Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances

This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 22; no. 9; pp. 1341 - 1356
Main Authors Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A. F.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
1941-0093
1941-0093
DOI10.1109/TNN.2011.2162110

Cover

Abstract This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.
AbstractList This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.
This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.
Author Khosravi, A.
Nahavandi, S.
Atiya, A. F.
Creighton, D.
Author_xml – sequence: 1
  givenname: A.
  surname: Khosravi
  fullname: Khosravi, A.
  email: abbas.khosravi@deakin.edu.au
  organization: Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia
– sequence: 2
  givenname: S.
  surname: Nahavandi
  fullname: Nahavandi, S.
  email: saeid.nahavandi@deakin.edu.au
  organization: Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia
– sequence: 3
  givenname: D.
  surname: Creighton
  fullname: Creighton, D.
  email: douglas.creighton@deakin.edu.au
  organization: Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia
– sequence: 4
  givenname: A. F.
  surname: Atiya
  fullname: Atiya, A. F.
  email: amir@alumni.caltech.edu
  organization: Dept. of Comput. Eng., Cairo Univ., Cairo, Egypt
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24532790$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21803683$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFEEQxRuJmA-9C4LMReJl1qr-mu5jXKIGwiaEeB56emqwdXZm7Z7dJf99etmNgod4qSqK36uC907Z0TAOxNhbhBki2E_3i8WMA-KMo-Z584KdoJVYAlhxlGeQqrScV8fsNKWfACgV6FfsmKMBoY04YXfzcbmK9IOGFDZU3NEm0LYYu2JB6-j63KbtGH-Vn12itriN1AY_hXEoroaJ4sb1qXBDm7FtcdFu3OApvWYvu7ynN4d-xr5_ubyffyuvb75ezS-uSy8lTCXnDhqnjLFosLGAplJSi0YbEh6N1K2RBK0HKZWrBMfWGuh410nXVLmKM3a-v7uK4-81palehuSp791A4zrVFq0VyoL-L2nya1CVUpn8-CyJkG1HBVJk9P0BXTdLautVDEsXH-onbzPw4QC45F3fxexOSH85qQSvLGRO7zkfx5QidbUPk9uZPEUX-vyz3oVd57DrXdj1IewshH-ET7efkbzbSwIR_cGV1VooEI_-YLD1
CODEN ITNNEP
CitedBy_id crossref_primary_10_1002_rob_22014
crossref_primary_10_1016_j_enconman_2023_117440
crossref_primary_10_1177_14759217241282738
crossref_primary_10_1016_j_asoc_2018_04_039
crossref_primary_10_1109_ACCESS_2019_2923905
crossref_primary_10_2166_ws_2021_151
crossref_primary_10_1016_j_scs_2021_103481
crossref_primary_10_1109_TNNLS_2019_2945307
crossref_primary_10_2166_nh_2021_028
crossref_primary_10_3390_electronics9030519
crossref_primary_10_1016_j_ijepes_2017_08_012
crossref_primary_10_1111_cgf_13522
crossref_primary_10_1109_TFUZZ_2020_2966172
crossref_primary_10_1142_S1469026813400063
crossref_primary_10_1007_s41096_024_00197_6
crossref_primary_10_1016_j_ijhydene_2022_12_110
crossref_primary_10_1109_TSTE_2022_3226255
crossref_primary_10_1002_for_2644
crossref_primary_10_1021_acs_jcim_9b00087
crossref_primary_10_1016_j_apenergy_2014_04_024
crossref_primary_10_3390_su13041633
crossref_primary_10_3390_su16093699
crossref_primary_10_1016_j_swevo_2022_101070
crossref_primary_10_1109_ACCESS_2019_2925634
crossref_primary_10_1016_j_asoc_2020_106327
crossref_primary_10_1080_02626667_2022_2046755
crossref_primary_10_3182_20140824_6_ZA_1003_00837
crossref_primary_10_3390_s18051488
crossref_primary_10_1109_TNSM_2021_3138560
crossref_primary_10_32604_cmc_2021_014665
crossref_primary_10_1007_s00521_023_08779_4
crossref_primary_10_1016_j_dss_2024_114305
crossref_primary_10_1049_iet_rpg_2019_1238
crossref_primary_10_1111_exsy_12452
crossref_primary_10_1016_j_enconman_2022_115433
crossref_primary_10_1016_j_is_2018_02_001
crossref_primary_10_1016_j_apenergy_2021_117173
crossref_primary_10_1016_j_asoc_2022_108875
crossref_primary_10_1016_j_asoc_2022_109602
crossref_primary_10_1109_TITS_2022_3230680
crossref_primary_10_3390_stats6030053
crossref_primary_10_1007_s00477_023_02567_1
crossref_primary_10_1016_j_egyr_2014_11_003
crossref_primary_10_1016_j_engstruct_2023_116391
crossref_primary_10_1016_j_apenergy_2021_117766
crossref_primary_10_1016_j_oceaneng_2023_116658
crossref_primary_10_1016_j_neucom_2020_01_111
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_1109_ACCESS_2019_2939593
crossref_primary_10_1016_j_apenergy_2020_114978
crossref_primary_10_1109_TNNLS_2021_3053306
crossref_primary_10_1109_TNNLS_2019_2946414
crossref_primary_10_1049_iet_gtd_2014_0599
crossref_primary_10_1109_TSG_2021_3066567
crossref_primary_10_1016_j_renene_2015_08_038
crossref_primary_10_1109_ACCESS_2024_3381492
crossref_primary_10_1109_TVLSI_2021_3067446
crossref_primary_10_1007_s10994_022_06230_8
crossref_primary_10_1016_j_neucom_2017_11_062
crossref_primary_10_3390_math11204342
crossref_primary_10_1016_j_engappai_2019_103346
crossref_primary_10_1007_s00366_021_01515_3
crossref_primary_10_3390_en7085251
crossref_primary_10_1016_j_jhydrol_2015_08_068
crossref_primary_10_1016_j_eswa_2025_127031
crossref_primary_10_1016_j_neunet_2025_107364
crossref_primary_10_1109_TSMC_2024_3352665
crossref_primary_10_1142_S1793962317500295
crossref_primary_10_2514_1_D0406
crossref_primary_10_1109_TSTE_2017_2774195
crossref_primary_10_1016_j_knosys_2021_107435
crossref_primary_10_1080_15567036_2019_1632980
crossref_primary_10_1108_ECAM_08_2019_0406
crossref_primary_10_1175_WAF_D_18_0206_1
crossref_primary_10_1016_j_eswa_2024_124715
crossref_primary_10_1016_j_engappai_2024_109922
crossref_primary_10_1029_2022WR033588
crossref_primary_10_1109_TII_2015_2389625
crossref_primary_10_1109_TNNLS_2013_2250299
crossref_primary_10_1109_TNNLS_2015_2396933
crossref_primary_10_3141_2365_10
crossref_primary_10_1007_s00477_020_01914_w
crossref_primary_10_1016_j_neucom_2013_02_039
crossref_primary_10_1016_j_jmsy_2023_08_012
crossref_primary_10_1016_j_energy_2023_127006
crossref_primary_10_1017_asb_2021_34
crossref_primary_10_1109_TNNLS_2014_2376696
crossref_primary_10_1016_j_rser_2020_109792
crossref_primary_10_1177_0954406220933652
crossref_primary_10_1016_j_trc_2018_09_010
crossref_primary_10_1007_s10462_022_10178_5
crossref_primary_10_1007_s44196_024_00451_6
crossref_primary_10_1016_j_scico_2021_102643
crossref_primary_10_1016_j_geoderma_2019_05_012
crossref_primary_10_1016_j_jprocont_2020_07_008
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1016_j_enconman_2024_118692
crossref_primary_10_1145_3606372
crossref_primary_10_1007_s10845_016_1221_2
crossref_primary_10_1016_j_knosys_2024_111669
crossref_primary_10_1109_JSEN_2021_3067841
crossref_primary_10_1109_TRO_2020_3001674
crossref_primary_10_1061_AJRUA6_RUENG_1556
crossref_primary_10_1016_j_procir_2021_10_008
crossref_primary_10_1016_j_artint_2019_103184
crossref_primary_10_1016_j_jobe_2023_107162
crossref_primary_10_1049_iet_rpg_2018_5194
crossref_primary_10_1109_TOH_2020_2975555
crossref_primary_10_1016_j_apenergy_2023_122341
crossref_primary_10_1016_j_cageo_2023_105409
crossref_primary_10_3390_s24134218
crossref_primary_10_1016_j_apenergy_2024_124527
crossref_primary_10_3390_electronics13071340
crossref_primary_10_1016_j_ijepes_2014_03_060
crossref_primary_10_1016_j_ress_2014_09_014
crossref_primary_10_1016_j_jobe_2023_107956
crossref_primary_10_1016_j_epsr_2023_109920
crossref_primary_10_1007_s11356_022_21904_5
crossref_primary_10_1016_j_conengprac_2015_10_003
crossref_primary_10_3233_JIFS_210619
crossref_primary_10_1109_TITS_2014_2300103
crossref_primary_10_3390_en15155337
crossref_primary_10_1016_j_conbuildmat_2022_128040
crossref_primary_10_1016_j_ifacol_2020_12_112
crossref_primary_10_1016_j_neunet_2021_04_036
crossref_primary_10_1016_j_eswa_2018_10_043
crossref_primary_10_2208_jscejcei_74_33
crossref_primary_10_1016_j_ress_2023_109578
crossref_primary_10_3390_app11041728
crossref_primary_10_1109_TSTE_2016_2606488
crossref_primary_10_1109_TETCI_2023_3296486
crossref_primary_10_15407_publishing2019_54_005
crossref_primary_10_1109_TSTE_2022_3141549
crossref_primary_10_3390_risks7010033
crossref_primary_10_1109_TR_2016_2570540
crossref_primary_10_1016_j_ins_2019_02_042
crossref_primary_10_1109_ACCESS_2021_3056003
crossref_primary_10_1016_j_compstruct_2024_118087
crossref_primary_10_1016_j_rser_2024_114781
crossref_primary_10_1063_5_0027130
crossref_primary_10_1109_TFUZZ_2022_3179586
crossref_primary_10_1016_j_apenergy_2022_120575
crossref_primary_10_1088_1742_6596_2909_1_012032
crossref_primary_10_1109_TCYB_2022_3175479
crossref_primary_10_1109_TIA_2022_3162186
crossref_primary_10_1109_TIE_2015_2499722
crossref_primary_10_1109_TIE_2023_3274874
crossref_primary_10_1088_2058_9565_ad3c68
crossref_primary_10_3390_en13081880
crossref_primary_10_1155_2020_7082594
crossref_primary_10_3390_su13116417
crossref_primary_10_1016_j_ijepes_2014_07_064
crossref_primary_10_3390_en16041988
crossref_primary_10_3390_electronics12020329
crossref_primary_10_1007_s12583_021_1555_3
crossref_primary_10_1016_j_rser_2018_07_042
crossref_primary_10_3390_bdcc6040134
crossref_primary_10_3390_ma6125967
crossref_primary_10_1080_03772063_2017_1417749
crossref_primary_10_3389_fenvs_2021_809995
crossref_primary_10_1007_s11356_012_1451_6
crossref_primary_10_1109_TNNLS_2019_2956195
crossref_primary_10_1016_j_jcp_2020_109957
crossref_primary_10_1007_s10489_021_02337_y
crossref_primary_10_1007_s10994_024_06639_3
crossref_primary_10_1155_2019_8985325
crossref_primary_10_1109_ACCESS_2017_2707539
crossref_primary_10_1109_TPWRS_2023_3257353
crossref_primary_10_1109_TR_2023_3277332
crossref_primary_10_1016_j_ijepes_2019_105436
crossref_primary_10_1016_j_ijpe_2015_09_039
crossref_primary_10_1109_TII_2019_2954351
crossref_primary_10_1016_j_solener_2019_08_021
crossref_primary_10_1016_j_asoc_2019_105506
crossref_primary_10_1016_j_segan_2024_101363
crossref_primary_10_1016_j_asoc_2020_106350
crossref_primary_10_1016_j_energy_2024_133186
crossref_primary_10_1016_j_asoc_2020_106597
crossref_primary_10_1080_10920277_2022_2050260
crossref_primary_10_1016_j_neunet_2024_106203
crossref_primary_10_1109_TSG_2022_3226423
crossref_primary_10_3390_electronics12081917
crossref_primary_10_1007_s00500_022_07044_5
crossref_primary_10_1109_TSTE_2012_2232944
crossref_primary_10_1016_j_apenergy_2013_05_075
crossref_primary_10_1016_j_energy_2018_08_180
crossref_primary_10_1109_ACCESS_2020_2964835
crossref_primary_10_1109_TNNLS_2020_2966745
crossref_primary_10_1016_j_neucom_2018_02_046
crossref_primary_10_1016_j_cscm_2024_e03186
crossref_primary_10_1109_TSTE_2013_2253140
crossref_primary_10_1115_1_4048222
crossref_primary_10_1016_j_epsr_2024_111255
crossref_primary_10_1007_s00521_019_04617_8
crossref_primary_10_1109_TPWRS_2016_2591723
crossref_primary_10_1016_j_asoc_2024_112611
crossref_primary_10_1109_TSTE_2022_3191330
crossref_primary_10_1016_j_enconman_2020_113085
crossref_primary_10_1080_00401706_2025_2453197
crossref_primary_10_3390_s24113432
crossref_primary_10_1016_j_enbuild_2021_111053
crossref_primary_10_1093_molbev_msae077
crossref_primary_10_3390_math11143247
crossref_primary_10_1007_s40996_024_01374_0
crossref_primary_10_1016_j_engappai_2023_107061
crossref_primary_10_1109_ACCESS_2018_2836917
crossref_primary_10_1109_TAI_2021_3128368
crossref_primary_10_1109_ACCESS_2019_2919110
crossref_primary_10_1139_as_2022_0033
crossref_primary_10_1088_1361_6501_aba3f4
crossref_primary_10_1109_TIA_2023_3284776
crossref_primary_10_1007_s12555_020_0342_8
crossref_primary_10_1016_j_rineng_2024_103545
crossref_primary_10_1016_j_techsoc_2024_102629
crossref_primary_10_1016_j_jwpe_2023_104145
crossref_primary_10_1016_j_measurement_2023_112857
crossref_primary_10_1007_s10845_024_02472_6
crossref_primary_10_1109_TIM_2023_3240208
crossref_primary_10_1016_j_apor_2024_103994
crossref_primary_10_1016_j_ijleo_2019_163970
crossref_primary_10_1016_j_eswa_2022_118419
crossref_primary_10_1016_j_jtice_2014_05_021
crossref_primary_10_1109_TGRS_2016_2615687
crossref_primary_10_3390_sym13081320
crossref_primary_10_1109_TIV_2022_3168577
crossref_primary_10_3390_en14113192
crossref_primary_10_3390_s18092871
crossref_primary_10_1016_j_apenergy_2019_113353
crossref_primary_10_1007_s11269_019_02387_5
crossref_primary_10_3390_s18124440
crossref_primary_10_1016_j_engappai_2024_107918
crossref_primary_10_3389_frwa_2022_961954
crossref_primary_10_1002_met_1567
crossref_primary_10_1016_j_conengprac_2018_06_012
crossref_primary_10_1016_j_euromechsol_2020_103995
crossref_primary_10_1007_s10462_023_10698_8
crossref_primary_10_3390_app11114773
crossref_primary_10_1007_s10483_024_3191_6
crossref_primary_10_3233_IDA_200015
crossref_primary_10_1007_s11135_022_01537_z
crossref_primary_10_1016_j_isatra_2020_09_017
crossref_primary_10_1016_j_asoc_2023_111027
crossref_primary_10_1016_j_measurement_2020_108277
crossref_primary_10_1016_j_neunet_2021_10_014
crossref_primary_10_1007_s40808_018_0532_z
crossref_primary_10_1016_j_asoc_2021_107531
crossref_primary_10_1016_j_neucom_2016_03_061
crossref_primary_10_1109_ACCESS_2022_3140598
crossref_primary_10_1016_j_knosys_2013_10_012
crossref_primary_10_3389_fped_2021_689190
crossref_primary_10_3390_risks9030053
crossref_primary_10_1016_j_asoc_2014_06_039
crossref_primary_10_1115_1_4044199
crossref_primary_10_1109_TNNLS_2015_2418739
crossref_primary_10_1109_TNNLS_2015_2512283
crossref_primary_10_1007_s11518_023_5560_1
crossref_primary_10_3390_en15113882
crossref_primary_10_3390_agriculture13061255
crossref_primary_10_1177_1748006X221119301
crossref_primary_10_1016_j_ifacol_2021_08_073
crossref_primary_10_1016_j_dss_2022_113800
crossref_primary_10_1016_j_eswa_2012_08_018
crossref_primary_10_1016_j_ress_2022_108645
crossref_primary_10_1016_j_energy_2014_06_104
crossref_primary_10_1002_for_3248
crossref_primary_10_1016_j_asoc_2023_110625
crossref_primary_10_1016_j_jhydrol_2013_06_043
crossref_primary_10_1021_acsomega_4c02017
crossref_primary_10_1080_00207543_2024_2408435
crossref_primary_10_1109_TII_2017_2691461
crossref_primary_10_1080_24725854_2021_1974129
crossref_primary_10_1088_1742_6596_2647_18_182022
crossref_primary_10_1016_j_cherd_2014_02_016
crossref_primary_10_1109_TITS_2024_3466514
crossref_primary_10_1007_s10489_023_04610_8
crossref_primary_10_1002_stc_2859
crossref_primary_10_5194_bg_17_4421_2020
crossref_primary_10_1177_09544054241290266
crossref_primary_10_1016_j_jhydrol_2019_124226
crossref_primary_10_1109_TIM_2021_3126006
crossref_primary_10_1016_j_cma_2019_112594
crossref_primary_10_1016_j_neucom_2013_08_020
crossref_primary_10_1016_j_jmsy_2020_06_009
crossref_primary_10_1109_TSTE_2014_2323836
crossref_primary_10_3390_aerospace11090770
crossref_primary_10_1109_TPWRS_2015_2393880
crossref_primary_10_1109_TIA_2018_2858183
crossref_primary_10_1002_we_2859
crossref_primary_10_1109_TPWRS_2011_2181981
crossref_primary_10_1016_j_enconman_2018_03_010
crossref_primary_10_1016_j_apenergy_2022_120601
crossref_primary_10_1016_j_apenergy_2016_10_079
crossref_primary_10_1109_TMC_2018_2879933
crossref_primary_10_5194_os_18_1221_2022
crossref_primary_10_1016_j_scitotenv_2024_174241
crossref_primary_10_1088_1757_899X_768_7_072062
crossref_primary_10_1038_s41598_017_08104_9
crossref_primary_10_1142_S021848852350023X
crossref_primary_10_1007_s10462_016_9465_y
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1080_00207543_2014_887232
crossref_primary_10_1371_journal_pone_0307970
crossref_primary_10_1007_s00778_024_00857_w
crossref_primary_10_1016_j_neucom_2016_10_019
crossref_primary_10_1080_15435075_2023_2269443
crossref_primary_10_1080_21681015_2024_2358823
crossref_primary_10_1109_TASE_2016_2629505
crossref_primary_10_1007_s10994_024_06585_0
crossref_primary_10_1016_j_egyr_2024_09_011
crossref_primary_10_1007_s13369_022_06683_y
crossref_primary_10_1007_s11069_023_06211_7
crossref_primary_10_1016_j_ress_2025_111006
crossref_primary_10_1002_ente_201700549
crossref_primary_10_1016_j_solener_2017_10_051
crossref_primary_10_1038_s41597_022_01455_7
crossref_primary_10_1109_TSTE_2023_3321081
crossref_primary_10_1016_j_csda_2021_107203
crossref_primary_10_1016_j_ress_2019_02_011
crossref_primary_10_1109_TNNLS_2020_2967816
crossref_primary_10_1109_TIE_2014_2383994
crossref_primary_10_1016_j_chemolab_2017_10_023
crossref_primary_10_1109_TNNLS_2013_2276053
crossref_primary_10_1007_s00500_019_03825_7
crossref_primary_10_1016_j_measurement_2023_113513
crossref_primary_10_1109_TAI_2021_3123928
crossref_primary_10_1016_j_asoc_2023_111195
crossref_primary_10_1016_j_precisioneng_2023_06_002
crossref_primary_10_3390_en13071687
crossref_primary_10_1109_ACCESS_2021_3075966
crossref_primary_10_3390_w16192755
crossref_primary_10_3389_faquc_2024_1365123
crossref_primary_10_1016_j_tws_2024_112466
crossref_primary_10_1016_j_inffus_2020_01_002
crossref_primary_10_1016_j_ailsci_2021_100004
crossref_primary_10_1109_TIM_2023_3347782
crossref_primary_10_3390_pr9060961
crossref_primary_10_1088_1755_1315_491_1_012001
crossref_primary_10_2174_0126662558264870231122113715
crossref_primary_10_2166_ws_2015_066
crossref_primary_10_1016_j_neucom_2017_11_027
crossref_primary_10_1109_TSTE_2014_2323851
crossref_primary_10_1016_j_dsm_2021_07_002
crossref_primary_10_1109_TSTE_2014_2323852
crossref_primary_10_1016_j_scs_2021_103511
crossref_primary_10_1109_TFUZZ_2024_3483817
crossref_primary_10_1061__ASCE_HY_1943_7900_0001804
crossref_primary_10_1109_TKDE_2023_3288628
crossref_primary_10_1016_j_rser_2025_115408
crossref_primary_10_1038_s41598_023_31182_x
crossref_primary_10_1109_TNNLS_2023_3339470
crossref_primary_10_1002_asmb_2128
crossref_primary_10_1007_s00477_022_02181_7
crossref_primary_10_3390_en14217340
crossref_primary_10_1016_j_econmod_2016_08_019
crossref_primary_10_1016_j_ijforecast_2014_08_008
crossref_primary_10_3390_app7070649
crossref_primary_10_1016_j_eswa_2022_116934
crossref_primary_10_61643_c478960
crossref_primary_10_1016_j_neucom_2016_09_064
crossref_primary_10_1139_as_2021_0034
crossref_primary_10_1016_j_jhydrol_2024_132091
crossref_primary_10_1007_s00521_012_1051_x
crossref_primary_10_1080_19475705_2021_1891145
crossref_primary_10_1109_TSIPI_2022_3222122
Cites_doi 10.1080/01621459.1997.10474027
10.1017/CBO9780511802843
10.1162/neco.1992.4.5.720
10.1109/IJCNN.2009.5178590
10.1007/978-1-4899-4541-9
10.1109/TNN.2010.2096824
10.1109/72.963764
10.1109/TIE.2006.888683
10.1109/6104.980042
10.1214/aos/1176344552
10.1093/oso/9780198538493.001.0001
10.1016/0893-6080(89)90020-8
10.1109/MCI.2007.913386
10.1016/j.ymssp.2007.12.004
10.1109/72.329697
10.1057/palgrave.jors.2600856
10.1109/TNN.2003.813832
10.1016/j.neunet.2004.02.002
10.1109/TNN.2003.809428
10.1109/TPWRS.2010.2042309
10.1016/j.trc.2011.04.002
10.1016/j.csda.2006.03.003
10.1007/BF00058655
10.1016/j.actpsy.2009.07.007
10.7551/mitpress/3927.001.0001
10.1016/j.eswa.2009.01.031
10.1109/TPWRS.2008.919309
10.1126/science.220.4598.671
10.1016/j.ijforecast.2006.01.001
10.1109/ICNN.1994.374138
10.1016/j.neunet.2006.01.012
10.1016/0169-2070(92)90006-U
10.1016/S0893-6080(99)00080-5
10.1016/S0954-1810(98)00011-9
10.1162/neco.1996.8.1.152
10.1109/34.58871
10.1109/TITS.2011.2106209
10.1016/j.eswa.2009.07.059
10.1016/j.eswa.2007.10.005
10.2307/1270528
10.1016/S0893-6080(96)00098-6
10.1080/00036840600706995
10.1016/j.trc.2009.04.007
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
7SC
7SP
F28
JQ2
L7M
L~C
L~D
DOI 10.1109/TNN.2011.2162110
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList MEDLINE
Technology Research Database

Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Mathematics
Applied Sciences
Statistics
EISSN 1941-0093
EndPage 1356
ExternalDocumentID 21803683
24532790
10_1109_TNN_2011_2162110
5966350
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
7SC
7SP
F28
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c440t-22a0ba5889181b901875463b68e3c1846d84e0dc0445a7321d980f2ff4ab7ff43
IEDL.DBID RIE
ISSN 1045-9227
1941-0093
IngestDate Fri Sep 05 13:22:40 EDT 2025
Thu Sep 04 19:02:20 EDT 2025
Tue Oct 07 09:21:11 EDT 2025
Thu Apr 03 06:50:21 EDT 2025
Mon Jul 21 09:16:04 EDT 2025
Wed Oct 01 06:48:55 EDT 2025
Thu Apr 24 23:08:59 EDT 2025
Tue Aug 26 17:18:09 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Keywords Bayes estimation
High performance
Data analysis
Individual method
Variability
Bayesian
delta
Minimization
Neural network
Statistical forecasting
Mean estimation
mean-variance estimation
Variance
Bootstrapping
Repeatability
Uncertain system
prediction interval
Genetic algorithm
Remolded sample
Bootstrap
Cost function
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-22a0ba5889181b901875463b68e3c1846d84e0dc0445a7321d980f2ff4ab7ff43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
ObjectType-Article-2
ObjectType-Feature-1
PMID 21803683
PQID 1010915043
PQPubID 23462
PageCount 16
ParticipantIDs crossref_citationtrail_10_1109_TNN_2011_2162110
crossref_primary_10_1109_TNN_2011_2162110
proquest_miscellaneous_1010915043
proquest_miscellaneous_887505755
pubmed_primary_21803683
proquest_miscellaneous_919935906
pascalfrancis_primary_24532790
ieee_primary_5966350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
bishop (ref2) 1995
ref18
kirkpatrick (ref40) 1983; 220
ref46
heskes (ref23) 1997; 9
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
dybowski (ref31) 2000
ref35
ref34
ref37
vlachos (ref36) 2010
ref30
ref33
ref32
ref1
wild (ref28) 1989
mitchell (ref50) 1996
goldberg (ref49) 1989
ref24
ref26
ref25
ref20
ref22
ref21
ref27
de moor (ref39) 2010
ref29
reeves (ref51) 2003
asuncion (ref38) 2010
References_xml – ident: ref18
  doi: 10.1080/01621459.1997.10474027
– ident: ref44
  doi: 10.1017/CBO9780511802843
– year: 2010
  ident: ref38
  publication-title: UCI Machine Learning Repository
– ident: ref20
  doi: 10.1162/neco.1992.4.5.720
– ident: ref37
  doi: 10.1109/IJCNN.2009.5178590
– ident: ref43
  doi: 10.1007/978-1-4899-4541-9
– ident: ref32
  doi: 10.1109/TNN.2010.2096824
– ident: ref24
  doi: 10.1109/72.963764
– year: 2000
  ident: ref31
  publication-title: Clinical Applications of Artificial Neural Networks
– ident: ref5
  doi: 10.1109/TIE.2006.888683
– ident: ref8
  doi: 10.1109/6104.980042
– ident: ref22
  doi: 10.1214/aos/1176344552
– year: 1995
  ident: ref2
  publication-title: Neural Networks for Pattern Recognition
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref1
  doi: 10.1016/0893-6080(89)90020-8
– year: 2003
  ident: ref51
  publication-title: Genetic Algorithms Principles and Perspectives A Guide to GA Theory
– ident: ref46
  doi: 10.1109/MCI.2007.913386
– ident: ref11
  doi: 10.1016/j.ymssp.2007.12.004
– ident: ref30
  doi: 10.1109/72.329697
– ident: ref48
  doi: 10.1057/palgrave.jors.2600856
– ident: ref42
  doi: 10.1109/TNN.2003.813832
– ident: ref35
  doi: 10.1016/j.neunet.2004.02.002
– year: 1989
  ident: ref49
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref25
  doi: 10.1109/TNN.2003.809428
– ident: ref10
  doi: 10.1109/TPWRS.2010.2042309
– ident: ref16
  doi: 10.1016/j.trc.2011.04.002
– ident: ref26
  doi: 10.1016/j.csda.2006.03.003
– ident: ref41
  doi: 10.1007/BF00058655
– ident: ref33
  doi: 10.1016/j.actpsy.2009.07.007
– year: 1996
  ident: ref50
  publication-title: An Introduction to Genetic Algorithms
  doi: 10.7551/mitpress/3927.001.0001
– ident: ref12
  doi: 10.1016/j.eswa.2009.01.031
– ident: ref9
  doi: 10.1109/TPWRS.2008.919309
– volume: 220
  start-page: 671
  year: 1983
  ident: ref40
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: ref4
  doi: 10.1016/j.ijforecast.2006.01.001
– year: 2010
  ident: ref36
  publication-title: StatLib Datasets Archive
– ident: ref21
  doi: 10.1109/ICNN.1994.374138
– ident: ref13
  doi: 10.1016/j.neunet.2006.01.012
– ident: ref47
  doi: 10.1016/0169-2070(92)90006-U
– ident: ref27
  doi: 10.1016/S0893-6080(99)00080-5
– ident: ref3
  doi: 10.1016/S0954-1810(98)00011-9
– year: 1989
  ident: ref28
  publication-title: Nonlinear Regression
– ident: ref29
  doi: 10.1162/neco.1996.8.1.152
– ident: ref45
  doi: 10.1109/34.58871
– year: 2010
  ident: ref39
  publication-title: DaISy Database for the Identification of Systems
– ident: ref15
  doi: 10.1109/TITS.2011.2106209
– ident: ref17
  doi: 10.1016/j.eswa.2009.07.059
– volume: 9
  start-page: 176
  year: 1997
  ident: ref23
  publication-title: Neural Information Processing Systems
– ident: ref6
  doi: 10.1016/j.eswa.2007.10.005
– ident: ref19
  doi: 10.2307/1270528
– ident: ref34
  doi: 10.1016/S0893-6080(96)00098-6
– ident: ref7
  doi: 10.1080/00036840600706995
– ident: ref14
  doi: 10.1016/j.trc.2009.04.007
SSID ssj0014506
Score 2.5513694
SecondaryResourceType review_article
Snippet This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts....
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1341
SubjectTerms Algorithms
Animals
Applied sciences
Artificial neural networks
Bayes Theorem
Bayesian
Bayesian analysis
Bayesian methods
bootstrap
Computation
Computer science; control theory; systems
Computer Simulation
Construction
Cost function
Data processing. List processing. Character string processing
delta
Deltas
Estimation
Exact sciences and technology
Humans
Intervals
Mathematics
mean-variance estimation
Memory organisation. Data processing
Minimization
neural network
Neural networks
Neural Networks (Computer)
prediction interval
Predictive Value of Tests
Probability and statistics
Repeatability
Reproducibility
Sciences and techniques of general use
Software
Statistics
Time Factors
Training
Uncertainty
Title Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances
URI https://ieeexplore.ieee.org/document/5966350
https://www.ncbi.nlm.nih.gov/pubmed/21803683
https://www.proquest.com/docview/1010915043
https://www.proquest.com/docview/887505755
https://www.proquest.com/docview/919935906
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0093
  dateEnd: 20111231
  omitProxy: false
  ssIdentifier: ssj0014506
  issn: 1045-9227
  databaseCode: RIE
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qn_TB6p0fW2uJIILg3uWyye7m8RRLEXqItNC3JZtkEdQ9uQ-k_es7k-xurXjiy3Fwc1z2ZjIzv8wvMwCv0S-i681EKqzNUokBO62lwo0nZSHqvKyVoPvOZ4v89EJ-ulSXe_BuuAvjvQ_kMz-ht6GW75Z2S0dlU6UpPiJAv1eUebyrNVQMpApzNBFdqFQLUfQlSa6n54tF7NUpZjnhndAAuETXXWZ3olEYr0LkSLPG_6eJgy12Z54hAp0cwFm_9kg8-TbZbuqJvf6jreP_PtwjeNilomwebecx7Pl2BON5izD8xxV7wwI5NJy6j-Cgn_7AOmcwgge_tTIcwxcSWPmvkQ_PYsmBLRtG3T_wVxaRbp6-x6jp2OcV1YfIJlg4kkRzXzPTOhT7xeaRlrB-AhcnH88_nKbdvIbUSsk3qRCG10aVpca0odY07o-a7aPGfWYRSeaulJ47y6VUpsjEzOmSN6JppKkLfM2ewn67bP1zYHJmSuecIXwlG6WMy7lVSgleC4SENoFpr7fKds3MaabG9yqAGq4rVHpFSq86pSfwdvjGz9jI4x-yY9LPINepJoHjO6YxfC6kykShUeBVbysV7lIqvZjWL7drItJhYkbd4hJgO2TQ3Qe0qHaLaKJbKs3zBJ5FU7xdQ2fRh39f-wu4H0_DiR13BPub1da_xHRqUx-HfXQDRB0W3g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB-O80F98LRVL36cK4ggmHa72U2yj1U8ql6DSA_uLSS7GwS9VPqB6F_vzG4aPbHiSyl0Sjed2Zn57fx2BuAZ-kV0vYmIhTFJLDFgx7VUuPGkzESd5rUSdN95XqSzc_nuQl0cwMv-LoxzzpPP3Ije-lq-XZotHZWNlab4iAD9mpJSqnBbq68ZSOUnaSK-ULEWItsVJbkeL4oidOsUk5QQj28BnKPzzpMr8cgPWCF6ZLXGf6gJoy32554-Bp0ewXy3-kA9-TzabuqR-fFHY8f_fbzbcKtLRtk0WM8dOHDtAIbTFoH45Xf2nHl6qD93H8DRbv4D69zBAG7-1sxwCB9JYOU-BUY8C0UHtmwY9f_AXykC4Tx-hXHTsg8rqhCRVTB_KIkGv2ZVa1HsG5sGYsL6Lpyfvlm8nsXdxIbYSMk3sRAVryuV5xoTh1rTwD9qt486d4lBLJnaXDpuDUftVVkiJlbnvBFNI6s6w9fkHhy2y9YdA5OTKrfWVoSwZKNUZVNulFKC1wJBoYlgvNNbabp25jRV40vpYQ3XJSq9JKWXndIjeNF_42to5fEP2SHpp5frVBPByRXT6D8XUiUi0yjwdGcrJe5TKr5UrVtu10Slw9SM-sVFwPbIoMP3eFHtF9FEuFSapxHcD6b4aw2dRT_4-9qfwPXZYn5Wnr0t3j-EG-FsnLhyj-Bws9q6x5hcbeoTv6d-AvvqGis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Review+of+Neural+Network-Based+Prediction+Intervals+and+New+Advances&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Khosravi%2C+A.&rft.au=Nahavandi%2C+S.&rft.au=Creighton%2C+D.&rft.au=Atiya%2C+A.+F.&rft.date=2011-09-01&rft.issn=1045-9227&rft.eissn=1941-0093&rft.volume=22&rft.issue=9&rft.spage=1341&rft.epage=1356&rft_id=info:doi/10.1109%2FTNN.2011.2162110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNN_2011_2162110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon