Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI

In the evaluation of cerebrovascular CO 2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO 2 partial pressure. However, the strong cerebral vasodilatory capacity of CO 2 ch...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 117; no. 10; pp. 1084 - 1089
Main Authors Verbree, Jasper, Bronzwaer, Anne-Sophie G. T., Ghariq, Eidrees, Versluis, Maarten J., Daemen, Mat J. A. P., van Buchem, Mark A., Dahan, Albert, van Lieshout, Johannes J., van Osch, Matthias J. P.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.11.2014
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.00651.2014

Cover

Abstract In the evaluation of cerebrovascular CO 2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO 2 partial pressure. However, the strong cerebral vasodilatory capacity of CO 2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO 2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21–30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, −1 kPa (−7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal Pco 2 (Pet CO 2 ) above baseline. However, no significant changes in diameter were observed at the −1 kPa (−1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO 2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant Pet CO 2 measurements. In conclusion, the MCA diameter remains constant during small deviations of the Pet CO 2 from normocapnia, but increases at higher Pet CO 2 values.
AbstractList In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values.In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values.
In the evaluation of cerebrovascular CO... reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO... partial pressure. However, the strong cerebral vasodilatory capacity of CO... challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO... on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 plus or minus 2.9% in response to 2 kPa end-tidal Pco... (PetCO...) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 plus or minus 2.4%), and +1 kPa (+1.4 plus or minus 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PetCO... measurements. In conclusion, the MCA diameter remains constant during small deviations of the PetCO... from normocapnia, but increases at higher PetCO... values. (ProQuest: ... denotes formulae/symbols omitted.)
In the evaluation of cerebrovascular CO 2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO 2 partial pressure. However, the strong cerebral vasodilatory capacity of CO 2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO 2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21–30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, −1 kPa (−7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal Pco 2 (Pet CO 2 ) above baseline. However, no significant changes in diameter were observed at the −1 kPa (−1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO 2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant Pet CO 2 measurements. In conclusion, the MCA diameter remains constant during small deviations of the Pet CO 2 from normocapnia, but increases at higher Pet CO 2 values.
In the evaluation of cerebrovascular CO... reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO... partial pressure. However, the strong cerebral vasodilatory capacity of CO... challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO... on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal Pco... (PetCO...) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PetCO... measurements. In conclusion, the MCA diameter remains constant during small deviations of the PetCO... from normocapnia, but increases at higher PetCO... values. (ProQuest: ... denotes formulae/symbols omitted.)
In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values.
Author Daemen, Mat J. A. P.
Versluis, Maarten J.
Ghariq, Eidrees
Verbree, Jasper
van Osch, Matthias J. P.
Dahan, Albert
Bronzwaer, Anne-Sophie G. T.
van Buchem, Mark A.
van Lieshout, Johannes J.
Author_xml – sequence: 1
  givenname: Jasper
  surname: Verbree
  fullname: Verbree, Jasper
  organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 2
  givenname: Anne-Sophie G. T.
  surname: Bronzwaer
  fullname: Bronzwaer, Anne-Sophie G. T.
  organization: Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands;, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands; and
– sequence: 3
  givenname: Eidrees
  surname: Ghariq
  fullname: Ghariq, Eidrees
  organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 4
  givenname: Maarten J.
  surname: Versluis
  fullname: Versluis, Maarten J.
  organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 5
  givenname: Mat J. A. P.
  surname: Daemen
  fullname: Daemen, Mat J. A. P.
  organization: Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
– sequence: 6
  givenname: Mark A.
  surname: van Buchem
  fullname: van Buchem, Mark A.
  organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 7
  givenname: Albert
  surname: Dahan
  fullname: Dahan, Albert
  organization: Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
– sequence: 8
  givenname: Johannes J.
  surname: van Lieshout
  fullname: van Lieshout, Johannes J.
  organization: Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands;, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands; and, MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
– sequence: 9
  givenname: Matthias J. P.
  surname: van Osch
  fullname: van Osch, Matthias J. P.
  organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25190741$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v3CAQxVGVqtn8-QotUi-9eMtgwPahhyhq0kipIkXtGY0Njllh7IJ92G9fttlIVS7taWbE7w3w3hk5CVOwhHwAtgWQ_PMO59nPwz65yW8ZUxK2nIF4Qzb5lBegGJyQTV1JVlSyrk7JWUo7lgkh4R055RIaVgnYkOUqJZvSaMNCp56OzhhvaWejbSN6inGxcU-Nw9Hmjpo1uvBEh_08dTgHhxSDOYw2HmcX6LCOGBJd0wFd_RKxGNzTUPTOekO_P95dkLc9-mQvj_Wc_Lz5-uP6W3H_cHt3fXVfdEKwpah5CdzyqkIlG9Y2XQ_YSmBNw6seWK9EawBZW7bQsQqNkZIrLFtRo0JpuvKcfHreO8fp12rTokeXOus9BjutSYNSNVdMlPAfaClEk_2sM_rxFbqb1hjyRzKVX1vmpTxT74_U2o7W6Dm6EeNev1ifgS_PQBenlKLtdecWXNwUsmHOa2D6ELX-O2r9J2p9iDrrq1f6lyv-pfwNLnmzGA
CitedBy_id crossref_primary_10_1152_ajpregu_00109_2017
crossref_primary_10_1088_1361_6579_aba67e
crossref_primary_10_1152_japplphysiol_00490_2015
crossref_primary_10_1113_JP272242
crossref_primary_10_1113_JP272241
crossref_primary_10_1152_japplphysiol_00261_2021
crossref_primary_10_1177_0271678X15615874
crossref_primary_10_14814_phy2_15595
crossref_primary_10_1016_j_sleep_2020_04_029
crossref_primary_10_1152_ajpregu_00030_2024
crossref_primary_10_1016_j_medengphy_2022_103921
crossref_primary_10_1113_JP281517
crossref_primary_10_7759_cureus_71892
crossref_primary_10_1152_ajpheart_00348_2018
crossref_primary_10_1111_jon_12675
crossref_primary_10_1152_ajpregu_00112_2017
crossref_primary_10_1007_s00421_022_04908_4
crossref_primary_10_1088_0967_3334_36_4_785
crossref_primary_10_1152_japplphysiol_00100_2022
crossref_primary_10_1113_EP089982
crossref_primary_10_1152_ajpregu_00211_2015
crossref_primary_10_3389_fphys_2021_656746
crossref_primary_10_1007_s13311_019_00733_4
crossref_primary_10_1159_000446397
crossref_primary_10_1113_EP085706
crossref_primary_10_1097_CCM_0000000000003558
crossref_primary_10_1113_JP280439
crossref_primary_10_1113_EP092245
crossref_primary_10_1139_apnm_2024_0028
crossref_primary_10_1113_EP091707
crossref_primary_10_1113_EP086249
crossref_primary_10_1152_japplphysiol_00477_2024
crossref_primary_10_1152_japplphysiol_00854_2014
crossref_primary_10_1152_japplphysiol_00630_2021
crossref_primary_10_14814_phy2_14367
crossref_primary_10_1016_j_wneu_2023_10_046
crossref_primary_10_1007_s00421_020_04307_7
crossref_primary_10_1113_JP272012
crossref_primary_10_1113_JP275887
crossref_primary_10_1152_japplphysiol_00239_2020
crossref_primary_10_1111_head_14680
crossref_primary_10_9746_sicetr_60_612
crossref_primary_10_1007_s00421_021_04822_1
crossref_primary_10_1249_MSS_0000000000002537
crossref_primary_10_2301_neurosonology_34_142
crossref_primary_10_1371_journal_pone_0180195
crossref_primary_10_1152_japplphysiol_00347_2021
crossref_primary_10_1007_s00421_022_04973_9
crossref_primary_10_1109_TBME_2021_3100288
crossref_primary_10_1152_ajpregu_00367_2015
crossref_primary_10_1113_EP090159
crossref_primary_10_1183_13993003_01854_2018
crossref_primary_10_1152_ajpheart_00761_2014
crossref_primary_10_14814_phy2_15373
crossref_primary_10_14814_phy2_13984
crossref_primary_10_1177_0271678X18762880
crossref_primary_10_14814_phy2_13867
crossref_primary_10_2169_internalmedicine_56_8002
crossref_primary_10_1016_j_resp_2017_02_014
crossref_primary_10_1113_EP092327
crossref_primary_10_1113_EP091119
crossref_primary_10_1152_ajpheart_00676_2016
crossref_primary_10_1161_JAHA_117_006126
crossref_primary_10_1177_0271678X211033732
crossref_primary_10_1152_japplphysiol_01031_2020
crossref_primary_10_1152_physrev_00022_2020
crossref_primary_10_1016_j_autneu_2019_102581
crossref_primary_10_1111_psyp_13305
crossref_primary_10_1007_s11906_020_01075_9
crossref_primary_10_14814_phy2_12883
crossref_primary_10_1152_ajpregu_00112_2024
crossref_primary_10_1111_bdi_12719
crossref_primary_10_1152_jn_00175_2019
crossref_primary_10_1161_HYPERTENSIONAHA_116_07698
crossref_primary_10_14814_phy2_14389
crossref_primary_10_1371_journal_pone_0298587
crossref_primary_10_1113_JP271981
crossref_primary_10_1113_EP086585
crossref_primary_10_1113_EP087675
crossref_primary_10_1111_jnc_14234
crossref_primary_10_1113_EP091807
crossref_primary_10_1016_j_bja_2024_12_037
crossref_primary_10_1152_ajpheart_00062_2021
crossref_primary_10_1016_j_autneu_2017_05_003
crossref_primary_10_1088_0967_3334_37_5_673
crossref_primary_10_1016_j_neuroimage_2017_01_019
crossref_primary_10_3389_fnagi_2019_00281
crossref_primary_10_1113_EP088293
crossref_primary_10_1016_j_mvr_2023_104536
crossref_primary_10_1152_japplphysiol_00035_2017
crossref_primary_10_14814_phy2_15278
crossref_primary_10_3390_healthcare8020169
crossref_primary_10_1111_1440_1681_12421
crossref_primary_10_14814_phy2_12430
crossref_primary_10_1113_JP271914
crossref_primary_10_1152_japplphysiol_00119_2019
crossref_primary_10_1007_s10877_018_0136_1
crossref_primary_10_1007_s00424_019_02290_3
crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_02_027
crossref_primary_10_1249_MSS_0000000000002462
crossref_primary_10_14814_phy2_13886
crossref_primary_10_1177_0271678X19828327
crossref_primary_10_1113_jphysiol_2014_284521
crossref_primary_10_1152_japplphysiol_01116_2018
crossref_primary_10_1152_ajpregu_00048_2021
crossref_primary_10_1139_apnm_2021_0220
crossref_primary_10_1152_japplphysiol_00351_2024
crossref_primary_10_1088_1361_6579_ab7ddf
crossref_primary_10_1161_JAHA_124_036752
crossref_primary_10_14814_phy2_15384
crossref_primary_10_1113_EP086446
crossref_primary_10_1111_apha_12863
crossref_primary_10_1161_SVIN_123_001177
crossref_primary_10_1152_japplphysiol_00217_2024
crossref_primary_10_1249_MSS_0000000000001924
crossref_primary_10_1007_s10286_023_00986_2
crossref_primary_10_1161_STROKEAHA_121_036050
crossref_primary_10_1152_japplphysiol_00623_2018
crossref_primary_10_3109_00365513_2015_1137350
crossref_primary_10_1111_ene_13737
crossref_primary_10_1152_japplphysiol_00494_2023
crossref_primary_10_1177_0271678X15617954
crossref_primary_10_1177_0271678X211004131
crossref_primary_10_1096_fj_202001387R
crossref_primary_10_1113_JP284449
crossref_primary_10_1152_ajpheart_00300_2022
crossref_primary_10_1152_japplphysiol_00667_2015
crossref_primary_10_1096_fasebj_30_1_supplement_1203_6
crossref_primary_10_1152_japplphysiol_00695_2023
crossref_primary_10_1080_10790268_2015_1135556
crossref_primary_10_1111_sms_13582
crossref_primary_10_1109_TUFFC_2016_2603471
crossref_primary_10_1007_s00421_023_05324_y
crossref_primary_10_1186_s40798_021_00314_w
crossref_primary_10_1152_japplphysiol_00264_2015
crossref_primary_10_1113_EP090122
crossref_primary_10_1016_j_autneu_2020_102742
crossref_primary_10_14814_phy2_14982
crossref_primary_10_1088_1361_6579_aae469
crossref_primary_10_14814_phy2_14622
crossref_primary_10_1088_1361_6579_abf1af
crossref_primary_10_1152_ajpregu_00385_2016
crossref_primary_10_1111_sms_13573
crossref_primary_10_1152_japplphysiol_00995_2016
crossref_primary_10_3233_JAD_200194
crossref_primary_10_1177_0271678X241229908
crossref_primary_10_1042_CS20150694
crossref_primary_10_1152_japplphysiol_00158_2021
crossref_primary_10_1007_s00421_018_3887_y
crossref_primary_10_1371_journal_pone_0165536
crossref_primary_10_3389_fphys_2020_583155
crossref_primary_10_3389_fphys_2021_642850
crossref_primary_10_1038_s41598_025_94212_w
crossref_primary_10_14814_phy2_13571
crossref_primary_10_1113_EP087602
crossref_primary_10_1152_japplphysiol_00127_2015
crossref_primary_10_1152_japplphysiol_00643_2024
crossref_primary_10_1152_ajpregu_00111_2017
crossref_primary_10_1177_0271678X231203475
crossref_primary_10_14814_phy2_14539
crossref_primary_10_3389_fnhum_2023_1115355
crossref_primary_10_1007_s10877_017_0014_2
crossref_primary_10_1088_1361_6579_aac76b
crossref_primary_10_1096_fj_201700381RR
crossref_primary_10_3389_fphys_2022_1035452
crossref_primary_10_1123_pes_2018_0234
crossref_primary_10_14814_phy2_15735
crossref_primary_10_1007_s11517_019_02064_0
crossref_primary_10_1113_EP086887
crossref_primary_10_1371_journal_pone_0229049
crossref_primary_10_1177_0271678X231210430
crossref_primary_10_1007_s00421_021_04864_5
crossref_primary_10_1007_s10877_022_00817_1
crossref_primary_10_1186_s40814_020_00569_2
crossref_primary_10_1038_s41598_020_73658_0
crossref_primary_10_1152_japplphysiol_00269_2021
crossref_primary_10_1113_EP092178
crossref_primary_10_3389_fphys_2021_772456
crossref_primary_10_1088_0967_3334_37_9_1485
crossref_primary_10_1088_1361_6579_aafab6
crossref_primary_10_1152_japplphysiol_00599_2021
crossref_primary_10_1152_japplphysiol_00224_2017
crossref_primary_10_1371_journal_pone_0143059
crossref_primary_10_1113_EP087022
crossref_primary_10_1113_EP085084
crossref_primary_10_1186_s12576_020_00751_4
crossref_primary_10_1113_EP089446
crossref_primary_10_3389_fphys_2021_665049
crossref_primary_10_1016_j_jneumeth_2016_06_007
crossref_primary_10_1152_japplphysiol_00653_2021
crossref_primary_10_1111_cpf_12682
crossref_primary_10_1152_japplphysiol_00243_2021
crossref_primary_10_3389_fphys_2015_00394
crossref_primary_10_14814_phy2_15998
crossref_primary_10_3390_healthcare12242566
crossref_primary_10_14814_phy2_14549
crossref_primary_10_14814_phy2_14421
crossref_primary_10_1152_ajpregu_00134_2020
crossref_primary_10_3389_fneur_2020_00738
crossref_primary_10_1249_MSS_0000000000002183
crossref_primary_10_1038_jcbfm_2015_51
crossref_primary_10_14814_phy2_14458
crossref_primary_10_1152_japplphysiol_00851_2023
crossref_primary_10_1097_EJA_0000000000001798
crossref_primary_10_14814_phy2_13486
crossref_primary_10_14814_phy2_12957
crossref_primary_10_1111_sms_12674
crossref_primary_10_14814_phy2_13803
crossref_primary_10_1139_apnm_2020_0853
crossref_primary_10_1113_JP271081
crossref_primary_10_1152_japplphysiol_00797_2016
crossref_primary_10_1007_s10237_023_01772_9
crossref_primary_10_1113_JP278710
crossref_primary_10_1177_0271678X221142527
crossref_primary_10_1152_ajpheart_00474_2018
crossref_primary_10_1007_s00421_020_04547_7
crossref_primary_10_14814_phy2_14695
crossref_primary_10_1113_JP280118
crossref_primary_10_1177_0271678X251318922
crossref_primary_10_1007_s00421_017_3612_2
crossref_primary_10_1177_0271678X15626156
crossref_primary_10_1113_JP271884
crossref_primary_10_1177_0271678X16679419
crossref_primary_10_1152_ajpheart_00107_2022
crossref_primary_10_1007_s13311_019_00744_1
crossref_primary_10_1088_1361_6579_ad548d
crossref_primary_10_1152_ajpregu_00177_2021
crossref_primary_10_1177_0271678X241247633
crossref_primary_10_3389_fneur_2022_912828
crossref_primary_10_1177_0271678X211065204
crossref_primary_10_1017_S1355617721000394
crossref_primary_10_1088_1361_6579_acdb47
crossref_primary_10_1152_japplphysiol_00277_2015
crossref_primary_10_14814_phy2_12733
crossref_primary_10_1152_japplphysiol_00050_2022
crossref_primary_10_1152_advan_00048_2015
crossref_primary_10_1097_OPX_0000000000001400
crossref_primary_10_1186_s40101_018_0164_z
crossref_primary_10_1113_EP091719
crossref_primary_10_1186_s41747_020_0144_z
crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_08_015
crossref_primary_10_1016_j_resp_2021_103770
crossref_primary_10_1152_ajpregu_00025_2020
crossref_primary_10_3389_fphys_2023_1198615
crossref_primary_10_1113_EP091970
crossref_primary_10_1152_ajpheart_00498_2024
crossref_primary_10_1113_EP087358
crossref_primary_10_1038_s41598_021_81837_w
crossref_primary_10_14814_phy2_12602
crossref_primary_10_14814_phy2_14467
crossref_primary_10_1016_j_mri_2015_12_016
crossref_primary_10_1016_j_neuroimage_2015_04_014
crossref_primary_10_1089_neu_2017_5060
crossref_primary_10_1177_0271678X17691986
crossref_primary_10_1113_EP089533
crossref_primary_10_1152_japplphysiol_00050_2018
Cites_doi 10.1161/01.STR.20.1.45
10.1038/jcbfm.1984.54
10.1152/japplphysiol.00854.2014
10.1161/01.STR.30.1.81
10.1371/journal.pmed.0040239
10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W
10.1007/BF00327574
10.1113/jphysiol.2012.228551
10.1002/mrm.1910170215
10.1016/S0730-725X(01)00227-2
10.1113/jphysiol.2007.137075
10.1152/japplphysiol.90549.2008
10.1152/ajpregu.91008.2008
10.1016/S0952-8180(98)00107-X
10.1097/00004424-196701000-00016
10.1161/01.STR.27.12.2244
10.1152/japplphysiol.00637.2013
10.3174/ajnr.A2438
10.1161/01.STR.31.7.1672
10.1152/japplphysiol.91198.2008
10.1152/jappl.1996.81.3.1084
10.1227/00006123-199305000-00006
10.1161/01.STR.19.8.963
10.1007/BF01772826
ContentType Journal Article
Copyright Copyright © 2014 the American Physiological Society.
Copyright American Physiological Society Nov 15, 2014
Copyright_xml – notice: Copyright © 2014 the American Physiological Society.
– notice: Copyright American Physiological Society Nov 15, 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.00651.2014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
CrossRef
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1089
ExternalDocumentID 3506682061
25190741
10_1152_japplphysiol_00651_2014
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-~X
.55
18M
29J
2WC
4.4
53G
5VS
85S
AAFWJ
AAYXX
ABCQX
ABDNZ
ABHWK
ABJNI
ABKWE
ABOCM
ACBEA
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
ADFNX
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
FRP
GX1
H13
H~9
ITBOX
KQ8
L7B
OK1
P-O
P2P
P6G
PQQKQ
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
XSW
YBH
YQT
YWH
~02
AEILP
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c440t-82312e277a6590b9cf1ab5109927f10f64bd1a0b3b1c07add5526a3b48a6a5dc3
ISSN 8750-7587
1522-1601
IngestDate Fri Sep 05 04:30:33 EDT 2025
Fri Sep 05 10:07:38 EDT 2025
Mon Jun 30 08:51:01 EDT 2025
Mon Jul 21 05:40:17 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Wed Oct 01 01:57:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords transcranial Doppler
hypocapnia
MRI
angiography
hypercapnia
cerebral blood flow measurement
Language English
License Copyright © 2014 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c440t-82312e277a6590b9cf1ab5109927f10f64bd1a0b3b1c07add5526a3b48a6a5dc3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 25190741
PQID 1627736822
PQPubID 40905
PageCount 6
ParticipantIDs proquest_miscellaneous_1668260431
proquest_miscellaneous_1634497508
proquest_journals_1627736822
pubmed_primary_25190741
crossref_citationtrail_10_1152_japplphysiol_00651_2014
crossref_primary_10_1152_japplphysiol_00651_2014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-15
PublicationDateYYYYMMDD 2014-11-15
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2014
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B22
B23
B25
B26
B10
B11
B12
B13
B14
B15
B16
B17
Schreiber SJ (B21) 2000; 21
B18
Coverdale NS (B5)
B19
B1
B2
B2a
B3
B4
B6
B7
B8
B9
Valdueza JM (B24) 1997; 18
25257879 - J Appl Physiol (1985). 2014 Nov 15;117(10):1081-3
References_xml – ident: B1
  doi: 10.1161/01.STR.20.1.45
– ident: B14
  doi: 10.1038/jcbfm.1984.54
– ident: B5
  publication-title: J Appl Physiol
– ident: B2a
  doi: 10.1152/japplphysiol.00854.2014
– ident: B25
  doi: 10.1161/01.STR.30.1.81
– ident: B6
  doi: 10.1371/journal.pmed.0040239
– ident: B12
  doi: 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W
– ident: B4
  doi: 10.1007/BF00327574
– ident: B26
  doi: 10.1113/jphysiol.2012.228551
– ident: B16
  doi: 10.1002/mrm.1910170215
– ident: B13
  doi: 10.1016/S0730-725X(01)00227-2
– ident: B17
  doi: 10.1113/jphysiol.2007.137075
– volume: 18
  start-page: 1929
  year: 1997
  ident: B24
  publication-title: AJNR Am J Neuroradiol
– ident: B15
  doi: 10.1152/japplphysiol.90549.2008
– ident: B2
  doi: 10.1152/ajpregu.91008.2008
– ident: B7
  doi: 10.1016/S0952-8180(98)00107-X
– ident: B9
  doi: 10.1097/00004424-196701000-00016
– volume: 21
  start-page: 1207
  year: 2000
  ident: B21
  publication-title: Am J Neuroradiol
– ident: B19
  doi: 10.1161/01.STR.27.12.2244
– ident: B10
  doi: 10.1152/japplphysiol.00637.2013
– ident: B3
  doi: 10.3174/ajnr.A2438
– ident: B22
  doi: 10.1161/01.STR.31.7.1672
– ident: B11
  doi: 10.1152/japplphysiol.91198.2008
– ident: B18
  doi: 10.1152/jappl.1996.81.3.1084
– ident: B8
  doi: 10.1227/00006123-199305000-00006
– ident: B20
  doi: 10.1161/01.STR.19.8.963
– ident: B23
  doi: 10.1007/BF01772826
– reference: 25257879 - J Appl Physiol (1985). 2014 Nov 15;117(10):1081-3
SSID ssj0014451
Score 2.5798647
Snippet In the evaluation of cerebrovascular CO 2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by...
In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by...
In the evaluation of cerebrovascular CO... reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1084
SubjectTerms Adult
Blood
Blood Flow Velocity
Brain
Calibration
Carbon dioxide
Carbon Dioxide - blood
Cerebral Angiography - methods
Cerebral Angiography - standards
Cerebrovascular Circulation
Female
Healthy Volunteers
Humans
Hypercapnia - blood
Hypercapnia - diagnostic imaging
Hypercapnia - physiopathology
Hypocapnia - blood
Hypocapnia - diagnostic imaging
Hypocapnia - physiopathology
Magnetic Resonance Angiography - standards
Male
Middle Cerebral Artery - diagnostic imaging
Middle Cerebral Artery - metabolism
Middle Cerebral Artery - physiopathology
Models, Cardiovascular
NMR
Nonlinear Dynamics
Nuclear magnetic resonance
Observer Variation
Partial Pressure
Predictive Value of Tests
Reproducibility of Results
Ultrasonography, Doppler, Transcranial - standards
Vasodilation
Veins & arteries
Young Adult
Title Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI
URI https://www.ncbi.nlm.nih.gov/pubmed/25190741
https://www.proquest.com/docview/1627736822
https://www.proquest.com/docview/1634497508
https://www.proquest.com/docview/1668260431
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1522-1601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014451
  issn: 8750-7587
  databaseCode: KQ8
  dateStart: 19961001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1522-1601
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014451
  issn: 8750-7587
  databaseCode: DIK
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1522-1601
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014451
  issn: 8750-7587
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuhYGMhHipUuzEdpLHCoHGUBGXDe0tclxHrdSlpU2Euv_Kf-H4kjRMK2O8RHUuR4nP13OOj88FoVcyZgnVjAQsUmHAEiWCVIQqAF1HipAoRqXxd4w_iaNTdnzGz3q9X52opbrKh-riyryS_-EqnAO-mizZG3C2JQon4DfwF47AYTj-E49HbVlNu01ufQ0DpVdmM3g-sNGaG-NdPde2EbjLSJxulqC_lj4bywz1yo9npevZtx7U1oVQz6uVDExF48BGug3GXz_ssGalt2atp8TVdTIloNKEd3wN34GHKx_5I02J8o4zoLz4KX1nbRD9wbfFcjoDBA8HJ8M2RmgKC_sfVnrPJkBn3aG7nteuWsJYmu8uB8fDrkODMpPZ51I625hPEsAyxulh7eUyrJmp8H6PRnC7rM8GoaQjhylxjee8TodherW-4KHtUwBz5OfHBPpx4zigbKsim7CAS5qzjWe0KykeZl1CmSWUGUK30O0wFsI02Pj4ZbvJZWrDOfez-14ffgiE3ux4oz-Npx0rImsZndxH9zwI8Mjh8wHq6XIfHYxKWS3ON_g1_txCYh_dGftYjgNUbdGLFwV26MUNerFDL27Qix168Ra9GNCLO-jFsxI79GKLXnwZvRjQ-xCdvn938vYo8D1AAsUYqQKzSx3qMI6l4CnJU1VQmXOznRvGBSWFYPmESpJHOVUkBmXNeShklLNECsknKnqE9spFqZ8gLI34YRpsXM1ZqljCcyYmmogizWOa530kmsnNlC-Qb_q0zLNr2NtHpH1w6WrEXP_IYcO9zAuUdUYFfGckwGTvo5ftZRD3Zg9PlnpRm3sixlJATPK3e4CGMFWz-uixQ0b7XiZR3awint78nZ-hu9u_6yHaq1a1fg4WeZW_sLj-DRPk5Wo
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+middle+cerebral+artery+diameter+during+hypocapnia+and+hypercapnia+in+humans+using+ultra-high-field+MRI&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Verbree%2C+Jasper&rft.au=Bronzwaer%2C+Anne-Sophie+G.+T.&rft.au=Ghariq%2C+Eidrees&rft.au=Versluis%2C+Maarten+J.&rft.date=2014-11-15&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=117&rft.issue=10&rft.spage=1084&rft.epage=1089&rft_id=info:doi/10.1152%2Fjapplphysiol.00651.2014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_00651_2014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon