Characterizing Performance Gaps of a Code-Based Dementia Algorithm in a Population-Based Cohort of Cognitive Aging
Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely available from electronic health records (EHR). If the characteristics of misclassified patients are clearly identified, modifying existing a...
Saved in:
| Published in | Journal of Alzheimer's disease Vol. 95; no. 3; p. 931 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1387-2877 1875-8908 1875-8908 |
| DOI | 10.3233/JAD-230344 |
Cover
| Abstract | Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely available from electronic health records (EHR). If the characteristics of misclassified patients are clearly identified, modifying existing algorithms to improve performance may be possible.
To examine the performance of a code-based algorithm to identify dementia cases in the population-based Mayo Clinic Study of Aging (MCSA) where dementia diagnosis (i.e., reference standard) is actively assessed through routine follow-up and describe the characteristics of persons incorrectly categorized.
There were 5,316 participants (age at baseline (mean (SD)): 73.3 (9.68) years; 50.7% male) without dementia at baseline and available EHR data. ICD-9/10 codes and prescription medications for dementia were extracted between baseline and one year after an MCSA dementia diagnosis or last follow-up. Fisher's exact or Kruskal-Wallis tests were used to compare characteristics between groups.
Algorithm sensitivity and specificity were 0.70 (95% CI: 0.67, 0.74) and 0.95 (95% CI: 0.95, 0.96). False positives (i.e., participants falsely diagnosed with dementia by the algorithm) were older, with higher Charlson comorbidity index, more likely to have mild cognitive impairment (MCI), and longer follow-up (versus true negatives). False negatives (versus true positives) were older, more likely to have MCI, or have more functional limitations.
We observed a moderate-high performance of the code-based diagnosis method against the population-based MCSA reference standard dementia diagnosis. Older participants and those with MCI at baseline were more likely to be misclassified. |
|---|---|
| AbstractList | Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely available from electronic health records (EHR). If the characteristics of misclassified patients are clearly identified, modifying existing algorithms to improve performance may be possible.
To examine the performance of a code-based algorithm to identify dementia cases in the population-based Mayo Clinic Study of Aging (MCSA) where dementia diagnosis (i.e., reference standard) is actively assessed through routine follow-up and describe the characteristics of persons incorrectly categorized.
There were 5,316 participants (age at baseline (mean (SD)): 73.3 (9.68) years; 50.7% male) without dementia at baseline and available EHR data. ICD-9/10 codes and prescription medications for dementia were extracted between baseline and one year after an MCSA dementia diagnosis or last follow-up. Fisher's exact or Kruskal-Wallis tests were used to compare characteristics between groups.
Algorithm sensitivity and specificity were 0.70 (95% CI: 0.67, 0.74) and 0.95 (95% CI: 0.95, 0.96). False positives (i.e., participants falsely diagnosed with dementia by the algorithm) were older, with higher Charlson comorbidity index, more likely to have mild cognitive impairment (MCI), and longer follow-up (versus true negatives). False negatives (versus true positives) were older, more likely to have MCI, or have more functional limitations.
We observed a moderate-high performance of the code-based diagnosis method against the population-based MCSA reference standard dementia diagnosis. Older participants and those with MCI at baseline were more likely to be misclassified. |
| Author | Christenson, Luke R Garg, Muskan Petersen, Ronald C St Sauver, Jennifer Vassilaki, Maria Sohn, Sunghwan Fu, Sunyang |
| Author_xml | – sequence: 1 givenname: Maria surname: Vassilaki fullname: Vassilaki, Maria organization: Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA – sequence: 2 givenname: Sunyang surname: Fu fullname: Fu, Sunyang organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA – sequence: 3 givenname: Luke R surname: Christenson fullname: Christenson, Luke R organization: Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA – sequence: 4 givenname: Muskan surname: Garg fullname: Garg, Muskan organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA – sequence: 5 givenname: Ronald C surname: Petersen fullname: Petersen, Ronald C organization: Department of Neurology, Mayo Clinic, Rochester, MN, USA – sequence: 6 givenname: Jennifer surname: St Sauver fullname: St Sauver, Jennifer organization: Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA – sequence: 7 givenname: Sunghwan surname: Sohn fullname: Sohn, Sunghwan organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37638438$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kMtOwzAQRS1URB-w4QOQ9yjgZNzYXpYUCqgSXcA6miRO6iqxIycFla8nVYHV3MWZuZozJSPrrCbkOmR3EAHcvy6WQQQMOD8jk1CKeSAVk6MhgxRBJIUYk2nX7RhjwJS4IGMQMUgOckJ8skWPea-9-Ta2ohvtS-cbtLmmK2w76kqKNHGFDh6w0wVd6kbb3iBd1JXzpt821NgB2bh2X2NvnP0FE7d1vj_uJ66ypjefmi6qoeOSnJdYd_rqd87Ix9Pje_IcrN9WL8liHeQcVB9kKlSZylhZAvJIzMOIK8XnpVJ5GYMGEWGuJEJRDF9ChlyGcT44wFgLVEUIM3J7uru3LR6-sK7T1psG_SENWXo0l-6wSE_mBvrmRLf7rNHFP_qnCn4AaIlrEA |
| CitedBy_id | crossref_primary_10_3233_JAD_230887 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM ADTOC UNPAY |
| DOI | 10.3233/JAD-230344 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1875-8908 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10590260 37638438 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R21 AG058738 – fundername: NIA NIH HHS grantid: U01 AG006786 – fundername: NINDS NIH HHS grantid: R01 NS097495 – fundername: NIA NIH HHS grantid: R01 AG068007 – fundername: NIA NIH HHS grantid: R33 AG058738 – fundername: NIA NIH HHS grantid: R37 AG011378 – fundername: NIA NIH HHS grantid: R01 AG041851 – fundername: NIA NIH HHS grantid: P30 AG062677 |
| GroupedDBID | --- 0R~ 0VX 29J 36B 4.4 53G 5GY AAEJI AAFNC AAFWJ AAGLT AAPII AAQXI AAWTL ABDBF ABIVO ABJNI ABJZC ABUBZ ABUJY ACGFS ACPQW ACPRK ACUHS ADEBD ADZMO AEJQA AELRD AENEX AFRAH AFRHK AFYTF AGIAB AHDMH AIRSE AJGYC AJNRN ALIRC ALMA_UNASSIGNED_HOLDINGS APPIZ ARTOV CAG CGR COF CUY CVF DU5 EAD EAP EBS ECM EIF EJD EMB EMK EMOBN ESX F5P H13 HZ~ IL9 IOS J8X MET MIO MV1 NGNOM NPM O9- P2P Q1R SAUOL SCNPE SFC SV3 TUS VUG ACARO ADTOC UNPAY |
| ID | FETCH-LOGICAL-c439t-b919b9b0ff3a42751249945f99cf63e372ac98a3dd3873ba4816c344a6e7a9d13 |
| IEDL.DBID | UNPAY |
| ISSN | 1387-2877 1875-8908 |
| IngestDate | Sun Oct 26 02:51:51 EDT 2025 Mon Jul 21 05:53:48 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | specificity dementia electronic health records sensitivity Alzheimer’s disease |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c439t-b919b9b0ff3a42751249945f99cf63e372ac98a3dd3873ba4816c344a6e7a9d13 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10590260/pdf/nihms-1936430.pdf |
| PMID | 37638438 |
| ParticipantIDs | unpaywall_primary_10_3233_jad_230344 pubmed_primary_37638438 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of Alzheimer's disease |
| PublicationTitleAlternate | J Alzheimers Dis |
| PublicationYear | 2023 |
| SSID | ssj0003097 |
| Score | 2.3807535 |
| Snippet | Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| StartPage | 931 |
| SubjectTerms | Alzheimer Disease - diagnosis Cognitive Aging Cognitive Dysfunction - diagnosis Cognitive Dysfunction - epidemiology Dementia - diagnosis Dementia - epidemiology Disease Progression Female Humans Male |
| Title | Characterizing Performance Gaps of a Code-Based Dementia Algorithm in a Population-Based Cohort of Cognitive Aging |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37638438 https://pmc.ncbi.nlm.nih.gov/articles/PMC10590260/pdf/nihms-1936430.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BONALFBXKo0V74LqOnV0_9pi6PFQpkQ9EoqdoXyaGxLaCIwS_vmM7MYgTh17t2ZW939rzzWpmPoALlkop6uKYkGlNudQuVSxQNIyY9Xxt0UnVhcKjcXAz4X_u_LstuN7UwpQLnEWrzMnnCyfPZk1u5SZHrJ-MYq9pOBK4_dKkfTRYPFHkIOhXXQevbMNO4CMp78HOZJwM_zbhFn5GGBc0MivIzmkk3KhtVMoGjPUfpKHIwxnn75zQ7iov5cuznM_feZurfZh1z9kkmTw6q0o5-vVDC8f_8CJfYW_NSMmwHXQAWzb_Bsu4a-T8is6NJG_1BeRalk-kSIkkcWEs_YV-0JDfzTFjJslwfl8ss2q2IFmOJkknELY2jIsZMv56fLzJXCLDWinpECZXl7fxDV3LM1CNLKaiSnhCCeWmKZN8EPq1jLXgfiqETgNmWTiQWkSSGYMIMCV55AUal1kGNpTCeOwIenmR22MgWntKY-imvTDgGuczaaSMFyKf8V1t7Al8b5GZlm0Pjmn9X4w4i07gooOqu4mBTQ3tFKGdttCefs7sDL7UcvLtEcsP6FXLlf2JpKNS57A9Tkbn6231D_4C1gE |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagHWDhId4veWB1mtTOw2MJlAqpqAOVylT5FRpok6ikQvDruSRtqJgYWJOzlfhzct9Zd_chdE0jIXhRHONTpQgTyiaSepL4ATWOqww4qaJQuP_o9YbsYeSONtD9qhYmm8EsSsZWMp1ZSTwpcytXOWKtQT90yoYjnt3KdNQCg9k7AQ4CftW24MomanoukPIGag4fB53nMtyCzwjiglJmBdg5CbgdVI1KaZvS1qvQBHg4ZWzNCW0tkkx8fojpdM3bdHfRpH7OMsnkzVrk0lJfv1o4_sOL7KGdJSPFnWrQPtowyQGah3Uj5y9wbnjwU1-A70X2jtMICxym2pAb8IMa35bHjLHAnelLOo_zyQzHCZgMaoGwpWGYToDxF-PDVeYS7hRKSYdo2L17CntkKc9AFLCYnEjucMmlHUVUsLbvFjLWnLkR5yryqKF-WygeCKo1IEClYIHjKVhm4RlfcO3QI9RI0sScIKyUIxWEbsrxPaZgPh0FUjs-8BnXVtqcouMKmXFW9eAYF__FgNHgFF3XUNU3IbApoB0DtOMK2rO_mZ2j7UJOvjpiuUCNfL4wl0A6cnm13FDf_yLU9Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Performance+Gaps+of+a+Code-Based+Dementia+Algorithm+in+a+Population-Based+Cohort+of+Cognitive+Aging&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.date=2023-01-01&rft.issn=1387-2877&rft_id=info:doi/10.3233%2Fjad-230344&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A10590260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2877&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2877&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2877&client=summon |