april-2 may
– year: 2006
  ident: bib4
  article-title: Recovery of oil resources from the residual and transitional oil zones of the Permian Basin
  publication-title: SPE 102972 presented at the annual technical conference and exhibition, san antonio, Texas, 24-27 september
– volume: 10
  start-page: 337
  year: 1970
  end-page: 348
  ident: bib15
  article-title: Displacement of oil by solvent at high water saturation
  publication-title: SPE J
– start-page: 17
  year: 2017
  end-page: 18
  ident: bib35
  article-title: Local capillary trapping and permeability-Retarded Accumulation during geological carbon sequestration
– volume: 21
  start-page: 786
  year: 2016
  end-page: 798
  ident: bib25
  article-title: Ensemble-based optimization of the water-alternating-gas-injection process
  publication-title: SPE J
– volume: 21
  start-page: 761
  year: 2016
  end-page: 775
  ident: bib32
  article-title: Investigation and optimization of the effects of geologic parameters on the performance of gravity-stable surfactant floods
  publication-title: SPE J
– volume: 34
  start-page: 2746
  year: 1982
  end-page: 2756
  ident: bib52
  article-title: CO2 flooding strategy in a communicating layered reservoir
  publication-title: J Petrol Technol
– year: 2003
  ident: bib42
  article-title: Assessment of three-phase relative permeability models using laboratory hysteresis data
  publication-title: Paper SPE-84903-MS presented at SPE international improved oil recovery conference in asia pacific, kuala lumpur, Malaysia, 20-21 october
– volume: 99
  start-page: 93
  year: 2014
  end-page: 103
  ident: bib22
  article-title: Sensitivity analysis of water-alternating-CO2 flooding for enhanced oil recovery in high water cut oil reservoirs
  publication-title: Comput Fluids
– year: 2018
  ident: bib49
  article-title: Tall Cotton (san Andres) field
  publication-title: Presentation at the CO2 & ROZ conference, midland, Texas, 3–6 december
– volume: 227
  start-page: 218
  year: 2018
  end-page: 246
  ident: bib16
  article-title: A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection
  publication-title: Fuel
– volume: 69
  start-page: 28
  year: 2017
  end-page: 31
  ident: bib57
  article-title: New permian oil play requires pumping and persistence
  publication-title: J Petrol Technol
– volume: 7
  start-page: 128
  year: 2017
  end-page: 142
  ident: bib10
  article-title: Co-optimization of CO2-EOR and storage processes in mature oil reservoirs
  publication-title: Greenhouse Gases: Sci Technol
– year: 2010
  ident: bib39
  article-title: Rock-fluid characterization for miscible CO2 injection: residual oil zone, Seminole field, Permian Basin
  publication-title: SPE-133089 presented at the annual technical conference and exhibition, florence, Italy, 19-22 september
– volume: 9
  start-page: 208
  year: 1994
  end-page: 216
  ident: bib53
  article-title: CO2 flow patterns under multiphase flow: heterogeneous field-scale conditions
  publication-title: SPE Reservoir Eng
– volume: vol. 22
  year: 2002
  ident: bib46
  publication-title: Practical aspects of CO2 flooding
– volume: 114
  start-page: 5438
  year: 2017
  end-page: 5450
  ident: bib2
  article-title: Residual oil zone “fairways” and discovered oil resources: expanding the options for carbon negative storage of CO2
  publication-title: Energy Procedia
– volume: 25
  start-page: 79
  year: 2014
  end-page: 92
  ident: bib26
  article-title: CO2-EOR and storage design optimization
  publication-title: International Journal of Greenhouse Gas Control
– year: 2013
  ident: bib1
  article-title: Long overlooked residual oil zones (ROZ’s) are brought to the limelight
  publication-title: SPE-167209-MS presented at SPE unconventional resources conference Canada, calgary, alberta, Canada, 5-7 november
– volume: 22
  start-page: 214
  year: 1970
  end-page: 218
  ident: bib40
  article-title: Probability model for estimating three-phase relative permeability
  publication-title: J Petrol Technol
– volume: 186
  year: 2019
  ident: bib38
  article-title: Water flooding of oil reservoirs: effect of oil viscosity and injection velocity on the interplay between capillary and viscous forces
  publication-title: J Petrol Sci Eng
– year: 2016
  ident: bib9
  article-title: Eclipse User’s Guide
– volume: 48
  start-page: 1
  year: 2005
  end-page: 20
  ident: bib20
  article-title: Experimental investigation of miscible and immiscible water-alternating-gas (WAG) process performance
  publication-title: J Petrol Sci Eng
– volume: 17
  start-page: 326
  year: 2014
  end-page: 339
  ident: bib23
  article-title: Three-phase relative permeability modeling in the simulation of WAG injection
  publication-title: SPE Reservoir Eval Eng
– year: 2019
  ident: bib5
  article-title: Origin and exploitation of residual oil zones (ROZ) in the Permian Basin of Texas
  publication-title: Abstract presented at AAPG 2019 international conference and exhibition, buenos aires, Argentina, 27-30 august
– volume: 51
  start-page: 18
  year: 2016
  end-page: 28
  ident: bib11
  article-title: Uncertainty analysis of carbon sequestration in an active CO2-EOR field
  publication-title: International Journal of Greenhouse Gas Control
– volume: 4
  start-page: 375
  year: 2001
  end-page: 386
  ident: bib18
  article-title: A literature analysis of the WAG injectivity abnormalities in the CO2 process
  publication-title: SPE Reservoir Eval Eng
– volume: 29
  start-page: 6213
  year: 2015
  end-page: 6223
  ident: bib48
  article-title: Experimental study of water and CO2 flooding in the tight main pay zone and vuggy residual oil zone of a carbonate reservoir
  publication-title: Energy Fuels
– year: 2013
  ident: bib6
  publication-title: Residual oil zones (ROZs): a review of ROZ science and engineering
– volume: 12
  start-page: 224
  year: 2007
  end-page: 234
  ident: bib19
  article-title: Parametric investigation of WAG floods above the MME
  publication-title: SPE J
– volume: 56
  start-page: 102
  year: 2017
  end-page: 115
  ident: bib7
  article-title: CO2 storage in residual oil zones: field-scale modeling and assessment
  publication-title: International Journal of Greenhouse Gas Control
– volume: 49
  start-page: 75
  year: 2010
  end-page: 82
  ident: bib24
  article-title: Optimal parametric design for water-alternating-gas (WAG) process in a CO2-miscible flooding reservoir
  publication-title: J Can Petrol Technol
– year: 2014
  ident: bib43
  article-title: Status of fluid flow mechanisms for miscible and immiscible WAG
  publication-title: SPE-169747 presented at SPE EOR conference at oil and gas west asia, muscat, Oman, 31 march – 2 april
– volume: 3
  start-page: 188
  year: 1995
  end-page: 197
  ident: bib31
  article-title: Scaling fluid flow through heterogeneous permeable media
  publication-title: SPE Adv Technol
– year: 2018
  ident: bib27
  article-title: Machine learning-based optimization of well locations and WAG parameters under geologic uncertainty
  publication-title: SPE 190239 presented at the SPE improved oil recovery conference, tulsa, Oklahoma, USA, 14-18 april
– year: 2006
  ident: bib3
  article-title: The origin and resource potential of residual oil zones
  publication-title: SPE 102964 presented at the annual technical conference and exhibition, san antonio, Texas, 24-27 september
– start-page: pp135
  year: 2009
  ident: bib30
  article-title: Applied Geostatistics with SGeMS: a User’s Guide
– volume: 2
  start-page: 281
  year: 1989
  end-page: 303
  ident: bib47
  article-title: Applying fractional flow theory to solvent flooding and chase fluids
  publication-title: J Petrol Sci Eng
– volume: 177
  start-page: 528
  year: 2019
  end-page: 539
  ident: bib37
  article-title: Modeling oil saturation evolution in residual oil zones: implications for CO2 EOR and sequestration
  publication-title: J Petrol Sci Eng
– volume: 167
  start-page: 391
  year: 2019
  end-page: 401
  ident: bib8
  article-title: Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, san Andres formation of west Texas, Permian Basin, USA
  publication-title: Energy
– year: 2000
  ident: bib41
  article-title: Hysteresis in three-phase flow: experiments, modeling and reservoir simulations
  publication-title: Paper SPE-65127-MS presented at SPE European petroleum conference, paris, France, 24-25 october
– year: 2012
  ident: bib36
  article-title: Commercial Exploitation and the origin of residual oil zones: Developing a case history in the Permian Basin of New Mexico and west Texas
– volume: 96
  start-page: 103006
  year: 2020
  ident: bib58
  article-title: Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale
  publication-title: International Journal of Greenhouse Gas Control
– start-page: pp270
  year: 2000
  ident: bib29
  article-title: Statistics for Petroleum Engineers and Geoscientists
– volume: 142
  start-page: 152
  year: 1941
  end-page: 169
  ident: bib34
  article-title: Capillary behavior in porous solids
  publication-title: AIME Petroleum Transactions
– year: 2014
  ident: bib13
  article-title: Enhanced oil recovery
– volume: 183
  start-page: 291
  year: 2019
  end-page: 304
  ident: bib54
  article-title: Characterization of CO2 storage and enhanced oil recovery in residual oil zones
  publication-title: Energy
– volume: 50
  start-page: 115
  year: 2006
  end-page: 139
  ident: bib44
  article-title: Impact of relative permeability hysteresis on the numerical simulation of WAG injection
  publication-title: J Petrol Sci Eng
– volume: 20
  start-page: 260
  year: 2017
  end-page: 268
  ident: bib50
  article-title: Residual-oil zone: paleo-oil characterization and fundamental analysis
  publication-title: SPE Reservoir Eval Eng
– year: 2012
  ident: bib28
  article-title: Guidelines to optimize CO2 EOR in heterogeneous reservoirs
  publication-title: SPE-151871 presented at the north africa technical conference and exhibition, cario, Egypt, 20-22 february
– volume: 9
  start-page: 208
  year: 1994
  ident: 10.1016/j.energy.2021.119915_bib53
  article-title: CO2 flow patterns under multiphase flow: heterogeneous field-scale conditions
  publication-title: SPE Reservoir Eng
  doi: 10.2118/22654-PA
– year: 2012
  ident: 10.1016/j.energy.2021.119915_bib28
  article-title: Guidelines to optimize CO2 EOR in heterogeneous reservoirs
– start-page: pp270
  year: 2000
  ident: 10.1016/j.energy.2021.119915_bib29
– volume: 186
  year: 2019
  ident: 10.1016/j.energy.2021.119915_bib38
  article-title: Water flooding of oil reservoirs: effect of oil viscosity and injection velocity on the interplay between capillary and viscous forces
  publication-title: J Petrol Sci Eng
– year: 2013
  ident: 10.1016/j.energy.2021.119915_bib1
  article-title: Long overlooked residual oil zones (ROZ’s) are brought to the limelight
– volume: 29
  start-page: 6213
  issue: 10
  year: 2015
  ident: 10.1016/j.energy.2021.119915_bib48
  article-title: Experimental study of water and CO2 flooding in the tight main pay zone and vuggy residual oil zone of a carbonate reservoir
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b01185
– volume: 4
  start-page: 375
  issue: 5
  year: 2001
  ident: 10.1016/j.energy.2021.119915_bib18
  article-title: A literature analysis of the WAG injectivity abnormalities in the CO2 process
  publication-title: SPE Reservoir Eval Eng
  doi: 10.2118/73830-PA
– year: 2006
  ident: 10.1016/j.energy.2021.119915_bib4
  article-title: Recovery of oil resources from the residual and transitional oil zones of the Permian Basin
– volume: 21
  start-page: 786
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2021.119915_bib25
  article-title: Ensemble-based optimization of the water-alternating-gas-injection process
  publication-title: SPE J
  doi: 10.2118/173217-PA
– volume: 12
  start-page: 224
  issue: 2
  year: 2007
  ident: 10.1016/j.energy.2021.119915_bib19
  article-title: Parametric investigation of WAG floods above the MME
  publication-title: SPE J
  doi: 10.2118/84366-PA
– start-page: pp46
  year: 2013
  ident: 10.1016/j.energy.2021.119915_bib45
– year: 2003
  ident: 10.1016/j.energy.2021.119915_bib42
  article-title: Assessment of three-phase relative permeability models using laboratory hysteresis data
– year: 2019
  ident: 10.1016/j.energy.2021.119915_bib5
  article-title: Origin and exploitation of residual oil zones (ROZ) in the Permian Basin of Texas
– volume: 48
  start-page: 1
  issue: 1–2
  year: 2005
  ident: 10.1016/j.energy.2021.119915_bib20
  article-title: Experimental investigation of miscible and immiscible water-alternating-gas (WAG) process performance
  publication-title: J Petrol Sci Eng
– volume: 34
  start-page: 2746
  issue: 12
  year: 1982
  ident: 10.1016/j.energy.2021.119915_bib52
  article-title: CO2 flooding strategy in a communicating layered reservoir
  publication-title: J Petrol Technol
– year: 2012
  ident: 10.1016/j.energy.2021.119915_bib36
– year: 2009
  ident: 10.1016/j.energy.2021.119915_bib12
  article-title: Modeling CO2 storage in aquifers: assessing the key contributors to uncertainty
– volume: 25
  start-page: 79
  year: 2014
  ident: 10.1016/j.energy.2021.119915_bib26
  article-title: CO2-EOR and storage design optimization
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2014.04.006
– volume: 20
  start-page: 260
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2021.119915_bib50
  article-title: Residual-oil zone: paleo-oil characterization and fundamental analysis
  publication-title: SPE Reservoir Eval Eng
  doi: 10.2118/179545-PA
– year: 2018
  ident: 10.1016/j.energy.2021.119915_bib27
  article-title: Machine learning-based optimization of well locations and WAG parameters under geologic uncertainty
– volume: 2
  start-page: 281
  issue: 4
  year: 1989
  ident: 10.1016/j.energy.2021.119915_bib47
  article-title: Applying fractional flow theory to solvent flooding and chase fluids
  publication-title: J Petrol Sci Eng
  doi: 10.1016/0920-4105(89)90005-3
– volume: 22
  start-page: 214
  issue: 2
  year: 1970
  ident: 10.1016/j.energy.2021.119915_bib40
  article-title: Probability model for estimating three-phase relative permeability
  publication-title: J Petrol Technol
– volume: vol. 22
  year: 2002
  ident: 10.1016/j.energy.2021.119915_bib46
– volume: 227
  start-page: 218
  year: 2018
  ident: 10.1016/j.energy.2021.119915_bib16
  article-title: A comprehensive review on enhanced oil recovery by water alternating gas (WAG) injection
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.04.015
– year: 2002
  ident: 10.1016/j.energy.2021.119915_bib33
  article-title: Residual gas saturation to aquifer influx: a calculation method for 3-D computer reservoir model construction
– volume: 10
  start-page: 337
  issue: 4
  year: 1970
  ident: 10.1016/j.energy.2021.119915_bib15
  article-title: Displacement of oil by solvent at high water saturation
  publication-title: SPE J
– year: 2018
  ident: 10.1016/j.energy.2021.119915_bib49
  article-title: Tall Cotton (san Andres) field
– year: 2006
  ident: 10.1016/j.energy.2021.119915_bib3
  article-title: The origin and resource potential of residual oil zones
– volume: 114
  start-page: 5438
  year: 2017
  ident: 10.1016/j.energy.2021.119915_bib2
  article-title: Residual oil zone “fairways” and discovered oil resources: expanding the options for carbon negative storage of CO2
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1688
– year: 2000
  ident: 10.1016/j.energy.2021.119915_bib21
  article-title: CO2 injection in the weyburn field of Canada: optimization of enhanced oil recovery and greenhouse gas storage with horizontal wells
– volume: 167
  start-page: 391
  year: 2019
  ident: 10.1016/j.energy.2021.119915_bib8
  article-title: Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, san Andres formation of west Texas, Permian Basin, USA
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.007
– volume: 177
  start-page: 528
  year: 2019
  ident: 10.1016/j.energy.2021.119915_bib37
  article-title: Modeling oil saturation evolution in residual oil zones: implications for CO2 EOR and sequestration
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.02.072
– volume: 183
  start-page: 291
  year: 2019
  ident: 10.1016/j.energy.2021.119915_bib54
  article-title: Characterization of CO2 storage and enhanced oil recovery in residual oil zones
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.142
– volume: 49
  start-page: 75
  issue: 10
  year: 2010
  ident: 10.1016/j.energy.2021.119915_bib24
  article-title: Optimal parametric design for water-alternating-gas (WAG) process in a CO2-miscible flooding reservoir
  publication-title: J Can Petrol Technol
  doi: 10.2118/141650-PA
– year: 2014
  ident: 10.1016/j.energy.2021.119915_bib43
  article-title: Status of fluid flow mechanisms for miscible and immiscible WAG
– start-page: pp135
  year: 2009
  ident: 10.1016/j.energy.2021.119915_bib30
– volume: 3
  start-page: 188
  issue: 1
  year: 1995
  ident: 10.1016/j.energy.2021.119915_bib31
  article-title: Scaling fluid flow through heterogeneous permeable media
  publication-title: SPE Adv Technol
  doi: 10.2118/26648-PA
– start-page: 17
  year: 2017
  ident: 10.1016/j.energy.2021.119915_bib35
– volume: 96
  start-page: 103006
  year: 2020
  ident: 10.1016/j.energy.2021.119915_bib58
  article-title: Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2020.103006
– volume: 51
  start-page: 18
  year: 2016
  ident: 10.1016/j.energy.2021.119915_bib11
  article-title: Uncertainty analysis of carbon sequestration in an active CO2-EOR field
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.04.010
– year: 2010
  ident: 10.1016/j.energy.2021.119915_bib39
  article-title: Rock-fluid characterization for miscible CO2 injection: residual oil zone, Seminole field, Permian Basin
– volume: 99
  start-page: 93
  year: 2014
  ident: 10.1016/j.energy.2021.119915_bib22
  article-title: Sensitivity analysis of water-alternating-CO2 flooding for enhanced oil recovery in high water cut oil reservoirs
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2014.03.022
– volume: 56
  start-page: 102
  year: 2017
  ident: 10.1016/j.energy.2021.119915_bib7
  article-title: CO2 storage in residual oil zones: field-scale modeling and assessment
  publication-title: International Journal of Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.10.005
– year: 2013
  ident: 10.1016/j.energy.2021.119915_bib6
– volume: 7
  start-page: 128
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2021.119915_bib10
  article-title: Co-optimization of CO2-EOR and storage processes in mature oil reservoirs
  publication-title: Greenhouse Gases: Sci Technol
  doi: 10.1002/ghg.1618
– year: 2016
  ident: 10.1016/j.energy.2021.119915_bib9
– volume: 69
  start-page: 28
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2021.119915_bib57
  article-title: New permian oil play requires pumping and persistence
  publication-title: J Petrol Technol
– year: 2014
  ident: 10.1016/j.energy.2021.119915_bib13
– volume: 50
  start-page: 115
  issue: 2
  year: 2006
  ident: 10.1016/j.energy.2021.119915_bib44
  article-title: Impact of relative permeability hysteresis on the numerical simulation of WAG injection
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2005.09.004
– year: 2004
  ident: 10.1016/j.energy.2021.119915_bib17
  article-title: Critical design factors and evaluation of recovery performance of miscible displacement and WAG process
– volume: 4
  start-page: 97
  issue: 2
  year: 2001
  ident: 10.1016/j.energy.2021.119915_bib14
  article-title: Review of WAG field experience
  publication-title: SPE Reservoir Eval Eng
  doi: 10.2118/71203-PA
– volume: 21
  start-page: 761
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2021.119915_bib32
  article-title: Investigation and optimization of the effects of geologic parameters on the performance of gravity-stable surfactant floods
  publication-title: SPE J
  doi: 10.2118/178915-PA
– volume: 17
  start-page: 326
  issue: 3
  year: 2014
  ident: 10.1016/j.energy.2021.119915_bib23
  article-title: Three-phase relative permeability modeling in the simulation of WAG injection
  publication-title: SPE Reservoir Eval Eng
  doi: 10.2118/166138-PA
– year: 2000
  ident: 10.1016/j.energy.2021.119915_bib41
  article-title: Hysteresis in three-phase flow: experiments, modeling and reservoir simulations
– volume: 142
  start-page: 152
  year: 1941
  ident: 10.1016/j.energy.2021.119915_bib34
  article-title: Capillary behavior in porous solids
  publication-title: AIME Petroleum Transactions
  doi: 10.2118/941152-G
SSID ssj0005899
Score 2.5037386
Snippet Residual oil zones (ROZs) are widespread reservoirs, characterized by oil at residual saturation, either underlying oil fields (brownfield) or lateral...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119915
SubjectTerms Anisotropy
Aquifers
basins
Brownfields
Carbon dioxide
Carbon dioxide fixation
Carbon sequestration
CO2-EOR
Copying
energy
Enhanced oil recovery
Geology
green infrastructure
Heterogeneity
Injection
Oil
Oil and gas fields
Oil fields
Oil recovery
Oil saturation
oils
Permeability
Permian
Permian period
Petroleum production
Reservoir heterogeneity
Reservoirs
Residual oil zone
Saturation
Spatial distribution
Water alternating gas
Water flooding
Title Maximizing oil production from water alternating gas (CO2) injection into residual oil zones: The impact of oil saturation and heterogeneity
URI https://dx.doi.org/10.1016/j.energy.2021.119915
https://www.proquest.com/docview/2510604716
https://www.proquest.com/docview/2574325172
https://www.osti.gov/biblio/1780199
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Sciencedirect - Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C5bBdptENrYNVRtphHLK2SerYu6GqqKMaSAy03izHcVgQSypSBOLAX8AfvffsBDahCWmnJM1zZOX9dPO-zwAfhdZC8yQNeI5qiOXQBCnnOhBZKk0ox0lkHdvnIZ-dxgeL8WINJi0Whtoqm9jvY7qL1s0vg-ZtDpZFMfiOsRfrjTgMR44nakEI9phTW9_nuz_aPITbQ5KEA5Ju4XOux8s6fB2uEsMRxg4slcb_Sk-dCj3uSbx2SWj_Nbxqqke25ye4AWu27MKLFlxcd2Fz-ghcQ8HGc-s3cP9N3xS_ilvMVKwqLtjSM72iVhghTNg11pyXzH07p_8HUepM1-zT5CjcZUV5br1oUa4qhgt0h-Byz7klrv8vDK2NecAlq3J3oybGUKd2psuM_aS2mwqt1WLZ_xZO96cnk1nQ7MQQmDgergJho9yg94owwtjOc2tzXGrwbJhbkSXjVI-kTrV0yNVU4EmWCRPmJiG2tYzn0SZ0SpzPO2Ai0kOD0lEm09gKqh815kiupY0SI3QPolYByjQ05bRbxoVq-9HOlVebIrUpr7YeBA-jlp6m4xn5pNWt-svcFGaSZ0ZukSnQKGLZNdSOhMNGCaZ6KXuw3VqIaoJBrbCEJIoiXJn2YOfhNroxfZvRpa2uSAZLOaKPC9__99S24CVd-XbMbeisLq_sByyZVmnf-UQf1ve-zmeHdJwf_5j_BnUVGhM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoBL1VIQW2jrSj3AIdpsHo7dG1qBlgLLAZD2ZjmOQ4NosiKLWvEb-qM74zigqqqQeos2M5G18_qczHwG-Cy0FppnecBLNEMiQxPknOtAFLk0kUyz2Dq2zxmfXidf5-l8BSb9LAy1Vfrc3-V0l639LyP_b44WVTW6xNyLeCOJorHjiZqvwlqSYk4ewNrhyel09tzpIdwxkiQfkEI_QefavKwbscONYjTG9IFoKf1XhRo0GHR_pWxXh45fwysPINlht8Y3sGLrTVjv54vbTdg-ep5dQ0EfvO1b-HWuf1bfq0csVqyp7tiiI3tFwzAaMmE_EHbeM_f5nF4RotSNbtn-5CI6YFV9azvRql42DPfobojLPeeR6P6_MHQ41s1csqZ0N1oiDXWWZ7ou2DfqvGnQYS0i_y24Pj66mkwDfxhDYJIkXAbCxqXBABZRjOmdl9aWuNvgRVhaUWRprsdS51q64dVc4EVRCBOVJiPCtYKX8TYMalzPDjAR69CgdFzIPLGCIKTGMsm1tHFmhB5C3BtAGc9UTgdm3Km-Je1WdWZTZDbVmW0IwZPWomPqeEE-622r_vA4hcXkBc1dcgXSIqJdQx1JqDbOsNpLOYS93kOUzwetQhRJLEW4OR3Cp6fbGMn0eUbXtnkgGURzxCAXvfvvpX2E9enV-Zk6O5md7sIGorvUDVCGezBY3j_Y94iglvkHHyG_AR9qGx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+oil+production+from+water+alternating+gas+%28CO2%29+injection+into+residual+oil+zones%3A+The+impact+of+oil+saturation+and+heterogeneity&rft.jtitle=Energy+%28Oxford%29&rft.au=Ren%2C+Bo&rft.au=Duncan%2C+Ian+J&rft.date=2021-05-01&rft.issn=0360-5442&rft.volume=222+p.119915-&rft_id=info:doi/10.1016%2Fj.energy.2021.119915&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon