Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile s...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and technology Vol. 53; no. 3; pp. 911 - 919
Main Authors Kim, Hyun-Jung, Tahk, Young-Wook, Jun, Hyunwoo, Kong, Eui-Hyun, Oh, Jae-Yong, Yim, Jeong-Sik
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2021
Elsevier
한국원자력학회
Subjects
Online AccessGet full text
ISSN1738-5733
2234-358X
DOI10.1016/j.net.2020.07.038

Cover

Abstract In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young’s modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 °C, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 °C, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.
AbstractList In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor arepresented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) andstructural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths,Young’s modulus and the elongation, are measured with the temperatures. The empirical equations ofthe material properties with respect to the temperature are presented. The cladding undergoes severalheat treatments and hardening processes during the fabrication process. Cladding strengths are reducedcompared to those of the raw material during annealing. Up to a temperature of 150 C, the strengths ofthe cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 C, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocationrecovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95%confidence level, the design stress intensities of the cladding and structural materials are established. Thepresented design stress intensity values become the basis of the stress design criteria for a safety analysisof plate-type fuels KCI Citation Count: 0
In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young’s modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 °C, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 °C, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.
Author Jun, Hyunwoo
Oh, Jae-Yong
Tahk, Young-Wook
Kong, Eui-Hyun
Kim, Hyun-Jung
Yim, Jeong-Sik
Author_xml – sequence: 1
  givenname: Hyun-Jung
  surname: Kim
  fullname: Kim, Hyun-Jung
  email: kimh@kaeri.re.kr
– sequence: 2
  givenname: Young-Wook
  surname: Tahk
  fullname: Tahk, Young-Wook
– sequence: 3
  givenname: Hyunwoo
  surname: Jun
  fullname: Jun, Hyunwoo
– sequence: 4
  givenname: Eui-Hyun
  surname: Kong
  fullname: Kong, Eui-Hyun
– sequence: 5
  givenname: Jae-Yong
  surname: Oh
  fullname: Oh, Jae-Yong
– sequence: 6
  givenname: Jeong-Sik
  surname: Yim
  fullname: Yim, Jeong-Sik
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002690801$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU9rGzEUxEVIoU7aD9Cbrj3sRv-1JqcQ0sYQCJQUehNa7ZMtZy0ZSQ7423e9bi855DQwzG94vLlClzFFQOgbJS0lVN1s2wi1ZYSRluiW8O4CLRjjouGy-3OJFlTzrpGa88_oqpQtIUoITRZo81Cq7cdQNjuIFSeP6wbwACWsIy41Qyk4xAqxhHrEb3Y8APYpz6n9aCs09bifrAOM2JYCu3484kMJcY0tnrERJi31C_rk7Vjg6z-9Rr9_PLzcPzZPzz9X93dPjROC1IYSLpQWBDopvSVMSwaKS9lLrxwVCgj0fmDSD9R7wTzwQS0V0ZK7fqmV4Nfo-7k3Zm9eXTDJhlnXybxmc_frZWWWWmqtT9nVOTskuzX7HHY2H2dgNlJeG5trcCOYfuDTB5123nohKbOSE8rtctBCdIL1U5c-d7mcSsngjQvV1pBizTaMhhJzGspszTSUOQ1liDbTUBNJ35H_L_mIuT0zML3yLUA2xQWIDoaQwdXp_vAB_ReW0K3z
CitedBy_id crossref_primary_10_1016_j_net_2021_09_044
crossref_primary_10_1016_j_pnucene_2023_104650
crossref_primary_10_1088_2053_1591_ac7f11
crossref_primary_10_1007_s12289_024_01863_7
crossref_primary_10_3390_ma17143457
Cites_doi 10.1016/j.msea.2009.03.077
10.1016/S1359-6454(98)00059-7
ContentType Journal Article
Copyright 2020 Korean Nuclear Society
Copyright_xml – notice: 2020 Korean Nuclear Society
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
ACYCR
DOI 10.1016/j.net.2020.07.038
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2234-358X
EndPage 919
ExternalDocumentID oai_kci_go_kr_ARTI_9757774
oai_doaj_org_article_bd3738c7cfaf4512a53013a9d744842b
10_1016_j_net_2020_07_038
S1738573320308007
GroupedDBID .UV
0R~
0SF
123
4.4
457
5VS
6I.
9ZL
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ACYCR
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
JDI
KQ8
KVFHK
M41
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c440t-10346740e855fa02752e6355b5f6c146e0ebfd25fd1ff42fe3d6960753cb97643
IEDL.DBID DOA
ISSN 1738-5733
IngestDate Sun Mar 09 07:50:34 EDT 2025
Mon Sep 08 19:52:30 EDT 2025
Tue Jul 01 01:28:29 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Tue May 16 22:34:36 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Uncertainty
Tensile test
KJRR (Ki-jang research reactor)
Ultimate tensile strength
Plate-type fuel assembly
Yield strength
Design stress intensity value
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c440t-10346740e855fa02752e6355b5f6c146e0ebfd25fd1ff42fe3d6960753cb97643
OpenAccessLink https://doaj.org/article/bd3738c7cfaf4512a53013a9d744842b
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9757774
doaj_primary_oai_doaj_org_article_bd3738c7cfaf4512a53013a9d744842b
crossref_citationtrail_10_1016_j_net_2020_07_038
crossref_primary_10_1016_j_net_2020_07_038
elsevier_sciencedirect_doi_10_1016_j_net_2020_07_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2021
2021-03-00
2021-03-01
2021-03
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle Nuclear engineering and technology
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
한국원자력학회
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: 한국원자력학회
References Dieter (bib9) 1976
IAEA (bib5) 1988
A Edwards, Stiller, Dunlop, Couper (bib10) 1998; 46
American Society for Testing and Materials (bib7) 2011
Korea Hydro & Nuclear Power Co Ltd (bib1) 2010
Summer (bib11) 2014
Consortium of Korea Atomic Energy Research Institute and Daewoo E&C (bib2) 2016
(bib4) 1988; 1313
Niranjani, Hari Kumar, Subramanya Sarma (bib12) 2009; 515
The American Society of Mechanical Engineers (bib3) 2004
Owen (bib8) 1963
ASTM international, Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate, ASTM B209-14.
10.1016/j.net.2020.07.038_bib6
(10.1016/j.net.2020.07.038_bib4) 1988; 1313
IAEA (10.1016/j.net.2020.07.038_bib5) 1988
Niranjani (10.1016/j.net.2020.07.038_bib12) 2009; 515
Consortium of Korea Atomic Energy Research Institute and Daewoo E&C (10.1016/j.net.2020.07.038_bib2) 2016
A Edwards (10.1016/j.net.2020.07.038_bib10) 1998; 46
Owen (10.1016/j.net.2020.07.038_bib8) 1963
American Society for Testing and Materials (10.1016/j.net.2020.07.038_bib7) 2011
Summer (10.1016/j.net.2020.07.038_bib11) 2014
Dieter (10.1016/j.net.2020.07.038_bib9) 1976
The American Society of Mechanical Engineers (10.1016/j.net.2020.07.038_bib3) 2004
Korea Hydro & Nuclear Power Co Ltd (10.1016/j.net.2020.07.038_bib1) 2010
References_xml – year: 2016
  ident: bib2
  article-title: Final Safety Analysis Report of Jordan Training Research Reactor (JRTR), Jordan
– year: 2010
  ident: bib1
  article-title: Final Safety Analysis Report, Shin Kori Unit 1 & 2, Korea
– year: 1988
  ident: bib5
  article-title: Standardization of Specifications and Inspection Procedures for LEU Plate-type Research Reactor Fuels
– year: 2011
  ident: bib7
  article-title: ASTM E8/E8M-11, Standard Test Methods for Tension Testing of Metallic Materials
– year: 1976
  ident: bib9
  article-title: Mechanical Metallurgy
– year: 2014
  ident: bib11
  article-title: Microstructure-based Constitute Models for Residual Mechanical Behavior of Aluminum Alloys after Fire Exposure
– reference: ASTM international, Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate, ASTM B209-14.
– year: 1963
  ident: bib8
  article-title: Factors for One-Sided Tolerance Limits and for Variables Sampling Plans, SCR-607
– volume: 46
  start-page: 3893
  year: 1998
  end-page: 3904
  ident: bib10
  article-title: The precipitation sequence in Al-Mg-Si Alloys
  publication-title: Acta Mater.
– start-page: 10016
  year: 2004
  end-page: 15990
  ident: bib3
  article-title: ASME Boiler and Pressure Vessel Code
– volume: 1313
  year: 1988
  ident: bib4
  article-title: Safety evaluation report related to the evaluation of low-enriched uranium Silicide-aluminum dispersion fuel for Use in non-Power reactors
  publication-title: NUREG
– volume: 515
  start-page: 169
  year: 2009
  end-page: 174
  ident: bib12
  article-title: Development of high strength Al-Mg-Si AA6061 alloy through cold rolling and ageing
  publication-title: Mat. Sci. Eng. A-Struct.
– start-page: 10016
  year: 2004
  ident: 10.1016/j.net.2020.07.038_bib3
– year: 1988
  ident: 10.1016/j.net.2020.07.038_bib5
– volume: 1313
  year: 1988
  ident: 10.1016/j.net.2020.07.038_bib4
  article-title: Safety evaluation report related to the evaluation of low-enriched uranium Silicide-aluminum dispersion fuel for Use in non-Power reactors
  publication-title: NUREG
– ident: 10.1016/j.net.2020.07.038_bib6
– year: 2010
  ident: 10.1016/j.net.2020.07.038_bib1
– year: 1963
  ident: 10.1016/j.net.2020.07.038_bib8
– volume: 515
  start-page: 169
  year: 2009
  ident: 10.1016/j.net.2020.07.038_bib12
  article-title: Development of high strength Al-Mg-Si AA6061 alloy through cold rolling and ageing
  publication-title: Mat. Sci. Eng. A-Struct.
  doi: 10.1016/j.msea.2009.03.077
– year: 2016
  ident: 10.1016/j.net.2020.07.038_bib2
– volume: 46
  start-page: 3893
  year: 1998
  ident: 10.1016/j.net.2020.07.038_bib10
  article-title: The precipitation sequence in Al-Mg-Si Alloys
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00059-7
– year: 1976
  ident: 10.1016/j.net.2020.07.038_bib9
– year: 2011
  ident: 10.1016/j.net.2020.07.038_bib7
– year: 2014
  ident: 10.1016/j.net.2020.07.038_bib11
SSID ssj0064470
Score 2.2486749
Snippet In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material...
In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor arepresented. Through a tensile test, the material...
SourceID nrf
doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 911
SubjectTerms Design stress intensity value
KJRR (Ki-jang research reactor)
Plate-type fuel assembly
Tensile test
Ultimate tensile strength
Uncertainty
Yield strength
원자력공학
Title Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test
URI https://dx.doi.org/10.1016/j.net.2020.07.038
https://doaj.org/article/bd3738c7cfaf4512a53013a9d744842b
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002690801
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nuclear Engineering and Technology, 2021, 53(3), , pp.911-919
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-6kx7ET5xfBPEkFLs2aZejysZUFAQHu4WmSeZc3cbsDvvvfS9pZV7mxUsDIWnDy2ve7yXv_ULIlRVWiKzVClKTioApnQTthLUCoy1rC8UB42M28vNL0uuzxwEfrFz1hTFhnh7YC-5GaeTeydPcZpaBdco4qGScCZ2CY8EihatvKMLamfJrMBj51KdCwu-MjH_1eaaL7AKfHxzDKHSsnZiYsmKRHHH_L8O0OZnbFZPT3SU7FVakt36Me2TDTPbJ9gqD4AF57wC6cxtJuMtHp5YCoKPahWVQnwdCRz5KvVxSZPY2FGCqazUrAGcGuAdL7cIUFGC0-VTFkmIs_JBm1HUrDJRf5SHpdztv972gujwhyBkLS1heY7xIJDRtzm2Gh5ORQXChuE1yWB5NaJTVEbe6ZS2LrIl1At4MeC-5AojC4iPSmEwn5phQxSIWQ3UOBhU6IoOZ0YIxlXAOHolqkrAWoMwrZnG84KKQdQjZhwSZS5S5DFMJMm-S658uM0-rsa7xHc7KT0NkxHYVoCey0hP5l540CavnVFbgwoMGeNVo3bcvYf7lOB-5z2I5nMrxXIK78SBFylPAzyf_McBTshVhvIyLbzsjjXK-MOcAeEp14XQbnk-v7W9bjvwi
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+the+design+stress+intensity+value+for+the+plate-type+fuel+assembly+using+a+tensile+test&rft.jtitle=Nuclear+engineering+and+technology&rft.au=Kim%2C+Hyun-Jung&rft.au=Tahk%2C+Young-Wook&rft.au=Jun%2C+Hyunwoo&rft.au=Kong%2C+Eui-Hyun&rft.date=2021-03-01&rft.pub=Elsevier+B.V&rft.issn=1738-5733&rft.volume=53&rft.issue=3&rft.spage=911&rft.epage=919&rft_id=info:doi/10.1016%2Fj.net.2020.07.038&rft.externalDocID=S1738573320308007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-5733&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-5733&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-5733&client=summon