Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm
•Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop mapping.•The CP parameters are much more important than the FD parameters for crop mapping.•The combined use of four acquisitions is adequat...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 87; p. 102032 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8432 1872-826X |
DOI | 10.1016/j.jag.2019.102032 |
Cover
Abstract | •Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop mapping.•The CP parameters are much more important than the FD parameters for crop mapping.•The combined use of four acquisitions is adequate to achieve a nearly optimal accuracy.
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR. |
---|---|
AbstractList | Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR. •Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop mapping.•The CP parameters are much more important than the FD parameters for crop mapping.•The combined use of four acquisitions is adequate to achieve a nearly optimal accuracy. Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR. |
ArticleNumber | 102032 |
Author | Zhang, Ce Li, Huapeng Zhang, Shuqing Atkinson, Peter M. |
Author_xml | – sequence: 1 givenname: Huapeng surname: Li fullname: Li, Huapeng email: lihuapeng@iga.ac.cn organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China – sequence: 2 givenname: Ce surname: Zhang fullname: Zhang, Ce email: c.zhang9@lancaster.ac.uk organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK – sequence: 3 givenname: Shuqing surname: Zhang fullname: Zhang, Shuqing organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China – sequence: 4 givenname: Peter M. surname: Atkinson fullname: Atkinson, Peter M. organization: Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YR, UK |
BookMark | eNp9UcGO0zAQjdAisbvwAdx85JJiO4njiFNVsbBSJaSFRdysiT3uOnLjru0i9e9xG7hw2Mt4PPPe08y8m-pqDjNW1XtGV4wy8XFaTbBbccqG8ue04a-qayZ7Xksufl2VvBNDLduGv6luUpooZX0v5HX1vInhQLSHlJx1GrILM7Ex7Ik9el-fEOIlO9WH4CG6PeboNNnWI8yGPK5_fl8_kFzKdcLoMJFjcvOO5CckDwVRdO5CxJQJ-F2ILj_t31avLfiE7_6-t9Xj3ecfm6_19tuX-816W-u2GXKtOy6ZaPjYcdNpPXZG9mxsB9aCKUFqTimWDpcDE3boaCcHi9Qa0ZsGaN_cVveLrgkwqUMZHeJJBXDqUghxpyBmpz0qI6UQFKxBPrTcyhE4R5QSoB2HUYqi9WHROsTwfCzrqL1LGr2HGcMxKd4zyZtWtmdov0B1DClFtEq7fDlrjuC8YlSdDVOTKoaps2FqMaww2X_Mf0O_xPm0cLBc8rfDqJJ2OGs0LqLOZVX3AvsPV5GwPA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_121283 crossref_primary_10_1109_JSTARS_2021_3094973 crossref_primary_10_14358_PERS_24_00072R3 crossref_primary_10_1007_s11053_021_09940_3 crossref_primary_10_1080_10106049_2021_1914744 crossref_primary_10_1016_j_caeai_2024_100331 crossref_primary_10_1109_TGRS_2024_3483110 crossref_primary_10_1016_j_jag_2020_102114 crossref_primary_10_1080_01431161_2021_1957176 crossref_primary_10_1029_2020EA001554 crossref_primary_10_1080_01431161_2022_2030071 crossref_primary_10_3390_agronomy14051084 crossref_primary_10_1080_01431161_2022_2030072 crossref_primary_10_1080_17538947_2021_1950853 crossref_primary_10_1080_07038992_2022_2117687 crossref_primary_10_1007_s13278_021_00768_6 crossref_primary_10_1109_ACCESS_2024_3467193 crossref_primary_10_3390_rs11202370 |
Cites_doi | 10.1016/j.isprsjprs.2016.01.011 10.1016/j.rse.2017.07.031 10.1080/014311699212119 10.1016/j.patrec.2005.08.011 10.1109/36.739083 10.1016/j.rse.2007.07.022 10.1109/TGRS.2011.2172994 10.1109/36.673687 10.1016/j.rse.2007.07.019 10.1080/2150704X.2014.889863 10.1016/j.rse.2006.04.004 10.14358/PERS.78.8.799 10.1080/10106049.2011.562309 10.1016/j.rse.2017.03.014 10.1109/TGRS.2012.2208649 10.3390/rs10081217 10.1109/36.551935 10.1016/j.rse.2012.12.013 10.1109/TGRS.2012.2189012 10.1016/j.rse.2011.11.020 10.1016/S0168-1923(96)02348-9 10.1016/j.rse.2017.06.022 10.1080/2150704X.2016.1225172 10.1023/A:1010933404324 10.5589/m03-069 10.1016/j.rse.2015.10.029 10.1109/36.789639 10.1109/TGRS.2009.2026052 10.1080/01431160903475258 10.1016/j.rse.2006.11.021 10.1109/TGRS.2013.2270036 10.1051/agro:2003003 10.1109/36.841995 10.1016/j.rse.2011.01.009 10.1016/j.isprsjprs.2008.07.005 10.14358/PERS.70.5.627 10.1016/j.isprsjprs.2014.06.014 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1016/j.jag.2019.102032 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_d88660afde2942f8ba22ee88aa4b9b86 10_1016_j_jag_2019_102032 S0303243419305136 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c439t-c5281632b52d5ccb5d871b4914ad9148c200ed5c28916f950589fe0fd67d3a073 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:32:27 EDT 2025 Thu Sep 04 20:59:43 EDT 2025 Thu Apr 24 22:52:16 EDT 2025 Tue Jul 01 02:15:16 EDT 2025 Fri Feb 23 02:39:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Crop classification Random Forest algorithm UAVSAR Polarimetric SAR Multitemporal SAR imagery |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c439t-c5281632b52d5ccb5d871b4914ad9148c200ed5c28916f950589fe0fd67d3a073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0303243419305136 |
PQID | 2718234846 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d88660afde2942f8ba22ee88aa4b9b86 proquest_miscellaneous_2718234846 crossref_citationtrail_10_1016_j_jag_2019_102032 crossref_primary_10_1016_j_jag_2019_102032 elsevier_sciencedirect_doi_10_1016_j_jag_2019_102032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 20200501 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Breiman (bib0020) 2001; 45 Hensley, Zebker, Jones, Michel, Muellerschoen, Chapman (bib0075) 2009 Lin, Sarabandi (bib0095) 1999; 37 Pena, Brenning (bib0145) 2015; 171 Zheng, Myint, Thenkabail, Aggarwal (bib0225) 2015; 34 Loosvelt, Peters, Skriver, Lievens, Coillie, Baets, Verhoest (bib0110) 2012; 19 Nguyen, Gruber, Wagner (bib0135) 2016; 12 Thenkabail, Knox, Ozdogan, Gumma, Congalton, Wu, Milesi, Finkral, Marshall, Mariotto, You, Giri, Nagler (bib0190) 2012; 78 Freeman, Durden (bib0065) 1998; 36 Canisius, Shang, Liu, Huang, Ma, Jiao, Geng, Kovacs, Walters (bib0025) 2018; 210 National Oceanic and Atmospheric Administration, National Centers for Environmental Information (NOAA-NCEI) (bib0125) 2011 Pena-Barragan, Ngugi, Plant, Six (bib0150) 2011; 115 Jiao, Kovacs, Shang, McNairn, Walters, Ma, Geng (bib0080) 2014; 96 Li, Zhang, Zhang, Atkinson (bib0090) 2019; 74 Boryan, Yang, Mueller, Craig (bib0015) 2011; 26 Skriver (bib0170) 2012; 50 Prevot, Chauki, Troufleau, Weiss, Baret, Brisson (bib0155) 2003; 23 Silva, Rudorff, Formaggio, Paradella, Mura (bib0165) 2009; 64 Ozdogan, Woodcock (bib0140) 2006; 103 Wang, Lin, Chen, Zhang (bib0205) 2010; 31 Wardlow, Egbert, Kastens (bib0215) 2007; 108 Dickinson, Siqueira, Clewley, Lucas (bib0045) 2013; 131 Loosvelt, Peters, Skriver, De Baets, Verhoest (bib0105) 2012; 50 Tso, Mather (bib0200) 1999; 20 Ding, Zeng, Dong, Liu, Yang, Long (bib0050) 2013; 51 Thornton, Bowen, Ravelo, Wilkens, Farmer, Brock, Brink (bib0195) 1997; 83 Gislason, Benediktsson, Sveinsson (bib0070) 2006; 27 Cloude, Pottier (bib0035) 1997; 35 Whelen, Siqueira (bib0220) 2017; 193 Zhong, Gong, Biging (bib0230) 2012; 78 Duro, Franklin, Dube (bib0055) 2012; 118 Wardlow, Egbert (bib0210) 2008; 112 McNairn, Shang, Jiao, Champagne (bib0120) 2009; 47 Sun, Liang, Xu, Fang, Dickinson (bib0185) 2008; 112 Lee, Pottier (bib0085) 2009 Liu, Shang, Vachon, McNairn (bib0100) 2013; 51 Chapman, Hensley, Lou (bib0030) 2011; 7 Skriver, Svendsen, Thomsen (bib0175) 1999; 37 Congalton, Green (bib0040) 1999 Foody (bib0060) 2004; 70 Ndikumana, Minh, Baghdadi, Courault, Hossard (bib0130) 2018; 10 Belgiu, Dragut (bib0010) 2016; 114 Bargiel (bib0005) 2017; 198 McNairn, Brisco (bib0115) 2004; 30 Saich, Borgeaud (bib0160) 2000; 38 Sonobe, Tani, Wang, Kobayashi, Shimamura (bib0180) 2014; 5 Prevot (10.1016/j.jag.2019.102032_bib0155) 2003; 23 Hensley (10.1016/j.jag.2019.102032_bib0075) 2009 Thenkabail (10.1016/j.jag.2019.102032_bib0190) 2012; 78 Boryan (10.1016/j.jag.2019.102032_bib0015) 2011; 26 Congalton (10.1016/j.jag.2019.102032_bib0040) 1999 Pena (10.1016/j.jag.2019.102032_bib0145) 2015; 171 Thornton (10.1016/j.jag.2019.102032_bib0195) 1997; 83 Lee (10.1016/j.jag.2019.102032_bib0085) 2009 Liu (10.1016/j.jag.2019.102032_bib0100) 2013; 51 Sun (10.1016/j.jag.2019.102032_bib0185) 2008; 112 McNairn (10.1016/j.jag.2019.102032_bib0115) 2004; 30 Wang (10.1016/j.jag.2019.102032_bib0205) 2010; 31 Duro (10.1016/j.jag.2019.102032_bib0055) 2012; 118 Loosvelt (10.1016/j.jag.2019.102032_bib0105) 2012; 50 Saich (10.1016/j.jag.2019.102032_bib0160) 2000; 38 Nguyen (10.1016/j.jag.2019.102032_bib0135) 2016; 12 Whelen (10.1016/j.jag.2019.102032_bib0220) 2017; 193 Jiao (10.1016/j.jag.2019.102032_bib0080) 2014; 96 National Oceanic and Atmospheric Administration (10.1016/j.jag.2019.102032_bib0125) 2011 Wardlow (10.1016/j.jag.2019.102032_bib0210) 2008; 112 Breiman (10.1016/j.jag.2019.102032_bib0020) 2001; 45 Sonobe (10.1016/j.jag.2019.102032_bib0180) 2014; 5 Ozdogan (10.1016/j.jag.2019.102032_bib0140) 2006; 103 Canisius (10.1016/j.jag.2019.102032_bib0025) 2018; 210 Cloude (10.1016/j.jag.2019.102032_bib0035) 1997; 35 Foody (10.1016/j.jag.2019.102032_bib0060) 2004; 70 Chapman (10.1016/j.jag.2019.102032_bib0030) 2011; 7 Gislason (10.1016/j.jag.2019.102032_bib0070) 2006; 27 Belgiu (10.1016/j.jag.2019.102032_bib0010) 2016; 114 Bargiel (10.1016/j.jag.2019.102032_bib0005) 2017; 198 Wardlow (10.1016/j.jag.2019.102032_bib0215) 2007; 108 Dickinson (10.1016/j.jag.2019.102032_bib0045) 2013; 131 Silva (10.1016/j.jag.2019.102032_bib0165) 2009; 64 Ding (10.1016/j.jag.2019.102032_bib0050) 2013; 51 Skriver (10.1016/j.jag.2019.102032_bib0175) 1999; 37 Zhong (10.1016/j.jag.2019.102032_bib0230) 2012; 78 Pena-Barragan (10.1016/j.jag.2019.102032_bib0150) 2011; 115 McNairn (10.1016/j.jag.2019.102032_bib0120) 2009; 47 Zheng (10.1016/j.jag.2019.102032_bib0225) 2015; 34 Freeman (10.1016/j.jag.2019.102032_bib0065) 1998; 36 Ndikumana (10.1016/j.jag.2019.102032_bib0130) 2018; 10 Li (10.1016/j.jag.2019.102032_bib0090) 2019; 74 Tso (10.1016/j.jag.2019.102032_bib0200) 1999; 20 Loosvelt (10.1016/j.jag.2019.102032_bib0110) 2012; 19 Skriver (10.1016/j.jag.2019.102032_bib0170) 2012; 50 Lin (10.1016/j.jag.2019.102032_bib0095) 1999; 37 |
References_xml | – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: bib0010 article-title: Random forests in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 83 start-page: 95 year: 1997 end-page: 112 ident: bib0195 article-title: Estimating millet production for famine early warning: an application of crop simulation modelling using satellite and ground-based data in Burkina Faso publication-title: Agric. For. Meteorol. – volume: 38 start-page: 651 year: 2000 end-page: 657 ident: bib0160 article-title: Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996 publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 2227 year: 2013 end-page: 2240 ident: bib0100 article-title: Multiyear crop monitoring using polarimetric RADARSAT-2 data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 70 start-page: 627 year: 2004 end-page: 633 ident: bib0060 article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy publication-title: Photogram. Eng. Remote Sens. – volume: 37 start-page: 2413 year: 1999 end-page: 2429 ident: bib0175 article-title: Multitemporal C- and L-band polarimetric signatures of crops publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 78 start-page: 773 year: 2012 end-page: 782 ident: bib0190 article-title: Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help? publication-title: Photogram. Eng. Remote Sens. – volume: 50 start-page: 4185 year: 2012 end-page: 4200 ident: bib0105 article-title: Impact of reducing polarimetric sar input on the uncertainty of crop classifications based on the random forests algorithm publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 30 start-page: 525 year: 2004 end-page: 542 ident: bib0115 article-title: The application of C-band polarimetric SAR for agriculture: a review publication-title: Can. J. Remote. Sens. – volume: 171 start-page: 234 year: 2015 end-page: 244 ident: bib0145 article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile publication-title: Remote Sens. Environ. – volume: 19 start-page: 173 year: 2012 end-page: 184 ident: bib0110 article-title: Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 112 start-page: 1010 year: 2008 end-page: 1024 ident: bib0185 article-title: Mapping plant functional types from MODIS data using multisource evidential reasoning publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0020 article-title: Random forests publication-title: Mach. Learn. – volume: 20 start-page: 2443 year: 1999 end-page: 2460 ident: bib0200 article-title: Crop discrimination using multi-temporal SAR imagery publication-title: Int. J. Remote Sens. – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bib0070 article-title: Random Forests for land cover classification publication-title: Pattern Recogn. Lett. – volume: 37 start-page: 440 year: 1999 end-page: 451 ident: bib0095 article-title: A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 96 start-page: 38 year: 2014 end-page: 46 ident: bib0080 article-title: Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 26 start-page: 341 year: 2011 end-page: 358 ident: bib0015 article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program publication-title: Geocarto Int. – volume: 64 start-page: 458 year: 2009 end-page: 463 ident: bib0165 article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 118 start-page: 259 year: 2012 end-page: 272 ident: bib0055 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. – volume: 12 start-page: 1209 year: 2016 end-page: 1218 ident: bib0135 article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data publication-title: Remote Sens. Lett. – volume: 5 start-page: 157 year: 2014 end-page: 164 ident: bib0180 article-title: Random forest classification of crop type using multi- temporal TerraSAR- X dual- polarimetric data publication-title: Remote Sens. Lett. – volume: 131 start-page: 206 year: 2013 end-page: 214 ident: bib0045 article-title: Classification of forest composition using polarimetric decomposition in multiple landscapes publication-title: Remote Sens. Environ. – volume: 112 start-page: 1096 year: 2008 end-page: 1116 ident: bib0210 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains publication-title: Remote Sens. Environ. – volume: 34 start-page: 103 year: 2015 end-page: 112 ident: bib0225 article-title: A support vector machine to identify irrigated crop types using time-series Landsat NDVI data publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 1051 year: 2009 end-page: 1055 ident: bib0075 article-title: First deformation results using theNASA/JPL UAVSAR instrument publication-title: 2nd Asian-Pacific Conference on Synthetic ApertureRadar – volume: 103 start-page: 203 year: 2006 end-page: 217 ident: bib0140 article-title: Resolution dependent errors in remote sensing of cultivated areas publication-title: Remote Sens. Environ. – volume: 115 start-page: 1301 year: 2011 end-page: 1316 ident: bib0150 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. – volume: 210 start-page: 508 year: 2018 end-page: 518 ident: bib0025 article-title: Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data publication-title: Remote Sens. Environ. – volume: 50 start-page: 2138 year: 2012 end-page: 2149 ident: bib0170 article-title: Crop classification by multi-temporal C- and L-band single and dual polarization, and fully polarimetric SAR publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 108 start-page: 290 year: 2007 end-page: 310 ident: bib0215 article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains publication-title: Remote Sens. Environ. – volume: 36 start-page: 963 year: 1998 end-page: 973 ident: bib0065 article-title: A three-component scattering model for polarimetric SAR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 4438 year: 2013 end-page: 4449 ident: bib0050 article-title: An improved PolSAR image speckle reduction algorithm based on structural judgment and hybrid four-component polarimetric decomposition publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2011 ident: bib0125 article-title: Local Climatological Data (LCD), Sacramento Executive Airport,Sacramento County, CA. National Environmental Satellite, Data, and Information Service – volume: 10 start-page: 1217 year: 2018 ident: bib0130 article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR sentinel-1 for camargue, France publication-title: Remote Sens. – volume: 78 start-page: 799 year: 2012 end-page: 813 ident: bib0230 article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s central valley publication-title: Photogram. Eng. Remote Sens. – volume: 7 year: 2011 ident: bib0030 article-title: The JPL UAVSAR publication-title: ASF News Notes – volume: 193 start-page: 216 year: 2017 end-page: 224 ident: bib0220 article-title: Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley publication-title: Remote Sens. Environ. – volume: 47 start-page: 3981 year: 2009 end-page: 3992 ident: bib0120 article-title: The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 198 start-page: 369 year: 2017 end-page: 383 ident: bib0005 article-title: A new method for crop classification combining time series of radar images and crop phenology information publication-title: Remote Sens. Environ. – year: 2009 ident: bib0085 article-title: Polarimetric Radar Imaging From Basics to Applications – volume: 74 start-page: 45 year: 2019 end-page: 56 ident: bib0090 article-title: Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: a case study in the Sacramento Valley, California publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 35 start-page: 68 year: 1997 end-page: 78 ident: bib0035 article-title: An entropy based classification scheme for land applications of polarimetric SAR publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 23 start-page: 297 year: 2003 end-page: 303 ident: bib0155 article-title: Assimilating optical and radar data into the STICS crop model for wheat publication-title: Agronomie – year: 1999 ident: bib0040 article-title: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices – volume: 31 start-page: 1555 year: 2010 end-page: 1572 ident: bib0205 article-title: Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta publication-title: Int. J. Remote Sens. – volume: 114 start-page: 24 issue: 6 year: 2016 ident: 10.1016/j.jag.2019.102032_bib0010 article-title: Random forests in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 210 start-page: 508 issue: 6 year: 2018 ident: 10.1016/j.jag.2019.102032_bib0025 article-title: Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.031 – volume: 20 start-page: 2443 issue: 12 year: 1999 ident: 10.1016/j.jag.2019.102032_bib0200 article-title: Crop discrimination using multi-temporal SAR imagery publication-title: Int. J. Remote Sens. doi: 10.1080/014311699212119 – volume: 27 start-page: 294 issue: 4 year: 2006 ident: 10.1016/j.jag.2019.102032_bib0070 article-title: Random Forests for land cover classification publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 37 start-page: 440 issue: 1 year: 1999 ident: 10.1016/j.jag.2019.102032_bib0095 article-title: A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.739083 – volume: 112 start-page: 1010 issue: 3 year: 2008 ident: 10.1016/j.jag.2019.102032_bib0185 article-title: Mapping plant functional types from MODIS data using multisource evidential reasoning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.022 – volume: 50 start-page: 2138 issue: 6 year: 2012 ident: 10.1016/j.jag.2019.102032_bib0170 article-title: Crop classification by multi-temporal C- and L-band single and dual polarization, and fully polarimetric SAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2172994 – volume: 36 start-page: 963 issue: 3 year: 1998 ident: 10.1016/j.jag.2019.102032_bib0065 article-title: A three-component scattering model for polarimetric SAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.673687 – volume: 112 start-page: 1096 issue: 3 year: 2008 ident: 10.1016/j.jag.2019.102032_bib0210 article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.019 – volume: 5 start-page: 157 issue: 2 year: 2014 ident: 10.1016/j.jag.2019.102032_bib0180 article-title: Random forest classification of crop type using multi- temporal TerraSAR- X dual- polarimetric data publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2014.889863 – volume: 103 start-page: 203 issue: 2 year: 2006 ident: 10.1016/j.jag.2019.102032_bib0140 article-title: Resolution dependent errors in remote sensing of cultivated areas publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.004 – year: 2011 ident: 10.1016/j.jag.2019.102032_bib0125 – start-page: 1051 year: 2009 ident: 10.1016/j.jag.2019.102032_bib0075 article-title: First deformation results using theNASA/JPL UAVSAR instrument – volume: 78 start-page: 799 issue: 8 year: 2012 ident: 10.1016/j.jag.2019.102032_bib0230 article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s central valley publication-title: Photogram. Eng. Remote Sens. doi: 10.14358/PERS.78.8.799 – volume: 26 start-page: 341 issue: 5 year: 2011 ident: 10.1016/j.jag.2019.102032_bib0015 article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program publication-title: Geocarto Int. doi: 10.1080/10106049.2011.562309 – volume: 193 start-page: 216 year: 2017 ident: 10.1016/j.jag.2019.102032_bib0220 article-title: Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.014 – volume: 74 start-page: 45 issue: 02 year: 2019 ident: 10.1016/j.jag.2019.102032_bib0090 article-title: Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: a case study in the Sacramento Valley, California publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 51 start-page: 2227 issue: 4 year: 2013 ident: 10.1016/j.jag.2019.102032_bib0100 article-title: Multiyear crop monitoring using polarimetric RADARSAT-2 data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2208649 – volume: 10 start-page: 1217 issue: 8 year: 2018 ident: 10.1016/j.jag.2019.102032_bib0130 article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR sentinel-1 for camargue, France publication-title: Remote Sens. doi: 10.3390/rs10081217 – volume: 7 issue: 1 year: 2011 ident: 10.1016/j.jag.2019.102032_bib0030 article-title: The JPL UAVSAR publication-title: ASF News Notes – volume: 35 start-page: 68 issue: 1 year: 1997 ident: 10.1016/j.jag.2019.102032_bib0035 article-title: An entropy based classification scheme for land applications of polarimetric SAR publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.551935 – year: 1999 ident: 10.1016/j.jag.2019.102032_bib0040 – volume: 131 start-page: 206 year: 2013 ident: 10.1016/j.jag.2019.102032_bib0045 article-title: Classification of forest composition using polarimetric decomposition in multiple landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.013 – volume: 50 start-page: 4185 issue: 10 year: 2012 ident: 10.1016/j.jag.2019.102032_bib0105 article-title: Impact of reducing polarimetric sar input on the uncertainty of crop classifications based on the random forests algorithm publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2189012 – volume: 118 start-page: 259 year: 2012 ident: 10.1016/j.jag.2019.102032_bib0055 article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.020 – volume: 78 start-page: 773 issue: 8 year: 2012 ident: 10.1016/j.jag.2019.102032_bib0190 article-title: Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help? publication-title: Photogram. Eng. Remote Sens. – volume: 83 start-page: 95 issue: 1–2 year: 1997 ident: 10.1016/j.jag.2019.102032_bib0195 article-title: Estimating millet production for famine early warning: an application of crop simulation modelling using satellite and ground-based data in Burkina Faso publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(96)02348-9 – volume: 198 start-page: 369 year: 2017 ident: 10.1016/j.jag.2019.102032_bib0005 article-title: A new method for crop classification combining time series of radar images and crop phenology information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.022 – volume: 12 start-page: 1209 issue: 7 year: 2016 ident: 10.1016/j.jag.2019.102032_bib0135 article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2016.1225172 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jag.2019.102032_bib0020 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 30 start-page: 525 issue: 3 year: 2004 ident: 10.1016/j.jag.2019.102032_bib0115 article-title: The application of C-band polarimetric SAR for agriculture: a review publication-title: Can. J. Remote. Sens. doi: 10.5589/m03-069 – volume: 171 start-page: 234 year: 2015 ident: 10.1016/j.jag.2019.102032_bib0145 article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.029 – volume: 37 start-page: 2413 issue: 5 year: 1999 ident: 10.1016/j.jag.2019.102032_bib0175 article-title: Multitemporal C- and L-band polarimetric signatures of crops publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.789639 – volume: 47 start-page: 3981 issue: 12 year: 2009 ident: 10.1016/j.jag.2019.102032_bib0120 article-title: The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2026052 – volume: 34 start-page: 103 year: 2015 ident: 10.1016/j.jag.2019.102032_bib0225 article-title: A support vector machine to identify irrigated crop types using time-series Landsat NDVI data publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2009 ident: 10.1016/j.jag.2019.102032_bib0085 – volume: 19 start-page: 173 year: 2012 ident: 10.1016/j.jag.2019.102032_bib0110 article-title: Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 31 start-page: 1555 issue: 6 year: 2010 ident: 10.1016/j.jag.2019.102032_bib0205 article-title: Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903475258 – volume: 108 start-page: 290 issue: 3 year: 2007 ident: 10.1016/j.jag.2019.102032_bib0215 article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.021 – volume: 51 start-page: 4438 issue: 8 year: 2013 ident: 10.1016/j.jag.2019.102032_bib0050 article-title: An improved PolSAR image speckle reduction algorithm based on structural judgment and hybrid four-component polarimetric decomposition publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2270036 – volume: 23 start-page: 297 issue: 4 year: 2003 ident: 10.1016/j.jag.2019.102032_bib0155 article-title: Assimilating optical and radar data into the STICS crop model for wheat publication-title: Agronomie doi: 10.1051/agro:2003003 – volume: 38 start-page: 651 issue: 2 year: 2000 ident: 10.1016/j.jag.2019.102032_bib0160 article-title: Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.841995 – volume: 115 start-page: 1301 issue: 6 year: 2011 ident: 10.1016/j.jag.2019.102032_bib0150 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.009 – volume: 64 start-page: 458 issue: 5 year: 2009 ident: 10.1016/j.jag.2019.102032_bib0165 article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2008.07.005 – volume: 70 start-page: 627 issue: 5 year: 2004 ident: 10.1016/j.jag.2019.102032_bib0060 article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy publication-title: Photogram. Eng. Remote Sens. doi: 10.14358/PERS.70.5.627 – volume: 96 start-page: 38 year: 2014 ident: 10.1016/j.jag.2019.102032_bib0080 article-title: Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.06.014 |
SSID | ssj0017768 |
Score | 2.4917169 |
Snippet | •Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop... Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 102032 |
SubjectTerms | agricultural management alfalfa algorithms almonds autumn biomass corn Crop classification ecosystems food security forage fruits grasses hay Helianthus annuus Multitemporal SAR imagery pepper Polarimetric SAR polarimetry Random Forest algorithm spatial data spring summer synthetic aperture radar time series analysis tomatoes trees UAVSAR walnuts winter wheat |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAtFCxFJCROCFZeB3HsY9L1apCwKGwqDfLn8tWbXbZTQ_9951xktJyKBcuUeQ4juUZ228y4zeEvA9aRlP7yJTLkklvKqZFM2Ux85yRHEZIPI389Zs6mcvPZ_XZnVRfGBPW0wP3A_cxaq0UdzkmYaTI2jshUtLaOWjY60K2zQ0fjanBf9A0_SG4WhmmZSVGf2aJ7Dp3C4zpMkhbwCtxb0cqxP33Nqa_luiy7xw_I08HwEhnfUd3yaPU7pEnd2gE98j-0Z_TalB1mK7b5-T34Wa1pgEBMkYEFSFQPFBC8a87uwYtL3fXbI0W7vIS02sF-oV510Y6n_38PjulmH2eoaKmLcUo-QUFzEhPoQa0g5k9tx11F4vVZtn9unxB5sdHPw5P2JBjgQWAIh0LtdAAyYSvRaxD8HUEC8pLM5UuwkUHmEUJnoBdNlXZ1JiFMCeeo2pi5WB92Cc77apNLwmtc0AyndzoDJIy3Kmk0K0ZeZ5mKJ8QPo6zDQMBOebBuLBjpNm5BdFYFI3tRTMhH25fWffsGw9V_oTCu62IxNmlANTJDupk_6VOEyJH0dsBg_TYAppaPvTtd6OaWJif6HRxbVpdbS0ovhaVBJj36n_074A8Fmjxl5DL12Sn21ylNwCLOv-2zIAbSaEJsA priority: 102 providerName: Directory of Open Access Journals |
Title | Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm |
URI | https://dx.doi.org/10.1016/j.jag.2019.102032 https://www.proquest.com/docview/2718234846 https://doaj.org/article/d88660afde2942f8ba22ee88aa4b9b86 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd4EDgsFE-aiMxAnJauo4jnMs1aYCY0IdRbtZjj-6TFtS2uyw_5738lEohx24RJHjOFHez-89x-_9HiEfrBIuS3LHpAmCiTyLmeLphLkQhYDkMFxgNvK3czlfii-XyeUBmfW5MBhW2en-Vqc32rprGXdfc7wuivEFwBO8AeQjA8xOYvmIHHKw9mpADqefv87Pd5sJadpmxCUyY0rEvN_cbMK8rs0KA7wy5DCIYr5nnhoW_z0r9Y--bozQ6TPytPMe6bR9wefkwJdH5MlfnIJH5PjkT-oadO3m7vYF-TXbVGtq0VvG8KBGIhSzSyj-gmf3APnm7J6tcblb3GKtLUvPWG5KR5fTnxfTBcVS9AxR67cUQ-ZXFBxIuoAeMA6W-dzW1Nysqk1RX92-JMvTkx-zOesKLjALfknNbMIV-Gc8T7hLrM0TB8upXGQTYRwclIUp5eEKLNImMmQJliQMPgpOpi42oCyOyaCsSv-K0CRYZNYJqQoZmLzISC9xj9NFYRKgfUii_jtr27GRY1GMG92HnV1rEI1G0ehWNEPycXfLuqXieKjzJxTeriOyaDcN1WalOxhpp5SUkQnOc3jJoHLDufdKGQOgzZUcEtGLXu-BEoYqHnr2-x4mGiYr7sCY0ld3Ww2zQPFYgM_3-v-GfkMec1zwNxGXb8mg3tz5d-AV1fkIUD9bnH0fdegfNX8XfgPiigxD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZSZ2g7FG3aoO6TBToVICxRFEWNrpHAaRwPSVxkIyiRdBQkkmsrQ_597_Rw6w4ZuggCRVEE78E78e47Qr7mStg0ziyTxgsmsjRiiichsz7wHsFhuMBs5LO5nC7Ej6v4ao9M-lwYDKvsdH-r0xtt3bWMutUcrYpidAHsCdYA4pEBz4aRfEL2BRa1HpD98cnpdL49TEiSNiMulilTIuL94WYT5nVjlhjglSKGQRDxne2pQfHf2aX-0dfNJnT8krzorEc6bif4iuy58oA8_wtT8IAcHv1JXYOunexuXpNfk3W1ojlayxge1FCEYnYJxV_w7AFYvrl7YCt0d4s7rLWV0xnLTGnpYvzzYnxOsRQ9Q651G4oh80sKBiQ9hx4wDpb53NTU3C6rdVFf370hi-Ojy8mUdQUXWA52Sc3ymCuwz3gWcxvneRZbcKcykYbCWLioHETKwRNw0kLp0xhLEnoXeCsTGxlQFodkUFale0to7HNE1vGJ8ilseYGRTuIZpw186KF9SIJ-nXXeoZFjUYxb3Yed3WggjUbS6JY0Q_Jt-8qqheJ4rPN3JN62I6JoNw3Veqk7NtJWKSkD463jMEmvMsO5c0oZA0ybKTkkoie93mFKGKp47NtfejbRIKx4AmNKV91vNEiB4pEAm-_d_w39mTydXp7N9OxkfvqePOPo_DfRlx_IoF7fu49gIdXZp04CfgPLnQyd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+classification+from+full-year+fully-polarimetric+L-band+UAVSAR+time-series+using+the+Random+Forest+algorithm&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Huapeng&rft.au=Zhang%2C+Ce&rft.au=Zhang%2C+Shuqing&rft.au=Atkinson%2C+Peter+M&rft.date=2020-05-01&rft.issn=1569-8432&rft.volume=87+p.102032-&rft_id=info:doi/10.1016%2Fj.jag.2019.102032&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |