Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI
In the evaluation of cerebrovascular CO 2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO 2 partial pressure. However, the strong cerebral vasodilatory capacity of CO 2 ch...
Saved in:
Published in | Journal of applied physiology (1985) Vol. 117; no. 10; pp. 1084 - 1089 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 8750-7587 1522-1601 1522-1601 |
DOI | 10.1152/japplphysiol.00651.2014 |
Cover
Abstract | In the evaluation of cerebrovascular CO
2
reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO
2
partial pressure. However, the strong cerebral vasodilatory capacity of CO
2
challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO
2
on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21–30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, −1 kPa (−7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal Pco
2
(Pet
CO
2
) above baseline. However, no significant changes in diameter were observed at the −1 kPa (−1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO
2
was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant Pet
CO
2
measurements. In conclusion, the MCA diameter remains constant during small deviations of the Pet
CO
2
from normocapnia, but increases at higher Pet
CO
2
values. |
---|---|
AbstractList | In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values.In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values. In the evaluation of cerebrovascular CO... reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO... partial pressure. However, the strong cerebral vasodilatory capacity of CO... challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO... on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 plus or minus 2.9% in response to 2 kPa end-tidal Pco... (PetCO...) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 plus or minus 2.4%), and +1 kPa (+1.4 plus or minus 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PetCO... measurements. In conclusion, the MCA diameter remains constant during small deviations of the PetCO... from normocapnia, but increases at higher PetCO... values. (ProQuest: ... denotes formulae/symbols omitted.) In the evaluation of cerebrovascular CO 2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO 2 partial pressure. However, the strong cerebral vasodilatory capacity of CO 2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO 2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21–30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, −1 kPa (−7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal Pco 2 (Pet CO 2 ) above baseline. However, no significant changes in diameter were observed at the −1 kPa (−1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO 2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant Pet CO 2 measurements. In conclusion, the MCA diameter remains constant during small deviations of the Pet CO 2 from normocapnia, but increases at higher Pet CO 2 values. In the evaluation of cerebrovascular CO... reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO... partial pressure. However, the strong cerebral vasodilatory capacity of CO... challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO... on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal Pco... (PetCO...) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PetCO... measurements. In conclusion, the MCA diameter remains constant during small deviations of the PetCO... from normocapnia, but increases at higher PetCO... values. (ProQuest: ... denotes formulae/symbols omitted.) In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by transcranial Doppler remains unaffected by changes in arterial CO2 partial pressure. However, the strong cerebral vasodilatory capacity of CO2 challenges this assumption, suggesting that there should be some changes in diameter, even if very small. Data from previous studies on effects of CO2 on cerebral artery diameter [middle cerebral artery (MCA)] have been inconsistent. In this study, we examined 10 healthy subjects (5 women, 5 men, age 21-30 yr). High-resolution (0.2 mm in-plane) MRI scans at 7 Tesla were used for direct observation of the MCA diameter during hypocapnia, -1 kPa (-7.5 mmHg), normocapnia, 0 kPa (0 mmHg), and two levels of hypercapnia, +1 and +2 kPa (7.5 and 15 mmHg), with respect to baseline. The vessel lumen was manually delineated by two independent observers. The results showed that the MCA diameter increased by 6.8 ± 2.9% in response to 2 kPa end-tidal P(CO2) (PET(CO2)) above baseline. However, no significant changes in diameter were observed at the -1 kPa (-1.2 ± 2.4%), and +1 kPa (+1.4 ± 3.2%) levels relative to normocapnia. The nonlinear response of the MCA diameter to CO2 was fitted as a continuous calibration curve. Cerebral blood flow changes measured by transcranial Doppler could be corrected by this calibration curve using concomitant PET(CO2) measurements. In conclusion, the MCA diameter remains constant during small deviations of the PET(CO2) from normocapnia, but increases at higher PET(CO2) values. |
Author | Daemen, Mat J. A. P. Versluis, Maarten J. Ghariq, Eidrees Verbree, Jasper van Osch, Matthias J. P. Dahan, Albert Bronzwaer, Anne-Sophie G. T. van Buchem, Mark A. van Lieshout, Johannes J. |
Author_xml | – sequence: 1 givenname: Jasper surname: Verbree fullname: Verbree, Jasper organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 2 givenname: Anne-Sophie G. T. surname: Bronzwaer fullname: Bronzwaer, Anne-Sophie G. T. organization: Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands;, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands; and – sequence: 3 givenname: Eidrees surname: Ghariq fullname: Ghariq, Eidrees organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 4 givenname: Maarten J. surname: Versluis fullname: Versluis, Maarten J. organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 5 givenname: Mat J. A. P. surname: Daemen fullname: Daemen, Mat J. A. P. organization: Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands – sequence: 6 givenname: Mark A. surname: van Buchem fullname: van Buchem, Mark A. organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 7 givenname: Albert surname: Dahan fullname: Dahan, Albert organization: Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands – sequence: 8 givenname: Johannes J. surname: van Lieshout fullname: van Lieshout, Johannes J. organization: Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands;, Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands; and, MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom – sequence: 9 givenname: Matthias J. P. surname: van Osch fullname: van Osch, Matthias J. P. organization: Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands;, C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25190741$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v3CAQxVGVqtn8-QotUi-9eMtgwPahhyhq0kipIkXtGY0Njllh7IJ92G9fttlIVS7taWbE7w3w3hk5CVOwhHwAtgWQ_PMO59nPwz65yW8ZUxK2nIF4Qzb5lBegGJyQTV1JVlSyrk7JWUo7lgkh4R055RIaVgnYkOUqJZvSaMNCp56OzhhvaWejbSN6inGxcU-Nw9Hmjpo1uvBEh_08dTgHhxSDOYw2HmcX6LCOGBJd0wFd_RKxGNzTUPTOekO_P95dkLc9-mQvj_Wc_Lz5-uP6W3H_cHt3fXVfdEKwpah5CdzyqkIlG9Y2XQ_YSmBNw6seWK9EawBZW7bQsQqNkZIrLFtRo0JpuvKcfHreO8fp12rTokeXOus9BjutSYNSNVdMlPAfaClEk_2sM_rxFbqb1hjyRzKVX1vmpTxT74_U2o7W6Dm6EeNev1ifgS_PQBenlKLtdecWXNwUsmHOa2D6ELX-O2r9J2p9iDrrq1f6lyv-pfwNLnmzGA |
CitedBy_id | crossref_primary_10_1152_ajpregu_00109_2017 crossref_primary_10_1088_1361_6579_aba67e crossref_primary_10_1152_japplphysiol_00490_2015 crossref_primary_10_1113_JP272242 crossref_primary_10_1113_JP272241 crossref_primary_10_1152_japplphysiol_00261_2021 crossref_primary_10_1177_0271678X15615874 crossref_primary_10_14814_phy2_15595 crossref_primary_10_1016_j_sleep_2020_04_029 crossref_primary_10_1152_ajpregu_00030_2024 crossref_primary_10_1016_j_medengphy_2022_103921 crossref_primary_10_1113_JP281517 crossref_primary_10_7759_cureus_71892 crossref_primary_10_1152_ajpheart_00348_2018 crossref_primary_10_1111_jon_12675 crossref_primary_10_1152_ajpregu_00112_2017 crossref_primary_10_1007_s00421_022_04908_4 crossref_primary_10_1088_0967_3334_36_4_785 crossref_primary_10_1152_japplphysiol_00100_2022 crossref_primary_10_1113_EP089982 crossref_primary_10_1152_ajpregu_00211_2015 crossref_primary_10_3389_fphys_2021_656746 crossref_primary_10_1007_s13311_019_00733_4 crossref_primary_10_1159_000446397 crossref_primary_10_1113_EP085706 crossref_primary_10_1097_CCM_0000000000003558 crossref_primary_10_1113_JP280439 crossref_primary_10_1113_EP092245 crossref_primary_10_1139_apnm_2024_0028 crossref_primary_10_1113_EP091707 crossref_primary_10_1113_EP086249 crossref_primary_10_1152_japplphysiol_00477_2024 crossref_primary_10_1152_japplphysiol_00854_2014 crossref_primary_10_1152_japplphysiol_00630_2021 crossref_primary_10_14814_phy2_14367 crossref_primary_10_1016_j_wneu_2023_10_046 crossref_primary_10_1007_s00421_020_04307_7 crossref_primary_10_1113_JP272012 crossref_primary_10_1113_JP275887 crossref_primary_10_1152_japplphysiol_00239_2020 crossref_primary_10_1111_head_14680 crossref_primary_10_9746_sicetr_60_612 crossref_primary_10_1007_s00421_021_04822_1 crossref_primary_10_1249_MSS_0000000000002537 crossref_primary_10_2301_neurosonology_34_142 crossref_primary_10_1371_journal_pone_0180195 crossref_primary_10_1152_japplphysiol_00347_2021 crossref_primary_10_1007_s00421_022_04973_9 crossref_primary_10_1109_TBME_2021_3100288 crossref_primary_10_1152_ajpregu_00367_2015 crossref_primary_10_1113_EP090159 crossref_primary_10_1183_13993003_01854_2018 crossref_primary_10_1152_ajpheart_00761_2014 crossref_primary_10_14814_phy2_15373 crossref_primary_10_14814_phy2_13984 crossref_primary_10_1177_0271678X18762880 crossref_primary_10_14814_phy2_13867 crossref_primary_10_2169_internalmedicine_56_8002 crossref_primary_10_1016_j_resp_2017_02_014 crossref_primary_10_1113_EP092327 crossref_primary_10_1113_EP091119 crossref_primary_10_1152_ajpheart_00676_2016 crossref_primary_10_1161_JAHA_117_006126 crossref_primary_10_1177_0271678X211033732 crossref_primary_10_1152_japplphysiol_01031_2020 crossref_primary_10_1152_physrev_00022_2020 crossref_primary_10_1016_j_autneu_2019_102581 crossref_primary_10_1111_psyp_13305 crossref_primary_10_1007_s11906_020_01075_9 crossref_primary_10_14814_phy2_12883 crossref_primary_10_1152_ajpregu_00112_2024 crossref_primary_10_1111_bdi_12719 crossref_primary_10_1152_jn_00175_2019 crossref_primary_10_1161_HYPERTENSIONAHA_116_07698 crossref_primary_10_14814_phy2_14389 crossref_primary_10_1371_journal_pone_0298587 crossref_primary_10_1113_JP271981 crossref_primary_10_1113_EP086585 crossref_primary_10_1113_EP087675 crossref_primary_10_1111_jnc_14234 crossref_primary_10_1113_EP091807 crossref_primary_10_1016_j_bja_2024_12_037 crossref_primary_10_1152_ajpheart_00062_2021 crossref_primary_10_1016_j_autneu_2017_05_003 crossref_primary_10_1088_0967_3334_37_5_673 crossref_primary_10_1016_j_neuroimage_2017_01_019 crossref_primary_10_3389_fnagi_2019_00281 crossref_primary_10_1113_EP088293 crossref_primary_10_1016_j_mvr_2023_104536 crossref_primary_10_1152_japplphysiol_00035_2017 crossref_primary_10_14814_phy2_15278 crossref_primary_10_3390_healthcare8020169 crossref_primary_10_1111_1440_1681_12421 crossref_primary_10_14814_phy2_12430 crossref_primary_10_1113_JP271914 crossref_primary_10_1152_japplphysiol_00119_2019 crossref_primary_10_1007_s10877_018_0136_1 crossref_primary_10_1007_s00424_019_02290_3 crossref_primary_10_1016_j_jstrokecerebrovasdis_2018_02_027 crossref_primary_10_1249_MSS_0000000000002462 crossref_primary_10_14814_phy2_13886 crossref_primary_10_1177_0271678X19828327 crossref_primary_10_1113_jphysiol_2014_284521 crossref_primary_10_1152_japplphysiol_01116_2018 crossref_primary_10_1152_ajpregu_00048_2021 crossref_primary_10_1139_apnm_2021_0220 crossref_primary_10_1152_japplphysiol_00351_2024 crossref_primary_10_1088_1361_6579_ab7ddf crossref_primary_10_1161_JAHA_124_036752 crossref_primary_10_14814_phy2_15384 crossref_primary_10_1113_EP086446 crossref_primary_10_1111_apha_12863 crossref_primary_10_1161_SVIN_123_001177 crossref_primary_10_1152_japplphysiol_00217_2024 crossref_primary_10_1249_MSS_0000000000001924 crossref_primary_10_1007_s10286_023_00986_2 crossref_primary_10_1161_STROKEAHA_121_036050 crossref_primary_10_1152_japplphysiol_00623_2018 crossref_primary_10_3109_00365513_2015_1137350 crossref_primary_10_1111_ene_13737 crossref_primary_10_1152_japplphysiol_00494_2023 crossref_primary_10_1177_0271678X15617954 crossref_primary_10_1177_0271678X211004131 crossref_primary_10_1096_fj_202001387R crossref_primary_10_1113_JP284449 crossref_primary_10_1152_ajpheart_00300_2022 crossref_primary_10_1152_japplphysiol_00667_2015 crossref_primary_10_1096_fasebj_30_1_supplement_1203_6 crossref_primary_10_1152_japplphysiol_00695_2023 crossref_primary_10_1080_10790268_2015_1135556 crossref_primary_10_1111_sms_13582 crossref_primary_10_1109_TUFFC_2016_2603471 crossref_primary_10_1007_s00421_023_05324_y crossref_primary_10_1186_s40798_021_00314_w crossref_primary_10_1152_japplphysiol_00264_2015 crossref_primary_10_1113_EP090122 crossref_primary_10_1016_j_autneu_2020_102742 crossref_primary_10_14814_phy2_14982 crossref_primary_10_1088_1361_6579_aae469 crossref_primary_10_14814_phy2_14622 crossref_primary_10_1088_1361_6579_abf1af crossref_primary_10_1152_ajpregu_00385_2016 crossref_primary_10_1111_sms_13573 crossref_primary_10_1152_japplphysiol_00995_2016 crossref_primary_10_3233_JAD_200194 crossref_primary_10_1177_0271678X241229908 crossref_primary_10_1042_CS20150694 crossref_primary_10_1152_japplphysiol_00158_2021 crossref_primary_10_1007_s00421_018_3887_y crossref_primary_10_1371_journal_pone_0165536 crossref_primary_10_3389_fphys_2020_583155 crossref_primary_10_3389_fphys_2021_642850 crossref_primary_10_1038_s41598_025_94212_w crossref_primary_10_14814_phy2_13571 crossref_primary_10_1113_EP087602 crossref_primary_10_1152_japplphysiol_00127_2015 crossref_primary_10_1152_japplphysiol_00643_2024 crossref_primary_10_1152_ajpregu_00111_2017 crossref_primary_10_1177_0271678X231203475 crossref_primary_10_14814_phy2_14539 crossref_primary_10_3389_fnhum_2023_1115355 crossref_primary_10_1007_s10877_017_0014_2 crossref_primary_10_1088_1361_6579_aac76b crossref_primary_10_1096_fj_201700381RR crossref_primary_10_3389_fphys_2022_1035452 crossref_primary_10_1123_pes_2018_0234 crossref_primary_10_14814_phy2_15735 crossref_primary_10_1007_s11517_019_02064_0 crossref_primary_10_1113_EP086887 crossref_primary_10_1371_journal_pone_0229049 crossref_primary_10_1177_0271678X231210430 crossref_primary_10_1007_s00421_021_04864_5 crossref_primary_10_1007_s10877_022_00817_1 crossref_primary_10_1186_s40814_020_00569_2 crossref_primary_10_1038_s41598_020_73658_0 crossref_primary_10_1152_japplphysiol_00269_2021 crossref_primary_10_1113_EP092178 crossref_primary_10_3389_fphys_2021_772456 crossref_primary_10_1088_0967_3334_37_9_1485 crossref_primary_10_1088_1361_6579_aafab6 crossref_primary_10_1152_japplphysiol_00599_2021 crossref_primary_10_1152_japplphysiol_00224_2017 crossref_primary_10_1371_journal_pone_0143059 crossref_primary_10_1113_EP087022 crossref_primary_10_1113_EP085084 crossref_primary_10_1186_s12576_020_00751_4 crossref_primary_10_1113_EP089446 crossref_primary_10_3389_fphys_2021_665049 crossref_primary_10_1016_j_jneumeth_2016_06_007 crossref_primary_10_1152_japplphysiol_00653_2021 crossref_primary_10_1111_cpf_12682 crossref_primary_10_1152_japplphysiol_00243_2021 crossref_primary_10_3389_fphys_2015_00394 crossref_primary_10_14814_phy2_15998 crossref_primary_10_3390_healthcare12242566 crossref_primary_10_14814_phy2_14549 crossref_primary_10_14814_phy2_14421 crossref_primary_10_1152_ajpregu_00134_2020 crossref_primary_10_3389_fneur_2020_00738 crossref_primary_10_1249_MSS_0000000000002183 crossref_primary_10_1038_jcbfm_2015_51 crossref_primary_10_14814_phy2_14458 crossref_primary_10_1152_japplphysiol_00851_2023 crossref_primary_10_1097_EJA_0000000000001798 crossref_primary_10_14814_phy2_13486 crossref_primary_10_14814_phy2_12957 crossref_primary_10_1111_sms_12674 crossref_primary_10_14814_phy2_13803 crossref_primary_10_1139_apnm_2020_0853 crossref_primary_10_1113_JP271081 crossref_primary_10_1152_japplphysiol_00797_2016 crossref_primary_10_1007_s10237_023_01772_9 crossref_primary_10_1113_JP278710 crossref_primary_10_1177_0271678X221142527 crossref_primary_10_1152_ajpheart_00474_2018 crossref_primary_10_1007_s00421_020_04547_7 crossref_primary_10_14814_phy2_14695 crossref_primary_10_1113_JP280118 crossref_primary_10_1177_0271678X251318922 crossref_primary_10_1007_s00421_017_3612_2 crossref_primary_10_1177_0271678X15626156 crossref_primary_10_1113_JP271884 crossref_primary_10_1177_0271678X16679419 crossref_primary_10_1152_ajpheart_00107_2022 crossref_primary_10_1007_s13311_019_00744_1 crossref_primary_10_1088_1361_6579_ad548d crossref_primary_10_1152_ajpregu_00177_2021 crossref_primary_10_1177_0271678X241247633 crossref_primary_10_3389_fneur_2022_912828 crossref_primary_10_1177_0271678X211065204 crossref_primary_10_1017_S1355617721000394 crossref_primary_10_1088_1361_6579_acdb47 crossref_primary_10_1152_japplphysiol_00277_2015 crossref_primary_10_14814_phy2_12733 crossref_primary_10_1152_japplphysiol_00050_2022 crossref_primary_10_1152_advan_00048_2015 crossref_primary_10_1097_OPX_0000000000001400 crossref_primary_10_1186_s40101_018_0164_z crossref_primary_10_1113_EP091719 crossref_primary_10_1186_s41747_020_0144_z crossref_primary_10_1016_j_jstrokecerebrovasdis_2017_08_015 crossref_primary_10_1016_j_resp_2021_103770 crossref_primary_10_1152_ajpregu_00025_2020 crossref_primary_10_3389_fphys_2023_1198615 crossref_primary_10_1113_EP091970 crossref_primary_10_1152_ajpheart_00498_2024 crossref_primary_10_1113_EP087358 crossref_primary_10_1038_s41598_021_81837_w crossref_primary_10_14814_phy2_12602 crossref_primary_10_14814_phy2_14467 crossref_primary_10_1016_j_mri_2015_12_016 crossref_primary_10_1016_j_neuroimage_2015_04_014 crossref_primary_10_1089_neu_2017_5060 crossref_primary_10_1177_0271678X17691986 crossref_primary_10_1113_EP089533 crossref_primary_10_1152_japplphysiol_00050_2018 |
Cites_doi | 10.1161/01.STR.20.1.45 10.1038/jcbfm.1984.54 10.1152/japplphysiol.00854.2014 10.1161/01.STR.30.1.81 10.1371/journal.pmed.0040239 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W 10.1007/BF00327574 10.1113/jphysiol.2012.228551 10.1002/mrm.1910170215 10.1016/S0730-725X(01)00227-2 10.1113/jphysiol.2007.137075 10.1152/japplphysiol.90549.2008 10.1152/ajpregu.91008.2008 10.1016/S0952-8180(98)00107-X 10.1097/00004424-196701000-00016 10.1161/01.STR.27.12.2244 10.1152/japplphysiol.00637.2013 10.3174/ajnr.A2438 10.1161/01.STR.31.7.1672 10.1152/japplphysiol.91198.2008 10.1152/jappl.1996.81.3.1084 10.1227/00006123-199305000-00006 10.1161/01.STR.19.8.963 10.1007/BF01772826 |
ContentType | Journal Article |
Copyright | Copyright © 2014 the American Physiological Society. Copyright American Physiological Society Nov 15, 2014 |
Copyright_xml | – notice: Copyright © 2014 the American Physiological Society. – notice: Copyright American Physiological Society Nov 15, 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/japplphysiol.00651.2014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts CrossRef Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1089 |
ExternalDocumentID | 3506682061 25190741 10_1152_japplphysiol_00651_2014 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
GroupedDBID | --- -~X .55 18M 29J 2WC 4.4 53G 5VS 85S AAFWJ AAYXX ABCQX ABDNZ ABHWK ABJNI ABKWE ABOCM ACBEA ACGFO ACGFS ACIWK ACPRK ADBBV ADFNX AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P FRP GX1 H13 H~9 ITBOX KQ8 L7B OK1 P-O P2P P6G PQQKQ RAP RHI RPL RPRKH SJN TR2 UHB UKR UPT W8F WH7 WOQ X7M XSW YBH YQT YWH ~02 AEILP AFOSN CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c440t-82312e277a6590b9cf1ab5109927f10f64bd1a0b3b1c07add5526a3b48a6a5dc3 |
ISSN | 8750-7587 1522-1601 |
IngestDate | Fri Sep 05 04:30:33 EDT 2025 Fri Sep 05 10:07:38 EDT 2025 Mon Jun 30 08:51:01 EDT 2025 Mon Jul 21 05:40:17 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Wed Oct 01 01:57:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | transcranial Doppler hypocapnia MRI angiography hypercapnia cerebral blood flow measurement |
Language | English |
License | Copyright © 2014 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c440t-82312e277a6590b9cf1ab5109927f10f64bd1a0b3b1c07add5526a3b48a6a5dc3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 25190741 |
PQID | 1627736822 |
PQPubID | 40905 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1668260431 proquest_miscellaneous_1634497508 proquest_journals_1627736822 pubmed_primary_25190741 crossref_citationtrail_10_1152_japplphysiol_00651_2014 crossref_primary_10_1152_japplphysiol_00651_2014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-15 |
PublicationDateYYYYMMDD | 2014-11-15 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2014 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B22 B23 B25 B26 B10 B11 B12 B13 B14 B15 B16 B17 Schreiber SJ (B21) 2000; 21 B18 Coverdale NS (B5) B19 B1 B2 B2a B3 B4 B6 B7 B8 B9 Valdueza JM (B24) 1997; 18 25257879 - J Appl Physiol (1985). 2014 Nov 15;117(10):1081-3 |
References_xml | – ident: B1 doi: 10.1161/01.STR.20.1.45 – ident: B14 doi: 10.1038/jcbfm.1984.54 – ident: B5 publication-title: J Appl Physiol – ident: B2a doi: 10.1152/japplphysiol.00854.2014 – ident: B25 doi: 10.1161/01.STR.30.1.81 – ident: B6 doi: 10.1371/journal.pmed.0040239 – ident: B12 doi: 10.1002/(SICI)1522-2594(199903)41:3<575::AID-MRM22>3.0.CO;2-W – ident: B4 doi: 10.1007/BF00327574 – ident: B26 doi: 10.1113/jphysiol.2012.228551 – ident: B16 doi: 10.1002/mrm.1910170215 – ident: B13 doi: 10.1016/S0730-725X(01)00227-2 – ident: B17 doi: 10.1113/jphysiol.2007.137075 – volume: 18 start-page: 1929 year: 1997 ident: B24 publication-title: AJNR Am J Neuroradiol – ident: B15 doi: 10.1152/japplphysiol.90549.2008 – ident: B2 doi: 10.1152/ajpregu.91008.2008 – ident: B7 doi: 10.1016/S0952-8180(98)00107-X – ident: B9 doi: 10.1097/00004424-196701000-00016 – volume: 21 start-page: 1207 year: 2000 ident: B21 publication-title: Am J Neuroradiol – ident: B19 doi: 10.1161/01.STR.27.12.2244 – ident: B10 doi: 10.1152/japplphysiol.00637.2013 – ident: B3 doi: 10.3174/ajnr.A2438 – ident: B22 doi: 10.1161/01.STR.31.7.1672 – ident: B11 doi: 10.1152/japplphysiol.91198.2008 – ident: B18 doi: 10.1152/jappl.1996.81.3.1084 – ident: B8 doi: 10.1227/00006123-199305000-00006 – ident: B20 doi: 10.1161/01.STR.19.8.963 – ident: B23 doi: 10.1007/BF01772826 – reference: 25257879 - J Appl Physiol (1985). 2014 Nov 15;117(10):1081-3 |
SSID | ssj0014451 |
Score | 2.5798647 |
Snippet | In the evaluation of cerebrovascular CO
2
reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by... In the evaluation of cerebrovascular CO2 reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by... In the evaluation of cerebrovascular CO... reactivity measurements, it is often assumed that the diameter of the large intracranial arteries insonated by... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1084 |
SubjectTerms | Adult Blood Blood Flow Velocity Brain Calibration Carbon dioxide Carbon Dioxide - blood Cerebral Angiography - methods Cerebral Angiography - standards Cerebrovascular Circulation Female Healthy Volunteers Humans Hypercapnia - blood Hypercapnia - diagnostic imaging Hypercapnia - physiopathology Hypocapnia - blood Hypocapnia - diagnostic imaging Hypocapnia - physiopathology Magnetic Resonance Angiography - standards Male Middle Cerebral Artery - diagnostic imaging Middle Cerebral Artery - metabolism Middle Cerebral Artery - physiopathology Models, Cardiovascular NMR Nonlinear Dynamics Nuclear magnetic resonance Observer Variation Partial Pressure Predictive Value of Tests Reproducibility of Results Ultrasonography, Doppler, Transcranial - standards Vasodilation Veins & arteries Young Adult |
Title | Assessment of middle cerebral artery diameter during hypocapnia and hypercapnia in humans using ultra-high-field MRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25190741 https://www.proquest.com/docview/1627736822 https://www.proquest.com/docview/1634497508 https://www.proquest.com/docview/1668260431 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1522-1601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014451 issn: 8750-7587 databaseCode: KQ8 dateStart: 19961001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1522-1601 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014451 issn: 8750-7587 databaseCode: DIK dateStart: 19980101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1522-1601 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014451 issn: 8750-7587 databaseCode: GX1 dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuhYGMhHipUuzEdpLHCoHGUBGXDe0tclxHrdSlpU2Euv_Kf-H4kjRMK2O8RHUuR4nP13OOj88FoVcyZgnVjAQsUmHAEiWCVIQqAF1HipAoRqXxd4w_iaNTdnzGz3q9X52opbrKh-riyryS_-EqnAO-mizZG3C2JQon4DfwF47AYTj-E49HbVlNu01ufQ0DpVdmM3g-sNGaG-NdPde2EbjLSJxulqC_lj4bywz1yo9npevZtx7U1oVQz6uVDExF48BGug3GXz_ssGalt2atp8TVdTIloNKEd3wN34GHKx_5I02J8o4zoLz4KX1nbRD9wbfFcjoDBA8HJ8M2RmgKC_sfVnrPJkBn3aG7nteuWsJYmu8uB8fDrkODMpPZ51I625hPEsAyxulh7eUyrJmp8H6PRnC7rM8GoaQjhylxjee8TodherW-4KHtUwBz5OfHBPpx4zigbKsim7CAS5qzjWe0KykeZl1CmSWUGUK30O0wFsI02Pj4ZbvJZWrDOfez-14ffgiE3ux4oz-Npx0rImsZndxH9zwI8Mjh8wHq6XIfHYxKWS3ON_g1_txCYh_dGftYjgNUbdGLFwV26MUNerFDL27Qix168Ra9GNCLO-jFsxI79GKLXnwZvRjQ-xCdvn938vYo8D1AAsUYqQKzSx3qMI6l4CnJU1VQmXOznRvGBSWFYPmESpJHOVUkBmXNeShklLNECsknKnqE9spFqZ8gLI34YRpsXM1ZqljCcyYmmogizWOa530kmsnNlC-Qb_q0zLNr2NtHpH1w6WrEXP_IYcO9zAuUdUYFfGckwGTvo5ftZRD3Zg9PlnpRm3sixlJATPK3e4CGMFWz-uixQ0b7XiZR3awint78nZ-hu9u_6yHaq1a1fg4WeZW_sLj-DRPk5Wo |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+middle+cerebral+artery+diameter+during+hypocapnia+and+hypercapnia+in+humans+using+ultra-high-field+MRI&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Verbree%2C+Jasper&rft.au=Bronzwaer%2C+Anne-Sophie+G.+T.&rft.au=Ghariq%2C+Eidrees&rft.au=Versluis%2C+Maarten+J.&rft.date=2014-11-15&rft.issn=8750-7587&rft.eissn=1522-1601&rft.volume=117&rft.issue=10&rft.spage=1084&rft.epage=1089&rft_id=info:doi/10.1152%2Fjapplphysiol.00651.2014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_japplphysiol_00651_2014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |