Characterizing Performance Gaps of a Code-Based Dementia Algorithm in a Population-Based Cohort of Cognitive Aging

Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely available from electronic health records (EHR). If the characteristics of misclassified patients are clearly identified, modifying existing a...

Full description

Saved in:
Bibliographic Details
Published inJournal of Alzheimer's disease Vol. 95; no. 3; p. 931
Main Authors Vassilaki, Maria, Fu, Sunyang, Christenson, Luke R, Garg, Muskan, Petersen, Ronald C, St Sauver, Jennifer, Sohn, Sunghwan
Format Journal Article
LanguageEnglish
Published Netherlands 01.01.2023
Subjects
Online AccessGet full text
ISSN1387-2877
1875-8908
1875-8908
DOI10.3233/JAD-230344

Cover

Abstract Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely available from electronic health records (EHR). If the characteristics of misclassified patients are clearly identified, modifying existing algorithms to improve performance may be possible. To examine the performance of a code-based algorithm to identify dementia cases in the population-based Mayo Clinic Study of Aging (MCSA) where dementia diagnosis (i.e., reference standard) is actively assessed through routine follow-up and describe the characteristics of persons incorrectly categorized. There were 5,316 participants (age at baseline (mean (SD)): 73.3 (9.68) years; 50.7% male) without dementia at baseline and available EHR data. ICD-9/10 codes and prescription medications for dementia were extracted between baseline and one year after an MCSA dementia diagnosis or last follow-up. Fisher's exact or Kruskal-Wallis tests were used to compare characteristics between groups. Algorithm sensitivity and specificity were 0.70 (95% CI: 0.67, 0.74) and 0.95 (95% CI: 0.95, 0.96). False positives (i.e., participants falsely diagnosed with dementia by the algorithm) were older, with higher Charlson comorbidity index, more likely to have mild cognitive impairment (MCI), and longer follow-up (versus true negatives). False negatives (versus true positives) were older, more likely to have MCI, or have more functional limitations. We observed a moderate-high performance of the code-based diagnosis method against the population-based MCSA reference standard dementia diagnosis. Older participants and those with MCI at baseline were more likely to be misclassified.
AbstractList Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely available from electronic health records (EHR). If the characteristics of misclassified patients are clearly identified, modifying existing algorithms to improve performance may be possible. To examine the performance of a code-based algorithm to identify dementia cases in the population-based Mayo Clinic Study of Aging (MCSA) where dementia diagnosis (i.e., reference standard) is actively assessed through routine follow-up and describe the characteristics of persons incorrectly categorized. There were 5,316 participants (age at baseline (mean (SD)): 73.3 (9.68) years; 50.7% male) without dementia at baseline and available EHR data. ICD-9/10 codes and prescription medications for dementia were extracted between baseline and one year after an MCSA dementia diagnosis or last follow-up. Fisher's exact or Kruskal-Wallis tests were used to compare characteristics between groups. Algorithm sensitivity and specificity were 0.70 (95% CI: 0.67, 0.74) and 0.95 (95% CI: 0.95, 0.96). False positives (i.e., participants falsely diagnosed with dementia by the algorithm) were older, with higher Charlson comorbidity index, more likely to have mild cognitive impairment (MCI), and longer follow-up (versus true negatives). False negatives (versus true positives) were older, more likely to have MCI, or have more functional limitations. We observed a moderate-high performance of the code-based diagnosis method against the population-based MCSA reference standard dementia diagnosis. Older participants and those with MCI at baseline were more likely to be misclassified.
Author Christenson, Luke R
Garg, Muskan
Petersen, Ronald C
St Sauver, Jennifer
Vassilaki, Maria
Sohn, Sunghwan
Fu, Sunyang
Author_xml – sequence: 1
  givenname: Maria
  surname: Vassilaki
  fullname: Vassilaki, Maria
  organization: Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
– sequence: 2
  givenname: Sunyang
  surname: Fu
  fullname: Fu, Sunyang
  organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
– sequence: 3
  givenname: Luke R
  surname: Christenson
  fullname: Christenson, Luke R
  organization: Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
– sequence: 4
  givenname: Muskan
  surname: Garg
  fullname: Garg, Muskan
  organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
– sequence: 5
  givenname: Ronald C
  surname: Petersen
  fullname: Petersen, Ronald C
  organization: Department of Neurology, Mayo Clinic, Rochester, MN, USA
– sequence: 6
  givenname: Jennifer
  surname: St Sauver
  fullname: St Sauver, Jennifer
  organization: Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
– sequence: 7
  givenname: Sunghwan
  surname: Sohn
  fullname: Sohn, Sunghwan
  organization: Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37638438$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS1URB-w4QOQ9yjgZNzYXpYUCqgSXcA6miRO6iqxIycFla8nVYHV3MWZuZozJSPrrCbkOmR3EAHcvy6WQQQMOD8jk1CKeSAVk6MhgxRBJIUYk2nX7RhjwJS4IGMQMUgOckJ8skWPea-9-Ta2ohvtS-cbtLmmK2w76kqKNHGFDh6w0wVd6kbb3iBd1JXzpt821NgB2bh2X2NvnP0FE7d1vj_uJ66ypjefmi6qoeOSnJdYd_rqd87Ix9Pje_IcrN9WL8liHeQcVB9kKlSZylhZAvJIzMOIK8XnpVJ5GYMGEWGuJEJRDF9ChlyGcT44wFgLVEUIM3J7uru3LR6-sK7T1psG_SENWXo0l-6wSE_mBvrmRLf7rNHFP_qnCn4AaIlrEA
CitedBy_id crossref_primary_10_3233_JAD_230887
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
ADTOC
UNPAY
DOI 10.3233/JAD-230344
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1875-8908
ExternalDocumentID oai:pubmedcentral.nih.gov:10590260
37638438
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: R21 AG058738
– fundername: NIA NIH HHS
  grantid: U01 AG006786
– fundername: NINDS NIH HHS
  grantid: R01 NS097495
– fundername: NIA NIH HHS
  grantid: R01 AG068007
– fundername: NIA NIH HHS
  grantid: R33 AG058738
– fundername: NIA NIH HHS
  grantid: R37 AG011378
– fundername: NIA NIH HHS
  grantid: R01 AG041851
– fundername: NIA NIH HHS
  grantid: P30 AG062677
GroupedDBID ---
0R~
0VX
29J
36B
4.4
53G
5GY
AAEJI
AAFNC
AAFWJ
AAGLT
AAPII
AAQXI
AAWTL
ABDBF
ABIVO
ABJNI
ABJZC
ABUBZ
ABUJY
ACGFS
ACPQW
ACPRK
ACUHS
ADEBD
ADZMO
AEJQA
AELRD
AENEX
AFRAH
AFRHK
AFYTF
AGIAB
AHDMH
AIRSE
AJGYC
AJNRN
ALIRC
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARTOV
CAG
CGR
COF
CUY
CVF
DU5
EAD
EAP
EBS
ECM
EIF
EJD
EMB
EMK
EMOBN
ESX
F5P
H13
HZ~
IL9
IOS
J8X
MET
MIO
MV1
NGNOM
NPM
O9-
P2P
Q1R
SAUOL
SCNPE
SFC
SV3
TUS
VUG
ACARO
ADTOC
UNPAY
ID FETCH-LOGICAL-c439t-b919b9b0ff3a42751249945f99cf63e372ac98a3dd3873ba4816c344a6e7a9d13
IEDL.DBID UNPAY
ISSN 1387-2877
1875-8908
IngestDate Sun Oct 26 02:51:51 EDT 2025
Mon Jul 21 05:53:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords specificity
dementia
electronic health records
sensitivity
Alzheimer’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c439t-b919b9b0ff3a42751249945f99cf63e372ac98a3dd3873ba4816c344a6e7a9d13
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10590260/pdf/nihms-1936430.pdf
PMID 37638438
ParticipantIDs unpaywall_primary_10_3233_jad_230344
pubmed_primary_37638438
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of Alzheimer's disease
PublicationTitleAlternate J Alzheimers Dis
PublicationYear 2023
SSID ssj0003097
Score 2.3807535
Snippet Multiple algorithms with variable performance have been developed to identify dementia using combinations of billing codes and medication data that are widely...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 931
SubjectTerms Alzheimer Disease - diagnosis
Cognitive Aging
Cognitive Dysfunction - diagnosis
Cognitive Dysfunction - epidemiology
Dementia - diagnosis
Dementia - epidemiology
Disease Progression
Female
Humans
Male
Title Characterizing Performance Gaps of a Code-Based Dementia Algorithm in a Population-Based Cohort of Cognitive Aging
URI https://www.ncbi.nlm.nih.gov/pubmed/37638438
https://pmc.ncbi.nlm.nih.gov/articles/PMC10590260/pdf/nihms-1936430.pdf
UnpaywallVersion submittedVersion
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5BONALFBXKo0V74LqOnV0_9pi6PFQpkQ9EoqdoXyaGxLaCIwS_vmM7MYgTh17t2ZW939rzzWpmPoALlkop6uKYkGlNudQuVSxQNIyY9Xxt0UnVhcKjcXAz4X_u_LstuN7UwpQLnEWrzMnnCyfPZk1u5SZHrJ-MYq9pOBK4_dKkfTRYPFHkIOhXXQevbMNO4CMp78HOZJwM_zbhFn5GGBc0MivIzmkk3KhtVMoGjPUfpKHIwxnn75zQ7iov5cuznM_feZurfZh1z9kkmTw6q0o5-vVDC8f_8CJfYW_NSMmwHXQAWzb_Bsu4a-T8is6NJG_1BeRalk-kSIkkcWEs_YV-0JDfzTFjJslwfl8ss2q2IFmOJkknELY2jIsZMv56fLzJXCLDWinpECZXl7fxDV3LM1CNLKaiSnhCCeWmKZN8EPq1jLXgfiqETgNmWTiQWkSSGYMIMCV55AUal1kGNpTCeOwIenmR22MgWntKY-imvTDgGuczaaSMFyKf8V1t7Al8b5GZlm0Pjmn9X4w4i07gooOqu4mBTQ3tFKGdttCefs7sDL7UcvLtEcsP6FXLlf2JpKNS57A9Tkbn6231D_4C1gE
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagHWDhId4veWB1mtTOw2MJlAqpqAOVylT5FRpok6ikQvDruSRtqJgYWJOzlfhzct9Zd_chdE0jIXhRHONTpQgTyiaSepL4ATWOqww4qaJQuP_o9YbsYeSONtD9qhYmm8EsSsZWMp1ZSTwpcytXOWKtQT90yoYjnt3KdNQCg9k7AQ4CftW24MomanoukPIGag4fB53nMtyCzwjiglJmBdg5CbgdVI1KaZvS1qvQBHg4ZWzNCW0tkkx8fojpdM3bdHfRpH7OMsnkzVrk0lJfv1o4_sOL7KGdJSPFnWrQPtowyQGah3Uj5y9wbnjwU1-A70X2jtMICxym2pAb8IMa35bHjLHAnelLOo_zyQzHCZgMaoGwpWGYToDxF-PDVeYS7hRKSYdo2L17CntkKc9AFLCYnEjucMmlHUVUsLbvFjLWnLkR5yryqKF-WygeCKo1IEClYIHjKVhm4RlfcO3QI9RI0sScIKyUIxWEbsrxPaZgPh0FUjs-8BnXVtqcouMKmXFW9eAYF__FgNHgFF3XUNU3IbApoB0DtOMK2rO_mZ2j7UJOvjpiuUCNfL4wl0A6cnm13FDf_yLU9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+Performance+Gaps+of+a+Code-Based+Dementia+Algorithm+in+a+Population-Based+Cohort+of+Cognitive+Aging&rft.jtitle=Journal+of+Alzheimer%27s+disease&rft.date=2023-01-01&rft.issn=1387-2877&rft_id=info:doi/10.3233%2Fjad-230344&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A10590260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-2877&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-2877&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-2877&client=summon