Long-term remote sensing monitoring on LUCC around Chaohu Lake with new information of algal bloom and flood submerging
•K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake Basin.•Frequent land cover changes have relationship with lake algae bloom pollution.•Farmland and village buildings suffered most in the flood in...
Saved in:
| Published in | International journal of applied earth observation and geoinformation Vol. 102; p. 102413 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2021
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1569-8432 1872-826X 1872-826X |
| DOI | 10.1016/j.jag.2021.102413 |
Cover
| Abstract | •K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake Basin.•Frequent land cover changes have relationship with lake algae bloom pollution.•Farmland and village buildings suffered most in the flood in July 2020.
Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious development of human activity and natural conditions along watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken as research subject for its serious environmental degradation problems during social and economic development. This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Conclusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest land and construction land out of six key land cover types with dynamic degree of −10.17%, 4.61, 67.04% respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The results prove effective application of remote sensing technology in environmental analysis and planning for data-driven evaluation of governing policy. This work serves as a scientific basis for environmental management and regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological policy and its impact for other economic developing watershed human settlements with ecological issues. |
|---|---|
| AbstractList | Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious development of human activity and natural conditions along watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken as research subject for its serious environmental degradation problems during social and economic development. This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Conclusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest land and construction land out of six key land cover types with dynamic degree of −10.17%, 4.61, 67.04% respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The results prove effective application of remote sensing technology in environmental analysis and planning for data-driven evaluation of governing policy. This work serves as a scientific basis for environmental management and regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological policy and its impact for other economic developing watershed human settlements with ecological issues. •K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake Basin.•Frequent land cover changes have relationship with lake algae bloom pollution.•Farmland and village buildings suffered most in the flood in July 2020. Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious development of human activity and natural conditions along watershed areas needs close attention and in-depth study. In this paper, the urban agglomerations and ecological spaces in the Yangtze River Delta, China, the Chao Lake Basin and its surrounding watershed ecosystem is taken as research subject for its serious environmental degradation problems during social and economic development. This paper adopted an effective machine learning algorithm (kernel-ELM) to extract land use and land /cover information, and to analyze the land use/cover pattern evolution rules of the Chao Lake Basin with long term Landsat imagery. Subsequent studies were then carried out to demonstrate the flood-affected area and its ecological impact in the basin in 2020, to reveal the occupation on land cover types. The results indicate Conclusions are drawn from the experiment results: (1) There has been significant change in cultivated land, forest land and construction land out of six key land cover types with dynamic degree of −10.17%, 4.61, 67.04% respectively. (2) Algae bloom pollution was extracted from pattern classification results and it was up to 15% of the total water area by the year 2018. (3) The occupation on land use/cover types of the flood was revealed. The results prove effective application of remote sensing technology in environmental analysis and planning for data-driven evaluation of governing policy. This work serves as a scientific basis for environmental management and regional planning in the Chao Lake Basin and can be served as a basis and a reference for evaluating an ecological policy and its impact for other economic developing watershed human settlements with ecological issues. |
| ArticleNumber | 102413 |
| Author | Wu, Chengzhao Khirni Syed, Awase Ye, Qin Lin, Yi Zhang, Tinghui Li, Jonathan Cai, Jianqing |
| Author_xml | – sequence: 1 givenname: Yi surname: Lin fullname: Lin, Yi email: linyi@tongji.edu.cn organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China – sequence: 2 givenname: Tinghui surname: Zhang fullname: Zhang, Tinghui email: zhang_th@tongji.edu.cn organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China – sequence: 3 givenname: Qin surname: Ye fullname: Ye, Qin email: yeqin@tongji.edu.cn organization: College of Surveying and Geo-informatics, Tongji University, Shanghai 200092, China – sequence: 4 givenname: Jianqing surname: Cai fullname: Cai, Jianqing email: cai@gis.uni-stuttgart.de organization: Institute of Geodesy, University of Stuttgart, Stuttgart 70174, Germany – sequence: 5 givenname: Chengzhao surname: Wu fullname: Wu, Chengzhao email: wuchzhao@qq.com organization: College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China – sequence: 6 givenname: Awase surname: Khirni Syed fullname: Khirni Syed, Awase email: awase008@gmail.com organization: Department of Geography and Environmental Management, University of Waterloo, Canada – sequence: 7 givenname: Jonathan surname: Li fullname: Li, Jonathan email: junli@uwaterloo.ca organization: Department of Geography and Environmental Management, University of Waterloo, Canada |
| BookMark | eNqNkcFu1DAQhiNUJNrCA3DzkUsW28nGjjihFZRKkbhQiZs1ccZZh8RebIdV3x5vgzhwqDj592i-7zD_TXHlvMOieMvojlHWvJ92E4w7TjnLf16z6kVxzaTgpeTN96uc901byrrir4qbGCdKmRCNvC7OnXdjmTAsJODiE5KILlo3ksU7m3y4RO9I93A4EAh-dQM5HMEfV9LBDyRnm47E4ZlYZ3xYINm87A2BeYSZ9LP3C4HMmJwGEtd-wTBm5-vipYE54ps_723x8PnTt8OXsvt6d3_42JW6rtpUmqpnVNYcJYBoKYNaG2oa0fc1ir6iAxUUG4FCClMNDOnQ9o3ZS0AOCG1V3Rb3m3fwMKlTsAuER-XBqqeBD6OCkKyeUcmeVq1ucd9QqAUT7VBDFg6yl0w0UGcX31yrO8HjGeb5r5BRdalBTSrXoC41qK2GDL3boFPwP1eMSS02apxncOjXqLhgkle12F_8bFvVwccY0PyXXvzDaJueWkgB7Pws-WEjMZ__l8WgorboNA42oE75PvYZ-jfP4sLp |
| CitedBy_id | crossref_primary_10_1016_j_clet_2021_100309 crossref_primary_10_3389_fenvs_2022_838883 crossref_primary_10_18307_2024_0127 |
| Cites_doi | 10.3133/pp964 10.1126/science.1119929 10.1109/IJCNN.2004.1380068 10.3390/rs10071129 10.1016/S0034-4257(02)00003-2 10.3390/ijerph9113843 10.1016/j.rse.2018.02.045 10.1080/17538947.2016.1214983 10.1016/j.rse.2011.11.020 10.1007/s00704-015-1637-1 10.4236/jwarp.2015.710067 10.1007/s11769-018-0988-9 10.1016/j.apgeog.2013.03.017 10.1016/j.rse.2014.09.021 10.1016/j.ecolind.2015.12.009 10.1002/ppp.1914 10.1016/j.rse.2003.10.018 10.1080/01431169208904252 10.1029/2008EO220001 10.2989/16085914.2013.870068 10.1525/9780520325883-032 10.1016/j.jhydrol.2008.03.020 10.1016/j.rse.2014.10.003 10.1016/j.ecss.2005.11.024 10.1016/j.habitatint.2014.07.009 10.1016/j.rse.2016.02.028 10.1016/j.rse.2011.12.003 10.1007/s10661-016-5494-x 10.1016/j.rse.2013.03.010 10.1016/j.rse.2016.10.012 10.3394/0380-1330(2006)32[607:LULCCI]2.0.CO;2 10.1016/j.landurbplan.2018.03.004 10.1016/j.neucom.2005.12.126 |
| ContentType | Journal Article |
| Copyright | 2021 The Author(s) |
| Copyright_xml | – notice: 2021 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1016/j.jag.2021.102413 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journal Directory |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-826X |
| ExternalDocumentID | oai_doaj_org_article_8b039c9e560a47179d4ae0dd8b8176a4 10.1016/j.jag.2021.102413 10_1016_j_jag_2021_102413 S0303243421001203 |
| GeographicLocations | China Yangtze River |
| GeographicLocations_xml | – name: Yangtze River – name: China |
| GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ADNMO ADVLN AEIPS AFJKZ AGQPQ AIIUN AITUG ANKPU APXCP CITATION EFJIC EFKBS 7S9 L.6 ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c439t-f3b10842e8aa7901a4cf0f67bb4e7b30d070e67e787f3d1e0d9b6f58ae2aea933 |
| IEDL.DBID | DOA |
| ISSN | 1569-8432 1872-826X |
| IngestDate | Fri Oct 03 12:50:42 EDT 2025 Tue Aug 19 20:52:55 EDT 2025 Sat Sep 27 18:02:11 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Thu Oct 09 00:32:00 EDT 2025 Fri Feb 23 02:40:00 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Flood detection The Chao Lake Basin Land use spatial pattern Change monitor Image classification |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-f3b10842e8aa7901a4cf0f67bb4e7b30d070e67e787f3d1e0d9b6f58ae2aea933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8b039c9e560a47179d4ae0dd8b8176a4 |
| PQID | 2718234754 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8b039c9e560a47179d4ae0dd8b8176a4 unpaywall_primary_10_1016_j_jag_2021_102413 proquest_miscellaneous_2718234754 crossref_primary_10_1016_j_jag_2021_102413 crossref_citationtrail_10_1016_j_jag_2021_102413 elsevier_sciencedirect_doi_10_1016_j_jag_2021_102413 |
| PublicationCentury | 2000 |
| PublicationDate | October 2021 2021-10-00 20211001 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of applied earth observation and geoinformation |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | De Wit, Stankiewicz (b0020) 2006; 311 MEEPPC, 2002. Environmental Quality Standards for Surface Water. URL Were, Dick, Singh (b0170) 2013; 41 Luo, Wang, Liu, Guo, Zong, Ji, Cao (b0105) 2017; 10 Liu, Huang, Yang, Zhong (b0100) 2014; 44 Rao, Mitra (b0135) 1972; vol. 1 Nsubuga, Botai, Olwoch, Rautenbach, Kalumba, Tsela, Adeola, Sentongo, Mearns (b0120) 2017; 127 Wasige, Groen, Smaling, Jetten (b0165) 2013; 21 Karan, Samadder (b0070) 2016; 188 Guo, Hu, Jiang (b0050) 2008; 355 Qiu, Dijk, Wang (b0130) 2015; 07 Palmer, Kutser, Hunter (b0125) 2015; 157 Anderson, J.R., 1976. A land use and land cover classification system for use with remote sensor data. US Government Printing Office. Huang, G. -B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: A new learning scheme of feedforward neural networks, in: Proceedings of IEEE International Conference on Neural Networks, pp. 985–990. https://doi.org/10.1109/IJCNN.2004.1380068. McIver, Friedl (b0110) 2002; 81 Stow, Hope, McGuire, Verbyla, Gamon, Huemmrich, Houston, Racine, Sturm, Tape (b0145) 2004; 89 Wolter, Johnston, Niemi (b0175) 2006; 32 Aghsaei, Mobarghaee Dinan, Moridi, Asadolahi, Delavar, Fohrer, Wagner (b0005) 2020; 712 Rodriguezgaliano, Chicaolmo, Abarcahernandez, Atkinson, Jeganathan (b0140) 2012; 121 Li, Sun, Fang (b0085) 2018; 174 Huang, Zhu, Siew (b0060) 2006; 70 Duro, Franklin, Dube (b0040) 2012; 118 Dwivedi, Rao (b0045) 1992; 13 Du, Bai, Tan, Xue, Samat, Xia, Li, Su, Liu (b0025) 2020; 4 Han, Chen, Feng (bib192) 2015; 156 Wu, Luo, Tang (b0180) 2019; 11 Jorgenson, Grosse (b0065) 2016; 27 Dube, Gumindoga, Chawira (b0035) 2014; 39 . Zhao, Zhang, Fu, Zhang (b0190) 2012; 9 Sugiyama (b0150) 2015 Kutser, Metsamaa, Strömbeck, Vahtmäe (b0080) 2006; 67 Cai, Guan, Peng, Wang, Seifert, Wardlow, Li (b0015) 2018; 210 Khatami, Mountrakis, Stehman (b0075) 2016; 177 Lin, Yu, Cai, Sneeuw, Li (b0090) 2018; 10 Wang, Shi (b0160) 2008; 89 Dörnhöfer, Oppelt (bib191) 2016; 64 Duan, Bastiaanssen (b0030) 2013; 134 Zhang, Liu, Zhao, Wang, Shi, Xu, Yu, Wen, Zuo, Yi, Hu, Liu (b0185) 2018; 28 Tong, Pan, Xie, Xu, Li, Chen, Luo, Liu, Chen, Jin (b0155) 2016; 187 10.1016/j.jag.2021.102413_b0115 Cai (10.1016/j.jag.2021.102413_b0015) 2018; 210 Duro (10.1016/j.jag.2021.102413_b0040) 2012; 118 10.1016/j.jag.2021.102413_b0010 Jorgenson (10.1016/j.jag.2021.102413_b0065) 2016; 27 10.1016/j.jag.2021.102413_b0055 Stow (10.1016/j.jag.2021.102413_b0145) 2004; 89 Khatami (10.1016/j.jag.2021.102413_b0075) 2016; 177 Lin (10.1016/j.jag.2021.102413_b0090) 2018; 10 Sugiyama (10.1016/j.jag.2021.102413_b0150) 2015 Karan (10.1016/j.jag.2021.102413_b0070) 2016; 188 Aghsaei (10.1016/j.jag.2021.102413_b0005) 2020; 712 Dörnhöfer (10.1016/j.jag.2021.102413_bib191) 2016; 64 Luo (10.1016/j.jag.2021.102413_b0105) 2017; 10 Guo (10.1016/j.jag.2021.102413_b0050) 2008; 355 Kutser (10.1016/j.jag.2021.102413_b0080) 2006; 67 Wasige (10.1016/j.jag.2021.102413_b0165) 2013; 21 Rodriguezgaliano (10.1016/j.jag.2021.102413_b0140) 2012; 121 Dube (10.1016/j.jag.2021.102413_b0035) 2014; 39 Zhang (10.1016/j.jag.2021.102413_b0185) 2018; 28 Wang (10.1016/j.jag.2021.102413_b0160) 2008; 89 De Wit (10.1016/j.jag.2021.102413_b0020) 2006; 311 Duan (10.1016/j.jag.2021.102413_b0030) 2013; 134 McIver (10.1016/j.jag.2021.102413_b0110) 2002; 81 Qiu (10.1016/j.jag.2021.102413_b0130) 2015; 07 Du (10.1016/j.jag.2021.102413_b0025) 2020; 4 Tong (10.1016/j.jag.2021.102413_b0155) 2016; 187 Wolter (10.1016/j.jag.2021.102413_b0175) 2006; 32 Palmer (10.1016/j.jag.2021.102413_b0125) 2015; 157 Dwivedi (10.1016/j.jag.2021.102413_b0045) 1992; 13 Liu (10.1016/j.jag.2021.102413_b0100) 2014; 44 Wu (10.1016/j.jag.2021.102413_b0180) 2019; 11 Nsubuga (10.1016/j.jag.2021.102413_b0120) 2017; 127 Han (10.1016/j.jag.2021.102413_bib192) 2015; 156 Li (10.1016/j.jag.2021.102413_b0085) 2018; 174 Rao (10.1016/j.jag.2021.102413_b0135) 1972; vol. 1 Huang (10.1016/j.jag.2021.102413_b0060) 2006; 70 Zhao (10.1016/j.jag.2021.102413_b0190) 2012; 9 Were (10.1016/j.jag.2021.102413_b0170) 2013; 41 |
| References_xml | – volume: 32 start-page: 607 year: 2006 end-page: 628 ident: b0175 article-title: Land use land cover change in the US Great Lakes basin 1992 to 2001 publication-title: J. Great Lakes Res. – reference: Huang, G. -B., Zhu, Q.-Y., Siew, C.-K., 2004. Extreme learning machine: A new learning scheme of feedforward neural networks, in: Proceedings of IEEE International Conference on Neural Networks, pp. 985–990. https://doi.org/10.1109/IJCNN.2004.1380068. – volume: 157 start-page: 1 year: 2015 end-page: 8 ident: b0125 article-title: Remote sensing of inland waters: Challenges, progress and future directions publication-title: Remote Sens. Environ. – volume: vol. 1 year: 1972 ident: b0135 article-title: Generalized inverse of a matrix and its applications, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability publication-title: Theory of Statistics – volume: 89 start-page: 201 year: 2008 end-page: 202 ident: b0160 article-title: Satellite-observed algae blooms in China’s Lake Taihu publication-title: EOS Trans. – volume: 118 start-page: 259 year: 2012 end-page: 272 ident: b0040 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. – volume: 134 start-page: 403 year: 2013 end-page: 416 ident: b0030 article-title: Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data publication-title: Remote Sens. Environ. – volume: 127 start-page: 327 year: 2017 end-page: 337 ident: b0120 article-title: Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate publication-title: Theor. Appl. Climatol. – volume: 210 start-page: 35 year: 2018 end-page: 47 ident: b0015 article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach publication-title: Remote Sens. Environ. – volume: 64 start-page: 105 year: 2016 end-page: 122 ident: bib191 article-title: Remote sensing for lake research and monitoring - Recent advances publication-title: Ecol. Indic. – volume: 89 start-page: 281 year: 2004 end-page: 308 ident: b0145 article-title: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems publication-title: Remote Sens. Environ. – volume: 187 start-page: 400 year: 2016 end-page: 413 ident: b0155 article-title: Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images publication-title: Remote Sens. Environ. – volume: 39 start-page: 89 year: 2014 end-page: 95 ident: b0035 article-title: Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques publication-title: African J. Aquat. Sci. – volume: 355 start-page: 106 year: 2008 end-page: 122 ident: b0050 article-title: Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin publication-title: China. J. Hydrol. – volume: 156 start-page: 426 year: 2015 end-page: 437 ident: bib192 article-title: Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013 publication-title: Remote Sens. Environ. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0060 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – year: 2015 ident: b0150 article-title: Introduction to statistical machine learning – volume: 10 start-page: 139 year: 2017 end-page: 154 ident: b0105 article-title: VHR GeoEye-1 imagery reveals an ancient water landscape at the Longcheng site, northern Chaohu Lake Basin (China) publication-title: Int. J. Digit. Earth – volume: 712 year: 2020 ident: b0005 article-title: Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan publication-title: Iran. Sci. Total Environ. – volume: 121 start-page: 93 year: 2012 end-page: 107 ident: b0140 article-title: Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture publication-title: Remote Sens. Environ. – volume: 13 start-page: 2051 year: 1992 end-page: 2058 ident: b0045 article-title: The selection of the best possible Landsat TM band combination for delineating salt-affected soils publication-title: Int. J. Remote Sens. – volume: 27 start-page: 324 year: 2016 end-page: 338 ident: b0065 article-title: Remote sensing of landscape change in permafrost regions publication-title: Permafr. Periglac. Process. – volume: 188 start-page: 486 year: 2016 ident: b0070 article-title: Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas publication-title: Environ. Monit. Assess. – volume: 4 year: 2020 ident: b0025 article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review publication-title: J. Geovisualization Spat. Anal. – volume: 10 start-page: 1 year: 2018 end-page: 15 ident: b0090 article-title: Spatio-temporal analysis ofwetland changes using a kernel extreme learning machine approach publication-title: Remote Sens. – volume: 07 start-page: 830 year: 2015 end-page: 842 ident: b0130 article-title: Water pollution and environmental governance of the Tai and Chao Lake Basins in China in an international perspective publication-title: J. Water Resour. Prot. – volume: 44 start-page: 339 year: 2014 end-page: 348 ident: b0100 article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - A case study of Guiyang publication-title: Habitat Int. – volume: 174 start-page: 63 year: 2018 end-page: 77 ident: b0085 article-title: The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis publication-title: Landsc. Urban Plan. – volume: 311 start-page: 1917 year: 2006 end-page: 1921 ident: b0020 article-title: Changes in surface water supply across Africa with predicted climate change publication-title: Science (80-.) – volume: 11 year: 2019 ident: b0180 article-title: Coupling relationship between urban expansion and lake change-A case study of Wuhan publication-title: Water (Switzerland) – reference: . – volume: 81 start-page: 253 year: 2002 end-page: 261 ident: b0110 article-title: Using prior probabilities in decision-tree classification of remotely sensed data publication-title: Remote Sens. Environ. – volume: 21 start-page: 32 year: 2013 end-page: 42 ident: b0165 article-title: Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: MEEPPC, 2002. Environmental Quality Standards for Surface Water. URL – volume: 177 start-page: 89 year: 2016 end-page: 100 ident: b0075 article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research publication-title: Remote Sens. Environ. – volume: 9 start-page: 3843 year: 2012 end-page: 3865 ident: b0190 article-title: Examining land-use/land-cover change in the lake dianchi watershed of the Yunnan-Guizhou plateau of Southwest China with remote sensing and GIS techniques: 1974–2008 publication-title: Int. J. Environ. Res. Public Health – reference: Anderson, J.R., 1976. A land use and land cover classification system for use with remote sensor data. US Government Printing Office. – volume: 28 start-page: 727 year: 2018 end-page: 743 ident: b0185 article-title: Urban expansion in China Based on remote sensing technology: A review publication-title: Chinese Geogr. Sci. – volume: 67 start-page: 303 year: 2006 end-page: 312 ident: b0080 article-title: Monitoring cyanobacterial blooms by satellite remote sensing publication-title: Estuar. Coast. Shelf Sci. – volume: 41 start-page: 75 year: 2013 end-page: 86 ident: b0170 article-title: Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin publication-title: Kenya. Appl. Geogr. – volume: 712 year: 2020 ident: 10.1016/j.jag.2021.102413_b0005 article-title: Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan publication-title: Iran. Sci. Total Environ. – ident: 10.1016/j.jag.2021.102413_b0010 doi: 10.3133/pp964 – volume: 311 start-page: 1917 year: 2006 ident: 10.1016/j.jag.2021.102413_b0020 article-title: Changes in surface water supply across Africa with predicted climate change publication-title: Science (80-.) doi: 10.1126/science.1119929 – ident: 10.1016/j.jag.2021.102413_b0055 doi: 10.1109/IJCNN.2004.1380068 – volume: 10 start-page: 1 year: 2018 ident: 10.1016/j.jag.2021.102413_b0090 article-title: Spatio-temporal analysis ofwetland changes using a kernel extreme learning machine approach publication-title: Remote Sens. doi: 10.3390/rs10071129 – volume: 81 start-page: 253 year: 2002 ident: 10.1016/j.jag.2021.102413_b0110 article-title: Using prior probabilities in decision-tree classification of remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00003-2 – year: 2015 ident: 10.1016/j.jag.2021.102413_b0150 – volume: 9 start-page: 3843 year: 2012 ident: 10.1016/j.jag.2021.102413_b0190 article-title: Examining land-use/land-cover change in the lake dianchi watershed of the Yunnan-Guizhou plateau of Southwest China with remote sensing and GIS techniques: 1974–2008 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph9113843 – volume: 210 start-page: 35 year: 2018 ident: 10.1016/j.jag.2021.102413_b0015 article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.045 – volume: 10 start-page: 139 year: 2017 ident: 10.1016/j.jag.2021.102413_b0105 article-title: VHR GeoEye-1 imagery reveals an ancient water landscape at the Longcheng site, northern Chaohu Lake Basin (China) publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2016.1214983 – volume: 118 start-page: 259 year: 2012 ident: 10.1016/j.jag.2021.102413_b0040 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 – volume: 127 start-page: 327 year: 2017 ident: 10.1016/j.jag.2021.102413_b0120 article-title: Detecting changes in surface water area of Lake Kyoga sub-basin using remotely sensed imagery in a changing climate publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-015-1637-1 – volume: 07 start-page: 830 year: 2015 ident: 10.1016/j.jag.2021.102413_b0130 article-title: Water pollution and environmental governance of the Tai and Chao Lake Basins in China in an international perspective publication-title: J. Water Resour. Prot. doi: 10.4236/jwarp.2015.710067 – ident: 10.1016/j.jag.2021.102413_b0115 – volume: 28 start-page: 727 year: 2018 ident: 10.1016/j.jag.2021.102413_b0185 article-title: Urban expansion in China Based on remote sensing technology: A review publication-title: Chinese Geogr. Sci. doi: 10.1007/s11769-018-0988-9 – volume: 41 start-page: 75 year: 2013 ident: 10.1016/j.jag.2021.102413_b0170 article-title: Remotely sensing the spatial and temporal land cover changes in Eastern Mau forest reserve and Lake Nakuru drainage basin publication-title: Kenya. Appl. Geogr. doi: 10.1016/j.apgeog.2013.03.017 – volume: 157 start-page: 1 year: 2015 ident: 10.1016/j.jag.2021.102413_b0125 article-title: Remote sensing of inland waters: Challenges, progress and future directions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.09.021 – volume: 64 start-page: 105 year: 2016 ident: 10.1016/j.jag.2021.102413_bib191 article-title: Remote sensing for lake research and monitoring - Recent advances publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.12.009 – volume: 27 start-page: 324 year: 2016 ident: 10.1016/j.jag.2021.102413_b0065 article-title: Remote sensing of landscape change in permafrost regions publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1914 – volume: 89 start-page: 281 year: 2004 ident: 10.1016/j.jag.2021.102413_b0145 article-title: Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.10.018 – volume: 13 start-page: 2051 year: 1992 ident: 10.1016/j.jag.2021.102413_b0045 article-title: The selection of the best possible Landsat TM band combination for delineating salt-affected soils publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904252 – volume: 89 start-page: 201 issue: 22 year: 2008 ident: 10.1016/j.jag.2021.102413_b0160 article-title: Satellite-observed algae blooms in China’s Lake Taihu publication-title: EOS Trans. doi: 10.1029/2008EO220001 – volume: 21 start-page: 32 year: 2013 ident: 10.1016/j.jag.2021.102413_b0165 article-title: Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 39 start-page: 89 year: 2014 ident: 10.1016/j.jag.2021.102413_b0035 article-title: Detection of land cover changes around Lake Mutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques publication-title: African J. Aquat. Sci. doi: 10.2989/16085914.2013.870068 – volume: 11 year: 2019 ident: 10.1016/j.jag.2021.102413_b0180 article-title: Coupling relationship between urban expansion and lake change-A case study of Wuhan publication-title: Water (Switzerland) – volume: vol. 1 year: 1972 ident: 10.1016/j.jag.2021.102413_b0135 article-title: Generalized inverse of a matrix and its applications, in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability publication-title: Theory of Statistics doi: 10.1525/9780520325883-032 – volume: 355 start-page: 106 year: 2008 ident: 10.1016/j.jag.2021.102413_b0050 article-title: Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin publication-title: China. J. Hydrol. doi: 10.1016/j.jhydrol.2008.03.020 – volume: 156 start-page: 426 year: 2015 ident: 10.1016/j.jag.2021.102413_bib192 article-title: Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.003 – volume: 4 year: 2020 ident: 10.1016/j.jag.2021.102413_b0025 article-title: Advances of Four Machine Learning Methods for Spatial Data Handling: a Review publication-title: J. Geovisualization Spat. Anal. – volume: 67 start-page: 303 year: 2006 ident: 10.1016/j.jag.2021.102413_b0080 article-title: Monitoring cyanobacterial blooms by satellite remote sensing publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2005.11.024 – volume: 44 start-page: 339 year: 2014 ident: 10.1016/j.jag.2021.102413_b0100 article-title: Environmental effects of land-use/cover change caused by urbanization and policies in Southwest China Karst area - A case study of Guiyang publication-title: Habitat Int. doi: 10.1016/j.habitatint.2014.07.009 – volume: 177 start-page: 89 year: 2016 ident: 10.1016/j.jag.2021.102413_b0075 article-title: A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.028 – volume: 121 start-page: 93 year: 2012 ident: 10.1016/j.jag.2021.102413_b0140 article-title: Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.003 – volume: 188 start-page: 486 year: 2016 ident: 10.1016/j.jag.2021.102413_b0070 article-title: Accuracy of land use change detection using support vector machine and maximum likelihood techniques for open-cast coal mining areas publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-016-5494-x – volume: 134 start-page: 403 year: 2013 ident: 10.1016/j.jag.2021.102413_b0030 article-title: Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.010 – volume: 187 start-page: 400 year: 2016 ident: 10.1016/j.jag.2021.102413_b0155 article-title: Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.10.012 – volume: 32 start-page: 607 year: 2006 ident: 10.1016/j.jag.2021.102413_b0175 article-title: Land use land cover change in the US Great Lakes basin 1992 to 2001 publication-title: J. Great Lakes Res. doi: 10.3394/0380-1330(2006)32[607:LULCCI]2.0.CO;2 – volume: 174 start-page: 63 year: 2018 ident: 10.1016/j.jag.2021.102413_b0085 article-title: The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2018.03.004 – volume: 70 start-page: 489 year: 2006 ident: 10.1016/j.jag.2021.102413_b0060 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 |
| SSID | ssj0017768 |
| Score | 2.3772252 |
| Snippet | •K-ELM was utilized on spatio-temporal LUCC analysis and performed precisely.•LUCC in 23 years was demonstrated through 7 Landsat images in the Chao Lake... Human settlements are guided by the proximity or availability of a natural resource such as river or lake basins containing set of streams. The harmonious... |
| SourceID | doaj unpaywall proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102413 |
| SubjectTerms | agricultural land algal blooms algorithms basins Change monitor China economic development ecosystems environmental assessment environmental impact Flood detection forest land humans Image classification issues and policy lakes land cover land use Land use spatial pattern Landsat occupations pollution river deltas rivers spatial data The Chao Lake Basin watersheds Yangtze River |
| SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdGdwAOCAYT5SUjcQJFTWInto8j2lSg7AKVdrM-J3bX0SVVH5r47_mcOKW9DIljLDux_b1-jr8HIR8MgniIcxXJtBQRMkUZSchklHOnVMZSyNsEpt8v8_GUf73Kro5I0cfCeLfKoPs7nd5q69AyCrs5Ws7nox_InogGGE-TNgKUPSDHaH-kHJDjsy_fxpe7ywQhuoi4zE-Js7S_3GzdvG5ghqfENPE5DHjCDsxTm8X_wErtodCH23oJv-9gsdgzSBdPyZOAJOlZN9ln5MjWJ-TxXn7BE3J6_jeMDbsGOV4_J3eTpp5FXivTlUViWbr2juz1jN62Mu6H06amk2lRUFj50ku0uIbmeksn8MtS__eWIiCnIe-qpy5tHPWBIQvqneFvKeAY593i6drb3JWvhvSCTC_OfxbjKJRgiEpEKpvIMZPEkqdWAgiEDsBLF7tcGMOtMCyuUGPYXFgUe8eqxMaVMrnLJNgULCjGTsmgbmr7ktCkqvAsWhnLneNgMqVspTJbolLIY6nMkMT9zusy5Cf3ZTIWundEu9FILO2JpTtiDcnH3ZBll5zjvs6fPTl3HX1e7bahWc10YCwtTcxUqSziQECzLVTFARdVSSMTkQMfEt4zgz5gU3zV_L5vv-8ZR6P4-jsZqG2zXesUsUHKuMjw1Z92HPXv1bz6v4m8Jo_8U-eN-IYMNqutfYuoamPeBan5A_JGHlY priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA48ChULAJkJE6gVHk4jn0sq1YVWioOrLScrHFib2m3SbXZqKK_vjN5LLsIFbhGY1u25_E5Hn_D2HuLIB5CqQMV51mASpEHClIVSOG1TpMYZEtg-uVMns7E53k678mi6S3Mzv19m4d1AQs8xsURkQwIqk-7J1OE3SO2Nzv7evS95UOlsURbjCxSGVp4LOfDDeaf-tiJQS1V_04o2oKaD5vyGn7ewHK5FXVOnnT5WnVLVkjJJpeHzdoe5re_UTn-04Sessc99uRHnbI8Yw9cuc8ebTES7rOD418P31C0t_z6ObuZVuUiID_OVw631_GaUt_LBb9qvQI151XJp7PJhMOKijXxyTlU5w2fwqXj9L-XI4TnPVMr6QOvPKenJEtO6fNXHLCNp0R6XlOUXlH9pBdsdnL8bXIa9EUbghyxzTrwiY1CJWKnADIEGyByH3qZWStcZpOwQB_jZObQUfikiFxYaCt9qsDF4EAnyQEblVXpXjIeFQWeXgvrhPcCbKq1K3TqcnQjMlTajlk4bKPJe0ZzKqyxNEPq2oXBxTa02KZb7DH7sGly3dF53Cf8iXRjI0hM3O0H3E_TG7ZRNkx0rh0iR8BAn-lCAE6qUFZFmQQxZmLQLNODmg6sYFc_7hv73aCFBg2ebnGgdFVTmxjRRJyILMWuP27U8--zefVf0q_ZaL1q3BtEXGv7tre1O8RIJRo priority: 102 providerName: Unpaywall |
| Title | Long-term remote sensing monitoring on LUCC around Chaohu Lake with new information of algal bloom and flood submerging |
| URI | https://dx.doi.org/10.1016/j.jag.2021.102413 https://www.proquest.com/docview/2718234754 https://doi.org/10.1016/j.jag.2021.102413 https://doaj.org/article/8b039c9e560a47179d4ae0dd8b8176a4 |
| UnpaywallVersion | publishedVersion |
| Volume | 102 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: ACRLP dateStart: 20200201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-826X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017768 issn: 1569-8432 databaseCode: AIKHN dateStart: 20200201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQOQAHBIWKpVAZiRMoIomd2D4uq1YLLKsKsVI5WePE3lK2SbUPVf33zOSxbC_thVOUyHbszIznczz-hrH3DkE8xLmJdFqoCJWiiDRkOsplMCYTKeQNgen3aT6eya9n2dlOqi-KCWvpgdsP90m7WJjCePTMgBOpMqUEH5eldjpROTRMoLE2_WKq2z9Qqj0El1EvpEj7_cwmsusC5rgwTBOiLZCJuOWRGuL-W45pB3g-2lRXcHMNi8WODzp5xp524JEP204_Zw98tc-e7FAK7rOD438n17BoZ7qrF-x6UlfziCZivvQoH89XFLtezfllY9ZUndcVn8xGIw5LyrbER-dQn2_4BP54Tj9sOWJw3lGtkkB5HTidBVlwin-_5IB1AkXC8xW52SUlQHrJZifHP0fjqMu6EBUITtZREC6JtUy9BlCIFkAWIQ65ck565URc4iThc-XR0oMoE5SFcXnINPgUPBghDtheVVf-FeNJWeLys3RehiDBZcb40mS-wHkgR5m5AYv7L2-LjpKcMmMsbB97dmFRWJaEZVthDdiHbZWrlo_jrsKfSZzbgkSl3TxABbOdgtn7FGzAZK8MtkMlLdrApn7f9e53veJYtFjahoHK15uVTREOpEKqDJv-uNWo-0fz-n-M5pA9pibbcMQ3bG-93Pi3CKvW7og9HI5-TE7p-uXbeHrUWBTezaanw19_AeCcIgw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGdhgcEAwmyvgwEidQ1CR24vg4ok0dy3phlXaznhOn6-iSKm017b_nOXFKexkS18R2bL-vn-P3QchXjSAe_Fh6SZgLD5ki9xKIEi_mpZQRCyFuE5hejePRhP-8iW72SNrHwli3Sqf7O53eamv3ZOh2c7iYzYa_kD0RDTAeBm0EKHtGDnjEBErnwenF5Wi8uUwQoouIi-yUOAv7y83WzesOpnhKDAObw4AHbMc8tVn8d6zUFgo9XFcLeHyA-XzLIJ2_Ii8dkqSn3WRfkz1THZEXW_kFj8jx2d8wNmzq5Hj5hjxkdTX1rFamjUFiGbq0juzVlN63Mm6707qi2SRNKTS29BJNb6G-XdMMfhtq_95SBOTU5V211KV1SW1gyJxaZ_h7CtintG7xdGltbmOrIb0lk_Oz63TkuRIMXo5IZeWVTAd-wkOTAAiEDsDz0i9joTU3QjO_QI1hYmFQ7EtWBMYvpI7LKAETggHJ2DHZr-rKvCM0KAo8ixba8LLkoCMpTSEjk6NSiP1E6gHx-51XuctPbstkzFXviHankFjKEkt1xBqQb5suiy45x1ONf1hybhravNrtg7qZKsdYKtE-k7k0iAMBzbaQBQdcVJHoJBAx8AHhPTOoHTbFoWZPfftLzzgKxdfeyUBl6vVShYgNQsZFhEN_33DUv1fz_v8m8pkcjq6vMpVdjC9PyHP7pvNM_ED2V83afESEtdKfnAT9AWESITc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9oA48ChULAJkJE6gVHk4jn0sq1YVWioOrLScrHFib2m3SbXZqKK_vjN5LLsIFbhGY1u25_E5Hn_D2HuLIB5CqQMV51mASpEHClIVSOG1TpMYZEtg-uVMns7E53k678mi6S3Mzv19m4d1AQs8xsURkQwIqk-7J1OE3SO2Nzv7evS95UOlsURbjCxSGVp4LOfDDeaf-tiJQS1V_04o2oKaD5vyGn7ewHK5FXVOnnT5WnVLVkjJJpeHzdoe5re_UTn-04Sessc99uRHnbI8Yw9cuc8ebTES7rOD418P31C0t_z6ObuZVuUiID_OVw631_GaUt_LBb9qvQI151XJp7PJhMOKijXxyTlU5w2fwqXj9L-XI4TnPVMr6QOvPKenJEtO6fNXHLCNp0R6XlOUXlH9pBdsdnL8bXIa9EUbghyxzTrwiY1CJWKnADIEGyByH3qZWStcZpOwQB_jZObQUfikiFxYaCt9qsDF4EAnyQEblVXpXjIeFQWeXgvrhPcCbKq1K3TqcnQjMlTajlk4bKPJe0ZzKqyxNEPq2oXBxTa02KZb7DH7sGly3dF53Cf8iXRjI0hM3O0H3E_TG7ZRNkx0rh0iR8BAn-lCAE6qUFZFmQQxZmLQLNODmg6sYFc_7hv73aCFBg2ebnGgdFVTmxjRRJyILMWuP27U8--zefVf0q_ZaL1q3BtEXGv7tre1O8RIJRo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+remote+sensing+monitoring+on+LUCC+around+Chaohu+Lake+with+new+information+of+algal+bloom+and+flood+submerging&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Yi+Lin&rft.au=Tinghui+Zhang&rft.au=Qin+Ye&rft.au=Jianqing+Cai&rft.date=2021-10-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=102&rft.spage=102413&rft_id=info:doi/10.1016%2Fj.jag.2021.102413&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8b039c9e560a47179d4ae0dd8b8176a4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |