Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm

•Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop mapping.•The CP parameters are much more important than the FD parameters for crop mapping.•The combined use of four acquisitions is adequat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 87; p. 102032
Main Authors Li, Huapeng, Zhang, Ce, Zhang, Shuqing, Atkinson, Peter M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2020
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
DOI10.1016/j.jag.2019.102032

Cover

Abstract •Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop mapping.•The CP parameters are much more important than the FD parameters for crop mapping.•The combined use of four acquisitions is adequate to achieve a nearly optimal accuracy. Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.
AbstractList Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.
•Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop mapping.•The CP parameters are much more important than the FD parameters for crop mapping.•The combined use of four acquisitions is adequate to achieve a nearly optimal accuracy. Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.
ArticleNumber 102032
Author Zhang, Ce
Li, Huapeng
Zhang, Shuqing
Atkinson, Peter M.
Author_xml – sequence: 1
  givenname: Huapeng
  surname: Li
  fullname: Li, Huapeng
  email: lihuapeng@iga.ac.cn
  organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
– sequence: 2
  givenname: Ce
  surname: Zhang
  fullname: Zhang, Ce
  email: c.zhang9@lancaster.ac.uk
  organization: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
– sequence: 3
  givenname: Shuqing
  surname: Zhang
  fullname: Zhang, Shuqing
  organization: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
– sequence: 4
  givenname: Peter M.
  surname: Atkinson
  fullname: Atkinson, Peter M.
  organization: Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YR, UK
BookMark eNp9UcGO0zAQjdAisbvwAdx85JJiO4njiFNVsbBSJaSFRdysiT3uOnLjru0i9e9xG7hw2Mt4PPPe08y8m-pqDjNW1XtGV4wy8XFaTbBbccqG8ue04a-qayZ7Xksufl2VvBNDLduGv6luUpooZX0v5HX1vInhQLSHlJx1GrILM7Ex7Ik9el-fEOIlO9WH4CG6PeboNNnWI8yGPK5_fl8_kFzKdcLoMJFjcvOO5CckDwVRdO5CxJQJ-F2ILj_t31avLfiE7_6-t9Xj3ecfm6_19tuX-816W-u2GXKtOy6ZaPjYcdNpPXZG9mxsB9aCKUFqTimWDpcDE3boaCcHi9Qa0ZsGaN_cVveLrgkwqUMZHeJJBXDqUghxpyBmpz0qI6UQFKxBPrTcyhE4R5QSoB2HUYqi9WHROsTwfCzrqL1LGr2HGcMxKd4zyZtWtmdov0B1DClFtEq7fDlrjuC8YlSdDVOTKoaps2FqMaww2X_Mf0O_xPm0cLBc8rfDqJJ2OGs0LqLOZVX3AvsPV5GwPA
CitedBy_id crossref_primary_10_1016_j_eswa_2023_121283
crossref_primary_10_1109_JSTARS_2021_3094973
crossref_primary_10_14358_PERS_24_00072R3
crossref_primary_10_1007_s11053_021_09940_3
crossref_primary_10_1080_10106049_2021_1914744
crossref_primary_10_1016_j_caeai_2024_100331
crossref_primary_10_1109_TGRS_2024_3483110
crossref_primary_10_1016_j_jag_2020_102114
crossref_primary_10_1080_01431161_2021_1957176
crossref_primary_10_1029_2020EA001554
crossref_primary_10_1080_01431161_2022_2030071
crossref_primary_10_3390_agronomy14051084
crossref_primary_10_1080_01431161_2022_2030072
crossref_primary_10_1080_17538947_2021_1950853
crossref_primary_10_1080_07038992_2022_2117687
crossref_primary_10_1007_s13278_021_00768_6
crossref_primary_10_1109_ACCESS_2024_3467193
crossref_primary_10_3390_rs11202370
Cites_doi 10.1016/j.isprsjprs.2016.01.011
10.1016/j.rse.2017.07.031
10.1080/014311699212119
10.1016/j.patrec.2005.08.011
10.1109/36.739083
10.1016/j.rse.2007.07.022
10.1109/TGRS.2011.2172994
10.1109/36.673687
10.1016/j.rse.2007.07.019
10.1080/2150704X.2014.889863
10.1016/j.rse.2006.04.004
10.14358/PERS.78.8.799
10.1080/10106049.2011.562309
10.1016/j.rse.2017.03.014
10.1109/TGRS.2012.2208649
10.3390/rs10081217
10.1109/36.551935
10.1016/j.rse.2012.12.013
10.1109/TGRS.2012.2189012
10.1016/j.rse.2011.11.020
10.1016/S0168-1923(96)02348-9
10.1016/j.rse.2017.06.022
10.1080/2150704X.2016.1225172
10.1023/A:1010933404324
10.5589/m03-069
10.1016/j.rse.2015.10.029
10.1109/36.789639
10.1109/TGRS.2009.2026052
10.1080/01431160903475258
10.1016/j.rse.2006.11.021
10.1109/TGRS.2013.2270036
10.1051/agro:2003003
10.1109/36.841995
10.1016/j.rse.2011.01.009
10.1016/j.isprsjprs.2008.07.005
10.14358/PERS.70.5.627
10.1016/j.isprsjprs.2014.06.014
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.jag.2019.102032
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_d88660afde2942f8ba22ee88aa4b9b86
10_1016_j_jag_2019_102032
S0303243419305136
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c439t-c5281632b52d5ccb5d871b4914ad9148c200ed5c28916f950589fe0fd67d3a073
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:32:27 EDT 2025
Thu Sep 04 20:59:43 EDT 2025
Thu Apr 24 22:52:16 EDT 2025
Tue Jul 01 02:15:16 EDT 2025
Fri Feb 23 02:39:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Crop classification
Random Forest algorithm
UAVSAR
Polarimetric SAR
Multitemporal SAR imagery
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-c5281632b52d5ccb5d871b4914ad9148c200ed5c28916f950589fe0fd67d3a073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0303243419305136
PQID 2718234846
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_d88660afde2942f8ba22ee88aa4b9b86
proquest_miscellaneous_2718234846
crossref_citationtrail_10_1016_j_jag_2019_102032
crossref_primary_10_1016_j_jag_2019_102032
elsevier_sciencedirect_doi_10_1016_j_jag_2019_102032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
20200501
2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Breiman (bib0020) 2001; 45
Hensley, Zebker, Jones, Michel, Muellerschoen, Chapman (bib0075) 2009
Lin, Sarabandi (bib0095) 1999; 37
Pena, Brenning (bib0145) 2015; 171
Zheng, Myint, Thenkabail, Aggarwal (bib0225) 2015; 34
Loosvelt, Peters, Skriver, Lievens, Coillie, Baets, Verhoest (bib0110) 2012; 19
Nguyen, Gruber, Wagner (bib0135) 2016; 12
Thenkabail, Knox, Ozdogan, Gumma, Congalton, Wu, Milesi, Finkral, Marshall, Mariotto, You, Giri, Nagler (bib0190) 2012; 78
Freeman, Durden (bib0065) 1998; 36
Canisius, Shang, Liu, Huang, Ma, Jiao, Geng, Kovacs, Walters (bib0025) 2018; 210
National Oceanic and Atmospheric Administration, National Centers for Environmental Information (NOAA-NCEI) (bib0125) 2011
Pena-Barragan, Ngugi, Plant, Six (bib0150) 2011; 115
Jiao, Kovacs, Shang, McNairn, Walters, Ma, Geng (bib0080) 2014; 96
Li, Zhang, Zhang, Atkinson (bib0090) 2019; 74
Boryan, Yang, Mueller, Craig (bib0015) 2011; 26
Skriver (bib0170) 2012; 50
Prevot, Chauki, Troufleau, Weiss, Baret, Brisson (bib0155) 2003; 23
Silva, Rudorff, Formaggio, Paradella, Mura (bib0165) 2009; 64
Ozdogan, Woodcock (bib0140) 2006; 103
Wang, Lin, Chen, Zhang (bib0205) 2010; 31
Wardlow, Egbert, Kastens (bib0215) 2007; 108
Dickinson, Siqueira, Clewley, Lucas (bib0045) 2013; 131
Loosvelt, Peters, Skriver, De Baets, Verhoest (bib0105) 2012; 50
Tso, Mather (bib0200) 1999; 20
Ding, Zeng, Dong, Liu, Yang, Long (bib0050) 2013; 51
Thornton, Bowen, Ravelo, Wilkens, Farmer, Brock, Brink (bib0195) 1997; 83
Gislason, Benediktsson, Sveinsson (bib0070) 2006; 27
Cloude, Pottier (bib0035) 1997; 35
Whelen, Siqueira (bib0220) 2017; 193
Zhong, Gong, Biging (bib0230) 2012; 78
Duro, Franklin, Dube (bib0055) 2012; 118
Wardlow, Egbert (bib0210) 2008; 112
McNairn, Shang, Jiao, Champagne (bib0120) 2009; 47
Sun, Liang, Xu, Fang, Dickinson (bib0185) 2008; 112
Lee, Pottier (bib0085) 2009
Liu, Shang, Vachon, McNairn (bib0100) 2013; 51
Chapman, Hensley, Lou (bib0030) 2011; 7
Skriver, Svendsen, Thomsen (bib0175) 1999; 37
Congalton, Green (bib0040) 1999
Foody (bib0060) 2004; 70
Ndikumana, Minh, Baghdadi, Courault, Hossard (bib0130) 2018; 10
Belgiu, Dragut (bib0010) 2016; 114
Bargiel (bib0005) 2017; 198
McNairn, Brisco (bib0115) 2004; 30
Saich, Borgeaud (bib0160) 2000; 38
Sonobe, Tani, Wang, Kobayashi, Shimamura (bib0180) 2014; 5
Prevot (10.1016/j.jag.2019.102032_bib0155) 2003; 23
Hensley (10.1016/j.jag.2019.102032_bib0075) 2009
Thenkabail (10.1016/j.jag.2019.102032_bib0190) 2012; 78
Boryan (10.1016/j.jag.2019.102032_bib0015) 2011; 26
Congalton (10.1016/j.jag.2019.102032_bib0040) 1999
Pena (10.1016/j.jag.2019.102032_bib0145) 2015; 171
Thornton (10.1016/j.jag.2019.102032_bib0195) 1997; 83
Lee (10.1016/j.jag.2019.102032_bib0085) 2009
Liu (10.1016/j.jag.2019.102032_bib0100) 2013; 51
Sun (10.1016/j.jag.2019.102032_bib0185) 2008; 112
McNairn (10.1016/j.jag.2019.102032_bib0115) 2004; 30
Wang (10.1016/j.jag.2019.102032_bib0205) 2010; 31
Duro (10.1016/j.jag.2019.102032_bib0055) 2012; 118
Loosvelt (10.1016/j.jag.2019.102032_bib0105) 2012; 50
Saich (10.1016/j.jag.2019.102032_bib0160) 2000; 38
Nguyen (10.1016/j.jag.2019.102032_bib0135) 2016; 12
Whelen (10.1016/j.jag.2019.102032_bib0220) 2017; 193
Jiao (10.1016/j.jag.2019.102032_bib0080) 2014; 96
National Oceanic and Atmospheric Administration (10.1016/j.jag.2019.102032_bib0125) 2011
Wardlow (10.1016/j.jag.2019.102032_bib0210) 2008; 112
Breiman (10.1016/j.jag.2019.102032_bib0020) 2001; 45
Sonobe (10.1016/j.jag.2019.102032_bib0180) 2014; 5
Ozdogan (10.1016/j.jag.2019.102032_bib0140) 2006; 103
Canisius (10.1016/j.jag.2019.102032_bib0025) 2018; 210
Cloude (10.1016/j.jag.2019.102032_bib0035) 1997; 35
Foody (10.1016/j.jag.2019.102032_bib0060) 2004; 70
Chapman (10.1016/j.jag.2019.102032_bib0030) 2011; 7
Gislason (10.1016/j.jag.2019.102032_bib0070) 2006; 27
Belgiu (10.1016/j.jag.2019.102032_bib0010) 2016; 114
Bargiel (10.1016/j.jag.2019.102032_bib0005) 2017; 198
Wardlow (10.1016/j.jag.2019.102032_bib0215) 2007; 108
Dickinson (10.1016/j.jag.2019.102032_bib0045) 2013; 131
Silva (10.1016/j.jag.2019.102032_bib0165) 2009; 64
Ding (10.1016/j.jag.2019.102032_bib0050) 2013; 51
Skriver (10.1016/j.jag.2019.102032_bib0175) 1999; 37
Zhong (10.1016/j.jag.2019.102032_bib0230) 2012; 78
Pena-Barragan (10.1016/j.jag.2019.102032_bib0150) 2011; 115
McNairn (10.1016/j.jag.2019.102032_bib0120) 2009; 47
Zheng (10.1016/j.jag.2019.102032_bib0225) 2015; 34
Freeman (10.1016/j.jag.2019.102032_bib0065) 1998; 36
Ndikumana (10.1016/j.jag.2019.102032_bib0130) 2018; 10
Li (10.1016/j.jag.2019.102032_bib0090) 2019; 74
Tso (10.1016/j.jag.2019.102032_bib0200) 1999; 20
Loosvelt (10.1016/j.jag.2019.102032_bib0110) 2012; 19
Skriver (10.1016/j.jag.2019.102032_bib0170) 2012; 50
Lin (10.1016/j.jag.2019.102032_bib0095) 1999; 37
References_xml – volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: bib0010
  article-title: Random forests in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 83
  start-page: 95
  year: 1997
  end-page: 112
  ident: bib0195
  article-title: Estimating millet production for famine early warning: an application of crop simulation modelling using satellite and ground-based data in Burkina Faso
  publication-title: Agric. For. Meteorol.
– volume: 38
  start-page: 651
  year: 2000
  end-page: 657
  ident: bib0160
  article-title: Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 2227
  year: 2013
  end-page: 2240
  ident: bib0100
  article-title: Multiyear crop monitoring using polarimetric RADARSAT-2 data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 70
  start-page: 627
  year: 2004
  end-page: 633
  ident: bib0060
  article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
  publication-title: Photogram. Eng. Remote Sens.
– volume: 37
  start-page: 2413
  year: 1999
  end-page: 2429
  ident: bib0175
  article-title: Multitemporal C- and L-band polarimetric signatures of crops
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 78
  start-page: 773
  year: 2012
  end-page: 782
  ident: bib0190
  article-title: Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help?
  publication-title: Photogram. Eng. Remote Sens.
– volume: 50
  start-page: 4185
  year: 2012
  end-page: 4200
  ident: bib0105
  article-title: Impact of reducing polarimetric sar input on the uncertainty of crop classifications based on the random forests algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 30
  start-page: 525
  year: 2004
  end-page: 542
  ident: bib0115
  article-title: The application of C-band polarimetric SAR for agriculture: a review
  publication-title: Can. J. Remote. Sens.
– volume: 171
  start-page: 234
  year: 2015
  end-page: 244
  ident: bib0145
  article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 173
  year: 2012
  end-page: 184
  ident: bib0110
  article-title: Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 112
  start-page: 1010
  year: 2008
  end-page: 1024
  ident: bib0185
  article-title: Mapping plant functional types from MODIS data using multisource evidential reasoning
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0020
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 20
  start-page: 2443
  year: 1999
  end-page: 2460
  ident: bib0200
  article-title: Crop discrimination using multi-temporal SAR imagery
  publication-title: Int. J. Remote Sens.
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bib0070
  article-title: Random Forests for land cover classification
  publication-title: Pattern Recogn. Lett.
– volume: 37
  start-page: 440
  year: 1999
  end-page: 451
  ident: bib0095
  article-title: A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 96
  start-page: 38
  year: 2014
  end-page: 46
  ident: bib0080
  article-title: Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 26
  start-page: 341
  year: 2011
  end-page: 358
  ident: bib0015
  article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program
  publication-title: Geocarto Int.
– volume: 64
  start-page: 458
  year: 2009
  end-page: 463
  ident: bib0165
  article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 118
  start-page: 259
  year: 2012
  end-page: 272
  ident: bib0055
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1209
  year: 2016
  end-page: 1218
  ident: bib0135
  article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data
  publication-title: Remote Sens. Lett.
– volume: 5
  start-page: 157
  year: 2014
  end-page: 164
  ident: bib0180
  article-title: Random forest classification of crop type using multi- temporal TerraSAR- X dual- polarimetric data
  publication-title: Remote Sens. Lett.
– volume: 131
  start-page: 206
  year: 2013
  end-page: 214
  ident: bib0045
  article-title: Classification of forest composition using polarimetric decomposition in multiple landscapes
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 1096
  year: 2008
  end-page: 1116
  ident: bib0210
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 103
  year: 2015
  end-page: 112
  ident: bib0225
  article-title: A support vector machine to identify irrigated crop types using time-series Landsat NDVI data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 1051
  year: 2009
  end-page: 1055
  ident: bib0075
  article-title: First deformation results using theNASA/JPL UAVSAR instrument
  publication-title: 2nd Asian-Pacific Conference on Synthetic ApertureRadar
– volume: 103
  start-page: 203
  year: 2006
  end-page: 217
  ident: bib0140
  article-title: Resolution dependent errors in remote sensing of cultivated areas
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 1301
  year: 2011
  end-page: 1316
  ident: bib0150
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
– volume: 210
  start-page: 508
  year: 2018
  end-page: 518
  ident: bib0025
  article-title: Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 2138
  year: 2012
  end-page: 2149
  ident: bib0170
  article-title: Crop classification by multi-temporal C- and L-band single and dual polarization, and fully polarimetric SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 108
  start-page: 290
  year: 2007
  end-page: 310
  ident: bib0215
  article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 963
  year: 1998
  end-page: 973
  ident: bib0065
  article-title: A three-component scattering model for polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 4438
  year: 2013
  end-page: 4449
  ident: bib0050
  article-title: An improved PolSAR image speckle reduction algorithm based on structural judgment and hybrid four-component polarimetric decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2011
  ident: bib0125
  article-title: Local Climatological Data (LCD), Sacramento Executive Airport,Sacramento County, CA. National Environmental Satellite, Data, and Information Service
– volume: 10
  start-page: 1217
  year: 2018
  ident: bib0130
  article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR sentinel-1 for camargue, France
  publication-title: Remote Sens.
– volume: 78
  start-page: 799
  year: 2012
  end-page: 813
  ident: bib0230
  article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s central valley
  publication-title: Photogram. Eng. Remote Sens.
– volume: 7
  year: 2011
  ident: bib0030
  article-title: The JPL UAVSAR
  publication-title: ASF News Notes
– volume: 193
  start-page: 216
  year: 2017
  end-page: 224
  ident: bib0220
  article-title: Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 3981
  year: 2009
  end-page: 3992
  ident: bib0120
  article-title: The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 198
  start-page: 369
  year: 2017
  end-page: 383
  ident: bib0005
  article-title: A new method for crop classification combining time series of radar images and crop phenology information
  publication-title: Remote Sens. Environ.
– year: 2009
  ident: bib0085
  article-title: Polarimetric Radar Imaging From Basics to Applications
– volume: 74
  start-page: 45
  year: 2019
  end-page: 56
  ident: bib0090
  article-title: Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: a case study in the Sacramento Valley, California
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 35
  start-page: 68
  year: 1997
  end-page: 78
  ident: bib0035
  article-title: An entropy based classification scheme for land applications of polarimetric SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 23
  start-page: 297
  year: 2003
  end-page: 303
  ident: bib0155
  article-title: Assimilating optical and radar data into the STICS crop model for wheat
  publication-title: Agronomie
– year: 1999
  ident: bib0040
  article-title: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices
– volume: 31
  start-page: 1555
  year: 2010
  end-page: 1572
  ident: bib0205
  article-title: Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta
  publication-title: Int. J. Remote Sens.
– volume: 114
  start-page: 24
  issue: 6
  year: 2016
  ident: 10.1016/j.jag.2019.102032_bib0010
  article-title: Random forests in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 210
  start-page: 508
  issue: 6
  year: 2018
  ident: 10.1016/j.jag.2019.102032_bib0025
  article-title: Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.031
– volume: 20
  start-page: 2443
  issue: 12
  year: 1999
  ident: 10.1016/j.jag.2019.102032_bib0200
  article-title: Crop discrimination using multi-temporal SAR imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311699212119
– volume: 27
  start-page: 294
  issue: 4
  year: 2006
  ident: 10.1016/j.jag.2019.102032_bib0070
  article-title: Random Forests for land cover classification
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 37
  start-page: 440
  issue: 1
  year: 1999
  ident: 10.1016/j.jag.2019.102032_bib0095
  article-title: A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.739083
– volume: 112
  start-page: 1010
  issue: 3
  year: 2008
  ident: 10.1016/j.jag.2019.102032_bib0185
  article-title: Mapping plant functional types from MODIS data using multisource evidential reasoning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.022
– volume: 50
  start-page: 2138
  issue: 6
  year: 2012
  ident: 10.1016/j.jag.2019.102032_bib0170
  article-title: Crop classification by multi-temporal C- and L-band single and dual polarization, and fully polarimetric SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2172994
– volume: 36
  start-page: 963
  issue: 3
  year: 1998
  ident: 10.1016/j.jag.2019.102032_bib0065
  article-title: A three-component scattering model for polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.673687
– volume: 112
  start-page: 1096
  issue: 3
  year: 2008
  ident: 10.1016/j.jag.2019.102032_bib0210
  article-title: Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.019
– volume: 5
  start-page: 157
  issue: 2
  year: 2014
  ident: 10.1016/j.jag.2019.102032_bib0180
  article-title: Random forest classification of crop type using multi- temporal TerraSAR- X dual- polarimetric data
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2014.889863
– volume: 103
  start-page: 203
  issue: 2
  year: 2006
  ident: 10.1016/j.jag.2019.102032_bib0140
  article-title: Resolution dependent errors in remote sensing of cultivated areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.004
– year: 2011
  ident: 10.1016/j.jag.2019.102032_bib0125
– start-page: 1051
  year: 2009
  ident: 10.1016/j.jag.2019.102032_bib0075
  article-title: First deformation results using theNASA/JPL UAVSAR instrument
– volume: 78
  start-page: 799
  issue: 8
  year: 2012
  ident: 10.1016/j.jag.2019.102032_bib0230
  article-title: Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California’s central valley
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.78.8.799
– volume: 26
  start-page: 341
  issue: 5
  year: 2011
  ident: 10.1016/j.jag.2019.102032_bib0015
  article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2011.562309
– volume: 193
  start-page: 216
  year: 2017
  ident: 10.1016/j.jag.2019.102032_bib0220
  article-title: Use of time-series L-band UAVSAR data for the classification of agricultural fields in the San Joaquin Valley
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.014
– volume: 74
  start-page: 45
  issue: 02
  year: 2019
  ident: 10.1016/j.jag.2019.102032_bib0090
  article-title: Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: a case study in the Sacramento Valley, California
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 51
  start-page: 2227
  issue: 4
  year: 2013
  ident: 10.1016/j.jag.2019.102032_bib0100
  article-title: Multiyear crop monitoring using polarimetric RADARSAT-2 data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2208649
– volume: 10
  start-page: 1217
  issue: 8
  year: 2018
  ident: 10.1016/j.jag.2019.102032_bib0130
  article-title: Deep recurrent neural network for agricultural classification using multitemporal SAR sentinel-1 for camargue, France
  publication-title: Remote Sens.
  doi: 10.3390/rs10081217
– volume: 7
  issue: 1
  year: 2011
  ident: 10.1016/j.jag.2019.102032_bib0030
  article-title: The JPL UAVSAR
  publication-title: ASF News Notes
– volume: 35
  start-page: 68
  issue: 1
  year: 1997
  ident: 10.1016/j.jag.2019.102032_bib0035
  article-title: An entropy based classification scheme for land applications of polarimetric SAR
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.551935
– year: 1999
  ident: 10.1016/j.jag.2019.102032_bib0040
– volume: 131
  start-page: 206
  year: 2013
  ident: 10.1016/j.jag.2019.102032_bib0045
  article-title: Classification of forest composition using polarimetric decomposition in multiple landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.013
– volume: 50
  start-page: 4185
  issue: 10
  year: 2012
  ident: 10.1016/j.jag.2019.102032_bib0105
  article-title: Impact of reducing polarimetric sar input on the uncertainty of crop classifications based on the random forests algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2189012
– volume: 118
  start-page: 259
  year: 2012
  ident: 10.1016/j.jag.2019.102032_bib0055
  article-title: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.020
– volume: 78
  start-page: 773
  issue: 8
  year: 2012
  ident: 10.1016/j.jag.2019.102032_bib0190
  article-title: Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help?
  publication-title: Photogram. Eng. Remote Sens.
– volume: 83
  start-page: 95
  issue: 1–2
  year: 1997
  ident: 10.1016/j.jag.2019.102032_bib0195
  article-title: Estimating millet production for famine early warning: an application of crop simulation modelling using satellite and ground-based data in Burkina Faso
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(96)02348-9
– volume: 198
  start-page: 369
  year: 2017
  ident: 10.1016/j.jag.2019.102032_bib0005
  article-title: A new method for crop classification combining time series of radar images and crop phenology information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.022
– volume: 12
  start-page: 1209
  issue: 7
  year: 2016
  ident: 10.1016/j.jag.2019.102032_bib0135
  article-title: Mapping rice extent and cropping scheme in the Mekong Delta using Sentinel-1A data
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2016.1225172
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jag.2019.102032_bib0020
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 30
  start-page: 525
  issue: 3
  year: 2004
  ident: 10.1016/j.jag.2019.102032_bib0115
  article-title: The application of C-band polarimetric SAR for agriculture: a review
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m03-069
– volume: 171
  start-page: 234
  year: 2015
  ident: 10.1016/j.jag.2019.102032_bib0145
  article-title: Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.029
– volume: 37
  start-page: 2413
  issue: 5
  year: 1999
  ident: 10.1016/j.jag.2019.102032_bib0175
  article-title: Multitemporal C- and L-band polarimetric signatures of crops
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.789639
– volume: 47
  start-page: 3981
  issue: 12
  year: 2009
  ident: 10.1016/j.jag.2019.102032_bib0120
  article-title: The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2026052
– volume: 34
  start-page: 103
  year: 2015
  ident: 10.1016/j.jag.2019.102032_bib0225
  article-title: A support vector machine to identify irrigated crop types using time-series Landsat NDVI data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2009
  ident: 10.1016/j.jag.2019.102032_bib0085
– volume: 19
  start-page: 173
  year: 2012
  ident: 10.1016/j.jag.2019.102032_bib0110
  article-title: Random Forests as a tool for estimating uncertainty at pixel-level in SAR image classification
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 31
  start-page: 1555
  issue: 6
  year: 2010
  ident: 10.1016/j.jag.2019.102032_bib0205
  article-title: Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903475258
– volume: 108
  start-page: 290
  issue: 3
  year: 2007
  ident: 10.1016/j.jag.2019.102032_bib0215
  article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.021
– volume: 51
  start-page: 4438
  issue: 8
  year: 2013
  ident: 10.1016/j.jag.2019.102032_bib0050
  article-title: An improved PolSAR image speckle reduction algorithm based on structural judgment and hybrid four-component polarimetric decomposition
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2270036
– volume: 23
  start-page: 297
  issue: 4
  year: 2003
  ident: 10.1016/j.jag.2019.102032_bib0155
  article-title: Assimilating optical and radar data into the STICS crop model for wheat
  publication-title: Agronomie
  doi: 10.1051/agro:2003003
– volume: 38
  start-page: 651
  issue: 2
  year: 2000
  ident: 10.1016/j.jag.2019.102032_bib0160
  article-title: Interpreting ERS SAR signatures of agricultural crops in Flevoland, 1993-1996
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.841995
– volume: 115
  start-page: 1301
  issue: 6
  year: 2011
  ident: 10.1016/j.jag.2019.102032_bib0150
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.009
– volume: 64
  start-page: 458
  issue: 5
  year: 2009
  ident: 10.1016/j.jag.2019.102032_bib0165
  article-title: Discrimination of agricultural crops in a tropical semi-arid region of Brazil based on L-band polarimetric airborne SAR data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2008.07.005
– volume: 70
  start-page: 627
  issue: 5
  year: 2004
  ident: 10.1016/j.jag.2019.102032_bib0060
  article-title: Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.70.5.627
– volume: 96
  start-page: 38
  year: 2014
  ident: 10.1016/j.jag.2019.102032_bib0080
  article-title: Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.06.014
SSID ssj0017768
Score 2.4917169
Snippet •Overall accuracy of crop classification reaches 85 %–90 % by using full year UAVSAR.•Polarimetric parameters contribute more than linear polarizations to crop...
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102032
SubjectTerms agricultural management
alfalfa
algorithms
almonds
autumn
biomass
corn
Crop classification
ecosystems
food security
forage
fruits
grasses
hay
Helianthus annuus
Multitemporal SAR imagery
pepper
Polarimetric SAR
polarimetry
Random Forest algorithm
spatial data
spring
summer
synthetic aperture radar
time series analysis
tomatoes
trees
UAVSAR
walnuts
winter wheat
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAtFCxFJCROCFZeB3HsY9L1apCwKGwqDfLn8tWbXbZTQ_9951xktJyKBcuUeQ4juUZ228y4zeEvA9aRlP7yJTLkklvKqZFM2Ux85yRHEZIPI389Zs6mcvPZ_XZnVRfGBPW0wP3A_cxaq0UdzkmYaTI2jshUtLaOWjY60K2zQ0fjanBf9A0_SG4WhmmZSVGf2aJ7Dp3C4zpMkhbwCtxb0cqxP33Nqa_luiy7xw_I08HwEhnfUd3yaPU7pEnd2gE98j-0Z_TalB1mK7b5-T34Wa1pgEBMkYEFSFQPFBC8a87uwYtL3fXbI0W7vIS02sF-oV510Y6n_38PjulmH2eoaKmLcUo-QUFzEhPoQa0g5k9tx11F4vVZtn9unxB5sdHPw5P2JBjgQWAIh0LtdAAyYSvRaxD8HUEC8pLM5UuwkUHmEUJnoBdNlXZ1JiFMCeeo2pi5WB92Cc77apNLwmtc0AyndzoDJIy3Kmk0K0ZeZ5mKJ8QPo6zDQMBOebBuLBjpNm5BdFYFI3tRTMhH25fWffsGw9V_oTCu62IxNmlANTJDupk_6VOEyJH0dsBg_TYAppaPvTtd6OaWJif6HRxbVpdbS0ovhaVBJj36n_074A8Fmjxl5DL12Sn21ylNwCLOv-2zIAbSaEJsA
  priority: 102
  providerName: Directory of Open Access Journals
Title Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm
URI https://dx.doi.org/10.1016/j.jag.2019.102032
https://www.proquest.com/docview/2718234846
https://doaj.org/article/d88660afde2942f8ba22ee88aa4b9b86
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdGd4EDgsFE-aiMxAnJauo4jnMs1aYCY0IdRbtZjj-6TFtS2uyw_5738lEohx24RJHjOFHez-89x-_9HiEfrBIuS3LHpAmCiTyLmeLphLkQhYDkMFxgNvK3czlfii-XyeUBmfW5MBhW2en-Vqc32rprGXdfc7wuivEFwBO8AeQjA8xOYvmIHHKw9mpADqefv87Pd5sJadpmxCUyY0rEvN_cbMK8rs0KA7wy5DCIYr5nnhoW_z0r9Y--bozQ6TPytPMe6bR9wefkwJdH5MlfnIJH5PjkT-oadO3m7vYF-TXbVGtq0VvG8KBGIhSzSyj-gmf3APnm7J6tcblb3GKtLUvPWG5KR5fTnxfTBcVS9AxR67cUQ-ZXFBxIuoAeMA6W-dzW1Nysqk1RX92-JMvTkx-zOesKLjALfknNbMIV-Gc8T7hLrM0TB8upXGQTYRwclIUp5eEKLNImMmQJliQMPgpOpi42oCyOyaCsSv-K0CRYZNYJqQoZmLzISC9xj9NFYRKgfUii_jtr27GRY1GMG92HnV1rEI1G0ehWNEPycXfLuqXieKjzJxTeriOyaDcN1WalOxhpp5SUkQnOc3jJoHLDufdKGQOgzZUcEtGLXu-BEoYqHnr2-x4mGiYr7sCY0ld3Ww2zQPFYgM_3-v-GfkMec1zwNxGXb8mg3tz5d-AV1fkIUD9bnH0fdegfNX8XfgPiigxD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZSZ2g7FG3aoO6TBToVICxRFEWNrpHAaRwPSVxkIyiRdBQkkmsrQ_597_Rw6w4ZuggCRVEE78E78e47Qr7mStg0ziyTxgsmsjRiiichsz7wHsFhuMBs5LO5nC7Ej6v4ao9M-lwYDKvsdH-r0xtt3bWMutUcrYpidAHsCdYA4pEBz4aRfEL2BRa1HpD98cnpdL49TEiSNiMulilTIuL94WYT5nVjlhjglSKGQRDxne2pQfHf2aX-0dfNJnT8krzorEc6bif4iuy58oA8_wtT8IAcHv1JXYOunexuXpNfk3W1ojlayxge1FCEYnYJxV_w7AFYvrl7YCt0d4s7rLWV0xnLTGnpYvzzYnxOsRQ9Q651G4oh80sKBiQ9hx4wDpb53NTU3C6rdVFf370hi-Ojy8mUdQUXWA52Sc3ymCuwz3gWcxvneRZbcKcykYbCWLioHETKwRNw0kLp0xhLEnoXeCsTGxlQFodkUFale0to7HNE1vGJ8ilseYGRTuIZpw186KF9SIJ-nXXeoZFjUYxb3Yed3WggjUbS6JY0Q_Jt-8qqheJ4rPN3JN62I6JoNw3Veqk7NtJWKSkD463jMEmvMsO5c0oZA0ybKTkkoie93mFKGKp47NtfejbRIKx4AmNKV91vNEiB4pEAm-_d_w39mTydXp7N9OxkfvqePOPo_DfRlx_IoF7fu49gIdXZp04CfgPLnQyd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+classification+from+full-year+fully-polarimetric+L-band+UAVSAR+time-series+using+the+Random+Forest+algorithm&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Li%2C+Huapeng&rft.au=Zhang%2C+Ce&rft.au=Zhang%2C+Shuqing&rft.au=Atkinson%2C+Peter+M&rft.date=2020-05-01&rft.issn=1569-8432&rft.volume=87+p.102032-&rft_id=info:doi/10.1016%2Fj.jag.2019.102032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon