Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances
This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs...
Saved in:
| Published in | IEEE transactions on neural networks Vol. 22; no. 9; pp. 1341 - 1356 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1045-9227 1941-0093 1941-0093 |
| DOI | 10.1109/TNN.2011.2162110 |
Cover
| Abstract | This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method. |
|---|---|
| AbstractList | This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method. This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method. |
| Author | Khosravi, A. Nahavandi, S. Atiya, A. F. Creighton, D. |
| Author_xml | – sequence: 1 givenname: A. surname: Khosravi fullname: Khosravi, A. email: abbas.khosravi@deakin.edu.au organization: Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia – sequence: 2 givenname: S. surname: Nahavandi fullname: Nahavandi, S. email: saeid.nahavandi@deakin.edu.au organization: Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia – sequence: 3 givenname: D. surname: Creighton fullname: Creighton, D. email: douglas.creighton@deakin.edu.au organization: Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia – sequence: 4 givenname: A. F. surname: Atiya fullname: Atiya, A. F. email: amir@alumni.caltech.edu organization: Dept. of Comput. Eng., Cairo Univ., Cairo, Egypt |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24532790$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21803683$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1rFEEQxRuJmA-9C4LMReJl1qr-mu5jXKIGwiaEeB56emqwdXZm7Z7dJf99etmNgod4qSqK36uC907Z0TAOxNhbhBki2E_3i8WMA-KMo-Z584KdoJVYAlhxlGeQqrScV8fsNKWfACgV6FfsmKMBoY04YXfzcbmK9IOGFDZU3NEm0LYYu2JB6-j63KbtGH-Vn12itriN1AY_hXEoroaJ4sb1qXBDm7FtcdFu3OApvWYvu7ynN4d-xr5_ubyffyuvb75ezS-uSy8lTCXnDhqnjLFosLGAplJSi0YbEh6N1K2RBK0HKZWrBMfWGuh410nXVLmKM3a-v7uK4-81palehuSp791A4zrVFq0VyoL-L2nya1CVUpn8-CyJkG1HBVJk9P0BXTdLautVDEsXH-onbzPw4QC45F3fxexOSH85qQSvLGRO7zkfx5QidbUPk9uZPEUX-vyz3oVd57DrXdj1IewshH-ET7efkbzbSwIR_cGV1VooEI_-YLD1 |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1002_rob_22014 crossref_primary_10_1016_j_enconman_2023_117440 crossref_primary_10_1177_14759217241282738 crossref_primary_10_1016_j_asoc_2018_04_039 crossref_primary_10_1109_ACCESS_2019_2923905 crossref_primary_10_2166_ws_2021_151 crossref_primary_10_1016_j_scs_2021_103481 crossref_primary_10_1109_TNNLS_2019_2945307 crossref_primary_10_2166_nh_2021_028 crossref_primary_10_3390_electronics9030519 crossref_primary_10_1016_j_ijepes_2017_08_012 crossref_primary_10_1111_cgf_13522 crossref_primary_10_1109_TFUZZ_2020_2966172 crossref_primary_10_1142_S1469026813400063 crossref_primary_10_1007_s41096_024_00197_6 crossref_primary_10_1016_j_ijhydene_2022_12_110 crossref_primary_10_1109_TSTE_2022_3226255 crossref_primary_10_1002_for_2644 crossref_primary_10_1021_acs_jcim_9b00087 crossref_primary_10_1016_j_apenergy_2014_04_024 crossref_primary_10_3390_su13041633 crossref_primary_10_3390_su16093699 crossref_primary_10_1016_j_swevo_2022_101070 crossref_primary_10_1109_ACCESS_2019_2925634 crossref_primary_10_1016_j_asoc_2020_106327 crossref_primary_10_1080_02626667_2022_2046755 crossref_primary_10_3182_20140824_6_ZA_1003_00837 crossref_primary_10_3390_s18051488 crossref_primary_10_1109_TNSM_2021_3138560 crossref_primary_10_32604_cmc_2021_014665 crossref_primary_10_1007_s00521_023_08779_4 crossref_primary_10_1016_j_dss_2024_114305 crossref_primary_10_1049_iet_rpg_2019_1238 crossref_primary_10_1111_exsy_12452 crossref_primary_10_1016_j_enconman_2022_115433 crossref_primary_10_1016_j_is_2018_02_001 crossref_primary_10_1016_j_apenergy_2021_117173 crossref_primary_10_1016_j_asoc_2022_108875 crossref_primary_10_1016_j_asoc_2022_109602 crossref_primary_10_1109_TITS_2022_3230680 crossref_primary_10_3390_stats6030053 crossref_primary_10_1007_s00477_023_02567_1 crossref_primary_10_1016_j_egyr_2014_11_003 crossref_primary_10_1016_j_engstruct_2023_116391 crossref_primary_10_1016_j_apenergy_2021_117766 crossref_primary_10_1016_j_oceaneng_2023_116658 crossref_primary_10_1016_j_neucom_2020_01_111 crossref_primary_10_1016_j_renene_2022_07_009 crossref_primary_10_1109_ACCESS_2019_2939593 crossref_primary_10_1016_j_apenergy_2020_114978 crossref_primary_10_1109_TNNLS_2021_3053306 crossref_primary_10_1109_TNNLS_2019_2946414 crossref_primary_10_1049_iet_gtd_2014_0599 crossref_primary_10_1109_TSG_2021_3066567 crossref_primary_10_1016_j_renene_2015_08_038 crossref_primary_10_1109_ACCESS_2024_3381492 crossref_primary_10_1109_TVLSI_2021_3067446 crossref_primary_10_1007_s10994_022_06230_8 crossref_primary_10_1016_j_neucom_2017_11_062 crossref_primary_10_3390_math11204342 crossref_primary_10_1016_j_engappai_2019_103346 crossref_primary_10_1007_s00366_021_01515_3 crossref_primary_10_3390_en7085251 crossref_primary_10_1016_j_jhydrol_2015_08_068 crossref_primary_10_1016_j_eswa_2025_127031 crossref_primary_10_1016_j_neunet_2025_107364 crossref_primary_10_1109_TSMC_2024_3352665 crossref_primary_10_1142_S1793962317500295 crossref_primary_10_2514_1_D0406 crossref_primary_10_1109_TSTE_2017_2774195 crossref_primary_10_1016_j_knosys_2021_107435 crossref_primary_10_1080_15567036_2019_1632980 crossref_primary_10_1108_ECAM_08_2019_0406 crossref_primary_10_1175_WAF_D_18_0206_1 crossref_primary_10_1016_j_eswa_2024_124715 crossref_primary_10_1016_j_engappai_2024_109922 crossref_primary_10_1029_2022WR033588 crossref_primary_10_1109_TII_2015_2389625 crossref_primary_10_1109_TNNLS_2013_2250299 crossref_primary_10_1109_TNNLS_2015_2396933 crossref_primary_10_3141_2365_10 crossref_primary_10_1007_s00477_020_01914_w crossref_primary_10_1016_j_neucom_2013_02_039 crossref_primary_10_1016_j_jmsy_2023_08_012 crossref_primary_10_1016_j_energy_2023_127006 crossref_primary_10_1017_asb_2021_34 crossref_primary_10_1109_TNNLS_2014_2376696 crossref_primary_10_1016_j_rser_2020_109792 crossref_primary_10_1177_0954406220933652 crossref_primary_10_1016_j_trc_2018_09_010 crossref_primary_10_1007_s10462_022_10178_5 crossref_primary_10_1007_s44196_024_00451_6 crossref_primary_10_1016_j_scico_2021_102643 crossref_primary_10_1016_j_geoderma_2019_05_012 crossref_primary_10_1016_j_jprocont_2020_07_008 crossref_primary_10_1016_j_renene_2022_10_122 crossref_primary_10_1016_j_enconman_2024_118692 crossref_primary_10_1145_3606372 crossref_primary_10_1007_s10845_016_1221_2 crossref_primary_10_1016_j_knosys_2024_111669 crossref_primary_10_1109_JSEN_2021_3067841 crossref_primary_10_1109_TRO_2020_3001674 crossref_primary_10_1061_AJRUA6_RUENG_1556 crossref_primary_10_1016_j_procir_2021_10_008 crossref_primary_10_1016_j_artint_2019_103184 crossref_primary_10_1016_j_jobe_2023_107162 crossref_primary_10_1049_iet_rpg_2018_5194 crossref_primary_10_1109_TOH_2020_2975555 crossref_primary_10_1016_j_apenergy_2023_122341 crossref_primary_10_1016_j_cageo_2023_105409 crossref_primary_10_3390_s24134218 crossref_primary_10_1016_j_apenergy_2024_124527 crossref_primary_10_3390_electronics13071340 crossref_primary_10_1016_j_ijepes_2014_03_060 crossref_primary_10_1016_j_ress_2014_09_014 crossref_primary_10_1016_j_jobe_2023_107956 crossref_primary_10_1016_j_epsr_2023_109920 crossref_primary_10_1007_s11356_022_21904_5 crossref_primary_10_1016_j_conengprac_2015_10_003 crossref_primary_10_3233_JIFS_210619 crossref_primary_10_1109_TITS_2014_2300103 crossref_primary_10_3390_en15155337 crossref_primary_10_1016_j_conbuildmat_2022_128040 crossref_primary_10_1016_j_ifacol_2020_12_112 crossref_primary_10_1016_j_neunet_2021_04_036 crossref_primary_10_1016_j_eswa_2018_10_043 crossref_primary_10_2208_jscejcei_74_33 crossref_primary_10_1016_j_ress_2023_109578 crossref_primary_10_3390_app11041728 crossref_primary_10_1109_TSTE_2016_2606488 crossref_primary_10_1109_TETCI_2023_3296486 crossref_primary_10_15407_publishing2019_54_005 crossref_primary_10_1109_TSTE_2022_3141549 crossref_primary_10_3390_risks7010033 crossref_primary_10_1109_TR_2016_2570540 crossref_primary_10_1016_j_ins_2019_02_042 crossref_primary_10_1109_ACCESS_2021_3056003 crossref_primary_10_1016_j_compstruct_2024_118087 crossref_primary_10_1016_j_rser_2024_114781 crossref_primary_10_1063_5_0027130 crossref_primary_10_1109_TFUZZ_2022_3179586 crossref_primary_10_1016_j_apenergy_2022_120575 crossref_primary_10_1088_1742_6596_2909_1_012032 crossref_primary_10_1109_TCYB_2022_3175479 crossref_primary_10_1109_TIA_2022_3162186 crossref_primary_10_1109_TIE_2015_2499722 crossref_primary_10_1109_TIE_2023_3274874 crossref_primary_10_1088_2058_9565_ad3c68 crossref_primary_10_3390_en13081880 crossref_primary_10_1155_2020_7082594 crossref_primary_10_3390_su13116417 crossref_primary_10_1016_j_ijepes_2014_07_064 crossref_primary_10_3390_en16041988 crossref_primary_10_3390_electronics12020329 crossref_primary_10_1007_s12583_021_1555_3 crossref_primary_10_1016_j_rser_2018_07_042 crossref_primary_10_3390_bdcc6040134 crossref_primary_10_3390_ma6125967 crossref_primary_10_1080_03772063_2017_1417749 crossref_primary_10_3389_fenvs_2021_809995 crossref_primary_10_1007_s11356_012_1451_6 crossref_primary_10_1109_TNNLS_2019_2956195 crossref_primary_10_1016_j_jcp_2020_109957 crossref_primary_10_1007_s10489_021_02337_y crossref_primary_10_1007_s10994_024_06639_3 crossref_primary_10_1155_2019_8985325 crossref_primary_10_1109_ACCESS_2017_2707539 crossref_primary_10_1109_TPWRS_2023_3257353 crossref_primary_10_1109_TR_2023_3277332 crossref_primary_10_1016_j_ijepes_2019_105436 crossref_primary_10_1016_j_ijpe_2015_09_039 crossref_primary_10_1109_TII_2019_2954351 crossref_primary_10_1016_j_solener_2019_08_021 crossref_primary_10_1016_j_asoc_2019_105506 crossref_primary_10_1016_j_segan_2024_101363 crossref_primary_10_1016_j_asoc_2020_106350 crossref_primary_10_1016_j_energy_2024_133186 crossref_primary_10_1016_j_asoc_2020_106597 crossref_primary_10_1080_10920277_2022_2050260 crossref_primary_10_1016_j_neunet_2024_106203 crossref_primary_10_1109_TSG_2022_3226423 crossref_primary_10_3390_electronics12081917 crossref_primary_10_1007_s00500_022_07044_5 crossref_primary_10_1109_TSTE_2012_2232944 crossref_primary_10_1016_j_apenergy_2013_05_075 crossref_primary_10_1016_j_energy_2018_08_180 crossref_primary_10_1109_ACCESS_2020_2964835 crossref_primary_10_1109_TNNLS_2020_2966745 crossref_primary_10_1016_j_neucom_2018_02_046 crossref_primary_10_1016_j_cscm_2024_e03186 crossref_primary_10_1109_TSTE_2013_2253140 crossref_primary_10_1115_1_4048222 crossref_primary_10_1016_j_epsr_2024_111255 crossref_primary_10_1007_s00521_019_04617_8 crossref_primary_10_1109_TPWRS_2016_2591723 crossref_primary_10_1016_j_asoc_2024_112611 crossref_primary_10_1109_TSTE_2022_3191330 crossref_primary_10_1016_j_enconman_2020_113085 crossref_primary_10_1080_00401706_2025_2453197 crossref_primary_10_3390_s24113432 crossref_primary_10_1016_j_enbuild_2021_111053 crossref_primary_10_1093_molbev_msae077 crossref_primary_10_3390_math11143247 crossref_primary_10_1007_s40996_024_01374_0 crossref_primary_10_1016_j_engappai_2023_107061 crossref_primary_10_1109_ACCESS_2018_2836917 crossref_primary_10_1109_TAI_2021_3128368 crossref_primary_10_1109_ACCESS_2019_2919110 crossref_primary_10_1139_as_2022_0033 crossref_primary_10_1088_1361_6501_aba3f4 crossref_primary_10_1109_TIA_2023_3284776 crossref_primary_10_1007_s12555_020_0342_8 crossref_primary_10_1016_j_rineng_2024_103545 crossref_primary_10_1016_j_techsoc_2024_102629 crossref_primary_10_1016_j_jwpe_2023_104145 crossref_primary_10_1016_j_measurement_2023_112857 crossref_primary_10_1007_s10845_024_02472_6 crossref_primary_10_1109_TIM_2023_3240208 crossref_primary_10_1016_j_apor_2024_103994 crossref_primary_10_1016_j_ijleo_2019_163970 crossref_primary_10_1016_j_eswa_2022_118419 crossref_primary_10_1016_j_jtice_2014_05_021 crossref_primary_10_1109_TGRS_2016_2615687 crossref_primary_10_3390_sym13081320 crossref_primary_10_1109_TIV_2022_3168577 crossref_primary_10_3390_en14113192 crossref_primary_10_3390_s18092871 crossref_primary_10_1016_j_apenergy_2019_113353 crossref_primary_10_1007_s11269_019_02387_5 crossref_primary_10_3390_s18124440 crossref_primary_10_1016_j_engappai_2024_107918 crossref_primary_10_3389_frwa_2022_961954 crossref_primary_10_1002_met_1567 crossref_primary_10_1016_j_conengprac_2018_06_012 crossref_primary_10_1016_j_euromechsol_2020_103995 crossref_primary_10_1007_s10462_023_10698_8 crossref_primary_10_3390_app11114773 crossref_primary_10_1007_s10483_024_3191_6 crossref_primary_10_3233_IDA_200015 crossref_primary_10_1007_s11135_022_01537_z crossref_primary_10_1016_j_isatra_2020_09_017 crossref_primary_10_1016_j_asoc_2023_111027 crossref_primary_10_1016_j_measurement_2020_108277 crossref_primary_10_1016_j_neunet_2021_10_014 crossref_primary_10_1007_s40808_018_0532_z crossref_primary_10_1016_j_asoc_2021_107531 crossref_primary_10_1016_j_neucom_2016_03_061 crossref_primary_10_1109_ACCESS_2022_3140598 crossref_primary_10_1016_j_knosys_2013_10_012 crossref_primary_10_3389_fped_2021_689190 crossref_primary_10_3390_risks9030053 crossref_primary_10_1016_j_asoc_2014_06_039 crossref_primary_10_1115_1_4044199 crossref_primary_10_1109_TNNLS_2015_2418739 crossref_primary_10_1109_TNNLS_2015_2512283 crossref_primary_10_1007_s11518_023_5560_1 crossref_primary_10_3390_en15113882 crossref_primary_10_3390_agriculture13061255 crossref_primary_10_1177_1748006X221119301 crossref_primary_10_1016_j_ifacol_2021_08_073 crossref_primary_10_1016_j_dss_2022_113800 crossref_primary_10_1016_j_eswa_2012_08_018 crossref_primary_10_1016_j_ress_2022_108645 crossref_primary_10_1016_j_energy_2014_06_104 crossref_primary_10_1002_for_3248 crossref_primary_10_1016_j_asoc_2023_110625 crossref_primary_10_1016_j_jhydrol_2013_06_043 crossref_primary_10_1021_acsomega_4c02017 crossref_primary_10_1080_00207543_2024_2408435 crossref_primary_10_1109_TII_2017_2691461 crossref_primary_10_1080_24725854_2021_1974129 crossref_primary_10_1088_1742_6596_2647_18_182022 crossref_primary_10_1016_j_cherd_2014_02_016 crossref_primary_10_1109_TITS_2024_3466514 crossref_primary_10_1007_s10489_023_04610_8 crossref_primary_10_1002_stc_2859 crossref_primary_10_5194_bg_17_4421_2020 crossref_primary_10_1177_09544054241290266 crossref_primary_10_1016_j_jhydrol_2019_124226 crossref_primary_10_1109_TIM_2021_3126006 crossref_primary_10_1016_j_cma_2019_112594 crossref_primary_10_1016_j_neucom_2013_08_020 crossref_primary_10_1016_j_jmsy_2020_06_009 crossref_primary_10_1109_TSTE_2014_2323836 crossref_primary_10_3390_aerospace11090770 crossref_primary_10_1109_TPWRS_2015_2393880 crossref_primary_10_1109_TIA_2018_2858183 crossref_primary_10_1002_we_2859 crossref_primary_10_1109_TPWRS_2011_2181981 crossref_primary_10_1016_j_enconman_2018_03_010 crossref_primary_10_1016_j_apenergy_2022_120601 crossref_primary_10_1016_j_apenergy_2016_10_079 crossref_primary_10_1109_TMC_2018_2879933 crossref_primary_10_5194_os_18_1221_2022 crossref_primary_10_1016_j_scitotenv_2024_174241 crossref_primary_10_1088_1757_899X_768_7_072062 crossref_primary_10_1038_s41598_017_08104_9 crossref_primary_10_1142_S021848852350023X crossref_primary_10_1007_s10462_016_9465_y crossref_primary_10_1016_j_enconman_2020_113324 crossref_primary_10_1080_00207543_2014_887232 crossref_primary_10_1371_journal_pone_0307970 crossref_primary_10_1007_s00778_024_00857_w crossref_primary_10_1016_j_neucom_2016_10_019 crossref_primary_10_1080_15435075_2023_2269443 crossref_primary_10_1080_21681015_2024_2358823 crossref_primary_10_1109_TASE_2016_2629505 crossref_primary_10_1007_s10994_024_06585_0 crossref_primary_10_1016_j_egyr_2024_09_011 crossref_primary_10_1007_s13369_022_06683_y crossref_primary_10_1007_s11069_023_06211_7 crossref_primary_10_1016_j_ress_2025_111006 crossref_primary_10_1002_ente_201700549 crossref_primary_10_1016_j_solener_2017_10_051 crossref_primary_10_1038_s41597_022_01455_7 crossref_primary_10_1109_TSTE_2023_3321081 crossref_primary_10_1016_j_csda_2021_107203 crossref_primary_10_1016_j_ress_2019_02_011 crossref_primary_10_1109_TNNLS_2020_2967816 crossref_primary_10_1109_TIE_2014_2383994 crossref_primary_10_1016_j_chemolab_2017_10_023 crossref_primary_10_1109_TNNLS_2013_2276053 crossref_primary_10_1007_s00500_019_03825_7 crossref_primary_10_1016_j_measurement_2023_113513 crossref_primary_10_1109_TAI_2021_3123928 crossref_primary_10_1016_j_asoc_2023_111195 crossref_primary_10_1016_j_precisioneng_2023_06_002 crossref_primary_10_3390_en13071687 crossref_primary_10_1109_ACCESS_2021_3075966 crossref_primary_10_3390_w16192755 crossref_primary_10_3389_faquc_2024_1365123 crossref_primary_10_1016_j_tws_2024_112466 crossref_primary_10_1016_j_inffus_2020_01_002 crossref_primary_10_1016_j_ailsci_2021_100004 crossref_primary_10_1109_TIM_2023_3347782 crossref_primary_10_3390_pr9060961 crossref_primary_10_1088_1755_1315_491_1_012001 crossref_primary_10_2174_0126662558264870231122113715 crossref_primary_10_2166_ws_2015_066 crossref_primary_10_1016_j_neucom_2017_11_027 crossref_primary_10_1109_TSTE_2014_2323851 crossref_primary_10_1016_j_dsm_2021_07_002 crossref_primary_10_1109_TSTE_2014_2323852 crossref_primary_10_1016_j_scs_2021_103511 crossref_primary_10_1109_TFUZZ_2024_3483817 crossref_primary_10_1061__ASCE_HY_1943_7900_0001804 crossref_primary_10_1109_TKDE_2023_3288628 crossref_primary_10_1016_j_rser_2025_115408 crossref_primary_10_1038_s41598_023_31182_x crossref_primary_10_1109_TNNLS_2023_3339470 crossref_primary_10_1002_asmb_2128 crossref_primary_10_1007_s00477_022_02181_7 crossref_primary_10_3390_en14217340 crossref_primary_10_1016_j_econmod_2016_08_019 crossref_primary_10_1016_j_ijforecast_2014_08_008 crossref_primary_10_3390_app7070649 crossref_primary_10_1016_j_eswa_2022_116934 crossref_primary_10_61643_c478960 crossref_primary_10_1016_j_neucom_2016_09_064 crossref_primary_10_1139_as_2021_0034 crossref_primary_10_1016_j_jhydrol_2024_132091 crossref_primary_10_1007_s00521_012_1051_x crossref_primary_10_1080_19475705_2021_1891145 crossref_primary_10_1109_TSIPI_2022_3222122 |
| Cites_doi | 10.1080/01621459.1997.10474027 10.1017/CBO9780511802843 10.1162/neco.1992.4.5.720 10.1109/IJCNN.2009.5178590 10.1007/978-1-4899-4541-9 10.1109/TNN.2010.2096824 10.1109/72.963764 10.1109/TIE.2006.888683 10.1109/6104.980042 10.1214/aos/1176344552 10.1093/oso/9780198538493.001.0001 10.1016/0893-6080(89)90020-8 10.1109/MCI.2007.913386 10.1016/j.ymssp.2007.12.004 10.1109/72.329697 10.1057/palgrave.jors.2600856 10.1109/TNN.2003.813832 10.1016/j.neunet.2004.02.002 10.1109/TNN.2003.809428 10.1109/TPWRS.2010.2042309 10.1016/j.trc.2011.04.002 10.1016/j.csda.2006.03.003 10.1007/BF00058655 10.1016/j.actpsy.2009.07.007 10.7551/mitpress/3927.001.0001 10.1016/j.eswa.2009.01.031 10.1109/TPWRS.2008.919309 10.1126/science.220.4598.671 10.1016/j.ijforecast.2006.01.001 10.1109/ICNN.1994.374138 10.1016/j.neunet.2006.01.012 10.1016/0169-2070(92)90006-U 10.1016/S0893-6080(99)00080-5 10.1016/S0954-1810(98)00011-9 10.1162/neco.1996.8.1.152 10.1109/34.58871 10.1109/TITS.2011.2106209 10.1016/j.eswa.2009.07.059 10.1016/j.eswa.2007.10.005 10.2307/1270528 10.1016/S0893-6080(96)00098-6 10.1080/00036840600706995 10.1016/j.trc.2009.04.007 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 7SC 7SP F28 JQ2 L7M L~C L~D |
| DOI | 10.1109/TNN.2011.2162110 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | MEDLINE Technology Research Database Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science Mathematics Applied Sciences Statistics |
| EISSN | 1941-0093 |
| EndPage | 1356 |
| ExternalDocumentID | 21803683 24532790 10_1109_TNN_2011_2162110 5966350 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 7SC 7SP F28 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c440t-22a0ba5889181b901875463b68e3c1846d84e0dc0445a7321d980f2ff4ab7ff43 |
| IEDL.DBID | RIE |
| ISSN | 1045-9227 1941-0093 |
| IngestDate | Fri Sep 05 13:22:40 EDT 2025 Thu Sep 04 19:02:20 EDT 2025 Tue Oct 07 09:21:11 EDT 2025 Thu Apr 03 06:50:21 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Wed Oct 01 06:48:55 EDT 2025 Thu Apr 24 23:08:59 EDT 2025 Tue Aug 26 17:18:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Bayes estimation High performance Data analysis Individual method Variability Bayesian delta Minimization Neural network Statistical forecasting Mean estimation mean-variance estimation Variance Bootstrapping Repeatability Uncertain system prediction interval Genetic algorithm Remolded sample Bootstrap Cost function |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c440t-22a0ba5889181b901875463b68e3c1846d84e0dc0445a7321d980f2ff4ab7ff43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 21803683 |
| PQID | 1010915043 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TNN_2011_2162110 crossref_primary_10_1109_TNN_2011_2162110 proquest_miscellaneous_1010915043 proquest_miscellaneous_887505755 pubmed_primary_21803683 proquest_miscellaneous_919935906 pascalfrancis_primary_24532790 ieee_primary_5966350 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-09-01 |
| PublicationDateYYYYMMDD | 2011-09-01 |
| PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2011 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 bishop (ref2) 1995 ref18 kirkpatrick (ref40) 1983; 220 ref46 heskes (ref23) 1997; 9 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ref9 ref4 ref3 ref6 ref5 dybowski (ref31) 2000 ref35 ref34 ref37 vlachos (ref36) 2010 ref30 ref33 ref32 ref1 wild (ref28) 1989 mitchell (ref50) 1996 goldberg (ref49) 1989 ref24 ref26 ref25 ref20 ref22 ref21 ref27 de moor (ref39) 2010 ref29 reeves (ref51) 2003 asuncion (ref38) 2010 |
| References_xml | – ident: ref18 doi: 10.1080/01621459.1997.10474027 – ident: ref44 doi: 10.1017/CBO9780511802843 – year: 2010 ident: ref38 publication-title: UCI Machine Learning Repository – ident: ref20 doi: 10.1162/neco.1992.4.5.720 – ident: ref37 doi: 10.1109/IJCNN.2009.5178590 – ident: ref43 doi: 10.1007/978-1-4899-4541-9 – ident: ref32 doi: 10.1109/TNN.2010.2096824 – ident: ref24 doi: 10.1109/72.963764 – year: 2000 ident: ref31 publication-title: Clinical Applications of Artificial Neural Networks – ident: ref5 doi: 10.1109/TIE.2006.888683 – ident: ref8 doi: 10.1109/6104.980042 – ident: ref22 doi: 10.1214/aos/1176344552 – year: 1995 ident: ref2 publication-title: Neural Networks for Pattern Recognition doi: 10.1093/oso/9780198538493.001.0001 – ident: ref1 doi: 10.1016/0893-6080(89)90020-8 – year: 2003 ident: ref51 publication-title: Genetic Algorithms Principles and Perspectives A Guide to GA Theory – ident: ref46 doi: 10.1109/MCI.2007.913386 – ident: ref11 doi: 10.1016/j.ymssp.2007.12.004 – ident: ref30 doi: 10.1109/72.329697 – ident: ref48 doi: 10.1057/palgrave.jors.2600856 – ident: ref42 doi: 10.1109/TNN.2003.813832 – ident: ref35 doi: 10.1016/j.neunet.2004.02.002 – year: 1989 ident: ref49 publication-title: Genetic Algorithms in Search Optimization and Machine Learning – ident: ref25 doi: 10.1109/TNN.2003.809428 – ident: ref10 doi: 10.1109/TPWRS.2010.2042309 – ident: ref16 doi: 10.1016/j.trc.2011.04.002 – ident: ref26 doi: 10.1016/j.csda.2006.03.003 – ident: ref41 doi: 10.1007/BF00058655 – ident: ref33 doi: 10.1016/j.actpsy.2009.07.007 – year: 1996 ident: ref50 publication-title: An Introduction to Genetic Algorithms doi: 10.7551/mitpress/3927.001.0001 – ident: ref12 doi: 10.1016/j.eswa.2009.01.031 – ident: ref9 doi: 10.1109/TPWRS.2008.919309 – volume: 220 start-page: 671 year: 1983 ident: ref40 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: ref4 doi: 10.1016/j.ijforecast.2006.01.001 – year: 2010 ident: ref36 publication-title: StatLib Datasets Archive – ident: ref21 doi: 10.1109/ICNN.1994.374138 – ident: ref13 doi: 10.1016/j.neunet.2006.01.012 – ident: ref47 doi: 10.1016/0169-2070(92)90006-U – ident: ref27 doi: 10.1016/S0893-6080(99)00080-5 – ident: ref3 doi: 10.1016/S0954-1810(98)00011-9 – year: 1989 ident: ref28 publication-title: Nonlinear Regression – ident: ref29 doi: 10.1162/neco.1996.8.1.152 – ident: ref45 doi: 10.1109/34.58871 – year: 2010 ident: ref39 publication-title: DaISy Database for the Identification of Systems – ident: ref15 doi: 10.1109/TITS.2011.2106209 – ident: ref17 doi: 10.1016/j.eswa.2009.07.059 – volume: 9 start-page: 176 year: 1997 ident: ref23 publication-title: Neural Information Processing Systems – ident: ref6 doi: 10.1016/j.eswa.2007.10.005 – ident: ref19 doi: 10.2307/1270528 – ident: ref34 doi: 10.1016/S0893-6080(96)00098-6 – ident: ref7 doi: 10.1080/00036840600706995 – ident: ref14 doi: 10.1016/j.trc.2009.04.007 |
| SSID | ssj0014506 |
| Score | 2.5513694 |
| SecondaryResourceType | review_article |
| Snippet | This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts.... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1341 |
| SubjectTerms | Algorithms Animals Applied sciences Artificial neural networks Bayes Theorem Bayesian Bayesian analysis Bayesian methods bootstrap Computation Computer science; control theory; systems Computer Simulation Construction Cost function Data processing. List processing. Character string processing delta Deltas Estimation Exact sciences and technology Humans Intervals Mathematics mean-variance estimation Memory organisation. Data processing Minimization neural network Neural networks Neural Networks (Computer) prediction interval Predictive Value of Tests Probability and statistics Repeatability Reproducibility Sciences and techniques of general use Software Statistics Time Factors Training Uncertainty |
| Title | Comprehensive Review of Neural Network-Based Prediction Intervals and New Advances |
| URI | https://ieeexplore.ieee.org/document/5966350 https://www.ncbi.nlm.nih.gov/pubmed/21803683 https://www.proquest.com/docview/1010915043 https://www.proquest.com/docview/887505755 https://www.proquest.com/docview/919935906 |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0093 dateEnd: 20111231 omitProxy: false ssIdentifier: ssj0014506 issn: 1045-9227 databaseCode: RIE dateStart: 19900101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9qn_TB6p0fW2uJIILg3uWyye7m8RRLEXqItNC3JZtkEdQ9uQ-k_es7k-xurXjiy3Fwc1z2ZjIzv8wvMwCv0S-i681EKqzNUokBO62lwo0nZSHqvKyVoPvOZ4v89EJ-ulSXe_BuuAvjvQ_kMz-ht6GW75Z2S0dlU6UpPiJAv1eUebyrNVQMpApzNBFdqFQLUfQlSa6n54tF7NUpZjnhndAAuETXXWZ3olEYr0LkSLPG_6eJgy12Z54hAp0cwFm_9kg8-TbZbuqJvf6jreP_PtwjeNilomwebecx7Pl2BON5izD8xxV7wwI5NJy6j-Cgn_7AOmcwgge_tTIcwxcSWPmvkQ_PYsmBLRtG3T_wVxaRbp6-x6jp2OcV1YfIJlg4kkRzXzPTOhT7xeaRlrB-AhcnH88_nKbdvIbUSsk3qRCG10aVpca0odY07o-a7aPGfWYRSeaulJ47y6VUpsjEzOmSN6JppKkLfM2ewn67bP1zYHJmSuecIXwlG6WMy7lVSgleC4SENoFpr7fKds3MaabG9yqAGq4rVHpFSq86pSfwdvjGz9jI4x-yY9LPINepJoHjO6YxfC6kykShUeBVbysV7lIqvZjWL7drItJhYkbd4hJgO2TQ3Qe0qHaLaKJbKs3zBJ5FU7xdQ2fRh39f-wu4H0_DiR13BPub1da_xHRqUx-HfXQDRB0W3g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEB-O80F98LRVL36cK4ggmHa72U2yj1U8ql6DSA_uLSS7GwS9VPqB6F_vzG4aPbHiSyl0Sjed2Zn57fx2BuAZ-kV0vYmIhTFJLDFgx7VUuPGkzESd5rUSdN95XqSzc_nuQl0cwMv-LoxzzpPP3Ije-lq-XZotHZWNlab4iAD9mpJSqnBbq68ZSOUnaSK-ULEWItsVJbkeL4oidOsUk5QQj28BnKPzzpMr8cgPWCF6ZLXGf6gJoy32554-Bp0ewXy3-kA9-TzabuqR-fFHY8f_fbzbcKtLRtk0WM8dOHDtAIbTFoH45Xf2nHl6qD93H8DRbv4D69zBAG7-1sxwCB9JYOU-BUY8C0UHtmwY9f_AXykC4Tx-hXHTsg8rqhCRVTB_KIkGv2ZVa1HsG5sGYsL6Lpyfvlm8nsXdxIbYSMk3sRAVryuV5xoTh1rTwD9qt486d4lBLJnaXDpuDUftVVkiJlbnvBFNI6s6w9fkHhy2y9YdA5OTKrfWVoSwZKNUZVNulFKC1wJBoYlgvNNbabp25jRV40vpYQ3XJSq9JKWXndIjeNF_42to5fEP2SHpp5frVBPByRXT6D8XUiUi0yjwdGcrJe5TKr5UrVtu10Slw9SM-sVFwPbIoMP3eFHtF9FEuFSapxHcD6b4aw2dRT_4-9qfwPXZYn5Wnr0t3j-EG-FsnLhyj-Bws9q6x5hcbeoTv6d-AvvqGis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Review+of+Neural+Network-Based+Prediction+Intervals+and+New+Advances&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Khosravi%2C+A.&rft.au=Nahavandi%2C+S.&rft.au=Creighton%2C+D.&rft.au=Atiya%2C+A.+F.&rft.date=2011-09-01&rft.issn=1045-9227&rft.eissn=1941-0093&rft.volume=22&rft.issue=9&rft.spage=1341&rft.epage=1356&rft_id=info:doi/10.1109%2FTNN.2011.2162110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNN_2011_2162110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |