Long-term remote sensing monitoring on LUCC around Chaohu Lake with new information of algal bloom and flood submerging

•K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake Basin.•Frequent land cover changes have relationship with lake algae bloom pollution.•Farmland and village buildings suffered most in the flood in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 102; p. 102413
Main Authors Lin, Yi, Zhang, Tinghui, Ye, Qin, Cai, Jianqing, Wu, Chengzhao, Khirni Syed, Awase, Li, Jonathan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
1872-826X
DOI10.1016/j.jag.2021.102413

Cover

Abstract •K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake Basin.•Frequent land cover changes have relationship with lake algae bloom pollution.•Farmland and village buildings suffered most in the flood in July 2020. Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious development of human activity and natural conditions along watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken as research subject for its serious environmental degradation problems during social and economic development. This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Conclusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest land and construction land out of six key land cover types with dynamic degree of −10.17%, 4.61, 67.04% respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The results prove effective application of remote sensing technology in environmental analysis and planning for data-driven evaluation of governing policy. This work serves as a scientific basis for environmental management and regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological policy and its impact for other economic developing watershed human settlements with ecological issues.
AbstractList Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious development of human activity and natural conditions along watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken as research subject for its serious environmental degradation problems during social and economic development. This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Conclusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest land and construction land out of six key land cover types with dynamic degree of −10.17%, 4.61, 67.04% respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The results prove effective application of remote sensing technology in environmental analysis and planning for data-driven evaluation of governing policy. This work serves as a scientific basis for environmental management and regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological policy and its impact for other economic developing watershed human settlements with ecological issues.
•K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake Basin.•Frequent land cover changes have relationship with lake algae bloom pollution.•Farmland and village buildings suffered most in the flood in July 2020. Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious development of human activity and natural conditions along watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken as research subject for its serious environmental degradation problems during social and economic development. This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Conclusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest land and construction land out of six key land cover types with dynamic degree of −10.17%, 4.61, 67.04% respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The results prove effective application of remote sensing technology in environmental analysis and planning for data-driven evaluation of governing policy. This work serves as a scientific basis for environmental management and regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological policy and its impact for other economic developing watershed human settlements with ecological issues.
ArticleNumber 102413
Author Wu, Chengzhao
Khirni Syed, Awase
Ye, Qin
Lin, Yi
Zhang, Tinghui
Li, Jonathan
Cai, Jianqing
Author_xml – sequence: 1
  givenname: Yi
  surname: Lin
  fullname: Lin, Yi
  email: linyi@tongji.edu.cn
  organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
– sequence: 2
  givenname: Tinghui
  surname: Zhang
  fullname: Zhang, Tinghui
  email: zhang_th@tongji.edu.cn
  organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
– sequence: 3
  givenname: Qin
  surname: Ye
  fullname: Ye, Qin
  email: yeqin@tongji.edu.cn
  organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China
– sequence: 4
  givenname: Jianqing
  surname: Cai
  fullname: Cai, Jianqing
  email: cai@gis.uni-stuttgart.de
  organization: Institute of Geodesy, University of Stuttgart, Stuttgart 70174, Germany
– sequence: 5
  givenname: Chengzhao
  surname: Wu
  fullname: Wu, Chengzhao
  email: wuchzhao@qq.com
  organization: College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
– sequence: 6
  givenname: Awase
  surname: Khirni Syed
  fullname: Khirni Syed, Awase
  email: awase008@gmail.com
  organization: Department of Geography and Environmental Management, University of Waterloo, Canada
– sequence: 7
  givenname: Jonathan
  surname: Li
  fullname: Li, Jonathan
  email: junli@uwaterloo.ca
  organization: Department of Geography and Environmental Management, University of Waterloo, Canada
BookMark eNqNkcFu1DAQhiNUJNrCA3DzkUsW28nGjjihFZRKkbhQiZs1ccZZh8RebIdV3x5vgzhwqDj592i-7zD_TXHlvMOieMvojlHWvJ92E4w7TjnLf16z6kVxzaTgpeTN96uc901byrrir4qbGCdKmRCNvC7OnXdjmTAsJODiE5KILlo3ksU7m3y4RO9I93A4EAh-dQM5HMEfV9LBDyRnm47E4ZlYZ3xYINm87A2BeYSZ9LP3C4HMmJwGEtd-wTBm5-vipYE54ps_723x8PnTt8OXsvt6d3_42JW6rtpUmqpnVNYcJYBoKYNaG2oa0fc1ir6iAxUUG4FCClMNDOnQ9o3ZS0AOCG1V3Rb3m3fwMKlTsAuER-XBqqeBD6OCkKyeUcmeVq1ucd9QqAUT7VBDFg6yl0w0UGcX31yrO8HjGeb5r5BRdalBTSrXoC41qK2GDL3boFPwP1eMSS02apxncOjXqLhgkle12F_8bFvVwccY0PyXXvzDaJueWkgB7Pws-WEjMZ__l8WgorboNA42oE75PvYZ-jfP4sLp
CitedBy_id crossref_primary_10_1016_j_clet_2021_100309
crossref_primary_10_3389_fenvs_2022_838883
crossref_primary_10_18307_2024_0127
Cites_doi 10.3133/pp964
10.1126/science.1119929
10.1109/IJCNN.2004.1380068
10.3390/rs10071129
10.1016/S0034-4257(02)00003-2
10.3390/ijerph9113843
10.1016/j.rse.2018.02.045
10.1080/17538947.2016.1214983
10.1016/j.rse.2011.11.020
10.1007/s00704-015-1637-1
10.4236/jwarp.2015.710067
10.1007/s11769-018-0988-9
10.1016/j.apgeog.2013.03.017
10.1016/j.rse.2014.09.021
10.1016/j.ecolind.2015.12.009
10.1002/ppp.1914
10.1016/j.rse.2003.10.018
10.1080/01431169208904252
10.1029/2008EO220001
10.2989/16085914.2013.870068
10.1525/9780520325883-032
10.1016/j.jhydrol.2008.03.020
10.1016/j.rse.2014.10.003
10.1016/j.ecss.2005.11.024
10.1016/j.habitatint.2014.07.009
10.1016/j.rse.2016.02.028
10.1016/j.rse.2011.12.003
10.1007/s10661-016-5494-x
10.1016/j.rse.2013.03.010
10.1016/j.rse.2016.10.012
10.3394/0380-1330(2006)32[607:LULCCI]2.0.CO;2
10.1016/j.landurbplan.2018.03.004
10.1016/j.neucom.2005.12.126
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1016/j.jag.2021.102413
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journal Directory
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_8b039c9e560a47179d4ae0dd8b8176a4
10.1016/j.jag.2021.102413
10_1016_j_jag_2021_102413
S0303243421001203
GeographicLocations China
Yangtze River
GeographicLocations_xml – name: Yangtze River
– name: China
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
CITATION
EFJIC
EFKBS
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c439t-f3b10842e8aa7901a4cf0f67bb4e7b30d070e67e787f3d1e0d9b6f58ae2aea933
IEDL.DBID DOA
ISSN 1569-8432
1872-826X
IngestDate Fri Oct 03 12:50:42 EDT 2025
Tue Aug 19 20:52:55 EDT 2025
Sat Sep 27 18:02:11 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Thu Oct 09 00:32:00 EDT 2025
Fri Feb 23 02:40:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Flood detection
The Chao Lake Basin
Land use spatial pattern
Change monitor
Image classification
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-f3b10842e8aa7901a4cf0f67bb4e7b30d070e67e787f3d1e0d9b6f58ae2aea933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/8b039c9e560a47179d4ae0dd8b8176a4
PQID 2718234754
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_8b039c9e560a47179d4ae0dd8b8176a4
unpaywall_primary_10_1016_j_jag_2021_102413
proquest_miscellaneous_2718234754
crossref_primary_10_1016_j_jag_2021_102413
crossref_citationtrail_10_1016_j_jag_2021_102413
elsevier_sciencedirect_doi_10_1016_j_jag_2021_102413
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References De Wit, Stankiewicz (b0020) 2006; 311
MEEPPC, 2002. Environmental Quality Standards for Surface Water. URL
Were, Dick, Singh (b0170) 2013; 41
Luo, Wang, Liu, Guo, Zong, Ji, Cao (b0105) 2017; 10
Liu, Huang, Yang, Zhong (b0100) 2014; 44
Rao, Mitra (b0135) 1972; vol. 1
Nsubuga, Botai, Olwoch, Rautenbach, Kalumba, Tsela, Adeola, Sentongo, Mearns (b0120) 2017; 127
Wasige, Groen, Smaling, Jetten (b0165) 2013; 21
Karan, Samadder (b0070) 2016; 188
Guo, Hu, Jiang (b0050) 2008; 355
Qiu, Dijk, Wang (b0130) 2015; 07
Palmer, Kutser, Hunter (b0125) 2015; 157
Anderson, J.R., 1976. A land use and land cover classification system for use with remote sensor data. US Government Printing Office.
Huang, G. -B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: A new learning scheme of feedforward neural networks, in: Proceedings of IEEE International Conference on Neural Networks, pp. 985–990. https://doi.org/10.1109/IJCNN.2004.1380068.
McIver, Friedl (b0110) 2002; 81
Stow, Hope, McGuire, Verbyla, Gamon, Huemmrich, Houston, Racine, Sturm, Tape (b0145) 2004; 89
Wolter, Johnston, Niemi (b0175) 2006; 32
Aghsaei, Mobarghaee Dinan, Moridi, Asadolahi, Delavar, Fohrer, Wagner (b0005) 2020; 712
Rodriguezgaliano, Chicaolmo, Abarcahernandez, Atkinson, Jeganathan (b0140) 2012; 121
Li, Sun, Fang (b0085) 2018; 174
Huang, Zhu, Siew (b0060) 2006; 70
Duro, Franklin, Dube (b0040) 2012; 118
Dwivedi, Rao (b0045) 1992; 13
Du, Bai, Tan, Xue, Samat, Xia, Li, Su, Liu (b0025) 2020; 4
Han, Chen, Feng (bib192) 2015; 156
Wu, Luo, Tang (b0180) 2019; 11
Jorgenson, Grosse (b0065) 2016; 27
Dube, Gumindoga, Chawira (b0035) 2014; 39
.
Zhao, Zhang, Fu, Zhang (b0190) 2012; 9
Sugiyama (b0150) 2015
Kutser, Metsamaa, Strömbeck, Vahtmäe (b0080) 2006; 67
Cai, Guan, Peng, Wang, Seifert, Wardlow, Li (b0015) 2018; 210
Khatami, Mountrakis, Stehman (b0075) 2016; 177
Lin, Yu, Cai, Sneeuw, Li (b0090) 2018; 10
Wang, Shi (b0160) 2008; 89
Dörnhöfer, Oppelt (bib191) 2016; 64
Duan, Bastiaanssen (b0030) 2013; 134
Zhang, Liu, Zhao, Wang, Shi, Xu, Yu, Wen, Zuo, Yi, Hu, Liu (b0185) 2018; 28
Tong, Pan, Xie, Xu, Li, Chen, Luo, Liu, Chen, Jin (b0155) 2016; 187
10.1016/j.jag.2021.102413_b0115
Cai (10.1016/j.jag.2021.102413_b0015) 2018; 210
Duro (10.1016/j.jag.2021.102413_b0040) 2012; 118
10.1016/j.jag.2021.102413_b0010
Jorgenson (10.1016/j.jag.2021.102413_b0065) 2016; 27
10.1016/j.jag.2021.102413_b0055
Stow (10.1016/j.jag.2021.102413_b0145) 2004; 89
Khatami (10.1016/j.jag.2021.102413_b0075) 2016; 177
Lin (10.1016/j.jag.2021.102413_b0090) 2018; 10
Sugiyama (10.1016/j.jag.2021.102413_b0150) 2015
Karan (10.1016/j.jag.2021.102413_b0070) 2016; 188
Aghsaei (10.1016/j.jag.2021.102413_b0005) 2020; 712
Dörnhöfer (10.1016/j.jag.2021.102413_bib191) 2016; 64
Luo (10.1016/j.jag.2021.102413_b0105) 2017; 10
Guo (10.1016/j.jag.2021.102413_b0050) 2008; 355
Kutser (10.1016/j.jag.2021.102413_b0080) 2006; 67
Wasige (10.1016/j.jag.2021.102413_b0165) 2013; 21
Rodriguezgaliano (10.1016/j.jag.2021.102413_b0140) 2012; 121
Dube (10.1016/j.jag.2021.102413_b0035) 2014; 39
Zhang (10.1016/j.jag.2021.102413_b0185) 2018; 28
Wang (10.1016/j.jag.2021.102413_b0160) 2008; 89
De Wit (10.1016/j.jag.2021.102413_b0020) 2006; 311
Duan (10.1016/j.jag.2021.102413_b0030) 2013; 134
McIver (10.1016/j.jag.2021.102413_b0110) 2002; 81
Qiu (10.1016/j.jag.2021.102413_b0130) 2015; 07
Du (10.1016/j.jag.2021.102413_b0025) 2020; 4
Tong (10.1016/j.jag.2021.102413_b0155) 2016; 187
Wolter (10.1016/j.jag.2021.102413_b0175) 2006; 32
Palmer (10.1016/j.jag.2021.102413_b0125) 2015; 157
Dwivedi (10.1016/j.jag.2021.102413_b0045) 1992; 13
Liu (10.1016/j.jag.2021.102413_b0100) 2014; 44
Wu (10.1016/j.jag.2021.102413_b0180) 2019; 11
Nsubuga (10.1016/j.jag.2021.102413_b0120) 2017; 127
Han (10.1016/j.jag.2021.102413_bib192) 2015; 156
Li (10.1016/j.jag.2021.102413_b0085) 2018; 174
Rao (10.1016/j.jag.2021.102413_b0135) 1972; vol. 1
Huang (10.1016/j.jag.2021.102413_b0060) 2006; 70
Zhao (10.1016/j.jag.2021.102413_b0190) 2012; 9
Were (10.1016/j.jag.2021.102413_b0170) 2013; 41
References_xml – volume: 32
  start-page: 607
  year: 2006
  end-page: 628
  ident: b0175
  article-title: Land use land cover change in the US Great Lakes basin 1992 to 2001
  publication-title: J. Great Lakes Res.
– reference: Huang, G. -B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: A new learning scheme of feedforward neural networks, in: Proceedings of IEEE International Conference on Neural Networks, pp. 985–990. https://doi.org/10.1109/IJCNN.2004.1380068.
– volume: 157
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0125
  article-title: Remote sensing of inland waters: Challenges, progress and future directions
  publication-title: Remote Sens. Environ.
– volume: vol. 1
  year: 1972
  ident: b0135
  article-title: Generalized inverse of a matrix and its applications, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
  publication-title: Theory of Statistics
– volume: 89
  start-page: 201
  year: 2008
  end-page: 202
  ident: b0160
  article-title: Satellite-observed algae blooms in China’s Lake Taihu
  publication-title: EOS Trans.
– volume: 118
  start-page: 259
  year: 2012
  end-page: 272
  ident: b0040
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
– volume: 134
  start-page: 403
  year: 2013
  end-page: 416
  ident: b0030
  article-title: Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data
  publication-title: Remote Sens. Environ.
– volume: 127
  start-page: 327
  year: 2017
  end-page: 337
  ident: b0120
  article-title: Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate
  publication-title: Theor. Appl. Climatol.
– volume: 210
  start-page: 35
  year: 2018
  end-page: 47
  ident: b0015
  article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach
  publication-title: Remote Sens. Environ.
– volume: 64
  start-page: 105
  year: 2016
  end-page: 122
  ident: bib191
  article-title: Remote sensing for lake research and monitoring - Recent advances
  publication-title: Ecol. Indic.
– volume: 89
  start-page: 281
  year: 2004
  end-page: 308
  ident: b0145
  article-title: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
  publication-title: Remote Sens. Environ.
– volume: 187
  start-page: 400
  year: 2016
  end-page: 413
  ident: b0155
  article-title: Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images
  publication-title: Remote Sens. Environ.
– volume: 39
  start-page: 89
  year: 2014
  end-page: 95
  ident: b0035
  article-title: Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques
  publication-title: African J. Aquat. Sci.
– volume: 355
  start-page: 106
  year: 2008
  end-page: 122
  ident: b0050
  article-title: Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin
  publication-title: China. J. Hydrol.
– volume: 156
  start-page: 426
  year: 2015
  end-page: 437
  ident: bib192
  article-title: Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013
  publication-title: Remote Sens. Environ.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0060
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– year: 2015
  ident: b0150
  article-title: Introduction to statistical machine learning
– volume: 10
  start-page: 139
  year: 2017
  end-page: 154
  ident: b0105
  article-title: VHR GeoEye-1 imagery reveals an ancient water landscape at the Longcheng site, northern Chaohu Lake Basin (China)
  publication-title: Int. J. Digit. Earth
– volume: 712
  year: 2020
  ident: b0005
  article-title: Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan
  publication-title: Iran. Sci. Total Environ.
– volume: 121
  start-page: 93
  year: 2012
  end-page: 107
  ident: b0140
  article-title: Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
  publication-title: Remote Sens. Environ.
– volume: 13
  start-page: 2051
  year: 1992
  end-page: 2058
  ident: b0045
  article-title: The selection of the best possible Landsat TM band combination for delineating salt-affected soils
  publication-title: Int. J. Remote Sens.
– volume: 27
  start-page: 324
  year: 2016
  end-page: 338
  ident: b0065
  article-title: Remote sensing of landscape change in permafrost regions
  publication-title: Permafr. Periglac. Process.
– volume: 188
  start-page: 486
  year: 2016
  ident: b0070
  article-title: Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas
  publication-title: Environ. Monit. Assess.
– volume: 4
  year: 2020
  ident: b0025
  article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review
  publication-title: J. Geovisualization Spat. Anal.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0090
  article-title: Spatio-temporal analysis ofwetland changes using a kernel extreme learning machine approach
  publication-title: Remote Sens.
– volume: 07
  start-page: 830
  year: 2015
  end-page: 842
  ident: b0130
  article-title: Water pollution and environmental governance of the Tai and Chao Lake Basins in China in an international perspective
  publication-title: J. Water Resour. Prot.
– volume: 44
  start-page: 339
  year: 2014
  end-page: 348
  ident: b0100
  article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - A case study of Guiyang
  publication-title: Habitat Int.
– volume: 174
  start-page: 63
  year: 2018
  end-page: 77
  ident: b0085
  article-title: The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis
  publication-title: Landsc. Urban Plan.
– volume: 311
  start-page: 1917
  year: 2006
  end-page: 1921
  ident: b0020
  article-title: Changes in surface water supply across Africa with predicted climate change
  publication-title: Science (80-.)
– volume: 11
  year: 2019
  ident: b0180
  article-title: Coupling relationship between urban expansion and lake change-A case study of Wuhan
  publication-title: Water (Switzerland)
– reference: .
– volume: 81
  start-page: 253
  year: 2002
  end-page: 261
  ident: b0110
  article-title: Using prior probabilities in decision-tree classification of remotely sensed data
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 32
  year: 2013
  end-page: 42
  ident: b0165
  article-title: Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: MEEPPC, 2002. Environmental Quality Standards for Surface Water. URL
– volume: 177
  start-page: 89
  year: 2016
  end-page: 100
  ident: b0075
  article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 3843
  year: 2012
  end-page: 3865
  ident: b0190
  article-title: Examining land-use/land-cover change in the lake dianchi watershed of the Yunnan-Guizhou plateau of Southwest China with remote sensing and GIS techniques: 1974–2008
  publication-title: Int. J. Environ. Res. Public Health
– reference: Anderson, J.R., 1976. A land use and land cover classification system for use with remote sensor data. US Government Printing Office.
– volume: 28
  start-page: 727
  year: 2018
  end-page: 743
  ident: b0185
  article-title: Urban expansion in China Based on remote sensing technology: A review
  publication-title: Chinese Geogr. Sci.
– volume: 67
  start-page: 303
  year: 2006
  end-page: 312
  ident: b0080
  article-title: Monitoring cyanobacterial blooms by satellite remote sensing
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 41
  start-page: 75
  year: 2013
  end-page: 86
  ident: b0170
  article-title: Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin
  publication-title: Kenya. Appl. Geogr.
– volume: 712
  year: 2020
  ident: 10.1016/j.jag.2021.102413_b0005
  article-title: Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan
  publication-title: Iran. Sci. Total Environ.
– ident: 10.1016/j.jag.2021.102413_b0010
  doi: 10.3133/pp964
– volume: 311
  start-page: 1917
  year: 2006
  ident: 10.1016/j.jag.2021.102413_b0020
  article-title: Changes in surface water supply across Africa with predicted climate change
  publication-title: Science (80-.)
  doi: 10.1126/science.1119929
– ident: 10.1016/j.jag.2021.102413_b0055
  doi: 10.1109/IJCNN.2004.1380068
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.jag.2021.102413_b0090
  article-title: Spatio-temporal analysis ofwetland changes using a kernel extreme learning machine approach
  publication-title: Remote Sens.
  doi: 10.3390/rs10071129
– volume: 81
  start-page: 253
  year: 2002
  ident: 10.1016/j.jag.2021.102413_b0110
  article-title: Using prior probabilities in decision-tree classification of remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00003-2
– year: 2015
  ident: 10.1016/j.jag.2021.102413_b0150
– volume: 9
  start-page: 3843
  year: 2012
  ident: 10.1016/j.jag.2021.102413_b0190
  article-title: Examining land-use/land-cover change in the lake dianchi watershed of the Yunnan-Guizhou plateau of Southwest China with remote sensing and GIS techniques: 1974–2008
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph9113843
– volume: 210
  start-page: 35
  year: 2018
  ident: 10.1016/j.jag.2021.102413_b0015
  article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.045
– volume: 10
  start-page: 139
  year: 2017
  ident: 10.1016/j.jag.2021.102413_b0105
  article-title: VHR GeoEye-1 imagery reveals an ancient water landscape at the Longcheng site, northern Chaohu Lake Basin (China)
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2016.1214983
– volume: 118
  start-page: 259
  year: 2012
  ident: 10.1016/j.jag.2021.102413_b0040
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 127
  start-page: 327
  year: 2017
  ident: 10.1016/j.jag.2021.102413_b0120
  article-title: Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-015-1637-1
– volume: 07
  start-page: 830
  year: 2015
  ident: 10.1016/j.jag.2021.102413_b0130
  article-title: Water pollution and environmental governance of the Tai and Chao Lake Basins in China in an international perspective
  publication-title: J. Water Resour. Prot.
  doi: 10.4236/jwarp.2015.710067
– ident: 10.1016/j.jag.2021.102413_b0115
– volume: 28
  start-page: 727
  year: 2018
  ident: 10.1016/j.jag.2021.102413_b0185
  article-title: Urban expansion in China Based on remote sensing technology: A review
  publication-title: Chinese Geogr. Sci.
  doi: 10.1007/s11769-018-0988-9
– volume: 41
  start-page: 75
  year: 2013
  ident: 10.1016/j.jag.2021.102413_b0170
  article-title: Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin
  publication-title: Kenya. Appl. Geogr.
  doi: 10.1016/j.apgeog.2013.03.017
– volume: 157
  start-page: 1
  year: 2015
  ident: 10.1016/j.jag.2021.102413_b0125
  article-title: Remote sensing of inland waters: Challenges, progress and future directions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.09.021
– volume: 64
  start-page: 105
  year: 2016
  ident: 10.1016/j.jag.2021.102413_bib191
  article-title: Remote sensing for lake research and monitoring - Recent advances
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.12.009
– volume: 27
  start-page: 324
  year: 2016
  ident: 10.1016/j.jag.2021.102413_b0065
  article-title: Remote sensing of landscape change in permafrost regions
  publication-title: Permafr. Periglac. Process.
  doi: 10.1002/ppp.1914
– volume: 89
  start-page: 281
  year: 2004
  ident: 10.1016/j.jag.2021.102413_b0145
  article-title: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.10.018
– volume: 13
  start-page: 2051
  year: 1992
  ident: 10.1016/j.jag.2021.102413_b0045
  article-title: The selection of the best possible Landsat TM band combination for delineating salt-affected soils
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904252
– volume: 89
  start-page: 201
  issue: 22
  year: 2008
  ident: 10.1016/j.jag.2021.102413_b0160
  article-title: Satellite-observed algae blooms in China’s Lake Taihu
  publication-title: EOS Trans.
  doi: 10.1029/2008EO220001
– volume: 21
  start-page: 32
  year: 2013
  ident: 10.1016/j.jag.2021.102413_b0165
  article-title: Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 39
  start-page: 89
  year: 2014
  ident: 10.1016/j.jag.2021.102413_b0035
  article-title: Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques
  publication-title: African J. Aquat. Sci.
  doi: 10.2989/16085914.2013.870068
– volume: 11
  year: 2019
  ident: 10.1016/j.jag.2021.102413_b0180
  article-title: Coupling relationship between urban expansion and lake change-A case study of Wuhan
  publication-title: Water (Switzerland)
– volume: vol. 1
  year: 1972
  ident: 10.1016/j.jag.2021.102413_b0135
  article-title: Generalized inverse of a matrix and its applications, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
  publication-title: Theory of Statistics
  doi: 10.1525/9780520325883-032
– volume: 355
  start-page: 106
  year: 2008
  ident: 10.1016/j.jag.2021.102413_b0050
  article-title: Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin
  publication-title: China. J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.03.020
– volume: 156
  start-page: 426
  year: 2015
  ident: 10.1016/j.jag.2021.102413_bib192
  article-title: Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.003
– volume: 4
  year: 2020
  ident: 10.1016/j.jag.2021.102413_b0025
  article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review
  publication-title: J. Geovisualization Spat. Anal.
– volume: 67
  start-page: 303
  year: 2006
  ident: 10.1016/j.jag.2021.102413_b0080
  article-title: Monitoring cyanobacterial blooms by satellite remote sensing
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2005.11.024
– volume: 44
  start-page: 339
  year: 2014
  ident: 10.1016/j.jag.2021.102413_b0100
  article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - A case study of Guiyang
  publication-title: Habitat Int.
  doi: 10.1016/j.habitatint.2014.07.009
– volume: 177
  start-page: 89
  year: 2016
  ident: 10.1016/j.jag.2021.102413_b0075
  article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.028
– volume: 121
  start-page: 93
  year: 2012
  ident: 10.1016/j.jag.2021.102413_b0140
  article-title: Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.003
– volume: 188
  start-page: 486
  year: 2016
  ident: 10.1016/j.jag.2021.102413_b0070
  article-title: Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5494-x
– volume: 134
  start-page: 403
  year: 2013
  ident: 10.1016/j.jag.2021.102413_b0030
  article-title: Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.010
– volume: 187
  start-page: 400
  year: 2016
  ident: 10.1016/j.jag.2021.102413_b0155
  article-title: Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.012
– volume: 32
  start-page: 607
  year: 2006
  ident: 10.1016/j.jag.2021.102413_b0175
  article-title: Land use land cover change in the US Great Lakes basin 1992 to 2001
  publication-title: J. Great Lakes Res.
  doi: 10.3394/0380-1330(2006)32[607:LULCCI]2.0.CO;2
– volume: 174
  start-page: 63
  year: 2018
  ident: 10.1016/j.jag.2021.102413_b0085
  article-title: The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2018.03.004
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.jag.2021.102413_b0060
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
SSID ssj0017768
Score 2.3772252
Snippet •K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake...
Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious...
SourceID doaj
unpaywall
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102413
SubjectTerms agricultural land
algal blooms
algorithms
basins
Change monitor
China
economic development
ecosystems
environmental assessment
environmental impact
Flood detection
forest land
humans
Image classification
issues and policy
lakes
land cover
land use
Land use spatial pattern
Landsat
occupations
pollution
river deltas
rivers
spatial data
The Chao Lake Basin
watersheds
Yangtze River
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdGdwAOCAYT5SUjcQJFTWInto8j2lSg7AKVdrM-J3bX0SVVH5r47_mcOKW9DIljLDux_b1-jr8HIR8MgniIcxXJtBQRMkUZSchklHOnVMZSyNsEpt8v8_GUf73Kro5I0cfCeLfKoPs7nd5q69AyCrs5Ws7nox_InogGGE-TNgKUPSDHaH-kHJDjsy_fxpe7ywQhuoi4zE-Js7S_3GzdvG5ghqfENPE5DHjCDsxTm8X_wErtodCH23oJv-9gsdgzSBdPyZOAJOlZN9ln5MjWJ-TxXn7BE3J6_jeMDbsGOV4_J3eTpp5FXivTlUViWbr2juz1jN62Mu6H06amk2lRUFj50ku0uIbmeksn8MtS__eWIiCnIe-qpy5tHPWBIQvqneFvKeAY593i6drb3JWvhvSCTC_OfxbjKJRgiEpEKpvIMZPEkqdWAgiEDsBLF7tcGMOtMCyuUGPYXFgUe8eqxMaVMrnLJNgULCjGTsmgbmr7ktCkqvAsWhnLneNgMqVspTJbolLIY6nMkMT9zusy5Cf3ZTIWundEu9FILO2JpTtiDcnH3ZBll5zjvs6fPTl3HX1e7bahWc10YCwtTcxUqSziQECzLVTFARdVSSMTkQMfEt4zgz5gU3zV_L5vv-8ZR6P4-jsZqG2zXesUsUHKuMjw1Z92HPXv1bz6v4m8Jo_8U-eN-IYMNqutfYuoamPeBan5A_JGHlY
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA48ChULAJkJE6gVHk4jn0sq1YVWioOrLScrHFib2m3SbXZqKK_vjN5LLsIFbhGY1u25_E5Hn_D2HuLIB5CqQMV51mASpEHClIVSOG1TpMYZEtg-uVMns7E53k678mi6S3Mzv19m4d1AQs8xsURkQwIqk-7J1OE3SO2Nzv7evS95UOlsURbjCxSGVp4LOfDDeaf-tiJQS1V_04o2oKaD5vyGn7ewHK5FXVOnnT5WnVLVkjJJpeHzdoe5re_UTn-04Sessc99uRHnbI8Yw9cuc8ebTES7rOD418P31C0t_z6ObuZVuUiID_OVw631_GaUt_LBb9qvQI151XJp7PJhMOKijXxyTlU5w2fwqXj9L-XI4TnPVMr6QOvPKenJEtO6fNXHLCNp0R6XlOUXlH9pBdsdnL8bXIa9EUbghyxzTrwiY1CJWKnADIEGyByH3qZWStcZpOwQB_jZObQUfikiFxYaCt9qsDF4EAnyQEblVXpXjIeFQWeXgvrhPcCbKq1K3TqcnQjMlTajlk4bKPJe0ZzKqyxNEPq2oXBxTa02KZb7DH7sGly3dF53Cf8iXRjI0hM3O0H3E_TG7ZRNkx0rh0iR8BAn-lCAE6qUFZFmQQxZmLQLNODmg6sYFc_7hv73aCFBg2ebnGgdFVTmxjRRJyILMWuP27U8--zefVf0q_ZaL1q3BtEXGv7tre1O8RIJRo
  priority: 102
  providerName: Unpaywall
Title Long-term remote sensing monitoring on LUCC around Chaohu Lake with new information of algal bloom and flood submerging
URI https://dx.doi.org/10.1016/j.jag.2021.102413
https://www.proquest.com/docview/2718234754
https://doi.org/10.1016/j.jag.2021.102413
https://doaj.org/article/8b039c9e560a47179d4ae0dd8b8176a4
UnpaywallVersion publishedVersion
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: ACRLP
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: AIKHN
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBIWKpVAZiRMoIomd2D4uq1YLLKsKsVI5WePE3lK2SbUPVf33zOSxbC_thVOUyHbszIznczz-hrH3DkE8xLmJdFqoCJWiiDRkOsplMCYTKeQNgen3aT6eya9n2dlOqi-KCWvpgdsP90m7WJjCePTMgBOpMqUEH5eldjpROTRMoLE2_WKq2z9Qqj0El1EvpEj7_cwmsusC5rgwTBOiLZCJuOWRGuL-W45pB3g-2lRXcHMNi8WODzp5xp524JEP204_Zw98tc-e7FAK7rOD438n17BoZ7qrF-x6UlfziCZivvQoH89XFLtezfllY9ZUndcVn8xGIw5LyrbER-dQn2_4BP54Tj9sOWJw3lGtkkB5HTidBVlwin-_5IB1AkXC8xW52SUlQHrJZifHP0fjqMu6EBUITtZREC6JtUy9BlCIFkAWIQ65ck565URc4iThc-XR0oMoE5SFcXnINPgUPBghDtheVVf-FeNJWeLys3RehiDBZcb40mS-wHkgR5m5AYv7L2-LjpKcMmMsbB97dmFRWJaEZVthDdiHbZWrlo_jrsKfSZzbgkSl3TxABbOdgtn7FGzAZK8MtkMlLdrApn7f9e53veJYtFjahoHK15uVTREOpEKqDJv-uNWo-0fz-n-M5pA9pibbcMQ3bG-93Pi3CKvW7og9HI5-TE7p-uXbeHrUWBTezaanw19_AeCcIgw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGdhgcEAwmyvgwEidQ1CR24vg4ok0dy3phlXaznhOn6-iSKm017b_nOXFKexkS18R2bL-vn-P3QchXjSAe_Fh6SZgLD5ki9xKIEi_mpZQRCyFuE5hejePRhP-8iW72SNrHwli3Sqf7O53eamv3ZOh2c7iYzYa_kD0RDTAeBm0EKHtGDnjEBErnwenF5Wi8uUwQoouIi-yUOAv7y83WzesOpnhKDAObw4AHbMc8tVn8d6zUFgo9XFcLeHyA-XzLIJ2_Ii8dkqSn3WRfkz1THZEXW_kFj8jx2d8wNmzq5Hj5hjxkdTX1rFamjUFiGbq0juzVlN63Mm6707qi2SRNKTS29BJNb6G-XdMMfhtq_95SBOTU5V211KV1SW1gyJxaZ_h7CtintG7xdGltbmOrIb0lk_Oz63TkuRIMXo5IZeWVTAd-wkOTAAiEDsDz0i9joTU3QjO_QI1hYmFQ7EtWBMYvpI7LKAETggHJ2DHZr-rKvCM0KAo8ixba8LLkoCMpTSEjk6NSiP1E6gHx-51XuctPbstkzFXviHankFjKEkt1xBqQb5suiy45x1ONf1hybhravNrtg7qZKsdYKtE-k7k0iAMBzbaQBQdcVJHoJBAx8AHhPTOoHTbFoWZPfftLzzgKxdfeyUBl6vVShYgNQsZFhEN_33DUv1fz_v8m8pkcjq6vMpVdjC9PyHP7pvNM_ED2V83afESEtdKfnAT9AWESITc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA48ChULAJkJE6gVHk4jn0sq1YVWioOrLScrHFib2m3SbXZqKK_vjN5LLsIFbhGY1u25_E5Hn_D2HuLIB5CqQMV51mASpEHClIVSOG1TpMYZEtg-uVMns7E53k678mi6S3Mzv19m4d1AQs8xsURkQwIqk-7J1OE3SO2Nzv7evS95UOlsURbjCxSGVp4LOfDDeaf-tiJQS1V_04o2oKaD5vyGn7ewHK5FXVOnnT5WnVLVkjJJpeHzdoe5re_UTn-04Sessc99uRHnbI8Yw9cuc8ebTES7rOD418P31C0t_z6ObuZVuUiID_OVw631_GaUt_LBb9qvQI151XJp7PJhMOKijXxyTlU5w2fwqXj9L-XI4TnPVMr6QOvPKenJEtO6fNXHLCNp0R6XlOUXlH9pBdsdnL8bXIa9EUbghyxzTrwiY1CJWKnADIEGyByH3qZWStcZpOwQB_jZObQUfikiFxYaCt9qsDF4EAnyQEblVXpXjIeFQWeXgvrhPcCbKq1K3TqcnQjMlTajlk4bKPJe0ZzKqyxNEPq2oXBxTa02KZb7DH7sGly3dF53Cf8iXRjI0hM3O0H3E_TG7ZRNkx0rh0iR8BAn-lCAE6qUFZFmQQxZmLQLNODmg6sYFc_7hv73aCFBg2ebnGgdFVTmxjRRJyILMWuP27U8--zefVf0q_ZaL1q3BtEXGv7tre1O8RIJRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+remote+sensing+monitoring+on+LUCC+around+Chaohu+Lake+with+new+information+of+algal+bloom+and+flood+submerging&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Yi+Lin&rft.au=Tinghui+Zhang&rft.au=Qin+Ye&rft.au=Jianqing+Cai&rft.date=2021-10-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=102&rft.spage=102413&rft_id=info:doi/10.1016%2Fj.jag.2021.102413&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8b039c9e560a47179d4ae0dd8b8176a4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon